TIPP&SEE: A Previewing & Navigating Strategy for Use/Modify
Scratch Activities

Anonymous Authors

Abstract

With many school districts nationwide integrating Computer Science (CS) and Computational Think-
ing (CT) instruction at the K-8 level, it is crucial that CS instruction be effective for diverse learners.
A popular pedagogical approach is Use—Modify—Create, which introduces a concept through a more
scaffolded, guided instruction before culminating in a more open-ended project for student engagement.
Yet, little research has gone into strategies that increase learning during the Use—Modify step. This
paper introduces TIPP&SEE, a learning that further scaffolds student learning during this step. Results
from a quasi-experimental study show statistically-significant outperformance from students using the
TIPP&SEE strategy on all assessment questions of medium and hard difficulty, suggesting its potential
as an effective CS learning strategy.

Keywords: learning strategy, computational thinking, Scratch, elementary education

1 Objectives

Momentum has been building for integrating computer science into elementary school classrooms. Providing
access to computing curricula is just one part of the solution. It is critical that computer science instruction be
effective for diverse students. Four broad categories of students; students with disabilities, English language
learners (ELL), students of color, and students in poverty, have academic challenges that may interfere with
their success in a computing curriculum. Diverse learners significantly underperform white peers with higher
socio-economic status on important academic markers (Eric A Hanushek, n.d.; NAEP Nations Report Card,
n.d.; NAEP Nations Report Card - National Assessment of Educational Progress - NAEP, n.d.). Worse,
Michelmore and Dynarski showed that performance gaps grow depending on the number of years spent in
poverty (Michelmore & Dynarski, 2016).

Unfortunately, there is a strong correlation between students of color and poverty, and performance in
public schools is similar for students of color and those in poverty. More recent work by [citation redacted] has
shown strong correlations between overall school academic performance and learning in a computer science
curriculum built on open-ended projects designed using a Constructionist pedagogical approach (Harel &
Papert, 1991).

Some students will need more scaffolding in their learning of CT concepts than many current curric-
ula provide. The Use—Modify— Create pedagogical approach has been proposed to provide additional
support, adding a Use—Modify task prior to an open-ended activity (I. Lee et al., 2011). This paper
introduces TIPP&SEE, a learning strategy that scaffolds student learning during the Use—Modify step of
Use—Modify—Create.

In a quasi-experimental study, a set of classrooms using the TIPP&SEE strategy performed statistically-
significantly better on all questions of medium and hard difficulty on written assessments as compared to
classrooms use an unmodified Use—Modify— Create approach.

2 Theoretical Framework

2.1 CS Education Pedagogy

As with other subjects, including literacy, computer science education researchers disagree on whether the
best approach is to use open-ended, exploratory experiences or direct instruction (Cantrell, 1998; Topping
& Ferguson, 2005). Papert, in his work on constructionism, posited that individuals learn best when they
are constructing an artifact for public consumption, putting a premium on self-directed learning (Harel &
Papert, 1991). This inspired Scratch to create a repository of projects which students can ”remix” (copy
and modify).

Critics argue that open-ended exploration of such environments may not lead to immediate understanding
of the concepts behind what they produce, especially compared to a more direct instruction approach (Biggs
& Collis, 2014; M. J. Lee & Ko, 2015). On the other hand, an overly structured approach can dissuade
students from continuing in programming courses, especially female students (Webb, Repenning, & Koh,
2012). A more moderate approach is informed by seeking the Zone of Proximal Flow, a combination of
Vygotsky’s Zone of Proximal Development theory with Csikszentmihalyi’s ideas about Flow (Basawapatna,
Repenning, Koh, & Nickerson, 2013; Vygotsky, 1978; Csikszentmihalyi, Abuhamdeh, & Nakamura, 2014).
The Zone of Proximal Flow refers to learning experiences that are not too challenging as to overwhelm
students, but not too easy as to lead to little learning.

One such moderate approach is Use—Modify—Create which provides more scaffolded, guided instruction
for each concept, followed by a more open-ended project to engage students’ interest and creativity (I. Lee
et al., 2011). However, little research has gone into strategies to increase learning that occurs during the
Use—Modify steps.

2.2 Reading Comprehension Strategies

Learning to program relies heavily on reading comprehension at several stages in the learning process —
reading (a) individual instructions, (b) a sequence of instructions provided as an example or starting code,
(c) one’s own partially-completed code, or (d) one’s completed but incorrect code. Just as in reading, it is
not enough to decode the letters into words; to succeed, the student needs to make meaning of the sequences
of words into instructions (like sentences) and the sequences of instructions into functions or programs (like
paragraphs).

We draw from existing evidence-based reading comprehension strategies in designing TIPP&SEE — pre-
viewing and text structure.

Previewing helps students set goals for reading and activates prior knowledge (Klingner & Vaughn, 1998;
Manz, 2002). When reading example code containing a new concept, students might scan the code to quickly
identify familiar and unfamiliar concepts. They could think about their prior knowledge of the concepts,
predict how the new concept might work, and inspect the syntax of the new concept.

Text structure prepares students to recognize disciplinary-specific text structures and use this knowledge
to plan for reading and guide comprehension (Gersten, Fuchs, Williams, & Baker, 2001; Williams, 2005). In
CS, programming languages and environments have specific structures that students must be able to discover
to comprehend code and must be able to differentiate as they learn new languages and environments.

3 TIPP&SEE Learning Strategy

TIPP&SEE (Figure 1) is a learning strategy that scaffolds student exploration of provided programs for
Use— Modify activities. The strategy is specifically designed for use with Scratch, a popular programming
language and development environment used in elementary schools (Flannery et al., 2013). In Scratch,
students program actions for sprites (i.e. characters on the screen) using visual code blocks; a group of
blocks is called a script (see Figure 2).

Inspired by the previewing strategies, the first half, TIPP, guides students in previewing different aspects
of a new Scratch project before looking at any code. As a last step, they run the code with very deliberate
observation of the events and actions that occur. The second half, SEE, draws from text structure strategies.

SEE provides a roadmap for finding code in the Scratch interface (clicking on the sprite and finding the
event) and proceduralizes the process by which they can learn how code works by methodical exploration.

4 Methods

4.1 Experimental Design

15 teachers were recruited from a large, urban school district and underwent the same professional develop-
ment to teach the Scratch Act 1 curriculum and the TIPP&SEE learning strategy. A total of 16 classrooms
participated in the study, three of which were co-taught by two teachers and six of which were bilingual class-
rooms. Each classroom was assisted by an undergraduate CS researcher. Classrooms were randomly assigned
to either the TIPP&SEE or the control condition, with five English-only and three bilingual classrooms in
each condition. Classrooms in the control condition were taught Scratch Act 1 without the TIPP&SEE
worksheets guiding them through the Use/Modify projects. After excluding students who switched schools,
were chronically absent or took the Spanish version of the assessments, there were a total of 56 and 88
students in the control and TIPP&SEE condition respectively, for a total of 144 students in the study.

4.2 Scratch Act 1

Within a semester, students completed Scratch Act 1 (Scratch Act 1, n.d.), an introductory computational
thinking (CT) curriculum modified from the Creative Computing curriculum (Computing, n.d.). Scratch
Act 1 consists of three modules, one for each of the key CT concepts (sequence, events, and loops). Each
module used Use/Modify projects to introduce the CT concept, and culminated in a Create project (see
Table 1). All curriculum materials were available in both English and Spanish.

4.3 Assessments

Students took two pen-and-paper assessments, the first one after the completion of Module 2 (events) and the
second one after the completion of Module 3 (loops). Each assessment consisted of a mix of multiple-choice,
fill-in-the-blank and open response questions, and were designed to take 20-30 minutes to complete.

Following the Evidence-Centered Design framework (Mislevy & Haertel, 2006), assessments were de-
signed based on K-8 learning trajectories for elementary computing (Rich, Strickland, Binkowski, Moran,
& Franklin, 2017). Questions were evaluated by a team of CS and education researchers and practitioners,
and tested with students from the previous school year for face validity.

The assessments were graded by two researchers to ensure reliability. To see if TIPP&SEE had an
influence on their assessment performance, the ANOVA F-test was used. To handle the imbalance between
groups, Type I Sum of Squares was used because there is only one factor tested.

5 Evidence & Results

For comparison across questions with different point values, the summary graphs discussed in this section
present normalized scores, where the scores from the control condition are normalized proportional to the
scores from the TIPP&SEE condition. Asterisks denote statistical significance at p = .05.

5.1 Events & Sequence

In the Events & Sequence assessment, Q1-2 ask about events, while Q3-7 ask about sequence. The students
in the TTPP&SEE condition outperformed the students in the control condition in all but the most basic
questions (see Figure 3).

Q1 asks students to identify the event that triggered one action block, while Q2, the more advanced
question, asks students to identify the script that is triggered by an event. Students in both conditions
performed similarly well in Q1, with 94.3% of TIPP&SEE and 85.7% of the control students answering
correctly (F(1,142) = 3.11;p = .08). In contrast, TIPP&SEE students outperformed the control students

on Q2, with 70.5% of them answering correctly, compared with 50% of the control students (F(1,142) =
6.29; p = 0.013).

Q3 and Q4 test a basic understanding of sequence, asking students to identify the last block in a sequence
and the different orders of blocks in two scripts, respectively. Over 80% of students in both conditions
answered Q3 and Q4 correctly (Q3: F(1,142) = 0.913;p = .34, Q4: F(1,142) = 2.0839;p = .15).

By comparison, the TIPP&SEE students demonstrated a deeper understanding of sequence. They out-
performed the control students on a question on parallel scripts (Q5a: F(1,142) = 5.98;p = .016, Q5b:
F(1,142) = 5.24;p = .024) and both the free-response questions — one asking only about sequence (Q6:
F(1,142) = 11.08;p < .01), and the other combining events and sequence (Q7a: F(1,142) = 11.5;p < .01,
Q7b: F(1,142) =9.81;p < .01).

5.2 Loops

The loops assessment comprised of seven questions (Q1-7) and an extra credit question asking about nested
loops, a concept not explicitly covered in Scratch Act 1. TIPP&SEE students outperformed the control
students in all but one question in loops, a more advanced topic than events and sequence.

The only question where TIPP&SEE and control students performed similarly was Q6b, a question asking
about loops executing in parallel (F(1,139) = 3.26;p = .07). Students in both conditions struggled with
Q6b, with only 44.2% of TIPP&SEE and 29.1% of control students answering correctly. In contrast, 93.1%
and 80% of TIPP&SEE and control students correctly answered Q6a, which asked about loops executing
sequentially (F'(1,139) = 5.49;p = .02). This performance difference between the two question parts indicates
room for improvement in the instruction of parallelism.

On the rest of the questions, TIPP&SEFE students displayed a better understanding of loops compared
with the control students. They outperformed the control students on the basic questions, which asked to
count the number of loop iterations (Q1: F(1,139) = 15.63;p < .01) and to unroll a loop (Q2: F(1,139) =
54.34;p < .01, Q3: F(1,139) = 22.25;p < .01), as well as the advanced questions, which asked about repeat
blocks vs iterations (Q4: F(1,139) = 18.27;p < .01), loops within a sequence (Qba: F(1,139) = 14.08;p <
.01, Q5b: F(1,139) = 12.12;p < .01, Q5¢: F(1,139) = 15.65;p < .01), and to explain a loop in their own
words (Q7: F(1,139) = 12.29;p < .01).

6 Scholarly Significance

In this paper, we present TIPP&SEE, a learning strategy to provide additional scaffolding in the Use —
Modify step of the Use — Modify — Create pedagogical approach in CS. Our findings show students using
TIPP&SEE statistically-significantly outperforming students who used an unmodified Use — Modify —
Create approach on nearly all questions of medium and hard difficulty. TIPP&SEE students outperformed
the control students in all but the most basic questions on the sequence assessment, and all but a question
on parallel loops on the loops assessment.

The results of the study suggest TIPP&SEE’s potential as an effective CS learning strategy that can
be used in elementary computing classes. Future work would include replicating TIPP&SEE in various
school districts nationwide to test its effectiveness. As momentum continues to build for integrating CS
into elementary school classrooms, it is imperative that CS instruction be effective for diverse learners. A
learning strategy like TIPP&SEE provide some much-needed scaffolding for such diverse learners, advancing
not just equitable access, but also equitable outcomes in elementary CS.

References

Basawapatna, A. R., Repenning, A., Koh, K. H., & Nickerson, H. (2013). The zones of proximal flow:
guiding students through a space of computational thinking skills and challenges. In Proceedings of the
ninth annual international acm conference on international computing education research (pp. 67-74).

Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The solo tazonomy (structure of the
observed learning outcome). Academic Press.

Cantrell, S. C. (1998). Effective teaching and literacy learning: A look inside primary classrooms. The
Reading Teacher, 52(4), 370-378.
Computing, C. (n.d.). An introductory computing curriculum using scratch.
Csikszentmihalyi, M., Abuhamdeh, S., & Nakamura, J. (2014). Flow. In Flow and the foundations of positive
psychology (pp. 227-238). Springer.
Eric A Hanushek, L. M. T. L. W. Paul E Peterson. (n.d.). The unwaver-
ing ses achievement gap: Trends in us student performance. Retrieved from
https://www.hks.harvard.edu/publications/unwavering-ses-achievement-gap-trends-us-student-performar

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bont4, P., & Resnick, M. (2013). Designing
scratchjr: support for early childhood learning through computer programming. In Proceedings of the
12th international conference on interaction design and children (pp. 1-10).

Gersten, R., Fuchs, L. S., Williams, J. P., & Baker, S. (2001). Teaching reading comprehension strategies
to students with learning disabilities: A review of research. Review of educational research, 71(2),
279-320.

Harel, I. E., & Papert, S. E. (1991). Constructionism. Ablex Publishing.

Klingner, J. K., & Vaughn, S. (1998). Using collaborative strategic reading. Teaching exceptional children,
30(6), 32-37.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., ... Werner, L. (2011). Computational
thinking for youth in practice. Aem Inroads, 2(1), 32-37.

Lee, M. J., & Ko, A. J. (2015). Comparing the effectiveness of online learning approaches on csl learning
outcomes. In Proceedings of the eleventh annual international conference on international computing
education research (pp. 237-246).

Manz, S. L. (2002). A strategy for previewing textbooks: teaching readers to become thieves.(teaching
ideas). The Reading Teacher, 55(5), 434-436.

Michelmore, K., & Dynarski, S. (2016). The gap within the gap: Using longitudinal data to understand
income differences in student achievement (Tech. Rep.). National Bureau of Economic Research.
Mislevy, R. J., & Haertel, G. D. (2006). Implications of evidence-centered design for educational testing.

Educational Measurement: Issues and Practice, 25(4), 6-20.
Naep nations report card. (n.d.). Retrieved from https://nces.ed.gov/nationsreportcard/glossary.aspxbasic

Naep nations report card - national assessment of educational progress - naep. (n.d.). Retrieved from
https://nces.ed.gov/nationsreportcard/?src=£ft

Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., & Franklin, D. (2017). K-8 learning trajectories
derived from research literature: Sequence, repetition, conditionals. In Proceedings of the 2017 acm
conference on international computing education research (pp. 182-190).

Scratch act 1. (n.d.). Retrieved from https://www.canonlab.org/scratchactimodules

Topping, K., & Ferguson, N. (2005). Effective literacy teaching behaviours. Journal of Research in Reading,
28(2), 125-143.

Vygotsky, L. (1978). Interaction between learning and development. Readings on the development of children,
23(3), 34-41.

Webb, D. C., Repenning, A., & Koh, K. H. (2012). Toward an emergent theory of broadening participation in
computer science education. In Proceedings of the 43rd acm technical symposium on computer science
education (pp. 173-178).

Williams, J. P. (2005). Instruction in reading comprehension for primary-grade students: A focus on text
structure. The Journal of Special Education, 39(1), 6-18.

Tables & Figures

Start with TIPP&SEE!

Get a TIPP from the Project Page:

Title: What is the title of the project? Does it tell you
something about the project?

Instructions: What do the instructions tell you to do?

Purpose: What is the purpose of this activity? What will this
code teach you?

Play: Run the project and see what it does! Look at which
sprites are doing the actions.

SEE Inside:

Sprites: Click on the sprite that you want to learn from or
change.

Events: Look at the event blocks starting the scripts. Which
scripts are most useful?

Explore: Try different changes to the scripts and observe what
happens!

Figure 1: TIPP&SEE Learning Strategy

Figure 2: Script in Scratch made of code blocks

Module Project Use-Modify-Create

Sequence Name Poem Use/Modify

Ladybug Scramble Use/Modify
5 Block Challenge Create

Events Events Ofrenda Use/Modity
About Me Create

Loops Build a Band Use/Modify
Interactive Story Create

Table 1: Scratch Act 1 Modules

Events & Sequence
Il TIPPRSEE | Control

0.75
0.5

0.25

Q1 Q2 Q3 Q4 Q5a Q5b Q6 Q7a Q7b

Question

Figure 3: Events & Sequence Assessment Results

Loops

0.75

0.5

0.25

Q1

[TIPPRSEE | Control

Q2 Q3 Q4 Q5a Qsb QS5c Q6a Q6b Q7

Question

Figure 4: Loops Assessment Results

EC

