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Abstract: High concentrations of certain nutrients, including phosphate, are known to lead to
undesired algal growth and low dissolved oxygen levels, creating deadly conditions for organisms
in marine ecosystems. The rapid and robust detection of these nutrients using a colorimetric,
paper-based system that can be applied on-site is of high interest to individuals monitoring marine
environments and others affected by marine ecosystem health. Several techniques for detecting
phosphate have been reported previously, yet these techniques often suffer from high detection limits,
reagent instability, and the need of the user to handle toxic reagents. In order to develop improved
phosphate detection methods, the commonly used molybdenum blue reagents were incorporated
into a paper-based, colorimetric detection system. This system benefited from improved stabilization
of the molybdenum blue reagent as well as minimal user contact with toxic reagents. The colorimetric
readout from the paper-based devices was analyzed and quantified using RGB analyses (via Image]),
and resulted in the detection of phosphate at detection limits between 1.3 and 2.8 ppm in various
aqueous media, including real seawater.
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1. Introduction

The detection of phosphate in complex environments has been an active area of research since the
1960s, after researchers identified phosphate as a critical nutrient in eutrophication [1]. In eutrophication,
phosphate and other nutrients cause toxic algae to multiply and spread uncontrollably, covering
the surface of the affected water supply [2] This phenomenon is environmentally detrimental for
marine and terrestrial ecosystems [3,4], and is accelerated by the widespread usage of fertilizer and
phosphate-based pesticides combined with other sources of pollution including improper human
waste treatment that raise the levels of environmental phosphate [5]. Regulators have attempted
to address the issue of phosphate-induced accelerated eutrophication by setting low concentration
limits of 0.2 and 10 ppm for phosphate in natural water and wastewater, respectively [6]. The ability
to measure phosphate rapidly and effectively at these concentration limits and in complex aqueous
environments is needed.

In addition to the detrimental effects of phosphate on the environment, phosphate has known
deleterious effects on human health, including impaired renal function and harmful vascular
calcification [7]. To minimize negative phosphate-induced effects, the World Health Organization set
the maximum concentration of phosphate in drinking water at 1 ppm [8]. In order to effectively detect
these low phosphate concentrations, there is a need to develop rapid, robust, and portable detection
methods for phosphate that can be applied on-site.
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One commonly used method for phosphate detection in aqueous environments is to monitor color
changes of a molybdenum blue-based assay [9]. In this assay, a molybdenum (IV) reagent reacts with
phosphate in acidic solution to generate molybdophosphoric acid, which is subsequently reduced to
generate a bright blue molybdenum-phosphate complex. Several solution-state and solid-state systems
based on this method have been previously reported, yet challenges arise from the toxicity [10] and
instability of the molybdenum reagent as well as its poor sensitivity (high detection limit) and poor
selectivity (propensity to react with other, non-phosphate species to provide a blue readout signal) [11].
In contrast to colorimetric detection using molybdenum blue, instrumentation-based techniques have
also been reported, and include the use of fluorescence spectroscopy [12], electrochemistry [13], and
Raman spectroscopy [14]. While such techniques demonstrate high levels of selectivity and sensitivity,
their broad-based applicability, especially for on-site measurements in complex environments, has not
yet been established. Moreover, colorimetric detection has significant advantages compared to other
potential methods, including ease of use [15] and the low cost of measuring color changes [16], that
make it particularly attractive for phosphate detection in complex environments.

Reported herein is the development of a paper-based colorimetric phosphate detection system
designed to address gaps in existing phosphate detection technology, through the development of a
molybdenum-based method that limits toxic exposure to molybdenum and improves system stability,
sensitivity, and selectivity. This system relies on the unique coordination ability of ethylene glycol
as an additive to coordinate with and stabilize the active molybdenum complex. Although ethylene
glycol has been used as a ligand for a number of metals [17], including molybdenum [18], its use as a
stabilizer in colorimetric detection has not been reported to date. Of note, the ethylene glycol-stabilized
molybdenum complex remained stable when adsorbed on a solid cellulose support for 30 weeks longer
than an otherwise identical sample that lacked the ethylene glycol, with the use of such cellulose
supports having additional advantages in terms of low toxicity [19], low cost [20], and ease of use.
The newly developed system reported herein has numerous other advantages, including the ability
to use a small sample volume (as little as 25 pL) and the ability to detect phosphate in ultrapure
water at concentrations as low as 0.16 ppm. Comparisons of device performance at several different
temperature and atmospheric humidity conditions established high levels of general applicability in
real-world environments. Furthermore, excellent stability of the reagents was demonstrated, with no
decrease in performance up to 250 days, when stored in dark at temperatures below 4 °C. Overall,
markedly improved performance in phosphate detection was demonstrated, especially compared
to current, commercially available phosphate detection methods, with significant potential for the
development of improved practical phosphate detection devices.

2. Materials and Methods

All chemicals were purchased from Sigma-Aldrich chemical company or Fisher Scientific chemical
company and used as received. Cellulose products were purchased from Fisher Scientific and residual
phosphate was removed from the paper by washing it with 1.0 M HCl (three times) and ultrapure
water (three times) after wax printing but prior to reagent addition. Synthetic freshwater was prepared
following EPA standard procedures [21]. Synthetic seawater at a salinity of 30.5 ppt was prepared
using Red Sea Coral Pro Salt mix by dissolving 33.4 g of the salt mix in 1 L ultrapure water. Water from
the Sargasso Sea, a region with known low nutrient content [22], was filtered through a 0.2 um filter to
remove organic matter prior to use, as the presence of residual particulate matter has been shown to
affect the accuracy and precision of colorimetric detection schemes [23]. Of note, the use of a simple
syringe filter for this step means that in-field applications will be able to use similar filters without
compromising widespread applicability of this method [24].

Dimensions for both the devices and the laminate were designed using Adobe Illustrator. Wax
printing was accomplished using a Xerox Color Qube 8580 wax printer (Dedham, MA, USA), and the
laminate (Fellowes 3mil self-adhesive laminate sheets) was cut using a Graphtec CE6000-40 cutting
plotter. Images of device responses were collected in RAW-format using an iPhone 4 (Apply) in regular
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SMD, LED white light tape was secured to the inside of the box for uniform illumination. For stability
stdiespimagegewere captured using an Epson V19 Perfection flatbed scanner. Images weresthen
processed to obtain Red Values wusing Image] software (free download from:

https://imagej.nih.gov/ ij/) on an 8-bit color scale (white = 255 a.u., black =0 a.u.). The Red Values were
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Figure 1. (a) Dimensions of the wax-printed paper device; (b) expanded view of device paper layer
and associated laminate layers.
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The final paper-based devices contained two zones: an ascorbic acid loading zone and molybdenum
reagent loading zone (Figure 1). The device was designed in this way to ensure that the two reagents
remained fully separated prior to device usage, as combining the two reagents led to undesired
reactivity and degradation in less than 24 h [26]. Ascorbic acid was added to the devices in four
separate 3 uL aliquots, with the stepwise addition used to ensure that the reagent remained in the
loading zone. The devices were allowed to dry for at least 20 min between each ascorbic acid addition
and prior to use of the device. No more than four aliquots could be used as excess reagent led to
over-acidification of the reaction and a subsequent decrease in color readout.

2.3. Device Application and Color Analysis

A total of 75 uL of molybdenum reagent was added to the device via micropipette immediately
prior to sample addition and allowed to flow to the ascorbic acid zone. A yellow color was observed
when both reagents were allowed to mix, and 25 puL of phosphate sample was then applied to the
device in the sample loading zone and allowed to develop for 4 min before image capture with a cell
phone using the settings detailed above.

2.4. Stability Studies

The stability of these devices over time was examined by drying both the molybdenum and
ascorbic acid reagent solutions on the devices. The devices were stored in sealed vials and kept in the
following conditions: “light”—under ambient lighting and temperature in open air; “dry”—under
ambient lighting and temperature with a Dry and Dry silica desiccant packet; “dark”—under ambient
temperature conditions in darkness; “fridge”—at <4 °C in darkness; “freezer”—at <—18 °C in darkness.
At various time points, samples were scanned with a flatbed scanner and RGB values were obtained
using Image]J software. The degradation of reagents was determined based on the formation of a
blue color (indicating the degradation of the molybdenum reagent) or yellow color (indicating the
degradation of the ascorbic acid reagent).

2.5. Limits of Detection and Quantitation

The devices were prepared as discussed in Section 2.2, and each sample point of the calibration
curves was tested via three independent experiments to ensure reliability and precision. Solutions
of sodium dihydrogen phosphate at concentrations of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and
1.0 ppm were prepared via serial dilution of concentrated stock solutions made in ultrapure water,
synthetic freshwater, synthetic seawater, and Sargasso seawater. Then, 25 uL of the sample solution
was added to each device and the color was allowed to develop for 4 min before image capture with a
cell phone. The red values were obtained using Image]J software and OriginPro nonlinear curve fitting
models were applied to the data until the best fitting line (i.e., highest R? value) was obtained. Limits of
detection (LOD) and limits of quantitation (LOQ) were calculated using the following equations [27]:

yLOD = ¥B — 308 (1)

yLoQ = ¥8 — 1003 ()

where y1 op and yyoq are the signal responses (Red Values) corresponding to LOD and LOQ values, yg
represents the average Red Value of the blank (i.e., 0 ppm phosphate) measurement, and op represents
the standard deviation of the blank measurement. The y; op and y1 0q values were substituted into the
obtained nonlinear best fit equations and Excel Solver (plug-in to Microsoft Excel) was used to solve
for the LOD and LOQ concentrations.
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2.6. Environmental Robustness Studies

To simulate temperature and humidity ranges, the devices were acclimated at the desired
conditions for 30 min prior to use. The temperature was controlled in a Boekel Scientific Di%ital
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The fact that ethylene glycol stabilizes molybdenum complexes has been previously reported in
the literature [30], and is likely due to chelation between the small molecule diol and molybdenum
that retards undesired side reactivity. Of note, other aliphatic alcohols, including glycerol and 3-
propane diol, were less effective at stabilizing the molybdenum reagent, as were supramolecular

additivee with miilfinle hvdrovv]l moietice incliidino r R and vecvelodevirin TnvectHioatione into the



Sensors 2020, 20, 2766 6 of 11

The fact that ethylene glycol stabilizes molybdenum complexes has been previously reported in
the literature [30], and is likely due to chelation between the small molecule diol and molybdenum that
retards undesired side reactivity. Of note, other aliphatic alcohols, including glycerol and 3-propane
diol, were less effective at stabilizing the molybdenum reagent, as were supramolecular additives with
multiple hydroxyl moieties, including «, 3, and y-cyclodextrin. Investigations into the reasons for the
QgAY 2l BPRIFFRRE Y01 are currently underway in our laboratory 6 of 12
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3.2. Detection and Quantitation Limits

3.2. Detectzon and Quantitation Limits
In addition to'demonstrating good device stability and ease of use, the ability to detect phosphate
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suggesting that overall salinity and trace ion content does not noticeably hinder device performance.
One example of the calibration curves used to calculate LODs and LOQs is shown in Figure 4, for
synthetic freshwater, with the color gradient insert showing clear color differences at the single ppm
phosphate concentrations investigated. Of note, both the detection limits and working range (0.1-10
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salinity and trace ion content does not noticeably hinder device performance. One example of the
calibration curves used to calculate LODs and LOQs is shown in Figure 4, for synthetic freshwater, with
the color gradient insert showing clear color differences at the single ppm phosphate concentrations
investigated. Of note, both the detection limits and working range (0.1-10 ppm) for the optimized
device are lower than previously reported paper-based devices (0.62-30.7 ppm [11], 0.30-30.7 ppm [25]).
Moreover, the second-order exponential decay used to fit the data suggests information about the
kinetics of the reaction that underlie the blue color development [31], although detailed information
about reaction kinetics on cellulose support has not yet been reported.

Table 1. Limits of detection (LODs) and limits of quantitation (LOQs) in different environmental media.

Media LOD (ppm) LOQ (ppm)
Ultrapure water 0.16 0.56
Synthetic freshwater 0.13 0.46
Synthetic seawater 0.23 0.82
Sargasso seawater 0.28 0.99
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3.3. General Device Applicability

Table 1. Limits of detection (LODs) and limits of quantitation (LOQs) in different environmental
g the optimized devices require the addition of the molybdenum reagent immediately prior to
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the syringe, waiting 82tga4sasRAMSA e initial yellwolor to form, adfifig the desired sample, and
then waiting 4 min for the color to develop. The resulting color can then be imaged and analyzed
Subifg eS8 HEY PR Hevice. Overall, this modification effectively minimizes safety concerns
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SPABIHTIRA RfS2860 Beneral applicability of the device would be limited if the user had to handle
toxic molybdenum reagents. To address this concern, we devised a reusable three-dimensional (3-D)
printed housing for the paper device. This housing, which contains a port for the molybdenum
reagent, was used with the molybdenum reagent stored in a pre-filled syringe. To use the device
together with its optimized housing, the individual operator can deposit the molybdenum reagent
by pressing the syringe, waiting a short time for the initial yellow color to form, adding the desired
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More general applicability considerations relate to the ability of these devices to operate at a
variety of temperature and humidity conditions. Of note, previous literature-reported studies have
shown that temperature has a pronounced effect on the reaction time and overall sensitivity of the
molybdenum blue method [32], while humidity can have a significant effect on sample flow rate
in paper-based platforms [33]. For our device, humidity values between 31% and 67% led to no
discernable differences in color development for concentrations of phosphate between 0 and 5 ppm
(Figure 5a). Temperature, by contrast, changed the initial color of the phosphate-free device somewhat
(Fi%ure 5b,0p %;hosghate), although the observed temperature effects decreased in the presence
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. Figure 5. Comparison of colorimetric sensor readouts for phosphate concentrations between 0 and 5
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the standard deviation of three measurements.

4. Conclusions

4. Conclu Verall, reported herein is the development of a markedly improved paper-based sensor for
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results of these and other investigations will be reported in due course.
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additives on the stability of the molybdenum reagent used for phosphate detection, measured as a function of the
average red value (a.u.); Figure S4. Illustration of how different molar ratios of ethylene glycol (relative to the
molybdenum complex) result in changes in the stability of the molybdenum reagent, with higher average red
values (a.u.) indicating higher stability. Ratios of ethylene glycol were measured at: 0, 1, 10, 50, 75, and 100 molar
equivalents, and the results represent an average of at least three trials; Figure S5. Summary data on the effects
of exposure time on the colorimetric response of the device to phosphate concentrations of 0, 0.25, 2.5, and 25
ppm. Results were calculated using image processing software (Image]) and represent an average of at least three
trials; Figure S6. Summary of the stability studies of the optimized device in the presence of ethylene glycol as
an additive, measured through changes in the average red value of the functionalized paper device; Figure S7.
Summary of the stability studies of the optimized device in the absence of ethylene glycol as an additive, measured
through changes in the average red value of the functionalized paper device; Figure S8. Summary of stability
studies of the optimized device when stored in the refrigerator with and without ethylene glycol as a stabilizing
agent; Figure S9. Summary of stability studies of the optimized device when stored in the freezer with and
without ethylene glycol as a stabilizing agent; Figure S10. Limit of detection of phosphate in ultrapure water, with
the nonlinear best fit function shown in red. Equation: y = Al*exp(-x/t1) + y0, where y0 = 22.8; A1 =103.3; t1 = 5.2.
R2 = 0.99; Figure S11. Limit of detection of phosphate in synthetic freshwater, with the nonlinear best fit function
shown in red. Equation: y = Al1(-x/tl) + A2(-x/t2) + y0; where Al = 44.0; t1 = 1.34; A2 = 158,; {2 = 15.7; y0 = -49.0.
R2 = 0.999; Figure S12. Limit of detection of phosphate in synthetic seawater, with the nonlinear best fit function
shown in red. Equation: y = Al*exp(-x/tl) + A2%exp(-x/t2) + y0, where y0 = -661299; A1 = 58.6; t1 = 2.8; A2 =
661353.1; 12 = 216917.9; R2 = 0.999; Figure S13. Limit of detection of phosphate in Sargasso seawater, with the
nonlinear best fit function shown in red. Equation: y = y0 + Al*exp(-(x-x0)/t1) + A2%exp(-(x-x0)/t2); y0 = 13.8; x0
=-0.00426; A1=56.1; t1 = 4.6; A2 = 57.4; t2 = 4.6. R2 = 0.999; Figure S14. Coloration of the optimized device after
exposure to phosphate (0, 0.5, 2.5, and 5 ppm) in the presence of various humidity values (31%, 42%, and 67%),
measured by changes in the red value of the device; Figure S15. Coloration of the optimized device after exposure
to phosphate (0, 0.5, 2.5, and 5 ppm) at various temperatures (15, 26, 35, and 45 °C), measured by changes in the red
value of the device; Figure S16. Coloration of the optimized device after exposure to phosphate (0, 0.5, 2.5, and 5
ppm) at various turbidity values (0, 1, 5, 10 mg/mL), measured by changes in the red value of the device. Table S1.
Quantitative changes in the color of functionalized filter papers after exposure to phosphate anion; Table S2.
Effects of polyol additives on the stability of the molybdenum reagent used; Table S3. Effects of molar equivalents
of ethylene glycol added on the stability of the molybdenum reagent used, measured by the average red value;
Table S4. Effects of exposure time on the colorimetric response of the device to phosphate concentrations of 0,
0.25, 2.5, and 25 ppm; Table S5. Quantitative measurements of the coloration of the device in the presence of
ethylene glycol when stored under ambient light (light), with a desiccant package (dry), wrapped in foil (dark), in
the refrigerator (fridge), and in the freezer (freezer); Table S6. Quantitative measurements of the coloration of
the device in the absence of ethylene glycol when stored under ambient light (light), with a desiccant package
(dry), wrapped in foil (dark), in the refrigerator (fridge), and in the freezer (freezer); Table S7. Quantitative
measurements of the coloration of the device when stored in the refrigerator with and without ethylene glycol
as a stabilizing agent; Table §8. Quantitative measurements of the coloration of the device when stored in the
freezer with and without ethylene glycol as a stabilizing agent; Table S9. Summary of limit of detection and
limit of quantification values of phosphate obtained using the optimized device in a variety of aqueous media;
Table S10. Quantitative values for coloration of the optimized device at various concentrations of phosphate in
the presence of variable humidity values; Table S11. Quantitative values for coloration of the optimized device at
various concentrations of phosphate at a variety of temperatures; Table S12. Quantitative values for coloration of
the optimized device at various concentrations of phosphate at a variety of turbidity values.
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