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ABSTRACT

The activation of ferrate with sulfite increases oxidative transformation of recalcitrant organic compounds;
however, it also changes the characteristics of the iron particulates that result from the ferrate reduction. In this
study, particles resulting from ferrate reduction both with and without sulfite were compared in a laboratory
matrix simulating water treatment conditions at the bench-scale. Characteristics examined included magneti-
zation, morphology, size, and surface charge. The activation of ferrate with sulfite changed the characteristics of
resultant particles in several important ways. Activated ferrate resultant particles were less magnetic, more
polydisperse including a higher fraction of nanoparticles, and exhibited a less-crystalline morphology compared
to particles resulting from ferrate self-decay. Surface charges between the two particle types were similar, and
negative. The relatively rapid formation of Fe(III) from Fe(VI) activation leads to particles of different character,
likely though a greater supply of precursory low molecular weight iron hydroxo-species. Particles resulting from
activated ferrate used as a preoxidant will impact downstream processes in important ways, such as gravimetric
or magnetic separations and contaminant adsorption. Ferrate activation presents a possible trade-off between
improved oxidation and impeded downstream physicochemical processes, and formation and fate of formed
particles warrants consideration.

1. Introduction

transforms many inorganic [3-5] and organic contaminants [6-8], as
well as disinfection byproduct precursors [9-12]. However, some re-

Ferrate (Fe(VI)) is a high-valance iron species that is used for oxi-
dative transformation of target compounds [1,2]. In a water treatment
context, the relatively high oxidation potential of Fe(VI) successfully
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calcitrant contaminants of emerging concern are not effectively oxi-
dized by Fe(VI) at relevant dosages and pH values [13]. Oxidation with
Fe(VI) can be improved by “activation” of Fe(VI) by common chemical
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reducing agents [14], acids [15], carbon nanotubes, ammonia [16], and
ultraviolet light [17]. Disagreement in the literature exists with respect
to exact mechanisms of activation, and vary with activation approach;
however, an important role of ephemeral iron species (e.g. Fe(V) and Fe
(IV)) is likely.

When sulfite is used as the activating agent, the formation of sulfate
and hydroxyl radicals also increases oxidation [18]. These radicals
demonstrated reactivities on the order of 108-10'® M~1 s™! [19-21],
while Fe(VI) oxidation is several orders of magnitude slower (1ot-10*
M~! s™1) [22]. Most published research on activated Fe(VI) has fo-
cused on this approach [23,24]. For example, oxidation of benzo-
triazole, phenol, ciprofloxacin and sulfamethoxazole all increased from
less than 10% to greater than 75% when 50 uM Fe(VI) was activated
with 250 puM of sulfite (1:4 M ratio) [25]. In this way, activated Fe(VI)
represents an emerging advanced oxidation technology for enhanced
degradation of organic contaminants [18].

Prior work on Fe(VI) activated with sulfite (and other reductants)
provides important data towards potential adaptation; however, prior
work generally utilized phosphate buffer to sequester resulting Fe(III)
solids. This dramatically simplifies required analytical steps but pro-
hibits any assessment of resultant particles [26], which blocks vertical
advancement of sulfite-activated Fe(VI). Particles resulting from Fe(VI)
self-decay (e.g. non-activated) have shown unique and important
properties, including a core-shell architecture [27], participation in
adsorption reactions [3,28] and coagulation [10,29,30], magnetism
[31], relatively small size [32], and poor settleability [33]. It is yet
unknown how reduction of Fe(VI) with sulfite may impact these par-
ticle characteristics. One of primary proposed advantages of ferrate
over other preoxidants in a water treatment context is the beneficial
impact of ferrate resultant particles on subsequent physicochemical
processes [10,13,34]. Therefore, serious consideration of activated
ferrate must also include an evaluation of resultant particles to answer
fundamental mechanistic and application questions. The overarching
objective of this work was to fill this urgent research gap with the first
assessment of Fe(Ill) particles resulting from sulfite activated Fe(VI).
Specifically, the characterization included an assessment of magnetism,
morphology, size, and surface charge.

2. Methods and materials

The experimental approach for this work was to generate iron
particles from ferrate reduction both with and without sulfite activa-
tion, and compare the characteristics of the two particle types. Particle
formation was executed in a laboratory water matrix contained in
bench-scale, batch reactors. Particle characterizations included light
scattering, electron microscopy, magnetometry, and crystallographic
analysis techniques. Details regarding particle formation and char-
acterization follow.

2.1. Particle formation reaction

All experiments were performed in a laboratory water matrix, uti-
lizing reagent-grade inputs. High-purity (> 92%) potassium ferrate
(K5FeOy4) (Element 26 Technology, League City, TX) [35] was added as
a dry, crystalline powder to deionized water buffered with 1 mM car-
bonate at pH 7.5. Element 26 Technology used an electrochemical
method (US Patent 8.449,756 B2) for production of K,FeOy) The Fe
(VD) dose was 100 uM (5.6 mg/L as Fe), confirmed via absorption at
510 nm [36]. The 1 L reactors were mixed vigorously (G > 200 sec 1)
for one minute, then gradually (G ~50 sec™). The water matrix—
including pH, buffer capacity and dosing conditions-were set to re-
plicate a plausible water treatment scenario with low organic carbon,
and fall within the range of potable water sources. A pH of 7.5 is re-
presentative of many surface and ground waters. Also, Fe(VI) decom-
position rate increases dramatically at acidic pH values [32,37], which
complicates activation experiments. In Fe(VI) auto-decay experiments,
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complete Fe(VI) auto-decay was confirmed via ABTS method [38],
following 60 min reaction time. In sulfite activation experiments,
400 uM SO;~2 as a 0.25 M Na,SO; stock solution was added to the
reactor 30 s after Fe(VI), following a similar protocol from prior re-
search focused on activate Fe(VI) oxidation [18].

2.2. Particle characterizations

Resulting particle size and surface charge were quantified by dy-
namic light scattering (DLS) and electrophoretic mobility (Malvern
Zetasizer Nano ZS). Particle morphology was imaged with transmission
electron microscopy (TEM) (JEM-2100, JOEL, Tokyo, Japan). Resulting
particle suspensions for TEM were filtered through a glass-fiber (GF)
filter (Whatman, 934AH), with an effective cut-off of 1.5 pm to remove
large aggregates. Particles in GF filtrate were then loaded onto a 30 kDa
ultrafilter (UF). The UF was submerged and sonicated in reagent grade
water, with resuspended particles then drop-casted and air dried on a C
film with Cu grid. Particles analyzed by scanning electron microscopy
(SEM) (Zeiss Sigma VP, Overkochen, Germany) were prepared by drop
casting the as-prepared particle suspension. Crystallinity was evaluated
via X-ray powder diffraction (XRD) (Ultima IV, Rigaku, Tokyo, Japan),
with a Cu K, source at 0.5 deg/min scan speed. The as-prepared ferrate
resultant particles were collected on a 0.7 pum cut-off glass fiber fine
(GF/F) filter and transferred to the XRD holder for analysis. A sample of
GF/F effluent was also subjected to DLS measurements.

2.3. Evaluation of magnetism

Magnetism was assessed using in situ and ex situ approaches. In situ
assessment included transfer of particle suspension to a 10 mm spec-
trophotometer cell. One, 9.5 mm diameter N40 grade neodymium-iron-
boron disc 1 T magnet was affixed to the bottom of the cell on the
outside. The apparatus was placed in a spectrophotometer, and optical
density (abs. at 600 nm) was tracked over 30 min; the optical density
over time was normalized to the optical density at the start of the set-
tling experiment. Experiments were repeated with and without the
magnet. Ex situ magnetization was measured using a magnetic prop-
erties measurement system (MPMS-3 from Quantum Designs, San
Diego, USA). 1.5 L of Fe(VI) particle suspension was centrifuged at
4200g. The supernatant was removed and the pellet was dried in an
oven at 80 °C for 24 h. Approximately 20 mg of powder sample was
loaded into the magnetometer and a full cycle from —5 T to +5 T was
acquired in DC mode at 26.85 °C.

2.4. Statistical and other information

Particle formation reactions and subsequent characterizations were
conducted in triplicate unless otherwise noted. Graphical error bars
represent one standard deviation. More statistical and experimental
information is included in Supplementary Information (see SI-S1).

3. Results
3.1. Activation and magnetism

Fe(VI) decay without sulfite addition (nonactivated ferrate resultant
particles, NFRPs) resulted in particles that were separated from fluid by
a magnetic field more so than by gravity alone (Fig. 1A). After 30 min,
the optical densities of the NFRP suspension without and with a magnet
were 0.92 and 0.86, respectively. For activated Fe(VI) resultant parti-
cles (AFRPs) the optical density both with and without a magnetic
were > 0.96, indicating decreased gravity settling, and negligible im-
pact of a magnetic field (Fig. 1B). Results for AFRPs were similar to
ferric chloride coagulant control (Fig. S1). Both particle types settled
poorly, a known attribute of Fe(VI) resultant particles [33]; however,
only nonactivated particles showed appreciable increase in separation
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Fig. 1. Normalized optical density (absorbance at 600 nm) of particle suspensions resulting from (A) nonactivated ferrate auto-decay and (B) ferrate activated with

sulfite. pH = 7.5, Fe(VI) dose = 100 uM, 1 mM HCO3", 400 uM SO, 2.

due to a magnetic field.

Fig. 2 shows the mass-normalized magnetization (M) versus mag-
netic field strength (M(H)) curves near room temperature for both
particle types. The NFRPs had higher M than AFRPs. This indicates that
the portion of ferrimagnetic materials is higher in the nonactivated
particles. Additionally, magnetization at high field (> 3 T) follows a
positive, linear trend with H, with similar slopes (0.07 vs. 0.05 emu/
g'T), characteristic of paramagnetic materials. Insert B in Fig. 2 includes
M(H) cycles after paramagnetic subtraction.

Results are consistent with prior work demonstrating that non-
activated Fe(VI) resultant particles exhibit core-shell architecture with
a y-Fe;03 (maghemite; ferrimagnetic) core and a y-FeOOH (lepidocro-
cite; paramagnetic) shell [27,31]. It is important to note, however, that
sulfite activation changes the resulting particle architecture by
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Fig. 2. (A) Magnetization (emu/g) of the non-activated and activated Fe(VI)
resultant particles as a function of applied magnetic field. Data collected and
room temperature and normalized by mass of solids. (B) magnetization in kA/m
after paramagnetic subtraction, assuming the ferromagnetic material is ma-
ghemite.

decreasing the ferrimagnetic component.

By subtracting the paramagnetic contribution and assuming that the
ferrigmanetic contribution is exclusively maghemite with a saturation
magnetization (M) of 414 kA/m [39], it is estimated that NFRPs con-
tain approximately 0.16% maghemite, while AFRPs contained 0.09%
maghemite, on a mass basis. The lack of hysteresis in the M(H) cycle
indicates the ferrimagnetic component of the particle structure is in the
superparamagnetic regime. Superparamagnetism at room temperature
is observed for spherical maghemite particles with diameters below
10 nm [39].

3.2. Size and morphology

Sulfite activation changed the size distribution and morphology of
Fe(VI) resultant particles (Fig. 3). Both particle types had bimodal
distributions with size features in the nanometer and micrometer size
range. The intensity-weighted mean particle size (d,ye) for nonactivated
and activated Fe(VI) resultant particles were 1.72 and 2.49 pm, re-
spectively. AFRPs were more polydisperse than NFRPs with log normal
standard deviations (0j,g) of 1.98 and 2.14 nm, respectively. AFRPs
were least prominent in the 1-2 um size range, compared to non-
activated particles which were most common in that range. NFRPs re-
sulted in ~90% of cumulative intensity response occurring below 2 um,
while AFRPs resulted in ~50%. Below 2 pum diameter, the first dis-
tribution d,ve changes to 1091 nm and 511 nm for NFRPs and AFRPs,
respectively (see Table S1). GF/F DLS results were similar, showing a
difference in the submicron size range (Fig. 3, panels A and C), after
larger particles have been removed. On a mass basis, > 98% of all Fe
was retained on the GF/F filter, indicating that both particle types were
almost all > 0.7 um, and likely above the measurement range of the
DLS instrument, due to limited diffusion.

Very low counts were noted below 100 nm in all GF/F DLS mea-
surements, indicating a low concentration of nanoparticles, however,
particles of that size or smaller were observed via TEM analysis (see
Fig. 3B and 3D), following particulate concentration from GF/F effluent
on the 30 kDa membrane UF. Nanoparticle morphology was different
between the NFRPs (Fig. 3B) and AFRPs (Fig. 3D). NFRPs TEM images
had clearly defined regions of contrast compared to AFRPs, indicating
greater crystallinity, and appeared to contain aggregates of < 10 nm
nanoparticles—a trend noted in prior TEM investigations, although
precipitation condition varied [27,33,40]. SEM also showed more
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Fig. 3. Left, particle size distributions for nonactivated (A) and activated (C) ferrate resultant particles before and after a glass fiber fine (GF/F) filter. Right,
transmission electron microscopy (TEM) images of nonactivated (B) and activated (D) ferrate resultant particles. Scale bar represents 50 nm in each TEM image.

defined nanoparticles for the NFRP than the AFRP (see Figs. SI S3 and
S4). XRD results indicated, however, that NFRPs were amorphous (see
Fig. S2). This apparent disagreement is attributable to the size and ar-
chitecture of nanoscale NFRPs and the large fraction of non-magnetic
material: nanoscale maghemite may appear amorphous to XRD due to
loss of symmetry near the surface of the particle, and poorly crystalline
y-FeOOH shells and other amorphous phases may obscure the under-
lying more-crystalline y-Fe,O3 core of NFRPS [31].

3.3. Surface charge

Particles resulting for both formation reactions had negative surface
charges, representing a relatively stable colloidal suspension. Sulfite
activation had only minor impacts on the surface charge of resultant
particles (see SI-S6 and Fig. S5 for more details).

4. Discussion & conclusion
4.1. Mechanistic interpretation

The differences in characteristics between NFRPs and AFRPs suggest
differences in precipitation mechanism attributable to the presence of
sulfite/sulfate. An stoichiometrically-excessive amount of sulfite will
reduce Fe(VI) to Fe(IIl) rapidly (k > 102> M~2s~ 1) [41], resulting in
near-instantaneous formation of Fe(II) and SO, 2. Fe(VI) auto-decay
produces Fe(IIl) at a rate many orders of magnitude slower at pH 7.5 (k
~20 M~ 1571 [26,42]. Ferric-oxide particles typically form by growth
of nuclei fed by low-molecular weight iron species (e.g. dimeric iron
hydroxo-species), with the ultimate form and crystallinity dedicated by
the rate at which these species are supplied [43,44]. The more slowly
the species are supplied, as in Fe(VI) auto-decay, the better ordered
phases that result [45,46]. Therefore, the slower “supply” of Fe(IIl)

resulting from nonactivated Fe(VI) would set conditions for more
crystalline structures, while activation likely leads to more amorphous
structures (Fig. 3). This mechanistic difference could apply to any mode
of Fe(VI) activation that drastically accelerates the rate of decay. The
presence of sulfate resulting from sulfite-based Fe(VI) activation may
also specifically impact particle precipitation mechanisms. Sulfate
forms complexes with Fe(III), and may impact particle formation in
several ways, including increasing the rate of precipitation compared to
solutions without divalent anions [44,47].

4.2. Water treatment implications

Magnetism of NFRPs has been highlighted as a potential advantage
of Fe(VI) in a water treatment context, as it would allow for magneti-
cally-based particulate separation [27,48]. A force balance on maghe-
mite particles indicates magnetic force is approximately 5 times larger
than gravity for particles 0.5 cm away from a 1 T magnet (see SI-S7).
This dominance of magnetism is important, as exclusively gravimetric
approaches to NFRP separation are generally ineffective (Fig. 1) [33],
and predicted Stoke’s terminal settling velocities for NFRPs are < 3
mm/day when diameter is < 500 nm. Attractive interparticle magnetic
forces may also lead to aggregation of particles, in addition to van der
Waals forces [49], which in turn could lead to enhanced gravimetric
precipitation. Activation of Fe(VI) has been highlighted as a novel ap-
proach to advanced oxidation of recalcitrant organic contaminants.
Results here demonstrate that a common method for Fe(VI) activation
decreases subsequent particle magnetism and crystalline-morphology,
while also changing the size distribution and settling velocities. In this
way, Fe(VI) activation with sulfite represents a trade-off between im-
proved oxidation and impeded downstream physicochemical processes.
In addition, the crystal structure of FRPs is critical to the adsorption of
arsenic and other contaminants [31,48]. Our results show that sulfate
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activation changes the structure of the ferrate resulting particles, which
could lead to a change in contaminant adsorption. Different activation
approaches exist, such as sub-stoichiometric and/or staggered sulfite
addition [50], which may better balance treatment goals. Other im-
portant solutes and water quality characteristics (i.e. dissolved organic
carbon, pH) may impact resultant particle characteristics. Future work
on activated Fe(VI) should consider the formation and fate of resultant
particles in relevant water matrices, and evaluate the trade-off between
improved oxidation of contaminants and reduced settleability, mag-
netism, and adsorption characteristics of the downstream particles.
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