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Abstract. Modern automobiles have more than 70 electronic control
units (ECUs) and 100 million lines of code to improve safety, fuel econ-
omy, performance, durability, user experience, and to reduce emissions.
Automobiles are becoming increasingly interconnected with the outside
world. Consequently, modern day automobiles are becoming more prone
to cyber security attacks. Towards this end, we present an approach that
uses machine learning to detect abnormal behavior, including malicious
ones, on embedded networks in heavy vehicles. Our modular algorithm
uses machine learning approaches on the internal network traffic in heavy
vehicles to generate warning alarms in real-time. We tested our hypoth-
esis on five separate data logs that characterize the operations of heavy
vehicles having different specifications under varying driving conditions.
We report a malicious detection rate of 98-99% and a mean accuracy
rate of 96-99% across all experiments using five-fold cross-validation.
Our analysis also shows that with a small subset of hand-crafted features,
the complex dynamic behavior of heavy vehicle ECUs can be predicted
and classified as normal or abnormal.
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1 Introduction

In the last few decades, complex electronic systems have been incorporated into
vehicles in order to improve performance, efficiency, safety, and usability. In
modern-day vehicles, mechanical systems rely heavily on advanced electrical
and computational systems that include network, software, and hardware. Con-
sequently, modern day vehicles have become vulnerable to both physical and
cyber attacks. In the near future with the advancement of wireless fleet man-
agement technology, we anticipate that cyber attacks would increase and have
catastrophic consequences.

Checkoway et al. analyzed multiple attack vectors in vehicles and showed that
Electronic Control Units (ECUs) have a potential of being compromised [1]. A
compromised ECU can be used by an attacker to inject malicious messages into
the in-vehicle network through a physical connection. Subsequently, researchers
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remotely compromised an ECU and injected messages to stop a Jeep Cherokee
running on a highway [2]. This triggered a recall of 1.4 million vehicles [3].
Attacks can be launched by devices connected to the physical bus or through a
remote connection.

Our research focuses on embedded networks of heavy vehicles. Heavy vehicles
are expensive and they constitute a critical infrastructure of a nation. In order to
allow interoperability of various components manufactured by different Original
Equipment Manufacturers (OEMs), heavy vehicles use a standardized protocol
known as SAE-J1939 implemented over a Controller Area Network (CAN) bus,
which allows ECUs to communicate with each other. The use of standardized
protocols makes heavy vehicles susceptible to attacks, as the code for deciphering
messages is easily accessible. The damage inflicted by heavy vehicles can also be
catastrophic. Consequently, heavy vehicles are a much higher target for attackers
compared to cars [4].

Two different categories have been introduced as countermeasures against
these attacks: proactive and reactive. Proactive mechanisms protect against mali-
cious injections and are implemented through Message Authentication Code
(MAC). While message authentication ensures a certain level of security in Inter-
net applications, there are limitations of applying it to the heavy-vehicle domain.
First, there is limited space for embedding the MAC in the messages. Second,
the messages are required to be processed in real-time, which may not be feasible
[3]. Third, applying this approach requires modification of lower-level protocols.

Multiple Intrusion Detection Systems (IDS)s have been proposed as imple-
mentations of reactive approaches in the literature [3,5-7]. Similar to other net-
work defense mechanisms, current IDS systems monitor exchanged messages
and detect any abnormal behavior, but there are certain limitations. The CAN
bus is a broadcast communication network, and it cannot verify the sender of
messages. Consequently, it is extremely difficult for state-of-the-art IDS systems
to detect hijacked ECUs. Moreover, to the best of our knowledge, there is no
defense mechanism that attempts to detect malicious message injection in the
messages that adhere to the SAE-J1939 standard. Such message injections can
compromise the integrity and the availability of the system.

In this work, we address some of the limitations stated above. We scope
our work to detect the injection of messages which adhere to the SAE-J1939
standard. In the context of this work, we use the term heavy vehicle as one that
uses the SAE-J1939 standard. Our proposed approach uses machine learning
to detect abnormal traffic in the embedded network. A few reasons motivated
our choice. The most important reason is the high-dimensional nature of the
data, and its complicated non-linear relationship to the operational state of the
vehicle. High-dimensional data is often difficult to understand. For instance,
a single packet in heavy vehicles has many dimensions. Thus, the data is quite
difficult to analyze or understand. Furthermore, there is a space-time correlation
among the data that needs to be modeled. There are not many computational
models besides machine learning that can analyze this complex temporal data.
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The use of SAE-J1939 makes it possible to convert raw transmitted messages
on the CAN bus to specific parameters of the vehicle. Thus, we define a machine
learning model based on low-level vehicular PARAmeters. While each message
contains information about the current state of the vehicle, it does not give
any information about the previous state. To solve this limitation, we added
the history of previous values to each parameter value to leverage the learning
model. In addition, some statistical derivative features have been added to give
even deeper insights about the model.

A vehicle’s parameters are categorized in particular groups in the SAE-J1939
protocol, for example, frequency and sender. Thus, we created multiple models
based on each parameter group, referred to as Parameter Group Number (PGN)
in the standard. The learning algorithms create a behavioral profile for each
PGN that will be used later to compare with its current behavior to detect any
deviation from the regular pattern. We used a wide range of learning algorithms
to train models and studied the performance of each algorithm.

Multiple challenges had to be addressed in our solution. The first challenge is
that behavior varies across vehicles. While the SAE-J1939 standard is common to
all the vehicles, the parts, models, embedded ECUs, and software are all different.
As a solution, we applied general purpose machine learning algorithms. Machine
learning classifiers can learn local features of interest in a collection of data. The
feature set has been enriched by adding derived statistical features. We believe
this is sufficient to accurately predict whether or not a given SAE-J1939 message
is normal.

The next challenge is deciding the number of previous messages that need to
be considered for creating a behavioral profile. If this number is too small, even
standard infrequent patterns will be classified as abnormal. If this number is too
large, abnormal behavior will not be distinguishable from the normal behavior
pattern. We make this trade-off based on some experiments.

The other challenge relates to the computational intensity of the learning
model. Machine learning models, in general, are computationally expensive, tak-
ing a long time to produce a prediction while also using a lot of resources. In an
operational heavy vehicle, the ECUs generate messages every hundred millisec-
onds; our proposed approach is required to have a response time in that range.
Furthermore, the experimental setup and hardware need to be applicable for an
in-vehicle configuration. To address this challenge, we ran experiments on light-
weight Raspberry Pi Zero computers. We report our results in the experiments
section.

Key Contributions. This paper makes the following contributions:

— Developing profiles of PGNs by employing machine learning techniques to
analyze high-dimensional data generated by the ECUs.

— Detecting abnormal messages by employing machine learning techniques and
generating real-time alarms;

— Our proposed method produces significant accuracy in different experiments
in the range of 98-99% which asserts our initial hypothesis.
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The rest of the paper is organized as follows: Sect. 2 discusses background and
existing defense mechanisms. Section 3 models the adversaries capabilities, attack
scenarios, and simulation. Section 4 details architecture design of our proposed
approach, which is evaluated in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Related Works

2.1 Background on CAN and SAE-J1939

Controller Area Network. Development of the Controller Area Network
(CAN) started at Robert Bosch GmbH and was released in 1986 [8]. CAN
employs a two wired differential bus, which supports speeds of up to 1 Mbit/s [9].
The initial version, CAN 1.0, used 11 bits for the identifier fields, which has since
been upgraded to 29 bits in CAN 2.0 called an extended version. The protocol
establishes a priority mechanism to prevent message collision on a shared bus;
a lower value of the identifier specifies a higher priority for the sender [9]. CAN
1.0 was proposed in a time that neither the Internet nor concepts of virus and
worm were prevalent [6] and security was not a concern. This is evident in the
fact that the CAN protocol alone does not address any security concerns.

SAE-J1939 Standard. The CAN bus forms the lower layer of a vehicle’s net-
work. SAE-J1939 comprises the higher level layer of a heavy vehicle’s network.
The SAE-J1939 protocol allows ECUs from multiple vendors to communicate.
SAE-J1939 defines five layers in the seven-layer OSI network model including the
CAN ISO 11898 specification and uses only extended frames with a 29-bit identi-
fier for the physical and data-link layers. Protocol Data Unit (PDU) is a block of
information transferred over the internal network. Each PDU in the SAE-J1939
protocol consists of seven fields: priority (P), extended data page (EDP), data
page (DP), PDU format (PF), PDU specific (PS) (which can be a destination
address, group extension, or proprietary), source address (SA), and data field.
There is also a reserved field Reserved(R) with one bit length for further usage.
These fields are all packed in one data frame and sent over the physical media to
other network devices [10]. The combination of the PF and the PS fields derives
two important parameters: Parameter Group Number (PGN) and Destination
Address (DA). PGN is used to group similar vehicular parameters together in
one single message frame. Each of these parameters is named Suspect Parameter
Number (SPNs). Each SPN defines how the application layer can interpret some
portion of the data field using the Digital Annex [11]. DA specifies destination
of the message.

2.2 Introduced Defense Mechanism

Many concepts from the IT networks, such as securing the network, cryptog-
raphy, proposed attacks and defense mechanisms, have been adapted for the
internal network of automobiles. The proposed countermeasures can be classi-
fied into proactive and reactive mechanisms [12].
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Proactive Mechanism. Proactive mechanisms focus on improving protocols,
applications, systems, etc. to prevent the occurrence of any attacks. These mech-
anisms are not foolproof [12], but can be remarkably effective. The CAN and
SAE-J1939 protocols do not support authentication and encryption so a wide
range of attacks can be launched on them. Towards this end, Murvay et al. [9]
proposed a mechanism to include message authentication on the protocol and
evaluated the overall overhead on network communication. In addition, they eval-
uated their enhancement from a computational point of view and showed that
low-end automotive-grade controllers are capable of symmetric cryptography
and high-end cores can handle asymmetric (public-private cryptography) algo-
rithms. However, even with an authentication mechanism on the CAN bus, the
maximum payload length is only 8 bytes, so the available space for an encrypted
Message Authentication Code (MAC) is very limited [3]. Multiple solutions have
been proposed to address this limitation. These include sending MAC in multiple
data frames, using multiple CRC fields, or exploiting an out-of-bound channel for
message authentication [3,13-15]. Although proactive mechanisms are capable
of preventing attacks, they would require changing the protocols, applications,
and/or hardware. These types of solutions are unrealistic as they do not take
into account vehicles that are currently operational.

Reactive Mechanism. Reactive mechanisms detect an attack or an impending
attack and reduce its impact on the victim’s vehicle at the earliest and provides
a response mechanism to either block the attack or alert other systems [12] while
trying to minimize the number of false-alarms!.

The physical signal characteristics have been recently used to fingerprint
ECUs connected to the CAN bus using voltage or time. Murvay et al. [16] have
authenticated messages on the CAN bus using physical characteristics of ECUs.
The approach requires measuring the voltage, filtering the signals, and calcu-
lating mean square errors to uniquely identify ECUs. The signals from different
ECUs showed minor variations in, for example, how fast rising edge is set up or
how stable a signal is. Although these characteristics remain unchanged over a
period of several months, there are certain limitations. Examples include results
varying with changes in temperature [17]. Furthermore, their method was eval-
uated on the low-speed bus with trivial ECUs, not on the high-speed bus with
critical ECUs. In addition, the authors did not consider collision situations that
would impact the identification mechanism [18§].

Cho et al. [3] proposed a time-based IDS. The clock offsets and skews of
asynchronous nodes depend solely on their local clocks, thus being distinct from
others. Their method detects anomalies based on clock skew of different ECUs
connected to the bus. The approach measured intervals of periodic messages
for different ECUs to measure unique clock skews for each ECU. However, this
method can be defeated in certain ways. For example, if an adversary can match
the clock skews of a tampered device with that of the actual one, this approach
does not work [19]. Moreover, this approach does not work for non-periodic
messages.

1 A false-alarm occurs when an alert is not due to an actual attack.
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Machine learning algorithms are widely used for levels higher than the phys-
ical layer. Learning algorithms have the ability to learn patterns and detect
any deviation outside of an accepted threshold. Hence, these algorithms have
been widely employed to create detection mechanisms. Kang et al. [5] proposed
an intrusion detection model that discriminates between regular and abnor-
mal packets in an embedded vehicles network by using a Deep Neural Network
(DNN). They generate features directly from a bit-stream over the network by
counting the occurrence of ‘1’ in the binary data field of messages. Consequently,
the features have no semantics associated with them. For simulating the anoma-
lies, they showed a wrong value of the Tire Pressure Monitoring System (TPMS)
on the panel and achieved an accuracy of 99%. As this algorithm tested only
one type of attack, it is unclear how this mechanism will detect more complex
attacks. Furthermore, it authenticates targeted fields with other current field
values but does not take into account previous values of the fields. An attack
message that is consistent with other feature values can bypass this algorithm.

Chockalingam et al. [6] investigated the use of different machine learning
algorithms in detecting anomalies in CAN packets or packet sequences and com-
pared the algorithms. They used Long Short-Term Memory (LSTM) to consider
the sequence of inputs for labeling the dataset. While they did not report the
accuracy, the Area Under Curve (AUC) for Receiver Operating Characteristic
(ROC) curve varies from 82% to 100% in different situations.

Narayanan et al. [7] introduced OBD Secure-Alert which detects abnormal
behavior in vehicles as a plug-n-play device on the vehicle. They used Hidden
Markov Model (HMM) to decide whether a vector is normal or not. HMM con-
siders just a single previous vector so Narayanan et al. added more previous
messages to each learning vector.

Mukherjee et al. [20] used a Report Precedence Graph-based (RPG) which
describes how graphs modeling the state transitions can be used to distinguish
between safety and security-critical events in real-time.

3 Threat Model

3.1 Adversary Capabilities

Attackers can compromise in-vehicle ECUs physically or remotely using known
attack surfaces or exploiting new vulnerabilities. For example, they can exploit
telematic devices to gain remote access to the CAN bus.

In this study, we assume that an adversary has access to the CAN bus. In
addition, we assume that the adversary receives all messages on the CAN bus and
is capable of generating SAE-J1939 compatible messages with the desired fre-
quency, and has full control of all fields including the priority and data. Message
priority helps the adversary to set a higher priority for their messages and block
messages with lower priorities on the bus. This violates both the availability of
some functionalities and the integrity of the system.
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3.2 Attack Scenarios

We discuss the following attack scenarios that are feasible given the adversary
capabilities. Certain attacks target vulnerabilities on the CAN level and are
applicable to both regular and heavy vehicles. One of the most commonly stud-
ied attacks against the CAN network is a DoS attack. In this attack, the adver-
sary will send unauthorized messages with the highest priority and frequency to
dominate the bus. Thus, sending or receiving messages will be delayed or even
impossible.

In a different attack, an adversary may monitor the CAN bus and target a
specific action of the vehicle. Whenever the adversary sees a message related to
that particular action, it sends a counter message to make the previous action
ineffective. Hoppe et al. [21] implemented an application that monitors the bus,
and every time there is a message to open the window, a counter message is
sent to make the requested action ineffective. Such an attack is also plausible
in a heavy vehicle because of easy access to the message documentation in the
SAE-J1939.

Recently, however, attacks have been designed to take advantage of the SAE-
J1939 protocol that are only applicable to heavy vehicles. Burakova et al. in [22]
proposed the first special attack against heavy vehicles in 2016.

The adversary we modeled can inject SAE-J1939 crafted messages through a
compromised ECU. ECUs frequently report an associated vehicular parameter.
For example, the engine’s ECU reports the value of RPM every 100 ms. In an
attack scenario, an adversary can send incorrect parameter values, like RPM,
with a higher priority to override original messages. In this case, an attacker can
either dominate the original engine’s ECUs with a higher priority message or
can send an incorrect value for a specific parameter after seeing it on the bus.

For example, in the so-called fuzzing attack, the attacker changes the values
of a specific parameter with random values and injects generated messages into
the bus. In CyberTruck Challenge 20182, we conducted this attack on a real
heavy vehicle. In that experiment, we successfully overwrote speed and RPM
values on the CAN bus using SAE-J1939. We showed a speed of 50 mph on the
dashboard even when the truck was stationary?.

There is not any attack data publicly available to be used as a benchmark.
Thus, we simulated new attack messages and injected them into the logged file
to check whether our detection mechanism could find them. During our proposed
attack, we maliciously changed the vehicle’s parameters (such as current speed)
multiple times.

Figure1 shows one example of an attack where we changed the vehicles
reported speed. It depicts the actual speed values of the vehicle and maliciously
injected values. This attack in practice may violate the integrity of the sys-
tem, can severely damage the vehicle, and give the driver incorrect information
which may lead to an accident. While this experiment shows the manipulation

2 https://www.cybertruckchallenge.org/.
3 Due to a Non-Disclosure Agreement (NDA), we cannot release the make and model
of the vehicle.
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Fig. 1. Test data for speed where the speed value has been maliciously manipulated
with other random values.

of speed, this attack is not simply limited to speed; we have tested a wide range
of parameters and report our results in Sect. 5.

4 Proposed Defense Mechanism

4.1 Feature Engineering and Fingerprinting

The performance of machine learning is very much dependent on the choice of
our features and how we represent them. In our proposed model, we define three
types of features: SPN values, History values, and Derivative features.

SPN Values: Features based on SPN values are obtained by deciphering the
sniffed messages on the CAN bus. We convert the raw messages to the SPN
values.

History of Values: The value of each SPN depends on both the current vehicle’s
parameters and their previous values. Note that the classifier would need to
use previous samples to make a more precise decision. Towards this end, we
include n previous SPN values of each vector to overcome this challenge. As
such, each vector will now have values of the current state and will also include
the last n reported values for each SPN. We consider consecutive packets, i.e.
Di — Pi—1 — Pi—2 — Di—3 — Di—4, Where p; denotes the current value, and p;_;
denotes previous values for j >= 1.

Derivative Features: To give more insight into how each SPN value changes
over the last n history windows, we added multiple derivative features to the
vector. For each measured SPN, we added average, standard deviation, and slope
of the last n values to the feature set. In addition, we added history for these
derived features as well. For example, the feature vector includes the current
slope and the last n values of the slope as well. These new derivative features
help the classifiers to better model the current behavior of ECUs and the change
of the parameters over time; this leads to more precise predictions.
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The other feature that we added was distance. We observed the changes
between two consecutive messages of each PGN would be limited. This observa-
tion can be mathematically represented by the Euclidean distance between two
feature vectors. If p and ¢ are two consecutive vectors with the size of n, the
Euclidean distance will be calculated by the formula given below which is used

as a feature: d(p,q) = \/(pl —@1)?+ (P2 — @)* + . + (Pn — @)%

4.2 Detection Mechanism Architecture

The architecture of the proposed detection mechanism consists of four separate
modules: BusSniffer, Message Decoder, AttackDetector, and AlarmGenerator.
Figure 2 highlights the architecture of the proposed detection mechanism.

BusSniffer connects to the CAN bus using an access point like the OBD-II
port. This port connects directly to the CAN bus and captures all transmitted
messages.

Message Decoder utilizes the SAE-J1939 standard to convert the raw messages
on the bus to the SPN values and creates an initial vector of the vehicle’s param-
eters. This module adds other meta-data fields including time-stamp, length of
the data field, source address, destination address, and previously defined fea-
tures such as derivative features and history of feature values.

AttackDetector consists of two phases: Training and Detecting. The training
phase requires preparing a dataset of regular and abnormal messages for every
PGN. Multiple classifiers can be trained on the dataset, and the classifier that
performs the best will be subsequently used. The training phase may take a
long time; however, the trained classifiers can be used countless times without
needing to re-train. Note that this phase can be done offline and outside of the
vehicle before installing it.

In the detection phase, whenever a new vector comes in, the AttackDetector
fetches it’s PGN value and sends it to the designated classifier object, which
tests whether it is a normal vector or not. If the classifier detects an abnormal
message, it will trigger the AlarmGenerator module.

AlarmGenerator is responsible for preparing appropriate alarm messages using
SAE-J1939 and transmits it over the CAN bus. The message will be generated
in the form of a Broadcast message, and all connected nodes will be aware of
this abnormal situation. This can also include turning on a warning light on the
dashboard to notify the driver.

4.3 Detection Algorithm

Algorithm 1 discusses the steps to decide whether a transmitted message on the
bus is normal or not. In the first step, the BusSniffer module adds messages to
the processing queue named mess. Then, each added message is decoded to give
the SPN values and aggregated for the derivative features. Based on the PGN,
the appropriate classifier object will be fetched and used to predict whether
the current message is normal or not. If it is abnormal, it will be sent to the
AlarmGenerator module.
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Detection Mechanism Architecture
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Fig. 2. Architecture of proposed detection mechanism.

Machine Learning Classifiers. We used seven classifiers: Decision Tree (DT),
Gaussian Naive Bayes (GNB), Gradient Boosting (GB), K-Nearest-Neighbors
(KNN), Random Forrest (RF) and Support Vector Machine (SVM) with two
kernels: Linear (SVCL(1)) and Gaussian (SVCR(r)). We trained the learning
models and tested them in a five-fold cross-validation approach to avoid overfit-
ting each classifier.

Result: Detecting Abnormal
mess_queue «— sniff bus() ;
while mess_queue # {} do
mess «<— mess_queue.pop();
vector «— decipher(mess);
add_history «— add__history length(mess);
fprint «— add__derived__ features(added _history);
cls — get_classifier _Obj(fprint. PGN);
predict — cls.predict( fprint);
if predict == Abnormal then
| Generate_Alarm(fprint)
else
‘ Continue;
end

end
Algorithm 1. Detecting Abnormal Messages

5 Experiments and Evaluations

5.1 Creating Datasets from Previously Recorded Messages

We ran our experiments and modeled the problem using the log data. We use five
previously captured CAN bus log messages that were generated at the University



Using Machine Learning to Detect Anomalies 49

of Tulsa*. For security reasons, however, we cannot release information about
the model or manufacturer of the vehicles. We describe the driving conditions
and log files which we have used.

Since the learning algorithms need adequate data to learn the pattern, we
had to select PGNs which had at least 500 messages in the log file. After we
created the final dataset, we only used a maximum of 5000 instances for training
and testing purposes as an upper-bound.

In the first step, we convert each log file into multiple datasets where each one
includes vectors of only one PGN. We then inject abnormal messages with an
injection ratio of 50% with a history length of 10 for the following experiments.
It is safe to assume that the rate of malicious messages during any real attack
would be less than 50%. As such, without loss of generality, we used a higher
injection ration to circumvent difficulties in training models with imbalanced
datasets. In this experimental context, the training phase has a chance to learn
from more malicious messages, however, in real attack far less malicious messages
would be present. These choices do not affect the validity or generality of our
approach. Table 1 summarizes experiment descriptions, number of used PGNs,
and experiment duration.

Table 1. Specification of each log file including log name, number of selected PGNs,
experiment duration, and description of experiment.

Log |PGN | Time(s)|Description

DS1{10 |411 The truck was driven around a block

Three events of the vehicle braking suddenly (hard brake)
DS2|2 60 Log file does not have much data

One hard braking event

DS3[10 |270 We had 10 log files from 10 different driving conditions
Selected one log file and used it to create in the DS3

Used the DS3 dataset as a benchmark

Highest recorded speed was 55 mph, followed by a hard brake

DS4|7 729 Vehicle was stopped for most of experiment
Had a hard brake at the 400th second
DS59 2500 Vehicle was stopped during this experiment

Had an active engine

5.2 Summarized Performance of Model

We selected the best classifier for each dataset and all of its log-PGN pairs. The
number of messages related to each PGN was not equal in each dataset; as such

4 The data is available at http://tucrrc.utulsa.edu/J1939Database.html.
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Fig. 3. Wheel-based speed from different driving conditions.

we calculated the weighted average of scores based on the portion of instances
of each PGN in the dataset to normalize the average. To display this fact, in the
DS2 log file, we have two PGNs: F004,5 and FFEF 01 which constitute 83.96%
and 16.04% percent of the messages respectively. We normalized learning scores
based on the percentage of messages in the log file and report the results in
Fig.4. The total scores show good results. True Positive Rate (TPR) is more
than 98% in all cases and total accuracy (ACC) is at least 99% (excluding DS2,
which scored a 96%).

5.3 Different Driving Scenarios

The vehicle’s parameters are constantly being changed by either external (e.g.
road, weather, and driver’s habits) or internal (e.g. increasing speed or torque)
factors. These may degrade the accuracy of the model. To check whether these
conditions can have any effect on the efficacy of the model, we gathered 9 log
files from different driving scenarios of the vehicle from DS3. Figure 3 shows the
wheel-based speed for each driving condition. We repeated the previous experi-
ment for each of the 9 log files and then calculated the weighted average of the
machine learning scores identical to Sect. 5.2. If the internal or external param-
eters can affect the model, it should be captured in this model. We compared
the performance of the model in all nine other driving scenarios with initial DS3
results and looked for any differences.

The first column in the Fig. 5 shows the result from the original DS3 scores,
and the rest show the other nine driving conditions. Among ten different driving
conditions, including the DS3 initial test, we do not see any significant variation
in learning scores and we get consistently high scores in different driving con-
ditions. This deduces that the proposed model works well for different driving
conditions.

5.4 Performance Across Multiple Classifiers

Although all of the previously discussed experiments were repeated across mul-
tiple machine learning classifiers, we selected and reported the best one. In this
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experiment, we compared the performance of the different classifiers, We used
Decision Tree (DT) with a max depth of 5, Gradient Boosting (GB), Gaussian
Naive Bayes (GNB), Random Forrest (RF), and SVM with two different kernels:
Linear and Gaussian (rbf).

Figure6 compares the average performance of the classifiers in different
datasets for two learning scores: TPR and ACC. The most striking results to
emerge from Fig. 6 is that both GB and RF give the highest TPR on average
for all of the datasets with more than 99%, which is significantly high. In other
words, GB and RF detected more than 99% of injected malicious messages cor-
rectly. We achieved this detection rate along with an incredibly high accuracy
rate simultaneously.

GB gives the best performance on average, and if there is a need for selecting
one single classifier, it would be the best choice among the ones that we studied.
Looking at two different kernels of SVM confirm that both perform almost iden-
tically in all cases. As a linear kernel gives us a very high accuracy, it deduces
that data is linearly separable. Another benefit of this kernel is that it is much
less complex than Gaussian (rbf) so linear kernel is a better choice.

For SVM with a linear classifier, the TPR and ACC are very close to 96.75%
and 97.46% respectively. GNB and KNN do not generate good results and are
not suitable for this problem. KNN is more suitable for clustering problems but
the results show it does not work for this problem at all.

5.5 Timing Analysis

We want to detect any abnormal behavior in a real-time manner when the vehi-
cle is moving. We need to demonstrate that our approach is efficient and can be
installed on the vehicle. We selected Raspberry Pi Zero as a light-weight com-
puter powered by a +5.1V micro USB supply and performed experiments on it.
This device can read the CAN data via a connection to the OBD-II port.

Based on our proposed model, we can train the dataset before and save the
trained model on the Raspberry Pi for online detection; therefore, we report
the testing time only. For each dataset that includes multiple PGNs, we trained
multiple classifiers for each PGN. Then we extracted the average testing time
for each classifier-PGN. As the model can predict the next message in parallel
(based on multiple trained classifiers), the longest testing time of each classifier-
PGN will be the total testing time for each input. Consequently, we used the
maximum testing time of classifier-PGNs in each dataset.

Figure 7 depicts testing time in a base-10 logarithmic scale in microseconds.
DT has the best testing time among all classifiers. This classifier responds in
less than six microseconds for all of the datasets. GB is the second best classifier
which responds between 70-80 s followed by GNB which takes around 200 ps.
KNN did not perform well at all; it takes at least 16 ms for the best results.
This is due to the way that this classifier predicts input samples and finds the
k-closest to the input and labels it. This timing analysis shows that the best
performing classifiers also act fast-enough to be employed in the heavy vehicle
and run experiments in real-time.
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Table 2. Comparing discussed defense mechanisms from different perspectives

Authors

Description

ACC

Type

Techniques

Murvay et al. [9]

-Including message authentication
to the protocol

-Evaluated communication and
computational overhead

-It needs changes in existing
technologies

-Not useful for current vehicles

100%

Proactive

Message
authentication

Cho et al. [3]

-Proposed an clock-based IDS

-Detects based on clock skew of
periodic messages

99.5%

Reactive

ML

Kang et al. [5]

-Intrusion detection technique
using a DNN.

-Packets are trained to extract
features

-Features have no semantic
associated with them

-May not be applicable for online
detection due to the performance
issue

99%

Reactive

ML

Chockalingam
et al. [6]

-Studied at two different types of
anomalies

-Using LSTM helps to consider a
sequence of inputs

82% to 100.0

Reactive

ML

Narayanan et al.

(71

-Introduced OBD Secure-Alert

-Detecting abnormal behavior as
a plug-n-play device

-Added previous messages to each
instance for detection

100%

Reactive

ML

Mukherjee et al.
[20]

-Used a RPG anomaly detection
technique

-Visualized temporal relationships
of human actions and functions
and implemented by ECUs

-Find out malicious intrusions in
real time

N/A

Reactive

Precedence
graph

Our Work

-Fingerprinting behaviour of
embedded devices

-Identifying regular behaviour of
devices

-Detecting anomalies using
machine learning techniques
-Carrying out experiments on five
large datasets

96-99%

Reactive

ML

The lowest transmission rate of the message defined in the SAE-J1939 is
10 ms. Other messages are also not being generated faster than that rate. Our
proposed mechanism can detect anomalies in order of 200 to 300 ws for two of
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our best classifiers. Thus, our algorithm detects anomalies 40-50 times faster
than transmission rates for messages on the bus.

Table 2 compares five different approaches in the literature. Some of the previ-
ous research leveraged machine learning techniques to find anomalies in an online
[23] or offline manner [5,6] in the vehicle. [9] introduced prevention approaches
which include introducing message authentication to the protocol. [20] suggested
a graph-based approach that detects malicious messages in real time. We also
added the results of this study to Table 2 where logs taken from vehicle driving
have been injected with abnormal messages.

6 Conclusion and Future Work

The identification of normal behavior of embedded devices is a substantial step
towards detecting any abnormal activities. However, as our detection mechanism
shows, it is possible to fingerprint the behavior of embedded devices in the vehi-
cles with high accuracy. In future, we want to combine SPN values from multiple
PGNs into one single machine learning vector instead of looking at each PGN
separately. To achieve this goal, we need to consider the time-series analysis and
different types of classifiers.

In future, we plan to explore the use of unsupervised machine learning as
labeled data may not be available. In our study, for four out of five datasets, the
rate of false positives is less than 0.05%, which is significantly low. We plan to
lower this even further.
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