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ABSTRACT

Objective metrics, such as the perceptual evaluation of speech qual-

ity (PESQ) have become standard measures for evaluating speech.

These metrics enable efficient and costless evaluations, where rat-

ings are often computed by comparing a degraded speech signal

to its underlying clean reference signal. Reference-based metrics,

however, cannot be used to evaluate real-world signals that have in-

accessible references. This project develops a nonintrusive frame-

work for evaluating the perceptual quality of noisy and enhanced

speech. We propose an utterance-level classification-aided non-

intrusive (UCAN) assessment approach that combines the task of

quality score classification with the regression task of quality score

estimation. Our approach uses a categorical quality ranking as an

auxiliary constraint to assist with quality score estimation, where

we jointly train a multi-layered convolutional neural network in a

multi-task manner. This approach is evaluated using the TIMIT

speech corpus and several noises under a wide range of signal-to-

noise ratios. The results show that the proposed system significantly

improves quality score estimation as compared to several state-of-

the-art approaches.

Index Terms— speech quality assessment, objective metrics,

convolutional neural networks, multi-task learning

1. INTRODUCTION

The performance of speech enhancement algorithms is often evalu-

ated with objective metrics, since objective metrics provide impor-

tant information about speech quality and intelligibility in a short-

period of time [1]. Objective metrics can be divided into two ma-

jor categories: intrusive and nonintrusive. Intrusive metrics require

the clean speech (or reference) signal during the evaluation process,

where these metrics compare a time-frequency (T-F) representation

of the enhanced or noisy speech signal to the clean speech signal.

Differences between the two signals result in quality and intelli-

gibility scores, where the scores improve with increasing spectral-

temporal similarity. Commonly-used intrusive metrics include the

perceptual evaluation of speech quality (PESQ) [2], short-time ob-

jective intelligibility (STOI) [3], perceptual objective listening qual-

ity assessment (POLQA) [4], hearing aid speech quality index

(HASQI) [5], and metrics from the blind source separation (BSS)

toolkit, signal-to-distortion ratio (SDR), signal-to-interference ra-

tio (SIR), and signal-to-artifact ratio (SAR) [6]. These metrics use

signal-processing techniques during the comparison process. Al-

though these metrics have been shown to have correlations with hu-

man evaluations [3, 7], the need for a reference signal is a major
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limitation, since this does not allow evaluation of real-world signals

that have inaccessible references.

Nonintrusive metrics, on the other hand, perform evaluations

directly on the signal of interest (e.g. noisy or enhanced), without

the need for a reference signal [8, 9, 10]. These metrics rely on prop-

erties of signals or environmental factors to determine quality and

intelligibility scores. Current nonintrusive metrics have many lim-

itations, including: 1) they perform worse than intrusive measures

in terms of correlations to human listening evaluations [11, 12]; 2)

they have not been thoroughly evaluated in realistic environments

that contain many speakers or different types of acoustical noise

[13]; and 3) they are only intended for specific-signal types, e.g.

over telecommunication networks [14] or for hearing aid applica-

tions [15]. As a result, nonintrusive metrics are not often used for

assessment. Listening studies involving human participants offer

the most accurate way to assess speech, where participants provide

a quality rating or try to identify the words in each signal [1, 16].

These studies, however, can be costly and time consuming.

Data-driven approaches have been proposed recently for speech

evaluation. These approaches use machine learning techniques,

such as hidden markov models (HMM) [17], or classification and

regression trees (CART) [18]. More recent approaches use deep

learning (autoencoders or deep neural networks (DNNs)) as a means

of evaluating speech quality and naturalness [19, 20, 21, 22, 23].

In [24], a full convolutional network is used to estimate the

speech transmission index (STI). The authors in [25] utilize a sin-

gle convolutional layer to predict subjective intelligibility ratings

from four listening tests. A frame-level speech quality evaluation

model which consists of one bidirectional long short-term memory

(BLSTM) layer and two fully connected layers is proposed in [26].

It predicts the PESQ score of a single time frame, and then calcu-

lates an utterance-level prediction by averaging frame-level outputs.

Recently, [27] uses a DNN-based voice activity detection (VAD) to

predict the mean opinion score (MOS) of degraded acoustic sig-

nals. The use of machine learning for objective speech evaluation

is promising since it enables quick reference-less evaluation, and it

allows the metric to learn from data without prior assumptions.

Inspired by the latter deep-learning based metrics, we propose

a convolutional neural network (CNN) framework for assessing the

perceptual quality of speech. More specifically, we jointly train a

CNN to predict the categorical objective ranking and true PESQ

score, where PESQ scores are grouped into categorical classes

based on pre-defined ranges. Hence, we propose to treat objec-

tive speech evaluation as the combination of a classification and a

regression task. The two tasks share the same feature extraction lay-

ers while each task also has independent modules to achieve specific

goals. Learning tasks in parallel while using a shared representation

has been shown to be helpful for other multi-task learning problems

[28, 29].





2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 20-23, 2019, New Paltz, NY

assigns a single utterance-level score as the label for an input sig-

nal. This makes the prediction process difficult, because the input

features may differ in size due to differences in signal lengths. This,

however, can be addressed by padding or truncating each signal to

a fix length. We elect to use the latter approach as utterance-level

score prediction is more reliable than frame-level prediction, since

frame-level score assignments are often inaccurate.

Our system is performed in the T-F domain using the short-

time Fourier transform (STFT). Each signal is first downsampled

to a 16 kHz sampling rate. The STFT of each signal is computed

using a Hanning window and a 40 ms time frame with 25% over-

lap between adjacent frames. The fast Fourier transform (FFT) is

computed using a 640-point FFT. Most of the speech signals in our

experiments have lengths between 3 to 5 seconds. Thus, a temporal

length T = 5 sec has been chosen as the maximum length of our

signals to ensure a fixed-sized CNN architecture. A speech signal is

zero-padded if its length is less than T , while the signal is cropped

to a length of T otherwise. Finally, the log-spectral magnitude of

the STFT with a dimension of 321 × 166 is applied as the input

feature.

2.3. PESQ quality labels

Two training targets are simultaneously applied in our model. One

is the quality class of a speech signal, and the other is the corre-

sponding raw PESQ score. PESQ returns scores between −0.5 and

4.5, where higher scores correspond to higher perceptual speech

quality [2]. Signals with extremely low or high PESQ scores are

infrequently encountered. The observed upper and lower PESQ

scores from our experimental dataset are 0.13 and 4.32, respec-

tively. According to this observation, we define three variables for

the classification task: the low threshold Lt, the high threshold Ht,

and the category bin size B of PESQ scores, which are used to de-

termine how PESQ scores are assigned for the N classes. Denote

Spesq as the raw PESQ score for a particular signal. The PESQ

classification label of a given signal is calculated by

Class(Spesq) = min(max

(

1, ceil

(

Spesq − Lt

B

))

, N), (2)

where ceil(·) denotes the ceiling function. Notice that class 1 is

assigned if Spesq is less than Lt, whereas class N is assigned if

Spesq is greater than or equal to Ht. The parameters N = 20,

B = 0.2, Lt = 0.2, and Ht = 4.2 are used in our experiments.

For each input training signal, a binary vector of length N is

constructed that consists of all zeros, except for the label index that

has a value of 1. This one-hot vector is supplied to the classification

module as the training label. In addition to this, the raw PESQ score

that is the regression training target, along with the inputted log-

magnitude spectrogram, are used to train the classification-aided

framework jointly to predict the categorical ranking and to estimate

the quality score in parallel.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Experimental setup

We setup three datasets in our experiments: (1) a seen noisy speech

dataset is used for training, validating and testing each approach

with the seen types of noise and SNRs; (2) an unseen noisy speech

dataset is used for testing the generalization capability of the ap-

proach under unseen noise conditions; (3) the enhanced speech

dataset is used for testing the prediction capability on speech sig-

nals that are degraded by additive noise and then enhanced by a

speech separation algorithm.

The seen noisy speech dataset is generated by combining 3, 000
clean speech utterances from the TIMIT database [31] with ten

types of noise (babble, factory, fighter jets, vehicle, radio channel,

destroyer engine, machine gun, pink, tank and white noise) from

the NOISEX-92 database [32]. The random segments of noise and

speech are combined using one of 12 SNRs, which range from −25
dB to 30 dB with 5 dB increments. We use a large range of SNRs

to ensure balanced coverage of PESQ scores. It results in 30, 000
seen noisy speech utterances, where 25, 000 of them are used for

training models, 2, 000 for model selection and hyperparameter op-

timization, and the other 3, 000 for testing.

The unseen noisy speech dataset is generated by combining

2000 different TIMIT utterances with one of five unseen noises

(cafeteria, cockpit, live restaurant, operating room, speech-shaped

noise) using one of the above 12 SNRs, which results in 10, 000
unseen noisy speech signals. The enhanced speech dataset contains

2, 000 separated speech signals, which are enhanced by four speech

enhancement algorithms: nonnegative matrix factorization (NMF)

[33], ideal binary mask (IBM) estimation [34], ideal ratio mask

(IRM) estimation [35], and complex ideal ratio masking (cIRM)

approach [36]. The enhancement systems are training from 500
clean speech utterances that are combined with the above noises at

5 SNRs (e.g. −6 to 6 dB with 3 dB increment). Then the time-

domain enhanced speech signals are restored by each of the above

algorithms.
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Figure 2: Confusion matrix of the categorical classification task.

Class-1 indicates the lowest quality rank while Class-20 is the high-

est quality rank.

3.2. Experimental results and comparisons

Fig. 2 shows a confusion matrix that illustrates the classification-

level accuracy of the proposed approach. Darker boxes indicate

that more noisy speech signals are classified into this group by our

approach. A series of dark boxes along the diagonal indicates ideal

performance. As can be seen from the figure, there is an obvious
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Table 1: Performance comparison on seen and unseen conditions. Best results of each case are marked in bold.

Seen noisy speech Unseen noisy speech Enhanced speech

MSE MAE PCC MSE MAE PCC MSE MAE PCC

NISA [18] 0.156 0.309 0.86 0.183 0.346 0.84 0.151 0.232 0.88

DESQ [23] 0.170 0.339 0.91 0.246 0.385 0.90 0.168 0.248 0.91

CNN [25] 0.139 0.269 0.89 0.185 0.366 0.86 0.123 0.239 0.90

AutoMOS [30] 0.162 0.327 0.88 0.391 0.526 0.85 0.175 0.269 0.90

Quality-Net [26] 0.149 0.285 0.90 0.170 0.325 0.89 0.102 0.217 0.93

UCAN (β = 0) 0.097 0.197 0.94 0.112 0.246 0.92 0.087 0.196 0.94

UCAN (β = 0.2) 0.078 0.177 0.95 0.096 0.193 0.93 0.062 0.148 0.96
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Figure 3: Scatter plots of the true and the estimated PESQ scores on

seen noise condition. From left to right: UCAN without (β = 0) or

with (β = 0.2) classification-aided module.

diagonal, which indicates that the categorical classification mod-

ule gives rather good prediction performance (i.e. overall accuracy

is 53.9%) for the 20-class case. Specially, UCAN can accurately

predict in very low and very high noise conditions. Even when it

predicts incorrectly, the predicted class label usually falls into the

1-nearest left or right neighbor of the true label with a high proba-

bility.

Fig. 3 shows how the classification portion of our UCAN model

aids with estimating objective PESQ scores. Our proposed ap-

proach restrains most outliers, which is not possible when only a

regression-loss function (e.g. MSE) is used. This is evidenced by

setting β to 0. Many outliers are classified incorrectly when only

the regression loss function is used (see left panel of Fig. 3). This,

however, does not occur for our proposed approach (see right panel

of Fig. 3). This point is inconspicuous when previous approaches

measured performance.

We compare our system with five state-of-the-art nonintrusive

methods. Non-intrusive speech assessment (NISA) [18] consists of

a combination of short-term and long-term feature extraction fol-

lowed by a regression tree. Deep machine listening for estimating

speech quality (DESQ) [23] is a DNN-based model, which quanti-

fies the degradation of phoneme representations obtained from the

DNN as the speech quality prediction. A CNN architecture [25]

consists of one convolutional layer and three dense layers and the

summation of its outputs is used as an intelligibility estimate. Au-

toMOS [30] provides utterance-level estimates of MOS and is orig-

inally intended for assessing the naturalness of synthesized speech.

We used their stacked long short-term memory (LSTM) model to

predict the speech quality. Quality-Net [26] is a BLSTM model

and its evaluation of utterance-wise quality is based on a frame-

level assessment. Three measurements are used to assess how well

our approach estimates the true PESQ score: mean absolute error

(MAE), mean squared error (MSE), and Pearson correlation coeffi-

cient (PCC).

Table 1 shows the prediction performance of different ap-

proaches on the seen noisy speech dataset. In general, the pro-

posed framework is significantly superior to other deep learning-

based models. When the weight of classification loss β = 0.2,

UCAN achieves the lowest MSE (0.078) and MAE (0.177) and the

highest PCC (0.95). Notice that when β = 0 the proposed sys-

tem is equivalent to a regression model without the classification

constraint. In this situation, the MSE and MAE slightly increase

to 0.097 and 0.197, but they are still noticeably lower than other

approaches.

In order to evaluate the generalization capability of our model,

we further test the proposed approach on two unseen conditions.

The MSE and MAE of all approaches rise in general, but perfor-

mance degradation in these unseen conditions is less than 0.02 for

our proposed UCAN approach, which is the smallest performance

degradation amongst all approaches. The errors with the enhanced

speech case are generally lower than other scenarios as well. This

likely occurs because the true PESQ scores of enhanced speech are

generally higher, since they contain less noise, which makes for

more accurate prediction. The best performance on the enhanced

dataset is achieved by UCAN. Its MSE of 0.062, MAE of 0.148,

and PCC of 0.96 far exceed other nonintrusive benchmarks. These

results show that our proposed UCAN approach, which is trained

with seen noise types, can still give the lowest prediction error when

tested in unseen environments, indicating that it can generalize well.

4. CONCLUSION

We present an utterance-level classification-aided nonintrusive

speech quality assessment approach to predict both the objective

quality class and the quality score of noisy and enhanced speech

signals. This framework enables real-world testing, since it does not

require a reference clean signal. Overall, the performance of UCAN

outperforms previous state-of-the-art approaches, and significantly

lowers estimation errors, which indicates that jointly training a

classification-aided regression module is promising for speech qual-

ity assessment.
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