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Abstract

Background subtraction is a general problem in spectroscopy often addressed with application-specific techniques, or

methods that introduce a variety of implementation barriers such as having to specify peak-free regions of the spectrum.

An iterative dual-tree complex wavelet transform-based background subtraction method (DTCWT-IA) was recently

developed for the analysis of ultrafast electron diffraction patterns. The method was designed to require minimal user

intervention, to support streamlined analysis of many diffraction patterns with complex overlapping peaks and time-varying

backgrounds, and is implemented in an open-source computer program. We examined the performance of DTCWT-IA for

the analysis of spectra acquired by a range of optical spectroscopies including ultraviolet–visible spectroscopy (UV–Vis), X-

ray photoelectron spectroscopy (XPS), and surface-enhanced Raman spectroscopy (SERS). A key benefit of the method is

that the user need not specify regions of the spectrum where no peaks are expected to occur. SER spectra were used to

investigate the robustness of DTCWT-IA to signal-to-noise levels in the spectrum and to user operation, specifically to two

of the algorithm parameter settings: decomposition level and iteration number. The single, general DTCWT-IA imple-

mentation performs well in comparison to the different conventional approaches to background subtraction for UV–Vis,

XPS, and SERS, while requiring minimal input. The method thus holds the same potential for optical spectroscopy as for

ultrafast electron diffraction, namely streamlined analysis of spectra with complex distributions of peaks and varying signal

levels, thus supporting real-time spectral analysis or the analysis of data acquired from different sources.
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Introduction

Background subtraction remains a difficult challenge across

a wide range of spectroscopies and other techniques.

The problem reduces to how to extract the signal of inter-

est, Sinterest xð Þ, from a measured signal, Smeasured xð Þ ¼

Sinterest xð Þ þ Sbackground xð Þ,1,2 when the background signal,

Sbackground xð Þ, can emerge by a variety of often difficult to

predict mechanisms including variability in time and from

sample to sample.3,4 Background subtraction may be itself

relegated to the background of data analysis procedures,

if details are provided at all. While perhaps a prosaic topic,

background subtraction can strongly influence downstream

analyses,5 and the issue thus forms an essential part of a

larger focus on how similar foundational considerations can

profoundly influence measurement reliability.6 Simple

approaches, such as polynomial fitting, have been adopted

and adapted for background subtraction in spectros-

copy.2,7–9 The possibility in some data to cleanly separate

signal peaks from background allows the development of

more complex, but still relatively straightforward and effi-

cient, approaches to background subtraction.7,10,11 Such
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methods can of course be augmented with additional steps,

including iteration, to enhance performance while preser-

ving accessibility, as illustrated in the auto-adaptive method

of Xie et al.11 Baek et al. constructed a few-parameter

approach with iterative weighting of measurement noise,

that similarly preserved implementation accessibility.12

Many approaches to background subtraction remain of

the ad hoc type, though, when the details of this important

analysis step are specified at all. In these approaches

one must frequently make assumptions about where the

spectrum is expected to generate a signal corresponding

entirely to background Sinterest xð Þ ¼ 0ð Þ.2,13 In high-

throughput data analysis where background, matrix com-

position, and even analyte identities may change, such as in

real-time environmental monitoring,7,8 the use of such

custom and even sample-specific algorithms (and parameter

values) can be tedious, time-consuming, and introduce bias

into analyses. Certainly the likelihood that frequent user-

intervention would be required would make such methods

incompatible with high-volume data analysis.2 The need

for dealing with large data sets with variable backgrounds

was a strong practical motivation given for an iterative

wavelet-transform-based background subtraction method

developed for high-data-volume applications such as

Raman mapping.1 This technique joined a sophisticated

suite of approaches that have been successfully used for

signal processing,14,15 de-noising,16–19 and background

subtraction.1,2,18 Fourier transform methods figure prom-

inently amongst these approaches,2,14,20,21 but wavelet

transforms offer the benefit that the wavelet basis functions

are localized in space and frequency, providing a more suit-

able analysis of sharp peaks and non-periodic noise.1,22,23

Discrete wavelet transform (DWT) has shown good results

for background subtraction of different spectroscopic

techniques such as energy dispersive X-ray fluorescence

(EDXRF),24 Raman,1,19 near-infrared spectroscopy,25 high-

resolution electron energy-loss spectroscopy

(HREELS),21,26,27 and X-ray photoelectron spectroscopy

(XPS),21,26,27 but it has been noted that DWT has perform-

ance limitations arising from its lack of shift invariance and

poor directional selectivity.15,23

We were seeking a method requiring minimal user

input capable of performing background subtraction for

surface-enhanced Raman spectroscopy (SERS). We were

particularly interested in eliminating the frequent need to

specify regions—if they exist—of a spectrum where

Sinterest xð Þ ¼ 0. This would minimize the amount of user

intervention in the background subtraction and, more

importantly, allow for the analysis of congested spectra

where overlapping peaks might make this step difficult if

not impossible. We were thus excited by a new background

subtraction method, the dual-tree complex wavelet trans-

form with an iterative algorithm (DTCWT-IA), that was

motivated by the need to cope with large time-varying

data sets with appreciable segments of data with no

significant range of background-only signal.22,28 Such a

signal characteristic challenges curve-fitting and Fourier

methods, and looms forbidding to the prospect of batch

processing. Beyond this technical benefit, we were pleased

with the practical motivation that the development was

directed by a desire to reliably perform background sub-

tractions across large series of measurements with variabil-

ity in signal and signal-to-noise (S/N) levels, and with

minimal user intervention. This was tested using simulated

time-dependent data with Gaussian noise and with back-

grounds with a known form to introduce qualitatively con-

sistent background structure across spectra that varied in

magnitude in time.22 The most captivating aspect of the

background subtraction method is that the basic algorithm,

as outlined below, requires no a priori input of peak loca-

tion and extent. The method combines the earlier promise

of iterative wavelet methods applied to Raman spectral

analysis1 with the dual-tree approach, but was developed

for analysing ultrafast electron diffraction patterns.22,28 The

signal in these studies was generated by a mechanism

orthogonal to those of spectroscopy, but given the favor-

able constellation of features and the formal equivalency of

(powder) diffraction pattern and optical spectrum as con-

sisting of peaks arrayed along an abscissa,29–31 we under-

took to explore the viability of the DTCWT-IA background

subtraction applied to a range of spectroscopies: ultravio-

let–visible (UV–Vis), SERS, and XPS. We performed back-

ground subtractions for these spectral types and compared

the results to commonly used background subtractions

often available as part of commercial analysis packages.

There is a hierarchy of wavelet transforms upon which

the DTCWT-IA is based. Wavelets, themselves, are loca-

lized in space and frequency, and their type and order

affects their shape and complexity.1,2 Given wavelet spatial

localization, wavelet transforms can thus fit featureless

regions with greater ease than Fourier methods which

may require large numbers of high-frequency terms for suf-

ficient cancellation.1,2 Discrete wavelet transforms (DWT)

have widespread use, but have some performance

drawbacks addressed by the dual-tree complex wavelet

transform (DTCWT). Specifically, DTCWT eliminates

wavelet coefficient instability near sharp signal features,

and aliasing artefacts that can arise from the use of

real-valued wavelets.22,28 It provides shift invariance and

good directional selectivity.15,23 Complex-valued wavelets

are implemented by having one DWT tree, each, for the

real and imaginary components, yielding the dual-tree

approach.22,28 Wavelet decomposition is a recursive pro-

cess in which a spectrum is processed into ‘‘smooth’’ and

‘‘detailed’’ components, with further processing applied to

the smooth components remaining after each recursion

step.2 The decomposition level of the method necessary

to recover the (physical) background is determined by

the frequency composition of the background.1 De Cotret

and Siwick extended an iterative method for DWT to
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DTCWT.1,22 Iteration acts to remove the influence of peaks

in regions where the peak and background overlap. In brief,

an initial background profile at a desired decomposition level

is used as a low-pass intensity filter (spectral magni-

tudes—predominantly peak magnitudes—greater than the

background magnitude proposed at this stage are set equal

to this initial background profile). The background fitting is

then repeated on this filtered spectrum until it converges to

what Galloway et al. described as ‘‘the most physical repre-

sentation (without including the peaks)’’.1 A step-by-step

pictorial illustration of this process is provided in Galloway

et al.,1 who emphasize that the number of iterations needed

will depend on the spectral characteristics and can be

decided on a case-by-case basis.

In practical terms, the basis of DTCWT-IA applied to

background subtraction can be understood by considering

a spectrum as being comprised of three frequency

regimes: high (noise), medium Sinterestð Þ, and low

Sbackground
� �

.1 At a very simple level, wavelet analysis lever-

ages these frequency regimes to decompose Smeasured into

Sinterest and Sbackground; this process is controlled, for a

given choice of wavelets, by the decomposition level (and

for iterative methods, also by the iteration number).

Overlap between the frequency regimes means that the

wavelet transform cannot adequately distinguish between

Sinterest and Sbackground without the further iterations that

underpin the wavelet and DTCWT iterative methods.1,22

The quality of a background spectrum can be generally

evaluated by the degree to which it does not introduce

nonphysical structure (spurious peaks) into the spectrum,

and the degree to which it isolates the physically meaningful

structure (peaks) without perturbing them.1 We introduce

two convenient metrics for illustrating how these two cri-

teria change during optimization of the fitting parameters of

decomposition level and iteration number. These simple

metrics do not replace inspection of the spectrally resolved

profile of background and spectrum. We calculated the

root mean square average of the numerically differentiated

background Sbackground
� �

across the entire spectrum

(RMSD) and used it as a metric for the amount of structure

present in each calculated background spectrum. We also

numerically integrated the area of the peak centered at

�1300 cm�1 between limits of 1250 and 1405 cm�1.

These peak areas were normalized relative to the peak

areas of Smeasured, so that when Sbackground ¼ 0 across the

specified peak range, a value of one is recovered.

Such simple metrics are an economical means for

quickly screening algorithm parameters for the experimen-

tal case where the background form and magnitude are

unknown, and are useful for illustrating the algorithm

behavior for the sake of this report, but should not replace

the inspection of the spectrally resolved results that we

also present.

De Cotret and Siwick22 have provided a streamlined

package for DTCWT-IA currently configured to have only

five user parameters: First stage wavelet, dual-tree wavelet,

extension mode, decomposition level, and iteration. The

availability of this software addresses a serious concern

raised by Xie et al.11 that the adoption of sophisticated

background subtraction algorithms can be limited by the

complexity of implementation. In addition to exploring

the robustness of the algorithm to spectrum type, we

explore the effects of decomposition and number of iter-

ations on the background-subtraction process. We focus

on only these two parameter settings in order to illustrate

the performance of the algorithm and to highlight potential

pitfalls with incorrect parameter settings. In general prac-

tice, the other parameters should be adjusted, as well, with

attention to the same behaviors that we explore in this

manuscript.

Materials and Methods

We used a distributable implementation of the DTCWT-IA

for all background subtractions unless noted otherwise.32

For all figures, the quality of the background profile was

evaluated by a spectrally resolved comparison of back-

ground profile and spectrum (e.g., Fig. 1a), and the opti-

mization of parameters was carried out conservatively.

We selected the lowest iteration number that minimized

background overlap with peak-like features, in particular

overlap that disrupted the smooth nature of the back-

ground with small, but noticeable bumps. For these appli-

cations, this approach thus included the deliberate choice

to avoid the linear background limit of a large iteration

number. A standard approach was taken for the background

subtractions in Fig. 4a to f. We outline it here while noting

that a more thorough illustration of key aspects of the pro-

cess is presented in the Results and Discussion section. The

parameters used for all backgrounds (SERS, UV–Vis, and

XPS) were first stage wavelet: Sym6; dual tree wavelet:

qshift5; extension mode: constant. With iteration set to

1, the decomposition level was changed incrementally

until the calculated background spectrum assumed the

desired profile. At this stage, this meant that the decompos-

ition level was increased until the calculated background

spectrum profile smoothly followed the profile in regions

apart from the peak maxima of the spectrum being analyzed.

The iteration number was then increased to improve the

convergence between the background spectrum and these

peak-free regions, without introducing peaks into the back-

ground profile. If the background spectrum failed to con-

verge sufficiently, then dual-tree wavelet (or other program

settings) could be changed and the process repeated. At no

point in the analysis or background subtraction was any input

required for peak position or extent.

Comparison background subtractions were performed

using a variety of methods implemented in commercial ana-

lysis programs. For SERS, a localized windowed minimum

subtraction method (LWMSM) denoted TBB Baseline in
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Peak (Snowy Range Instruments, USA) was used for back-

ground subtraction. Two approaches implemented in

Origin 8 Peak Analyzer (OriginLab, USA) were used for

UV–Vis background subtraction: A linear interpolation

and a spline, both fit to spectral positions automatically

generated by the fitting algorithms in Origin. For XPS

spectra, Shirley, Tougaard, and Smart background spectra

were calculated using Avantage 5.9904 (Thermo Fisher

Scientific Inc.). SERS and UV–Vis data were provided by

Karawdeniya et al.33,34 Representative XPS data of a

NCM111 Pristine battery fresh electrode were provided

by the Lucht Group.35

Results and Discussion

The Effect of Decomposition Level on the
Calculated Background of the DTCWT-IA

The decomposition level in the DTCWT-IA controls the fre-

quency composition of the background spectrum, and was

the first parameter that we chose to address. Figure 1a to d

depict the effect of the decomposition level on the calcu-

lated background, with the number of iterations set without

optimization (see below) to 500 so that for this illustration

the background spectrum quality would be unaffected by an

insufficient number of iterations.

Figure 1a and b show five different DTCWT-IA back-

grounds calculated at varying decomposition levels: 4

(red), 6 (green), 8 (blue), 10 (purple), and 12 (orange). At

a low decomposition level, the medium frequencies (in

essence, the peaks) were still prevalent in the calculated

background, while at a high decomposition level, the back-

ground became a featureless straight line. The conse-

quences of an incorrect background spectrum

determination from insufficient decomposition will be the

imposition of spurious structure on the analyte spectrum

(e.g., for a decomposition level of four in Fig. 1a to d),

incorrect peak intensities (and thus incorrect concentration

determinations), and even incorrect peak positions. While

the DTCWT-IA method has the benefit of not requiring

often subjective inputs such as peak positions and extents,

or positions where zero signal intensity would be expected,

the determination of the optimum decomposition level

remains largely subjective. We thus wanted to more con-

cretely explore the sensitivity of the background profile to

the particular decomposition level.

A suitable background spectrum should not produce an

overly structured profile with peaks in the background

where signal peaks were present (i.e., it should have a

lower RMSD given fewer extrema), and should not detri-

mentally lower the peak intensity (as in Fig. 1a with a

decomposition level of four). At low decomposition

Figure 1. (a) SER spectrum (black) of 5� 10�4 M 4-nitrothiophenol (NBT) and (b) with calculated backgrounds of varying decom-

position levels (red—4, green—6, blue—8, (overlapped) purple—10, orange—12 decomposition level) using DTCWT-IA. RMSD and

Integral analyses are shown in (c) and (d) at both varying decomposition levels (x-axis) and iteration number.
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levels, a decrease in the RMSD began at a decomposition

level of approximately four. The fairly large RMSD values at

this and lower decomposition levels correspond to spectral

overlap between the background and the raw signal, due to

insufficient decomposition of the signal. The peak intensity

is correspondingly too low at these decomposition levels,

as observed in Fig. 1d. An increase in the normalized peak

area occurred at a decomposition level of four where the

RMSD began to decrease. It is clear by examining the data

that intermediate values of the decomposition level are

necessary unless one desires to trace the measured spec-

trum or do little more than perform a linear subtraction. In

fact, while the full implemented range of decomposition

level settings was 1–99, the range was restricted here to

1–13 due to the onset of asymptotic behavior near 12. At

the arbitrary iteration number of 500, it is clear that the

optimal decomposition level to produce a background with-

out evident peaks was nearer to the asymptote of the

RMSD and integral plots at higher decomposition level

than to the inflection point of the curves. Final optimization

of the decomposition level for a particular spectrum or set

of spectra should include careful evaluation of the (spec-

trally resolved) background and signal spectrum in conjunc-

tion with consideration of metrics such as the RMSD and

peak intensity. The trend of the latter two metrics with

decomposition level at this iteration level shows regions

of insensitivity bracketing a central region with high sensi-

tivity. Overall, a conservative approach of choosing the min-

imal decomposition level that achieves the desired level of

smoothing is recommended unless asymptotic behavior

(such as a purely linear fit) is desired.

Effect of Iterations on the Calculated Background of
DTCWT-IAs

The addition of an iterative algorithm to a wavelet trans-

form for background subtraction was done to provide

greater control over minimizing the peak contribution to

the calculated background.1 Determining a suitable number

of iterations then becomes a crucial step in calculating the

background. To explore the effect of iteration number, we

calculated spectral backgrounds at a decomposition level of

eight, where the background (Fig. 1a) was not overly struc-

tured and did not appreciably overlap with the spectral

peaks at the fixed iteration level (500) used for Fig. 1a to

d. Even at this decomposition level, at low iteration number

the background profile infiltrated the peaks (Fig. 2a and b).

Our initial inclination to simply increase the number of

iterations to the maximum level implemented in the soft-

ware was not fruitful however, as the background profile

then encompassed only very little of the seemingly broad

background underneath the peaks, and began to resemble a

straight line.

We calculated RMSD and background-subtracted peak

integrals as a function of iteration. As before, RMSD and

the peak area provide simple metrics for illustrating the

degree to which the background profile inappropriately fol-

lowed the signal profile and cut into the peaks, allowing a

survey of its sensitivity to iteration number. A large value of

RMSD and a lower value of the peak intensity are indicative

of such unsatisfactory background profile behaviors. The

sigmoidal trend observed with changes of decomposition

level in the RMSD analysis was replaced by a monotonic

decline with fairly rapid onsets of asymptotic behavior. A

reasonable balance of background profile smoothness and

peak area was obtained at 40 iterations for the decompos-

ition level of eight. Once above a minimum threshold, how-

ever, the asymptotic trends of both parameters indicate

that there is less sensitivity to the iteration number than

to decomposition level. In determining the final iteration

number, we used the same conservative approach of choos-

ing the first iteration number that minimized the appear-

ance of bumps in an otherwise smooth background. This

was carried out by comparison of the (spectrally resolved)

background profile to the spectrum.

Given the relatively low value of 40 iterations compared

to the fixed 500 iterations used to explore decomposition

level (Fig. 1), we repeated the analysis of iteration number

at decomposition levels of 4 and 6. The RMSD and integral

data are superimposed on the Fig. 2c and d plots, and the

full spectral representations are shown in Fig. 2e and f. The

hallmark of these incorrect background assignments due to

insufficient iteration was a background profile that was

overly structured and that traced all the curves of the spec-

trum, including (small magnitude) sharp ones. Considered

together, the data in Fig. 1a to d and 2a to f show the

importance of performing the DTCWT-IA background sub-

traction iteratively, and that while an iteration number

threshold should be exceeded, the quality of the back-

ground profile depends far more strongly on the decom-

position level.

Sensitivity to Signal-to-Noise Ratio (S/N)

The results in Figs. 1a to d and 2a to f showed that it was

possible to use the DTCWT-IA to define reasonable back-

grounds for SER spectra, but also indicated that incorrect

settings would lead to analyte peak intensity being incor-

rectly assigned to background. In Fig. 2b, this can be seen

most prominently in a background profile closely following

even sharp, small-magnitude curves (�1420–1460 cm�1).

Given the frequent use of SERS for trace analysis, we

thus wanted to explore the effect of the signal-to-noise

ratio (S/N) on the background subtraction. Figure 3a to f

show experimental and simulated SER spectra.

Experimental spectra were acquired from samples contain-

ing analyte at 5� 10�4 M and 1� 10�6 M concentrations,

respectively. Simulated spectra were constructed by taking

the background-subtracted (by DTCWT-IA) 5� 10�4 M

NBT spectrum, adding in Gaussian noise at 0.1, 1.0, and
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2.5% of the maximum peak intensity, and adding the calcu-

lated background back in.

Since both experimental spectra were obtained under

identical conditions aside from analyte concentration, the

background subtractions were performed with identical

settings determined from analysis of the spectrum with

better S/N, namely: first stage wavelet: Sym6; dual-tree

wavelet: qshift5; extension mode: constant; iteration: 44;

decomposition level: 8. The resulting background profiles

in Fig. 3c were different in intensity but similar in profile in

both cases with the particular benefit that the background

subtraction did not overlap with the small peaks as seen in

the incorrectly optimized background subtractions of

Fig. 2b. More importantly, though, the background subtrac-

tion required no user input to define areas where peaks

might be expected: This is a significant advantage over many

ad hoc methods in common use. In addition, the successful

use of common analysis parameter settings across a

>10� difference in peak intensity, with concomitant

insensitivity of the background profile quality to S/N, indi-

cates the convenience and robustness of DTCWT-IA.

As an added test of the method, we simulated spectra

with controlled levels of noise. We background-subtracted

the SER spectrum of 5� 10�4 M NBTusing the DTCWT-IA

algorithm (first stage wavelet: Sym6; dual-tree wavelet:

qshift5; extension mode: constant; iteration: 44;

Figure 2. (a) SER spectrum (black) of 5� 10�4 M NBT and (b) with calculated DTCWT-IA backgrounds of varying iteration number

and fixed decomposition level of 8. RMSD and integral analyses of the backgrounds in (a) are presented in (c) and (d), with the yellow

data point denoting a favorable iteration number providing a background with a reasonable balance of smoothness and peak area. The

insets compare the results of these metrics at decomposition levels of 4, 6, and 8. To observe the effect on the background profile of

iteration at varying decomposition levels, calculated backgrounds of varying iterations at decomposition (e) level 4 and (f) 6 are shown.
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decomposition level: 8 (Fig. 3d to f in red)), added in

Gaussian noise at 0.1, 1.0, and 2.5% of the maximum

peak intensity, and then added the subtracted background

back (Fig. 3d to f, in black). Each of the three resulting

spectra were then individually analyzed by the DTCWT-

IA (Fig. 3d to f in blue). For a fit using: first stage wavelet:

Sym6; dual tree wavelet: qshift5; extension mode: constant;

iteration: 44, 96, 177; decomposition level: 8 for 0.1, 1.0,

and 2.5% noise levels, respectively. The DTCWT-IA per-

formed well at recovering the known background, and

required change only of iteration number. At the lowest

level of noise, no change of iteration number was required

for recovery. As the noise level increased, greater iteration

number was required. The results slightly underestimate the

known background, but this was a trade-off against the intro-

duction of higher frequency noise components into the spec-

trum as a consequence of the asymmetry of the intensity

filtering in the iteration implementation. Nevertheless, the

disparity does not exceed the noise levels.

Sensitivity to Spectroscopy Type

With suitable precautions, the DTCWT-IA approach devel-

oped for ultrafast electron diffraction performed well in

SERS spectral analysis. We extended the exploration to

spectra acquired using UV–Vis and XPS, and compared

DTCWT-IA performance to background subtractions by

more conventional methods for all three optical

Figure 3. Experimental SER spectra of (a) 5� 10�4 M and (b) 10�6 M NBT (black) with calculated backgrounds (red and dashed red)

via DTCWT-IA. Both backgrounds 5� 10�4 M (red) and 10�6 M (dashed red) are plotted in (c) to show the similarity in profile.

Simulated SER spectra with Gaussian noise at (d) 0.1, (e) 1.0 and (f) 2.5% of the maximum peak intensity (black) with both the known

background (red) and the calculated DTCWT-IA background (blue).
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spectroscopies. Optimized settings were: first stage wave-

let: Sym6; dual-tree wavelet: qshift5; extension mode: con-

stant; iteration: 64, 29, 123; decomposition level: 8, 6, 7,

respectively.

Figure 4a and b compare the calculated backgrounds

via DTCWT-IA and TBB Baseline at varying sensitivity

(TBB-sensitivity). While the TBB method requires no

user input other than sensitivity (1–1000), and the back-

ground-subtracted spectra (not shown) do not appear unu-

sual, Fig. 4b shows that the TBB-Baseline calculated

backgrounds not only overlap with the raw spectrum, but

also cut directly into the raw signal (TBB-115, TBB-370,

TBB-635).

Figure 4c and d compare conventional line and spline

background subtraction methods to the DTCWT-IA back-

ground for the UV–Vis spectrum. Line and spline both need

a set of points where Sbackground xð Þ ¼ 0, and this equates at

the least to requiring peak-free regions of the spectrum.

This circumstance may not exist in all spectral regions and

the user may have no firm basis for the assignment, but such

regions are nevertheless typically assigned by inspection.

The particular background function is used to interpolate

between each of these points. As observed in Fig. 4c and d,

the line and spline methods both produce reasonable back-

grounds for the UV–Vis spectrum, although with the need

for the user to perform an initial spectral analysis to try to

Figure 4. Calculated backgrounds for (a) and (b) SERS, (c) and (d) UV–Vis, and (e) and (f) XPS using DTCWT-IA, along with con-

ventional background subtraction methods for each technique: TBB Baseline (SERS), line and spline (UV–Vis), and Shirley, Tougaard, and

Smart (XPS). In (c) and (d), the dots show the points where the comparison background subtraction algorithms required specification

where Sbackground xð Þ ¼ 0, which were set automatically by the Origin Baseline analysis software. The dotted line in (e) and (f) shows

DTCWT-IA backgrounds using different dual-tree wavelets, with all other parameters (first stage wavelet, extensions mode, decom-

position level, and iteration) held constant.
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find peak-free regions. The DTCWT-IA background closely

resembles those produced by the two other methods, but

without the necessity of having to identify spectral ranges

free of peaks (and any other background contributions).

In the case of XPS, the problem of background subtrac-

tion has a robust theoretical foundation and numerous dif-

ferent algorithms can be found implemented in commercial

XPS analysis software. In Fig. 4e and f, we compare the

general DTCWT-IA background subtraction to the follow-

ing XPS-specific background subtraction methods: Shirley,

Tougaard, and a proprietary method known as Smart

(using Avantage 5.9904 Thermo Fisher Scientific Inc.).

The Shirley background explicitly accounts for material-

dependent properties and inelastic scattering,36,37 the

Tougaard background37–39 uses a universal approximation

to calculate inelastic scattering signals, and the Smart back-

ground is a proprietary extension of the Shirley method

with additional parameters to ensure the background

does not have a greater intensity than the raw spectrum.39

By varying decomposition level and iteration number, we

achieved good fits (not shown) to Shirley, Tougaard, and

Smart backgrounds. While in this work we kept the first

stage wavelet, extensions mode, decomposition level, and

iteration fixed, Fig. 4f shows that use of wavelets from

qshift1 to qshift6 produced only minor differences in the

background.

The DTCWT-IA background clusters well with the

Tougaard and Smart backgrounds, with the Shirley under-

estimating the background relative to these other methods.

The DTCWT-IA background contains less structure than

its nearest neighbors, however, and is more similar in that

regard to the Shirley background. In contrast to the other

three background subtraction methods, DTCWT-IA does

not require any input of material-dependent properties and

the quality of the background profile is competitive with

three widely used, commercially integrated background

profiles that themselves have a fairly wide spread in inten-

sity and form. Evaluations of background-subtraction meth-

ods frequently rely upon synthesized data where

Smeasured xð Þ is constructed using known Sinterest xð Þ and

Sbackground xð Þ, and the quality of the fit is established by

how faithfully Sbackground xð Þ is recovered. Here, with mul-

tiple ‘‘accepted’’ fits for an unknown Sbackground xð Þ,

DTCWT-IA is competitive while placing low burdens on

the user.

Conclusion

The DTCWT-IA technique has demonstrated utility for

background subtraction in ultrafast electron diffraction,

and we wanted to investigate its viability as a background

subtraction tool for optical spectroscopy. The iterative

component of the method was essential to ensuring the

quality of the background subtraction, but the ability to

differentiate (structured) peaks from (unstructured)

background was more strongly affected by the decompos-

ition level. The most obvious indications of insufficient iter-

ation number or decomposition level are observed in an

overly structured background profile that (i) overlaps small

peaks and noise-like features of the measured spectrum

(conveniently indicated by a high value of the RMS average

of the profile derivative (RMSD)), and (ii) causes the back-

ground to contain peaks aligned with those corresponding

to the sample (conveniently indicated by the RMSD and a

peak integral that is too low). Agreement with conventional

background subtraction methods was excellent even chan-

ging only two algorithm parameters (iteration number and

decomposition level). The appearance of the background

profile produced by at least one commercially implemented

algorithm underscored the need to qualitatively assess the

appearance of the background profiles, not just the back-

ground-subtracted spectra. In addition, we showed that

while incorrect settings of the DTCWT-IA iteration

number or decomposition level could contaminate the

background profile with small, sharp peaks, suitable values

could allow DTCWT-IA backgrounds to fit backgrounds to

spectra with over 10� changes in peak intensities.

DTCWT-IA successfully generated background profiles

for SERS, UV–Vis, and XPS, so that this algorithm holds

the promise of providing background subtraction for a var-

iety of optical spectroscopies with a low burden on

the user for parameter selection or input, thus providing

compatibility with straightforward processing of high-

volumes of data.
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Cotret (Siwick Group, Dept. of Physics, McGill University) for

assistance with software implementation and algorithm

performance.

Conflict of Interest

The authors declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

This work was supported by NSF OIA-1655221.

ORCID iD

Jason R. Dwyer https://orcid.org/0000-0002-2938-2888

References

1. C.M. Galloway, E.C. Le Ru, P.G. Etchegoin. ‘‘An Iterative Algorithm for

Background Removal in Spectroscopy by Wavelet Transforms’’. Appl.

Spectrosc. 2009. 63(12): 1370–1376.

1378 Applied Spectroscopy 73(12)

https://orcid.org/0000-0002-2938-2888


2. G. Schulze, A. Jirasek, M.M.L. Yu, et al. ‘‘Investigation of Selected

Baseline Removal Techniques as Candidates for Automated

Implementation’’. Appl. Spectrosc. 2005. 59(5): 545–574.

3. H. Aitchison, J. Aizpurua, H. Arnolds, et al. ‘‘Analytical SERS: General

Discussion’’. Faraday Discuss. 2017. 205: 561–600.

4. M.L. Weber, J.P. Litz, D.J. Masiello, et al. ‘‘Super-Resolution Imaging

Reveals a Difference Between SERS and Luminescence Centroids’’.

ACS Nano. 2012. 6(2): 1839–1848.

5. M.T. Moores, J. Carson, K. Gracie, et al. ‘‘Bayesian Modelling and

Quantification of Raman Spectroscopy’’. Annals Appl. Statistics.

2018. arXiv:1604.07299v2.

6. A.C. Crawford, A. Skuratovsky, M.D. Porter. ‘‘Sampling Error: Impact

on the Quantitative Analysis of Nanoparticle-Based Surface-Enhanced

Raman Scattering Immunoassays’’. Anal. Chem. 2016. 88(12):

6515–6522.

7. J. Zhao, H. Lui, D.I. McLean, et al. ‘‘Automated Autofluorescence

Background Subtraction Algorithm for Biomedical Raman

Spectroscopy’’. Appl. Spectrosc. 2007. 61(11): 1225–1232.

8. C.A. Lieber, A. Mahadevan-Jansen. ‘‘Automated Method for

Subtraction of Fluorescence from Biological Raman Spectra’’. Appl.

Spectrosc. 2003. 57(11): 1363–1367.

9. T.J. Vickers, R.E. Wambles Jr., C.K. Mann. ‘‘Curve Fitting and Linearity:

Data Processing in Raman Spectroscopy’’. Appl. Spectrosc. 2001.

55(4): 389–393.

10. S.-J. Baek, A. Park, J. Kim, et al. ‘‘Chemometrics and Intelligent

Laboratory Systems: A Simple Background Elimination Method for

Raman Spectra’’. Chemom. Intell. Lab. Syst. 2009. 98(1): 24–30.

11. Y. Xie, L. Yang, X. Sun, et al. ‘‘An Auto-Adaptive Background

Subtraction Method for Raman Spectra’’. Spectrochim. Acta. Part A.

2016. 161: 58–63.

12. S. Baek, A. Park, Y. Ahn, et al. ‘‘Baseline Correction Using

Asymmetrically Reweighted Penalized Least Squares Smoothing’’.

Analyst. 2015. 140(1): 250–257.

13. N. Wattanavichean, E. Casey, R.J. Nichols, et al. ‘‘Discrimination

Between Hydrogen Bonding and Protonation in the Spectra of a

Surface-Enhanced Raman Sensor’’. Phys. Chem. Chem. Phys. 2018.

20(2): 866–871.

14. D. King, W.B. Lyons, C. Flanagan, et al. ‘‘An Optical Fibre Ethanol

Concentration Sensor Utilizing Fourier Transform Signal Processing

Analysis and Artificial Neural Network Pattern Recognition’’. J. Opt.

A Pure Appl. Opt. 2003. 5(4): S69–S75.

15. N.G. Kingsbury. ‘‘The Dual-Tree Complex Wavelet Transform: A New

Technique for Shift Invariance and Directional Filters’’. In: Proceedings

of the 8th IEEE DSP Workshop. Bryce Canyon, UT: August 9–12,

1998. Pp. 2543–2560.

16. F. Ehrentreich, L. Summchen. ‘‘Spike Removal and Denoising of Raman

Spectra by Wavelet Transform Methods’’. Anal. Chem. 2001. 73(17):

4364–4373.

17. W. Cai, L. Wang, Z. Pan, et al. ‘‘Application of the Wavelet Transform

Method in Quantitative Analysis of Raman Spectra’’. J. Raman

Spectrosc. 2001. 32(3): 207–209.

18. P.M. Ramos, I. Ruisánchez. ‘‘Noise and Background Removal in Raman

Spectra of Ancient Pigments Using Wavelet Transform’’. J. Raman

Spectrosc. 2005. 36(9): 848–856.

19. Y. Hu, T. Jiang, A. Shen, et al. ‘‘A Background Elimination Method

Based on Wavelet Transform for Raman Spectra’’. Chemom. Intell.

Lab. Syst. 2007. 85(1): 94–101.

20. P.A. Mosier-Boss, S.H. Lieberman, R. Newbery. ‘‘Fluorescence

Rejection in Raman Spectroscopy by Shifted-Spectra, Edge

Detection, and FFT Filtering Techniques’’. Appl. Spectrosc. 1995.

49(5): 630–638.

21. C. Charles, G. Leclerc, P. Louette, et al. ‘‘Noise Filtering and

Deconvolution of XPS Data by Wavelets and Fourier Transform’’.

Surf. Interface Anal. 2004. 36(1): 71–80.
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