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Abstract

The concept of topological derivative has proved effective as a qualitative
inversion tool for a wave-based identification of finite-sized objects. Although
for the most part, this approach remains based on a heuristic interpretation of
the topological derivative, a first attempt toward its mathematical justification
was done in Bellis et al (2013 Inverse Problems 29 075012) for the case
of isotropic media with far field data and inhomogeneous refraction index.
Our paper extends the analysis there to the case of anisotropic scatterers
and background with near field data. Topological derivative-based imaging
functional is analyzed using a suitable factorization of the near fields,
which became achievable thanks to a new volume integral formulation
recently obtained in Bonnet (2017 J. Integral Equ. Appl. 29 271-95). Our
results include justification of sign heuristics for the topological derivative
in the isotropic case with jump in the main operator and for some cases of
anisotropic media, as well as verifying its decaying property in the isotropic
case with near field spherical measurements configuration situated far enough
from the probing region.

Keywords: topological derivative, qualitative identification, inverse
scattering, volume integral equation, anisotropy
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1. Introduction

Inverse scattering has undergone intense investigation over the last quarter century, in par-
ticular due to the growth and flourishing of qualitative methods which provide robust and
computationally effective alternatives to more traditional approaches based on successive
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linearizations or PDE-constrained optimization, see [10, 11, 22] for expository material and
references. Qualitative identification methods usually consist in sampling a spatial region of
interest with points z at which an imaging function ¢ is evaluated; this is in particular the case
for (generalized) linear sampling methods and factorization methods. The latter are moreover
backed by firm and comprehensive mathematical justifications.

An alternative basis for qualitative identification is provided by the concept of topological
derivative (TD). The TD of an objective functional J quantifies the leading perturbation to
J induced by the nucleation of a trial object of vanishingly small radius § at a given location
z in the background (i.e. defect-free) medium. On taking J as a misfit functional of the kind
typically used for inversion by PDE-constrained optimization, the value of the TD of J at z,
herein denoted 7 (z), provides a basis for a sampling approach (by choosing ¢(z) := T (z)).
The underlying heuristic idea is that 7 (z) is intuitively expected to take pronounced negative
values at the correct location of a sought defect, consistently with the notion of minimizing .
This heuristic thus involves both the magnitude (expected to be largest) and the sign (expected
to be negative) of 7T (z) for z near the defect support.

The idea of TD was initially introduced and formalized as a computational aid for topology
optimization problems [17, 26], and has thereafter also proved effective for revealing hidden
objects in a variety of inverse scattering situations, see e.g. [2, 5, 8, 9, 16, 18, 19, 23-25]. In
particular, despite the asymptotic character of the mathematical concept of TD, numerous
available computational results show its ability to qualitatively identify spatially-extended
objects. The objective functional J underpinning 7 (z) in practice often expresses the misfit
between data and its model prediction in a least-squares sense, which has the advantage of
making TD-based imaging workable for any available data. Moreover, the practical evaluation
of z — 7 (z) only requires the incident field and an adjoint field [12], so is both straightfor-
ward and moderately expensive from a computational standpoint.

The definition and formulation of 7 (z) for given physical setting and objective func-
tional is a mathematically rigorous operation. By contrast, its subsequent application towards
imaging defects by using the previously-described heuristics is still supported mainly by
computational evidence and lacks a comprehensive mathematical foundation. Theoretical
investigations about TD-based imaging have begun only recently. The imaging of a single
small scatterer in an acoustic medium is mathematically studied in [2], where proofs of stabil-
ity with respect to medium or measurement noises are also given; this framework has since
then been extended to elastodynamics [1] and electromagnetism [27]. The high-frequency
limiting behavior of a TD imaging functional is analyzed in [20]. The qualitative identifica-
tion of spatially extended objects, which is the main focus of this work, was first considered
in [6] for a rather idealized setting involving L? misfit cost functionals incorporating far-field
data and scatterers characterized by a inhomogeneous refraction index. It was shown in that
context that the magnitude component of the heuristic interpretation is valid without limita-
tions, whereas the guaranteed correctness of the sign component is subject to an inequality
(involving the operating frequency and the obstacle size and contrast) that essentially requires
the scatterer to be ‘moderate enough’.

In this work, we continue the line of investigation initiated in [6] by considering situations
where (i) the medium properties are characterized by a tensor-valued coefficient appearing in
the principal, second-order term of the governing differential operator (rather than a refraction
index affecting the zeroth-order term) and (ii) data is collected at a finite distance (rather than
in the far field). The (uniform) host medium and the scatterer may both be anisotropic. Our
main aim is to establish conditions under which the usual heuristic for TD imaging is valid.
Towards this aim, we formulate the forward scattering problem as a volume integral equation,
and take advantage of a recently-proposed reformulation of such volume integral equation [7]
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which allows to express 7 (z) separately in terms of the material contrast and a contrast-
independent normalized integral operator; this in particular facilitates the handling of material
anisotropy. Some of our main findings are similar in nature to those of [6]; in particular the
sign component of the TD heuristic is again found to be valid within a ‘moderate enough scat-
terer’ condition, here expressed in terms of the norm of the normalized integral operator. We
emphasize that this condition is less stringent than a requirement that the Born approximation
be valid. Our other main contribution consists of an asymptotic study of the decay of | 7 (z)|
when the sampling region spanned by z is large relative to the obstacle diameter while the
measurements are taken far from the sampling region. The expected decay of z — |7 (z)|is as
a result observed for far-field data (leading-order asymptotics), as expected from e.g. [6], but
also on the next-order asymptotic contribution.

The article is organized as follows. In the next section we formulate the direct and inverse
scattering problem for anisotropic media for near field data, and introduce the topological
derivative as the first order coefficient in the asymptotic expansion of the cost function in
terms of the size of the trial inhomogeneities. The excitation and measurement surfaces may
not be the same and partial aperture data is allowed under some assumptions. Only the fields
inside the bounded region circumscribed by the excitation or measurement surface (whatever
bounds the larger region) matter in our analysis, hence the discussion presented here includes
the case when the scattering problem is formulated in the whole space or in a bounded region,
with obvious changes in the fundamental solution. Section 3 is dedicated to the derivation of
explicit expressions for the topological derivative, where a new volume integral equation for
anisotropic media recently obtained in [7] plays an essential role in obtaining a symmetric
factorization of TD. We consider two cases: isotropic scatterers in section 4 and anisotropic
scatterer in section 5. The study of the former is more complete, namely we provide the jus-
tification of the sign heuristic of TD restricted to scatterers of moderate strength in terms of
scatterer size, its material contrast and the operating frequency, as well as show the decay-
ing property of TD for sampling points far from the unknown inhomogeneity for spherical
near field measurements configuration far enough form the scatterer. The case of anisotropic
scatterers is more complicated and partial results on the justification of TD sign heuristic are
obtained in specialized cases such as for anisotropic scatterers embedded in isotropic back-
ground and scatterers of one-sign contrasts. Finally, several interesting questions are discussed
in section 6, and our findings are illustrated on numerical experiments in section 7.

2. Formulation of the scattering problem and topological derivative

We start by setting up some notation conventions which will be used throughout the paper. In
expressions such as A-x or B:C, symbols ‘-’ and ‘:” denote single and double inner products,
e.g. (A-x); = Ajx; and B:C = B;;Cy, with Einstein’s convention of summation over repeated
indices implicitly used throughout and component indices always referring to an orthonormal
frame. The (Euclidean) norm of a vector or tensor x is denoted by |x|, whereas || - || indicate
norms in function spaces or operator norms. Hat symbols over vectors denote corresponding
unit vectors, e.g. X := x/|x|.

2.1. Direct scattering problem

We consider an unbounded, homogeneous reference propagation medium whose constitutive

properties can be described by the real-valued symmetric tensor A € Rs},ﬁf, so that (in the
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absence of any sources in the medium) a propagating wave described by the complex-valued
function u satisfies

—div (A-Vu) —k’u=0 (1
(see [15] for details on scattering in anisotropic media). The medium hosts an unknown inho-
mogeneity with compact support B C R? whose material properties are characterized by
A € R¥%3 Both A and A are positive definite. The perturbed medium can then be character-

sym *
ized byyA B € L(R%; Rg’yﬁf’) such that
Ap:=A inB, Ap:=A inR*\B.

Let I'y and '), denote two closed surfaces, which respectively support probing excitations and
measurements. We denote by R,, and R, the bounded domains enclosed by I',,, and I';. We will
consider the following possibilities for the source / measurement configuration: (i) R,, = R;,
ie. I, =T} (ii) R, € Ry, i.e. I, is inside T'; (iii) Ry € R, i.e. I is inside T',,. In all cases,
B € R, the region of interest R being defined by R := R;NR,, i.e. both I'; and I';,, surround
the unknown inhomogeneity.

This work will make frequent use of single-layer potentials created by superpositions
of sources on T’y or T',,. Let the single-layer potential operator S, : H™Y 2(I‘a) — HY(R)
(av=m, s) be defined by

Sraso(x):/ Pp(x—y)ply)dy  xERa=m,s, )

a

where @, (x —y) is the fundamental solution for the background medium, satisfying
—div (A-VP,(x—y)) = #'Cu(x—y) =dx—y) xeR\{} (3

together with the outgoing radiation condition at infinity. For a generic wave u, the radiation
condition involved in problems (1) and (2) is (see [15])

(#-A~"#)PHAT Vulr) —iku(r) = O(r %) |r| — o0, @)

and reduces to the usual Sommerfeld condition if the medium is isotropic. An explicit expres-
sion of ®,, is given in [15] by equation (9). For any density ¢, the field w := S, solves (1)
in R3\ T,

Towards the identification of B, the medium is excited by source densities g € H -1/ 2(l“s),
creating incident fields u that are given by single-layer potentials

u(x) = Sg(x), xR’
In the perturbed medium, this excitation gives rise to the total field u§ such that
—div (Ap-Vu§y) — k*uf, = g or, and radiation condition

(here, since the incident field is radiating, the total field is radiating too). By linear superposi-
tion, we have

u(x) = / up(x;s)g(s)ds  xcR?
T
where up(-;s) solves

—div (Ap-Vup) — k*ug = 6(-—s)  and radiation condition. 5)
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In the present framework (where sources and measurements are not assumed to be in the far
field), point sources and their superposition as potentials replace plane waves and their super-
position as Herglotz wave functions used in e.g. [6]. Moreover, if I, is outside I';, (cases (i) or
(ii)), any given incident field u (such as an arbitrarily chosen plane wave) can be created inside
R, by using g solving the integral equation S8 = u.

2.2. Cost functional

We assume the knowledge on T',, of a measurement of ugbs = Uons(+;5) of the field ug(-;s)
for each source location s € I'; and formulate the problem of identifying B in terms of the
minimization of a cost functional. Letting D denote the support of a trial inhomogeneity, the
least-squares cost functional

1
J(D) = 5/1“ /F |uD(m;s) — Ugbs (M §) ’2MM, (6)

is the most common basis for such optimization-based identification. For reasons that will
appear later, we will consider the modified form

1
Je(D) := E/r /r | (Eup(s';s) — Eups(s';5)) |2dsds/ 7

of the cost functional (6), where E : H'/?(T,,) — H'/?(T,) is a bounded linear operator (to
be specified later, see section 3.2) which produces an ‘equivalent measurement’ Euqps and its
model prediction Eup, that are defined on the source surface I'y (so E acts on the first variable
of the two-point functions up, ueps). Note that, as seen from its construction in section 3.2, E is
computable and its action on up, ueps can be interpreted as data preprocessing. In addition, the
operator E ensures a symmetrical factorization of the measurement operator which is crucial
in our analysis. As opposed to the far field measurements configuration when the adjoint of
incoming plane waves are outgoing field, in our near field setting, the adjoint of (outgoing)
point sources are their conjugates (i.e. incoming point sources), causing for the standard L*-
cost functional to lack a symmetric factorization. This issue commonly arises with factoriza-
tion methods in inverse scattering with near field data (see e.g. [3, 22]). Although the physical
meaning, if any, of the operator E is not relevant to our study, a possible interpretation could
lie in the time reversal framework since it involves conjugation of the layer potentials. We note
in passing that the cost functionals (6) and (7) coincide when I';, and I’ are identical spheres,
see appendix A.3.

Moreover, to facilitate the theoretical analysis that follows, we idealize the situation further
by assuming the data to be noise-free, i.e. uobs(+;8) = ug(+;s). The TD is known to be only
mildly sensitive to data noise; this point is briefly discussed in section 6.2 and also exempli-
fied in section 7.

2.3. Asymptotic of the cost functional

In this approach, the medium is ‘sampled’ by means of trial inhomogeneities B;(z) of support
Bs(z) =z + 0B and size § > 0, centered at a given point z € © and endowed with specified
material constants A,. Without loss of generality, z can be chosen as the center of Bg, i.e. such
that
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/Xde =0.
B

We then set D = Bs = B;(z) in the cost functional (6). Denoting by us := ug, the total field
arising in this situation and remembering the error-free assumption made for the measure-
ment, we then define the cost function J(§) = J(d;z) in terms of J by

1
10) = Te(Bs) = [ [ |Busts'ss) ~ Bun(s'ss) s o' ®)
Iy JT
The topological derivative T (z) of J at z is then defined as the leading coefficient in the fol-
lowing expansion of J(§) —J(0) in powers of J:
J(8) = J(0) + 6°T (z) + o(8°). 9)

In view of (8) and (9), the topological derivative 7 (z) can be evaluated by identification from
[6, 18]:

—Re{ / / Eus(s';s) EuSB(s';s)ds'ds} = 8T (z) + o(6?), (10)
r, Jr,

where uy = up—u and u§ := us—u are the scattered fields associated with up and us,
respectively.

3. Explicit expression of the topological derivative

We now have all the ingredients to develop from (10) an expression of the topological deriva-
tive 7 (z) that is convenient for its analysis as an identification tool.

3.1 Representation of scattered fields

Recalling known results on the solution’s asymptotics (which incidentally explain the expected
0(63) leading order in (10), see e.g. [2, 14, 18]), and given our choice of incident fields, the
scattered field for the trial inhomogeneity By is given at any x # z by the expansion

u(x;8) = S W(xss) + o(8°), W(x;s) == VO, (x —z).MZ.VQK(z—i%,l)
where M, := M(B,A;) € R-:’yxnf denotes the polarization tensor of the normalized trial inho-
mogeneity [2, 13].

Moreover, the scattered field for the true inhomogeneity has the representation

up(x;s) = Wlh](x), (12)
where W, is the volume potential defined for any density g € Lgomp(Rg’; C3) by
W.lg](x) = / Vo, (x—y)-gly)dy (13)
R

and the density h = (A—A)-Vug(-,s) € L*(B;C3) solves the singular volume integral
equation (VIE)

Th=(A—A)-Vu inB,  with T:=I—(A—A)-VW, (14)
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(note that supp(A —A) = B). The singular integral operator T : L?(B; C3) — L*(B;C?) is
known to be invertible with bounded inverse. Solving equation (14), using (12) and recalling
the definition of u, we obtain

up(x;s) = /BV%(x—y)-[MBV%(-—S)](v) dy (15)

with the solution operator My defined for any g € L?(B;C*) by Mgg := h with h solving
Th = (A—A) - g. We refer the reader to [7] for more details on how these expressions are
obtained.

3.2. Source-to-measurement operators and their factorization

Let the measurement operators Fg and F, associated with the true and trial scattered fields be
defined such that ,,up = Fpg and y,,us = F,g, where -, denotes the Dirichlet trace operator

onT,, and ge H!/ 2(T',) is any excitation applied on T'y. In view of representations (11) and
(15), we have

Fp = Hy,MzHg,,  F.=H’,(5’M.)H., + o(5°) (16)

where the operators H.,, : H~'/?(I'y) — C? and Hp, : H~'/*(I'y) — L*(B; C?) are defined
by
Hzoz@ = VSronO(Z), HBa‘P = VSroz‘P |B:: VSBa@ a=m,s
in terms of the single-layer potential operator (2). Here H, : C - HY 2(T,) and
ot L*(B;C?) — H'/2(T,) denote the conjugate transpose which we will refer to as adjoint
(note that the duality pairing H~'/2, H'/? is with respect to the L? pivot space). The measure-
ment operators Fp, F, are thus expressed by (16) as non-symmetric tactorizations, a feature

previously noticed in e.g. [3, 4, 21]. Following [3], symmetric factorizations can be obtained
with the help of the following lemma:

Lemma 1. Assume that k° is not a Dirichlet eigenvalue for the Laplace operator in R. If the
source/measurement configuration is such that either ', =1's or I',,, C R, (cases (i) and (ii) of
the Introduction), we have

1
S:nsSmmH;?m = HES
where Sy *= Sy While Sy := YuSm is the single-layer integral operator on I',.

Proof. We proceed by proving the (equivalent) adjoint equality
Hpg,,(S5,,) " 'Sms = Hpg,. This equality also reads Vfng;,LSms = VS, in view of the defini-
tion of Hp, and since S%, = S, For any given density 1, € H~'/3(Ty), SBmSyZyLSmsws and
Sps1)s are Helmholtz solutions in R, C Ry and R;, respectively. Taking the trace on I, for both
fields, we obtain 7m§3m§,;,:lsmsws = S,s0s = YmSpstps. Hence the two Helmholtz solutions,
having the same trace on I',,, coincide in R,,. Their gradients therefore also coincide in R,,,
and the lemma follows by taking the adjoint.

Note that due to the lemma assumptions EB,,S,;,LSW,S% is not a Helmholtz solution outside

. . . .=l ..
R,,, since R, contains the surface I',, supporting the density S,,,,Smss. This is the reason for
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the our assumptions. |

Therefore, defining the linear bounded operator E := S* S:-! from H'/?(T,,) to H'/2(T';)

ms=mm

and recalling factorizations (16), lemma 1 implies the symmetric factorizations
EFp = HyMgHg,, EF, =H M H

or, equivalently:

Euy(s's5) = / Vo, (5 ) [MsVD,.(-—5)] () dy.

Eu(s';s) = 8V, (s' —2)-M,- VO, (z—5) + 0(5).

For an explicit example of the symmetry restoring-operator E, see appendix A.3.
We are finally ready to give for the topological derivative an explicit expression, which is
the main object of study in what follows.

3.3. Topological derivative

Inserting the above expressions of Euj and Euj in (10), the topological derivative is found to
be given by the formula

:—Re ///V@ (s'—2)-M,-V®,(z—s)

VO =) [Mp V(- —5)] ) dyds’ s }.

which will serve as the main basis for our analysis. This formula can be recast in a more con-
cise, and structure-revealing, form as

T(e) = —Re{ /Bm [MG](ey)dy }

a7
= —Re{ (G, MG)

LZ(B;(C3X3) }

where f,g — (f,g) denotes the sesquilinear form associated with the L*(B) scalar product

(for scalar- or tensor-valued functions as needed), the (two-point, tensor-valued) function G
is defined by

G(z.y) :=/ Vo, (s—2)@ VP, (s—y)ds,
T
ie. Gj(z,y) :/ 0P (s —2)0;Pr (s —y)ds,
I

and M is the L?(B; C**3) — L?(B; C3*3) operator given by
Mijke = (M) (Mp)je.-
In addition, G(z,x) is alternatively given by

82

Gii(z.y) = Ty L(z.y), (18)

with the two-point function L defined by
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Ley) = [ 862 Buls—y) s
r
The function L would moreover appear in the counterpart of (17) associated with inhomoge-
neities characterized solely by a contrast in their refraction index, studied in [6].

Remark 1. The above expressions are also valid if the scattering problem is formulated
in a bounded region instead of the entire space. In this case ®,(-, -) denotes the fundamental
solution of the (bounded) background medium satisfying the relevant homogeneous boundary
condition.

3.4. Reversed nesting of source/measurement surfaces

Lemma 1 requires I'; to surround, or coincide with, I',,. The following reciprocity property
allows to include the case I'y C R, (i.e. I';, surrounding Ty, case (iii) of Introduction) in our
analysis:

Lemma 2. For any inhomogeneity B and any m,s € R? such that m #s and m,s ¢ B, the
Sfunction ug(-;s) defined by problem (5) satisfies ug(m;s) = ug(s;m).

Proof. Let 2, denote the ball of radius p, with p large enough to have m,s € ,, and set
Qpe(s) == {x€Q,, [x—s| > e} withe < [m—s|. We have

—/ [div (Ap-Vup(;s)) + K*up(;s) Jug(;m)dV = 0
Qpe(s)

and the above integral is well-defined since up(-;s) is smooth, and ug(-;m) summable, in
Q,.(s). Applying the first Green identity to the above identity and taking the limit € — 0 in
the resulting equality (using that ug(-;s) = @, (- — 5) + uj(-; ) together with the smoothness
of uj;(+;s) in a neighborhood of s) yields

/ [Vug(:;s)-Ag-Vug(sm) — K2up(-;8)up(-;m) |dV
Qpe(s)

= up(s;m) + /BQ (n-A-Vug(-;s) )up(-;m) dS.

The above equality also holds with the roles of m and s reversed. Subtracting these two
equalities provides

0 = ug(s;m) — ug(m;s)

+ - { (n~A-VuB(~;s))u3(~;m) - (n~A~VuB(-;m))uB(~;s)}dS.

The lemma finally follows from the fact that the above integral over 052, vanishes in the limit
p — oo due to the radiation condition (4) satisfied by both ug(-;s) and ug(-;m). [
Lemma 2 implies that the measurement residuals (assuming noise-free data) verify
up(m;s) — uops(m;s) = up(s;m) — up(s;m), mel,, sel,.

Consequently, when I',,, surrounds I';, the foregoing analysis leading to (17) still applies by
the simple expedient of reversing the roles of I'y and I',, in the cost functionals (6) and (7)
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and setting E := S, V! for the symmetry-restoring operator E. Accordingly, the topological
derivative is in this case given by

T(z)z—Re{/l; /1“ /I,:VQH(m'—z)~MZ-m
Vo, (m' —y)- [MgV P, (- —m)](y) dydm’dm}.

Now we are ready to study the behavior of T (z) for various locations of sampling point z. We
will begin, in section 4, with the simpler case of isotropic media.

3.5. Cases of partial aperture

The foregoing development, which is undertaken assuming both surfaces I'y and I',, to be
closed (and either nested or equal), can be extended to the cases where the outside surface is
open, i.e. either Iy is open, I, is closed and T'y C (R*\R,,) or T, is open, I, is closed and
T, € (R*\Ry). In the former case, lemma 1 still holds true, with its proof unchanged except
for the fact that the image space in identity S* . V-LHj = Hj is H'/?(T,), which requires
that both members of the adjoint equality be evaluated on densities 1), € H™'/? (Ts). Hence the
symmelry-restoring operator E remains defined by E := S*.S,}, and the resulting expression

(17) still holds. In the latter case, the reciprocity lemma 2 again allows reversion to the former
case as explained in section 3.4.

4. Isotropic scatterers

In this case, we have A = al, A = al, A, = a,l, where a, a and a; are strictly positive mat-
erial constants. We introduce for convenience the non-dimensional material parameters
a a B B
=21 =21 = g=
a Z a q 512 q: B.+2
which verify —1 < 8, 8, < ocand —1 < g, ¢, < 1. As we will see in the following, for isotropic
scatterers the topological derivative expression is easier to analyze.

19)

4.1. Simplified expression of the topological derivative

The singular integral operator T introduced in (14) is then given by

T=1-afVW, = ﬁ(l —gR.), with R, :=I+2aVW,

2q
(with the second equality easily checked by inspection). The solution operator M introduced
in (15) is then given by

My =2aq(I — qR,.)™".

Moreover, the polarization tensor, being defined from the zero-frequency transmission prob-
lem where B is excited by a remote constant gradient, is given by

Mz.g:zaqz/ (I—qZRo)flng for any g € C
B

10
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with Ry :=I+2aV Wy, and where the volume potential Wy, is defined as in (13) except that
®,, is replaced with the zero-frequency fundamental solution ®, given by ®q(r) = 1/(4walr|).
Since ||g.Ro|| < 1forany g, > —1[7] and R defines areal symmetric L*(B; R?) — L?(B;R?)
operator, the operator I — g.R is symmetric and positive definite, implying that the polariza-
tion tensor can be recast in the form

M, = 2aq.D! D,

(with D, the real-valued Choleski square root of the real symmetric positive definite matrix
(2aq;)~'M.). If the trial inhomogeneity is spherical (i.e. if B is the unit ball), we have

4 8 4
M, = 4mabey  8mage, L oop o [ AT (20)
51 + 3 3— q: 3— q:

We now take advantage of the above representation of M, in the expression (17) of 7 (z),
which becomes

T(z) = 74612qqz Re{ (K, RK)LZ(B;C3X3) } (21)
with K(z,y) := DY -G(z,y) and
Rijke = 0 (I — qR; )J;' 22

As aresult of (21) and (22), we can deduce that, under an assumption on the strength of the
scatterer, the sign heuristic underpinning topological derivative-based identification is true.
More specifically, with the stated notations and assumptions on the scattering by isotropic
media with contrast in the main operator (as opposed to [6] where the contrast is only in the
lower order term), we have proven the following theorem.

Theorem 1. For any true isotropic scatterer (B, 3), where [3 is defined by (19), and wave
number K that satisfy

[gR |l = lg| IR < 1, (23)

the topological derivative satisfies the sign condition
sign(7 (z)) = —sign(qq:), 24)

where q and q; are given by (19).

Condition (23) can be considered as restricting the justification of the sign heuristic to
‘moderate’ scatterers (the moderate character depending on a combination of the scatterer
size, its material contrast and the operating frequency). We call the scatterers that satisfies
condition (23) moderate, since it is less restrictive than the weak scattering condition implicit
in the Born approximation (see section 6.1)

Remark 2. Obtaining a precise numerical evaluation of | R, | (e.g. for determining whether
a given scatterer is moderate in the above sense) requires significant implementation and com-
putational effort. On the other hand, using that ||Ry|| = 1and | V(W,, — Wy)|| < C2(rp)? with
C, =~ 0.61577 (by theorem 3.1 and lemma 5.2 of [7], and with p the radius of the smallest ball
containing B), we find that

IRl < 1+ Ca(rip)?,

1



Inverse Problems 35 (2019) 104007 M Bonnet and F Cakoni

implying that any scatterer verifying |g| (1 + C;(kp)?) is moderate.

Remark 3. It is easy to check that the sign condition (24) remains valid (i.e. the sigh heu-
ristic is still verified) for any (e.g. multi-frequency) cost functional of the form

L
Jer(D) = Z weTg, (D; Ke),

=1

where wy are real positive weights and each Jg, is of the form (7) with E, defined relative to
the frequency ky, if each integral operator R, satisfies condition (23).

As discussed in [6], to use z — 7 (z) as an identifying function for the inhomogeneity, it
should decay as z moves far away from the boundary of the unknown inhomogeneity in addi-
tion to verifying the sign heuristic property. But as opposed to [6], here we deal with near field
data and hence we need to understand how 7 (z) decays for z ‘far’ from the boundary of the
inhomogeneity B and still remaining within a ‘reasonable’ distance from the measurement
curve I';,. To address this issue, next we carry out this two-scale asymptotic calculations for a
spherical configuration of the measurement/source surface.

4.2. Decay properties of the topological derivative

Here we limit ourselves to the case when the trial inhomogeneity is spherical (i.e. if B is the
unit ball) and when the excitations and measurements surfaces I'y =1, = pS‘ are both the
sphere of radius p centered at the origin. For the purpose of these calculations, we assume
without loss of generality that a = 1, hence ®,, defined by (3) is now the free space fundamen-
tal solution of the Helmholz equation given by

o e 25
k(s —y) = arfs—y| (25)
In this particular setting, as noted above, the topological derivative becomes
16mqq
T() = —37(; Re / G(z.y) : [RG] (z.y) dy (26)
Yz B

where
Rie = 0w (I — Ry ) ;'\ R = T+2aV W, W,:[g] (x) :/ Vo, (x—y)-g(y)dy
B

and the 3 x 3 tensor valued function G(z,x) is given by

Gz.y) = szW@Vy(DK(sfy)ds
1 /(1+ifc|s—z\)(1—ifi|s—y|)

~l6r? s—zp s —yP?

efin|sfz\ein\s7y\ (S/—\Z ® S/—\y) p2d§’
27
We want to study the decaying behavior of 7 (z) for z far away from the target inhomogene-
ity B. In the far field it was shown in [6] (for a slightly different problem) that the topological
derivative decays at reversed proportional to the square of the distance of z for B. However,
here we expect that such behavior depends on how far the probing region is from the source/
measurement surface. To better understand this interplay, for a fixed z outside B we set the

12
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reference length to be d; := dist(z, B) and note that|y —z|, y € Bis O(d;). Letn > 0 be a small
parameter and take a constant 0 < o < 1. Here 7 characterizes the ratio between the size of B
and the radius p of the measurement/source sphere (figure 1). Thus
bl = bl = 0(n), y €B,s € pS. (28)
sl p
We express the facts that the ‘region of action’ (i.e. the probing region and inhomogeneity) is
far from the source/measurement surface, and that z stays ‘far from’ the inhomogeneity, by
assuming that

-z _ -z a | I—a
=R aa Y= 00, 29)
respectively, uniformly for y € B. Loosely speaking our scaling is such that d;/p = n® and
diam(B)/d, = n'=“ (see figure 1). We now perform ‘far field’ asymptotic expansions for
functions involved in (27) as n — 0, retaining only the terms of order O(1) and O(n®) (note
that the terms O(1) are those that appear in the far field expansion [7]). To this end, making
use of the following simple formula

2 2 o
s—z|"—|s— —z|+2(s—y) - (y—z
TR e e N o ) RO
|s —z| +[s —y| Is—z| + s =yl
letting
ci=8-(y—2),
and noting that
s—=y . o
- =8(1+0(m) =s(1 +0(n)),
we arrive at the following asymptotic expressions
o —Z o
5=y =2+ 00 =4 ol). Is—2f = 7 |14 222 o)
which yield
1—ikls—y| 1—ikp o
s—yf 2 (1+0(n%)) (30)
1 +ikls—z 1 . . -z a

Next, we have

21+ 2053 02 = p [ 2k o)

-2z
el + b=l = p 24 222 o)
which from the above yields the following expansion for the exponents in the exponential

terms in (27)

13
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Figure 1. A sketch of the probing region. The thick line, i.e. d,, indicates the reference
length scale, which is much smaller than p, more precisely d./p = 7%, but much bigger
then diam(B), more precisely diam(B)/d, = n'~*. Here n = diam(B)/p.

1—c*y—z
i (s —zl — s —v]) = —irly—zle |1
i (Js —z| = |s —y|) = —ixly Z|C{ e,

Hence, we obtain the following expression for the exponential term

2 2
—ik(|s—z|—=ls—|) _ o—ircly—] 1—i |yfz‘ I-c a
e e [ mip — +o(n®)| . (32)
Now plugging (30)—(32) in (27), using
—_— —_ A ~ ~ A A A |y_z| (o3
§—ZRSs—y=8§R§+(§®Z—c§ ®S)T +o(n®)

and collecting the coefficients in front of O(1) and O(n®) terms, we finally obtain (recall that
v —zl/p = O(n®), see (29)),

1 o -z o . o
6@) = oz [{aGys s+ L Mams o Beyios] Jas o) @y
with
1+ikp 1 —ikp _,,
Azy) = — 2P L7 1P iseley]
p p
1—ikp |1 +ik e 2+ik
B(z.y) = £ { £ (—m ly—z] —C> - pC]
p p 2 p

where we recall again that ¢ := § - (y —z). The integration over the unit sphere S after param-
etrizing it as x = V1 —c2cosp, y = V1 — ¢%siny, z = ¢ with ¢ € [-1,1] and ¢ € [0, 27]
involves integrals of the form

14
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I, = /1 enbzlegm ge 0<m<4
-1
which from the Jacobi—Anger expansion can be written as linear combinations of
2(=)"j(kly —2]) := /l e*blep, (¢)de, 0<n<4
1
where j, are spherical Bessel function of order n and P, are the Lagrange polynomials. By

straightforward but careful calculations, we arrive at the following expression after using the
classical identity (j,—1 + jut1) () = (2n+1)j,(2) /¢ (see e.g [14, equation (2.34)])

1+ K2p%T, . PN
G(ey) = gy [io(sly ~2DI + ja(sly ~2)(T 36 @ b)|
FpFIT. AT J(kly—2z|) 7 o] =2l o
— — o) a=hSh A Vi) SN Yy 4
o [ —2Db @b+ (p 422 IR 36 08)| 2 E o),

wherein b := y/—\z. Notice that, for fixed p large enough with respect to the inhomogeneity
B, i.e. respecting (28) that ensures our asymptotic works, we see from the behavior of Bessel
functions j,(x) = O(|x|~") for x — oo, that G(z,y) = O((kly —z|)~") for y € B and z far
from B (but still respecting (29)). Plugging G(z,y) in (26) and using the fact that || R || < C in
the operator norm, by invoking the Cauchy—Schwarz inequality, we can assert that the topo-
logical derivative 7 (z) decays as O( (rd;)* ) for large enough d, := dist(z, B) (but still obeying
our separation of scales that diam(B) is much smaller than d, which on its turn is much smaller
than the radius p of measurement). The decay in our case of near field measurements is at the
same rate as in the case of the far-field for the problem considered in [6]. We summarize our
result in the following theorem.

Theorem 2. For a given unknown isotropic inhomogeneity (B, 3), where f3 is defined by
(19), we assume that the excitations and measurements surfaces I's =1, = pS‘ are both the
sphere of radius p centered at the origin. Furthermore, suppose that dist(z, B)/p = n® and
diam(B)/dist(z, B) = ' ~® for some small dimensionless parameter n >0 and 0 < a < 1.
Then

Ti)=0

asn — 0.

(Gastce)

Note that in the above calculations we consider I'y =T, = pS merely for convenience.
The same asymptotic behavior is valid for more general reasonable excitations and measure-
ments surfaces, for example the boundary of a star shaped domain.

Remark 4. The decaying property of the topological derivative 7 (z) does not depend on
the choice of « € (0, 1) which quantifies the fact that p is much larger than the probing re-
gion. Note that in (33) the only term that could possibly affect the a-independent decaying
of G(z,y) for large |y —z|, is the term in B(z,y) containing |y —z|- In our calculations we paid
special attention to it; thanks to recursive formulas for Bessel functions, this term disappears.
However, we think that the choice of 0 < av < 1 may play a role if the scattering problem is
considered in a bounded region with prescribed boundary data, in which case the derivation
of the topological derivative still holds true with ®, (s —y) in (25) replaced by the Green’s
function of the bounded region.
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Remark 5 (Zero-frequency limit). When x =0, we have ||gRo| < 1 for any physical-
ly admissible g, so that (24) holds for any configuration B, q. However, we now also have
|K(z,y)| = O(1) (i.e. K(z,y) does not decay as the sampling point z is moved away from B),
implying that the support of B can no longer be (even roughly) estimated on the basis of the
function z +— T (z).

In appendix A.2 it is shown that G(z,y) is real-valued for the configuration discussed here.
The above calculations simplify in the case of the far field limit, i.e. p — oo, but nevertheless
yielding exactly the same decaying property of the topological derivative, see appendix A.1.

5. Anisotropic scatterer

The objective here is to set up for the more general case of anisotropic media a formula for
T (z) that has the same general structure as (21), and then use it for deducing results on the
sign of the topological derivative. To recast the topological derivative in a form allowing to
understand its sign, we need a reformulation of the solution operator. To this end, we recall
that in [7], the solution operator M is found to have the representation

My =24"2.(I-Q-R,)”"-Q-A"?

where A'/? is the positive square root of the positive definite constitutive matrix A, the multi-
plication operator Q is defined by the matrix

Q0= (B+217'8, B:=A""2.(A-A).A"/? (34)

in terms of the above-defined anisotropic relative contrast 3, and the operator R, which
depends only on the background medium, is defined by

R, =1+24"2vw,_ A%

Moreover, there exists a matrix ¢ € R3*3 and a diagonal matrix o such that @ can be factor-
ized as

Q=q"0’yq, (35)
with the nonzero entries of o (also diagonal) being £1 according to the sign of the corre-
sponding eigenvalue of Q. Using this decomposition of Q in Mg, we can show that

Mg = 2(A1/2~qT)~a~ (I—a~q-R,.€-qT-a)7] -a-(q-Al/z). (36)

We next consider two different cases.

5.1. Isotropic background and trial materials, spherical trial inhomogeneity

Consider the special (and practically useful) case where an anisotropic inhomogeneity embed-
ded in an isotropic background medium is to be identified on the basis of the topological
derivative defined in terms of a spherical trial inhomogeneity whose constitutive material is
isotropic. In this case, formula (17) for 7 (z) can be written with M, given by (20) and Mp
given by (36) with A =al, i.e.

My =2aq" o (I—U-q-RK~qT~o')71-o~q,
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and we find

T(z) = —4a’q, Re { (G~q-E, R[G -] )LZ(B;@”) } 37

with the L2(B; C3*3) — L?(B; C3*3) operator ‘R this time defined by

-1
Rijke = 5ik(1—a-q-R,ﬁ~qT-a)ﬂ .

We are ready to obtain the resulting properties of the topological derivative. Indeed, if the
true anisotropic refractive index contrast has a sign (i.e. if o =0l with 0 =1 or 0 =1), (37)
becomes

T@z) = 74a2ng-2 Re{ (K, RK)LZ(B;C3><3) }

where K(z,y) := G(z,y)-q. Consequently, the sign heuristic is true for any true scatterer
(B, B) and wave number £ that satisfy

lg-R.-qll <1.
Hence we have the following result:

Theorem 3. Given the true anisotropic scatterer (B, 3) with 3 defined by (34), we assume
that the background is isotropic A = al and the contrast A — A has a definite sign, in the sense
that in the factorization (35) o = oI with 0> = %1. Then, if we consider a spherical iso-
tropic trial inhomogeneity (i.e. B the unit ball and A, = a,I) and a wave number k such that

lg-Ri-qll <1, (38)
the topological derivative satisfies the following sign condition
sign(7 (z)) = —sign(o’qz),

where the trial contrast q. is defined by (19).

Again here the assumption (38) can be considered as restricting the justification of the sign
heuristic to moderately strong scatterers depending on a combination of the scatterer size, its
material contrast and the operating frequency. The one-sign contrast type restriction is not
unusual in the justification of a variety of qualitative methods such as linear sampling and
factorization methods.

5.2. The general anisotropic case

We now consider the more general case where A and A, may be anisotropic and the trial
inhomogeneity shape B is arbitrary. First we conveniently reformulate the polarization tensor.
To this end, for the trial inhomogeneity Bs and its normalized counterpart BB, we likewise set

Qz = (6z+21)_1,81 with ﬁz ;:A*l/z.(AZ_A)_Afl/z’
Ry=1+24"2.YW,-A'2,

with the zero-frequency fundamental solution ® entering the volume potential Wy now given
by

17
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1 1
 4m\/det(A) A7V

Using these definitions, we have

(I)() (r)

-1
Mz'g:/BZA]/z'(I*QZ'RO) ‘QZ'AI/ngV (39)

for any g € C3. Therefore, introducing the factorization Q, = ¢Y -2+, of @, as in (35), an
identity similar to (36) holds for M:

.
Mz-g:/2(A1/2-q3)~az~(Ifa'z-qZ~Ro~qI~az) o,-(q,-A"?) - gdV.
B

Besides, the L*(B; C?) — L?*(B; C?) operators ¢, and Ry are bounded and verify ||g,|| < 1 and
[|IRo|| = 1[7]. Consequently, the mapping

heC®— / (I—az-qZ-Ro~qZT~a'Z)_l-th eC?
B

defines a positive definite matrix (hence having a Choleski square root D;) and M, can be
recast as

Mz = 2(A1/2'q;r)'UZ'D;F'DZ'UZ'(qz'AI/Z)~ (40)

In this case, formula (17) for 7 (z) is written with M, given by (40) and Mp given by (36), to
obtain

T(z)
= —Re{ (DZ-FZ-qZT~A1/2-G-A1/2'q~F, ’R[Dz-az-qZT~A1/2-G-A1/2~q~0'] ) (41)

L2(B;C3%3) }

with the L2(B; C3*3) — L?(B; C3*3) operator R again defined as in (37).

The above expression allows us to study the sign of the topological derivative in some
special cases and obtain a result of the type as in theorem 3. More specifically, if both the true
and trial anisotropic conductivities have a sign (i.e. if 0 = ol and o, = 0,I with o, 0, =1 or1i),
(41) becomes

T(z) = — o0 Re{ (K. RK) e, }
with K(z,y) :=D,-qF ~A1/2~G(z,y)-A1/2~q. Consequently, the sign heuristic is valid for any
true scatterer (B, 3) and wave number & that satisfy

lg-R.-qll < 1.

There are other cases when we can conclude the same sign property. For example, in the
case where A; = Ap, i.e. ¢, = q and o, = o does not seem to provide a clear result as to the
sign of T (z).
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5.3. Polarization tensor for an ellipsoidal trial inhomogeneity

We show here that the integral (39) can be evaluated in closed form if B is an ellipsoid, to
obtain

_ —1
M, = B|(I+(A,—A)-SA™")" (A, —A)
= 2B (1-0, +20,4"%5:4712) g 412

where § is the constant Eshelby-like tensor such that VW[g] = —S-A~! -g for any g C3
(with this definition of S mirroring that usually made for elastic inhomogeneities). Moreover,
we have § = (1/3)I if B is the unit ball.

6. Disscussion

In this section we address several interesting questions that pertain to our study of topological
derivative-based imaging function for both isotropic and anisotropic case.

6.1 Moderate scatterer versus Born approximation

We finish by briefly comparing the domain of validity of the TD heuristics (theorems 1 and
3) to that of the Born approximation (BA). For the present physical model defined by (1)
and (4), the BA consists in writing h =~ (Z —A) - Vu, i.e. ug ~ u, for the solution h of (14),
inducing a O(||T —1I||) error on the representation (12) of u}. Now, since ||[VW,]|| > C >0
uniformly in x and B [7, lemma 3], the weak scatterer condition ||T —I|| = o(1) implicit in the
BA implies |[A —A|| = o(||A]]). i.e. [|B]| = o(1), which in turn implies ||g|| = o(1) and then
llg - R - ql| = o(1), a condition that is more restrictive than the moderate scatterer limitation
lg - R, - q|| < 1of theorem 3 or its isotropic counterpart. Similar conclusions were previously
reached in [6] for the case of far-field data (where the counterparts of factorizations (16) are
symmetric without having to introduce E) and refraction index perturbations.

6.2. Effect of data noise

Our present idealized setting does not include the effect of noise in the theoretical analy-
sis. The TD of least-squares functionals depends linearly on the measurements (see e.g.
(10)), and hence on the data noise, which makes the TD only mildly sensitive to data noise.
Computational evidence corroborating this observation is available in e.g. [6] (for far-field
data) and [18]. Moreover, the symmetry-restoring operator E is linear and bounded, which
implies that the TD of cost functionals of type (7) depends in an affine and continuous way on
data noise. We substantiate this last remark in the next section with numerical experiments.

6.3. On the computation of E for finite-dimensional source/measurement setups
Let us revisit the issue of finding a symmetric version of the factorization (16), i.e. of
Fg = Hy, MpHpg,.

The way we described it in section 3.2 was with help of E := S* S-1_ which maps real mea-

ms~ mm?>

surements to equivalent incoming sources on I';. Obviously this construction is problematic if
the transmitters/receivers array is very sparse. To shed light into this issue one could consider
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the following way to construct a symmetrization operator E. Let E := H;;S(H;m)ﬂ where

BT denote the Moore—Penrose pseudo-inverse of B (which can e.g. be expressed using the
singular value decomposition of the compact operator Hp;). We have that

(ﬁgm)+ﬁ,§m = II(range(Hgy)) = 1L, with  II,, := II(range(Hp,))

(I1(X) denoting the orthogonal projector onto the space X). With the above definition of E, we
then have

EFB = H:;SﬁmMBHBs = HgsﬁmMBHsHBs

(with II; := TI(range(Hpg,)). In the case under discussion both the range(H g, ) and range (H s, )
are of finite dimensions equal to the number of receivers and sources, respectively. Thus, obvi-
ously, the operator EFp is symmetric whenever II; = II,,, which is a very restrictive setup.
Thus, in general it is not possible to construct E if very few data points are available. However,
the main aim of this paper is to provide a mathematical framework of topological derivative
where we can provide some justification of the sign heuristic. For practical use of the topologi-
cal derivative-based imaging, as the numerical examples in the next section show, there is no
need for a symmetrization operator E.

7. Numerical example

A single obstacle B (ellipsoid with center (0, —3,0) and semiaxes p(1, 1, 1), where p=1/4)
embedded in an infinite medium is to be identified from dense measurements using 7 (z). Both
the background and the perturbation materials are isotropic, witha = 1,a =2 (i.e. ¢ = %, see
(19)). The measurement and source surfaces I';,, I'y are the sphere of radius 4 and the ellipsoid
with semiaxes (8, 12, 8), both centered at the coordinate origin. This arrangement corresponds
to case (ii) of the Introduction, and the norms defined by (6) and (7) are not isometric.

As actual measurements are expected to yield values of the total field rather than the scat-
tered field, simulated measurements are here taken as noisy versions uy . of the computed fotal
field up for the true obstacle B, such that

Ughs (Xm) = up(X) + 1y, Re [“B(xm)} + inp,Im [”B(xm)] >

at any measurement location x,,, where 7, 7/, are uniform random numbers with zero mean
and standard deviation 7. The synthetic data up are computed by means of a coupled system of
boundary integral equations, the boundary of B being meshed using 600 eight-noded bound-
ary elements, leading to 3604 nodal unknowns.

Figures 2-4 show plots of 7 (z)/|min(7T (z) ) | computed with g. =g (see (19)) in the hori-
zontal plane containing the center of the actual inhomogeneity B, with the operating frequency
respectively set to k =2, k=5 and x = 10. With reference to remark 2, we observe that the
corresponding values of |g| (1 + C,(kp)?) are (approximately) 0.577, 0.981 and 2.43. The
obstacle B is therefore moderate in the sense of (23) for cases kK =2 and k =5, but possibly
not when s = 10.
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Figure 2. Plots of normalized TD in horizontal plane containing the center of the actual
inhomogeneity. First, second and third row respectively correspond to relative noise
levels =0, n=0.02 and 1= 0.05 on the total field. Results are based on either the
standard L? misfit (6) (left column) or the modified version (7) involving the operator E
(right column). Both the background and the perturbation materials are isotropic, with
a = 1,a = 2. The operating frequency is x = 2.

For each figure, TD results are shown for noise levels n =0, n =0.02 and n = 0.05, and for
both the standard L? misfit (6) or its modified version (7) involving the continuous operator E.
The chosen noise levels may seem modest, but in fact cause very strong noise on the scattered
field which constitutes the actual information from which unknown object might be identified,
especially at low frequencies. The results are found to be quite insensitive to whether or not
E is used and to the noise level. The size of the ‘spot” where the normalized TD is close to its
minimum shrinks as & increases, consistently with the decay properties given in theorem 2.
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Figure 3. Plots of normalized TD in horizontal plane containing the center of the actual
inhomogeneity. First, second and third row respectively correspond to relative noise
levels =0, n=10.02 and 1= 0.05 on the total field. Results are based on either the
standard L? misfit (6) (left column) or the modified version (7) involving the operator E
(right column). Both the background and the perturbation materials are isotropic, with
a = 1,a = 2. The operating frequency is K = 5.

These results were produced with each surface I',,, I'; featuring 2594 (source or measure-
ment) points, an arrangement dense enough for allowing a precise approximation (using a
boundary element method) of the continuous symmetry-restoring operator E introduced in
section 3.2. However, results (not shown) obtained on 7 (z) defined for the standard L? mis-
fit (6) using much sparser source and measurement sets (for which E cannot in general be
defined, see section 6.3) are found to be similar (and similarly resistant to noise).
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Figure 4. Plots of normalized TD in the horizontal plane containing the center of the
actual inhomogeneity. First, second and third row respectively correspond to relative
noise levels n =0, n=0.02 and 1 = 0.05 on the total field. Results are based on either
the standard L? misfit (6) (left column) or the modified version (7) involving the operator
E (right column). Both the background and the perturbation materials are isotropic,
with a = 1,a = 2. The operating frequency is x = 10.

8. Conclusion

We derive an explicit expression of the topological derivative, 7 (z), for the scattering by
anisotropic media embedded in anisotropic background, with anisotropic trial inhomogene-
ity of arbitrary shape and near field measurements. Taking advantage of a recently-proposed
reformulation of such volume integral equation [7], we provide a symmetric factorization for
T (z) where the middle operator contains the material contrast. For the case of isotropic media
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and background, and isotropic trial inhomogeneity we rigorously prove the sign heuristic for
T (z). For such configuration, in the particular case of spherical near field measurements far

enough form the probing region, we show that 7 (z) = O ( ) if the location of trial

inhomogeneity z, is far enough from the unknown scatterer. In the case of anisotropic media,
we are able to rigorously prove the sign heuristic for 7 (z) only in some particular case under
the general assumption of media with one-sign contrast. Although we are not able to deduce
the sign heuristic for the topological derivative for all the combinations of general anisotro-
pic configuration, we remark that our expressions provide a convenient form for the analysis
of the topological derivative, which can possibly be generalized to other type of scattering
modalities.

Acknowledgments

The research of F Cakoni is partially supported by the AFOSR Grant FA9550-17-1-0147 and
NSF Grant DMS-1813492.

Appendix. Explicit formulas for special cases

We present here some explicit examples in the case where I'; = pS’, S being the unit sphere,
for which explicit analytical results can be derived. The background medium is assumed to be
isotropic as described in section 4.

A.1. Far field limit
In the far-field limit when p — oo and for fixed &, thanks to the the asymptotic expressions

cikp

Du(s—2) = - e ™ 4 o(ls| ),

e |s] — oo,
Vo, (s—z) == eTe_“‘””s'zsA‘ +o(s|™),
we obtain
e e ARy =) e
Gzy) = - (iolky ~2h—2) @ b —2) + =30 @ 0 -2))

uptoorder o(|s|~!). This, together with D being real-valued, implies that K(z,y) := D -G(z,y)
is real-valued in the far-field limit and that |K(z,y)| = O(]z—y|™!), yielding the decaying
property of the topological derivative stated in theorem 2.

A.2. Real-valuedness of G(z,y)

Noting that ®,(r) = (iﬁ/47r)h(()1)(n|r|) and recalling a classical expansion of h(()l) and the
Legendre addition theorem, we have

in — . F
uls—2) = 1= > @+ 1)ju(klz) KO (klsDPA62) (il bl < Is| = o),
n=0
ith Py(52) = " Z Y ()T )
w W(8-2) = 1 L (8)Ym(z

m=-—n

24



Inverse Problems 35 (2019) 104007 M Bonnet and F Cakoni

(where Y are L?(S)-orthonormal spherical harmonics). The two-point function L can then be
evaluated explicitly:

ey =YY Y S { /. h,sl><~|s)hil><m|s)Yﬁ(&)ﬁi’f’(s)dm)}

n=0n'"=0m=—nm'=—n’

Jn(sl2]) i (kly]) Y2 3)Y20 )

= w20* Y [0 (k) [Pkl () Y YEG)YE(E)

m=—n

S}

|
517
Je 5

@n+ V)| (k) [P ju(wl2]) ju (K13 ]) PaE5).

Il
<]

n

The function L is therefore real-valued, since the j, are, and (18) implies that G is also real-
valued (this observation is corroborated by numerical evaluations using high-accuracy numer-
ical quadrature based on Lebedev points on ).

If kK = 0 (in which case ®y and V& are of course real-valued), a similar derivation can be
done with h,(,l) (kp) replaced with p~"~! and j, by a homogeneous nth degree harmonic poly-
nomial (which in particular, unlike j,, is not a decaying function of its argument).

A.3. Symmetry-restoring operator E

If ' is a sphere of radius p, the ‘symmetry-restoring’ operator E can be given an explicit
expression. First, for given density ¢ € H~!/ 2(T"), the single-layer potential w := S solves
(see e.g. [14])

Aw + k*'w =0 in QU (R*\ Q), [w] = 0and [0,w] = —p onT.

The above problem can be solved by separation of variables. Expanding ¢ and yw = S¢
(where + is the Dirichlet trace operator on I') according to

=33 @, wx) =Y > vrEwy (xel),

n=0m=—n n=0 m=—n

we find
=S, Sy = —in(kp)u(rp)) (kp).
Therefore, since $* = S, we have

Ep = Z Z Y (®)Eyen's E/ = (1)
n=0 m=—n h ("{p)

which implies ||E¢||;2ry = [|@]|z2(r). In particular, to evaluate E® (- — z), we can set

= (2n+1) ju(klz]) h" (kp)Pa(%-2).

which implies

Bl = —(2n+ 1) ju(lz]) D (1p) Pa(-2) = — 5T
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