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ABSTRACT
Mitigating globally emerging health problems such as obesity needs scalable solutions that can
facilitate health management and promote healthier lifestyles outside of clinical settings. Such
scalable solutions, while targeting general population, need to provide personalized behavior
change plans that not only fit users’ own underlying physiologic dynamics but also suit their pref-
erences and needs. There has been fast-growing development of mobile health devices and appli-
cations for monitoring of human behavior (such as physical activity and food intake) and health
status such as BMI. However, there are challenges to translate these noisy and dynamic behavioral
data into personalized longitudinal planning. To address such challenges, we develop an inte-
grated framework that unifies dynamic modeling, sparse learning, dictionary learning and matrix
completion to translate users’ behavioral data into personalized dynamic system models and use
them as constraints for deriving deeply personalized longitudinal health plans. We evaluate the
proposed framework on a real-world user behavioral dataset and demonstrate its promising utility
and efficacy.
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1. Introduction

Emerging mobile health technologies, such as mobile appli-
cations and wearable devices, have provided health profes-
sionals unprecedented monitoring and management capacity
to materialize the envisioned personalized and preventative
healthcare, particularly for those health management prob-
lems that need scalable solutions to promote healthier life-
styles outside of clinical settings, e.g., weight management.
In addition, they collect large amounts of longitudinal
behavioral data from users. These data are hypothesized to
encode underlying user-specific physiological dynamics that
govern the latent relations between the behavioral variables
(e.g., activities and food intake) and target variables (Liu
et al., 2015). Such physiological dynamics, if fully explored,
could be useful for designing personalized behavior change
plans that are optimized to maximize health improving
effect for the targeting users (Spring, Gotsis, Paiva, &
Spruijt-Metz, 2013).

However, it is challenging to learn physiological dynamics
from longitudinal user behavior data due to their noisy and
irregular-sampled nature and lots of missing values (Qiao
et al., 2015). Moreover, to leverage the learned dynamics,
e.g. provide health recommendation, the objectives need to
be integrated with the physiological dynamics learning, so
that the recommendation could be truly personalized to
each user, and the framework could mimic what doctors

have been doing on a larger scale, and in an intelligent and
automatic fashion.

As summarized in Section 2, various approaches were
proposed to either learn physiological patterns from behav-
ioral data or provide personalized health recommendation
or both. However, the existing strategies only exploit limited
value of these data so that feedback to individuals is often
limited to either overall statistics (Consolvo, Klasnja,
McDonald, & Landay, 2014), visualization of self-tracked
data (Fitbit Inc.) or generic suggestions not being personal-
ized to users’ lifestyles (Kukafka, 2005). Note that although
there are many studies that leverage deep models for pattern
mining and use reinforcement learning for planning, they
do not fit our case. Deep learning requires large training
data and is a bit “black-box,” while behavioral models can
only be learned from limited data and need to be interpret-
able. For reinforcement learning models, they learn optimal
policy according to predefined reward functions, but in our
case there is no clear reward function. Therefore, to the best
of our knowledge, there still lacks an integrated method for
simultaneous accurate dynamic modeling and personalized
planning. To make the best use of the data, we recognize
the following learning and planning challenges:

� Challenges in learning from noisy behavior data with con-
sidering delayed effect: Besides underlying complex
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dynamics, the missing values and outliers in users’
behavioral data present difficulty in learning (Fung &
Sheung, 2006; Zhang, Meratnia, & Havinga, 2010). In
addition, there exists delayed effect in users’
health outcome.

� Challenges in personalized longitudinal planning: It is
challenging to formulate the optimal planning on the
foundation of the dynamic model with simultaneous (1)
complying with users’ personal physiological dynamics
that health planning needs; (2) incorporate users’ prefer-
ences and (3) referencing peers’ behavioral routines.

To address the arising challenges, we develop a longitu-
dinal planning framework that firstly learn personal physio-
logical dynamics with simultaneous missing value
imputation and outlier detection, and then the learned
dynamic mechanism is used to guide personalized longitu-
dinal planning with simultaneous consideration of users’
preferences and peers’ examples, all in the forms of con-
straints. To summarize, we propose the following
contributions:

� Dynamic modeling: We propose to learn personal health
dynamic with dynamic System identification with
Simultaneous Missing value estimation and Outlier
detection (SSMO). It automatically removes the effects of
outliers in the dataset, imputes missing values and con-
ducts model identification, with considering delayed
effect of health outcomes.

� Longitudinal planning: We propose a longitudinal plan-
ning method that learns optimal behavior change plans
guided by personal physiologic dynamics. To improve
user adoption, we further formulate their preferences and
needs as constraints, and constructing an action polyhe-
dron construction (APC) engine constructed using dic-
tionary learning for each user to learn from peers. It
uncovers the regularity underlying heterogeneous human
behavior, as well as provides users with more flexibility
to learn from feasible actions of peers.

� Efficient solution: We developed efficient algorithms to
solve the learning and planning problems with specific
optimization strategies to ensure the feasibility and
robustness of the algorithms. In particular, block coord-
inate descent for SSMO and ADMM for APC engine.

2. Related work

To model behavior change, Rabbi, Aung, Zhang, and
Choudhury (2015) proposed to use the multi-armed Bandit
algorithm (Gittins, Glazebrook, & Weber, 2011) to automate
the behavioral change plan; however, it needs pre-specified
behavioral change options. Our method is also remotely
related to time series analysis. Time series analysis with han-
dling missing values or outliers include mean value filling,
cubic fitting, polynomial fitting for missing value estimation
(Fung & Sheung, 2006) and autoregressive moving average
and vector autoregression for outlier detection (Zhang et al.,
2010). However, these methods are based on the

assumptions very different from our problem setting, and
often adopt the two-stage strategy (pre-process the data first
and then fit the model, or in reverse) that is suboptimal.
Also, they rarely address missing values and outliers simul-
taneously under a consistent model assumption.

In recommendation system research, Koren (2009) pro-
posed to model the temporal dynamics of the user’s prefer-
ence during the whole time period and applied this in a
factorization model. Xiong, Chen, Huang, Schneider, and
Carbonell (2010) formalized Bayesian probabilistic tensor
factorization model with a special constraint on the time
dimension for the temporal recommending setting.
However, these methods are motivated by temporal changes
in customer preferences, which is fundamentally different
from our dynamic system perspective. Also, most of the
existing methods on recommendation systems focus on
short-term recommendation, our method aims to provide
long-term planning that depicts the trajectory from the
user’s current health status to the target status.

3. Method

Our proposed learning pipeline comprises three major com-
ponents: (1) a dynamic system identification engine that
automatically handles missing values and outliers; (2) a dic-
tionary learning approach for action polyhedron construc-
tion and (3) a personalized longitudinal planning algorithm.

3.1. Dynamic SSMO detection engine

The learning component, SSMO, is the first step of the pro-
posed system. Given a user record with a series of observa-
tions, fxt ,utgTt¼1, where xt denotes the outcome at time t
which can be extended to any dimension and ut denotes the
behavior profile as a column vector at time t, we propose to
adopt a linear dynamic system as the underlying model to
characterize the relationships between the behavioral and
outcome variables. The linear dynamic system is a very flex-
ible model that can characterize a wide range of dynamics.
For instance, in what follows we illustrate the specific use of
a linear dynamic system to model the 3rd-order dynamics:

xtþ1
xt
xt�1

2
64

3
75 ¼ A

xt
xt�1
xt�2

2
64

3
75þ B

ut
ut�1
ut�2

2
64

3
75þ C þ wt , (1)

where wt is white noise and C is a bias term. Such a formu-
lation can capture both spontaneous effect (i.e., from ut to
xt) as well as delayed effect (i.e., from ut�2 to xtþ1).
Apparently, this formulation is generic and can be further
extended to capture higher-order dynamics. It can also be
recognized as an equivalent form with the common continu-
ous linear dynamic system that models ½xðtÞ; x:ðtÞ; x::ðtÞ�
(Antsaklis & Michel, 2007) if we rewrite ½xt; xt�1; xt�2� as
½xt; ðxt�xt�1Þ; ðxt þ xt�2�2xt�1Þ� (note that the parameters
A, B and C would be different then).

The basic idea of SSMO for better dynamic system iden-
tification is to simultaneously impute missing values, handle

244 C. XIAO ET AL.



outliers, take care of delayed effects and train the dynamic
model, so that the imputation of missing values and detec-
tion of outliers are in a proper context defined by the
learned dynamic model.

Let X ¼ ½x0, x1, :::, xT � be the state matrix and U ¼
½u0,u1, :::, uT�1� be the action matrix. Xx and Xu represent
the observed elements in X and U, respectively, with their
complement sets denoting missing values. Define X̂ ¼
½x̂0, x̂1, :::, x̂T � and Û ¼ ½û0, û1, :::, ûT�1� as the estimates of
X and U. We propose to learn X̂ and Û in SSMO to be
consistent with X and U on the observed sets Xx, Xu,
respectively. The identified outlier and missing elements in
X are essentially free variables in X̂.

min
A,B,C,

X̂ , Û

1
2

XT�1
t¼0

x̂tþ1
x̂t
x̂t�1

2
4

3
5� A

x̂t
x̂t�1
x̂t�2

2
4

3
5þ B

ût

ût�1
ût�2

2
4

3
5þ C

0
@

1
A

������
������
2

(2a)

s:t: jjðX̂�XÞXx
jj0 � a; jjðÛ�UÞXu

jj0 � b: (2b)

The objective (2a) is a squared loss function to evaluate
the goodness-of-fit of the system parameters A, B, C and the
estimates Û, X̂. The constraints (2b) are to control the num-
ber of different estimated elements from the observed ele-
ments in Xx and Xu, which essentially controls the number
of outliers among the observed elements. The parameters a
and b restrict the maximal number of outliers. When they
are set to 0, Eq. (2) only handles missing values. The values
for a and b actually are not hard to decide. For example, we
could estimate the upper bound of the percentage of outliers
that is easily accessible in many applications. This algorithm
is indeed robust as long as a and b are greater than the
actual number of outliers but not far away from it.

3.1.1. Solving SSMO by block coordinate descent
We apply block coordinate descent (BCD) (Tseng, 2001) to
solve Eq. (2) by alternatively optimizing two groups of varia-
bles fA, B, Cg and fX̂, Ûg:

� To optimize fA, B, Cg, it is a least squares optimization
with a closed-form solution.

� To optimize fX̂, Ûg, we adopt the projected gradient
descent method to iteratively update:

X̂kþ1 ¼ argmin
X̂
fjjX̂�ðX̂k�cgX̂k

Þjj2F;

s:t:kðX̂�XÞXx
k0 � ag,

where gX̂k
is the partial derivative of the objective function

(2a) w.r.t. X̂k; c is the step size that could be chosen to be a
sufficiently small constant and jj � jjF denotes Frobenius
norm. It actually also admits a closed-form solution that can
be found by: first, selecting a elements in ðX̂k�cgX̂k

�XÞXx

with the largest magnitudes as the outliers at the current
iteration and forming a set S; second, setting the elements
outside of Xx and in set S: ðX̂kþ1Þ�Xx[S ¼ ðX̂k�cgX̂ k

Þ�Xx[S;
third, setting the remaining elements in X̂kþ1 to take the
same values in X̂k. To update Ûkþ1 from Ûk, one can follow

a similar procedure. Due to the space limit, we omit the
detailed derivation. We summarize all the steps in
Algorithm 1.

Algorithm 1. BCD for SSMO
Require: XXx ,UXu , a, b
Ensure: A,B,C, X̂, Û
1: repeat
2: Optimize A, B, C by minimizing the least squares

problem (2a) without any constraint.
3: Optimize X̂: Select top a largest elements in
ðX̂�cgX̂�XÞXx

, which forms the index set S; Update
elements of X̂ in �Xx [ S by ðX̂Þ�Xx[S  ðX̂�cgX̂ Þ�Xx[S:

4: Optimize Û: similar to the updates of X̂;
5: until convergence.
6: return A,B,C, X̂, Û;

3.2. Personalized longitudinal planning

The outputs of SSMO are used to constrain the personalized
longitudinal planning. Specifically, it is to identify an opti-
mal sequence of actions, denoted by u0,u1, :::, uT�1, to drive
the user’s initial health status x0 to the target status xT in T
days. For example, with BMI as the health status, the user
may want to reduce BMI from the current level x0 ¼ 30 to
the target 28 in 90 days. With a dynamic model, any pro-
posed planning can be evaluated with the predicted future
health status. The challenge is how to utilize this capacity to
derive the optimal planning. On the other hand, we should
formalize the user’s preferences as optimization constraints
to enhance the quality of the generated optimal planning.
This leads to the following formulation:

min
u0,u1, :::, uT�1

XT
t¼1

c>ut þ k
XT�1
t¼1
jjut�ut�1jj1 (3a)

s:t: x̂T � target (3b)

u� � ut � uþ (3c)

u0 ¼ h (3d)

ut 2 convðDÞ: (3e)

The objective function (3a) consists of two terms: The first
term is to measure the cost of the adopted action, as different
users might have different preferences or difficulties in con-
ducting the actions; and the second term is to measure the
smoothness of actions across all time points, assuming that
users do not like sudden changes between consecutive actions
as what the low-effort theory implies (Fogg, 2009). The first
constraint (3b) is to ensure that, by following the planning,
the user will achieve the pre-specified goal, where x̂T is the
estimated final health status using the dynamic model (1).
Specifically, based on the initial status x0, x1, x2 and the action
sequence u0, u1, :::, uT�1, x̂T can be estimated from ½x̂T ;
x̂T�1; x̂T�2� ¼ AT�2½x2; x1; x0� þ

PT�1
t¼2 AT�t�1B½ut;ut�1;ut�2�.

The second box constraint (3c) is to avoid unwanted and
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unrealistic actions for a specific user. The third constraint
(3d) ensures the recommendation to start from the habits h of
the user. We further impose another constraint (3e) to enforce
the recommended actions to be within a set convðDÞ. This is
named as the action polyhedron that specifies the action space,
in which a realistic planning can be constructed. It provides
us great flexibility to incorporate domain knowledge or any
kind of prior knowledge to guide the personalized longitu-
dinal planning. In Section 3.3, we will introduce a learning-
from-peers approach to construct this action space by a novel
dictionary learning approach.

3.3. APC engine

We now introduce the dictionary learning approach to con-
struct the action polyhedron convðDÞ as the feasible region
of actions, ensuring the recommendations are realistic and
reasonable in practice. In particular, convðDÞ can be viewed
as a summary of the typical action patterns of other users
that form a potential mentor group for the target user.

Let U 2 Rp�n be the action matrix that we could use to
learn convðDÞ, i.e., each column represents an action vector
that has been undertaken in real life by a certain user. U
can be constructed by collecting n actions from different
users whose behavioral patterns could inspire the planning
for the target user. Then, the formulation of the dictionary
learning can be written as follows (Eq. (4)):

minW

1
2
jjU�UWjj2F þ cjjWjj2, 1

s:t: W � 0, 1>W ¼ 1:
(4)

The first term is to measure the approximation adequacy
to represent all actions (vectors) in U using a set of basis
actions (vectors). The second term is to enforce sparsity in
the basis matrix W, i.e., the nonzero columns of the learned
W indicate the selected actions. Figure 1 illustrates the goal
of finding a polyhedron to represent the whole action set U
using a convex hull as the action polyhedron D. Figure 1 is

based on over 10,000 behavioral actions collected from over
30 users. It shows that the behavioral actions undertaken by
this cohort exhibit a clear regularity, indicating that human
behavioral actions follow certain principles and are not
totally random. Thus, to generate personalized longitudinal
planning, it is required that the planning should consist of
reasonable actions that fit the “human patterns.” Further,
Figure 1 shows that the dictionary learning formulation pro-
vides a very effective approach to extract patterns and sum-
marize the massive data matrix U.

Challenges in Optimization: Note that the proposed dic-
tionary learning method is different from the existing meth-
ods that have been used in pattern recognition (Mairal,
Bach, Ponce, & Sapiro, 2009; Yeh & Yang, 2012), and event
detection (Cong, Yuan, & Liu, 2011). To solve Eq. (4), we
face two challenges: The first one is that Eq. (4) involves
high dimensional W 2 Rn�n; the other challenge lies on that
Eq. (4) includes nonsmooth regularization term and con-
straints. It takes hours to solve it when n¼ 1000 if using
general solvers, for example, CVX (CVX Research, 2012). In
the following, we propose an efficient algorithm to solve it
with ADMM. First, we duplicate the variable W with
another variable V, and rewrite Eq. (4) as follows:

minW,V
1
2
jjU�UWjj2F þ cjjVjj2, 1

s:t: V � 0, 1>W ¼ 1>,W ¼ V:
(5)

Then, we define the augmented Lagrangian of Eq. (5)
and further convert it to be

LqðW,V,KÞ ¼ 1
2
jjU�UWjj2F þ

q
2
jjW�Vjj2F

þ cjjVjj2, 1 þ hK,W�Vi
þ IV�0ðVÞ þ I1>W¼1>ðWÞ,

(6)

where Iconditionð�Þ is the Delta function: It gives zero if the
condition is satisfied by the augment; Otherwise, it returns
þ1. q could be an arbitrary positive number.

Following the ADMM procedure, we then iterate over
three steps:

Minimize LqðW,V , kÞ w.r.t. W: It essentially solves the
following optimization:

min
W

1
2
kU� UWk2F þ

q
2
jjW�Vjj2F þ hK,Wi þ I1>W¼1>ðWÞ:

By deriving the KKT conditions (Boyd & Vandenberghe,
2004), it is equivalent to solve

U>Uþ qI 1
1> 0

� �
W
U>

� �
¼ U>Uþ qV�K

1>

� �
, (7)

where U is the dual variable. By solving the Eq. (7), we
obtain a closed-form solution as:

Figure 1. The constructed action polyhedron D learned from over 10,000
behavioral actions collected from over 30 users.

Table 1. Comparison of estimation error (in RMSE)

SSMO Mean value Last value LastþMed

0.67 ± 0.49 1.31 ± 2.13 1.06 ± 1.06 0.86 ± 0.57
PACE MICE Amelia MI
0.71 ± 0.55 1.34 ± 0.46 1.83 ± 0.95 1.30 ± 0.44
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W ¼ ðI�N � 1>ÞA�1Bþ N � 1>,

N ¼ A�11
1>A�11

, A ¼ U>U þ qI,B ¼ U>U þ qV�K,
(8)

and I is an identity matrix.
Minimize LqðW,V,KÞ w.r.t. V: It essentially solves the

following optimization:

min
V

q
2
jjW�Vjj2F�hK,Vi þ cjjVjj2, 1 þ IV�0ðVÞ: (9)

Update K: This step mimics the dual gradient ascent:
K ¼ Kþ qðW�VÞ. We finally summarize the algorithm in
Algorithm 2.

Algorithm 2. ADMM for APC engine
Require: U, q>0, and c
Ensure: W
1: repeat
2: Minimize LqðW,V,KÞ in terms of W and

update W ðI�N1>ÞA�1Bþ N1>

3: Minimize LqðW,V,KÞ in terms of V and
update Vi�  max 0, 1� b

jjYi� jj
� �

� Yi�;
4: K Kþ qðW�VÞ;
5: until convergence
6: return W;

4. Experiment

In experiment, our task is to learn personalized health plan-
ning for users to manage their BMI. We used proprietary
data collected in a longitudinal study of obesity that involves
more than 1000 real-world users and each user has several
years’ daily measurements (collected from wearable devices,
including diet, sleep, exercise information and BMI). We
evaluated the framework based on this dataset and also eval-
uated the effect of personalized recommendation using 25
users whose data are preprocessed and ready for analysis.
For the 25 users, in total we have more than 10,000 days’
measurements. The code will be released upon the accept-
ance of this paper with a full dictionary of the variables.

4.1. Evaluation of SSMO

We first evaluate the performance of SSMO. Baselines are
benchmark methods for imputing missing values and
removing outliers, including the “mean imputation,” the
“last value carried forward” method and “last value carried
forward” with a median filter to remove outliers, as men-
tioned by Gelman and Hill (2007). In addition, we also com-
pared it with the non-parametric Principal Analysis by
Conditional Expectation (PACE) (Chen, 2015), MICE (van
Buuren & Groothuis-Oudshoorn, 2011), Amelia (Honaker,
King, & Blackwell, 2011) and MI (Gelman & Hill, 2015).
Results in Table 1 demonstrate that SSMO consistently out-
performs all benchmark methods. Note that, SSMO has add-
itional benefits of simultaneous anomaly detection while
these baselines do not.

We further evaluate the performance of SSMO when
both missing values and outliers present in the data. Here,

we analyze a real-life fitness data with users’ daily fitness
behaviors variables including diet, sleep, exercise informa-
tion and BMI as health outcomes. There are 25 users’ data
in this dataset, while almost every user’s data show signifi-
cant missing values and outliers with similar patterns as
shown in Figure 2. Again SSMO achieves more accurate
model estimation, as reflected by the prediction errors in
those users. Figure 2 shows the details of the prediction
results by SSMO, and the other two imputation methods.
For each user, the dynamic model has been built based on
the data generated during the first half of days, and eval-
uated on the other half for prediction errors.

4.2. Evaluation of dictionary construction with APC

Dictionary construction restricts the recommended actions
within a space spanned by some existing users’ action data.
There is an implicit assumption of this method that
hypothesizes that, although people are different and have
heterogeneous behavioral patterns, there are some regular-
ities or canonical structures governing the human behavior.
Therefore, the effectiveness of the dictionary construction
method APC depends on how valid this assumption holds
true in reality. Here, we apply APC on the 25 users’ behav-
ioral data. Figure 3 provides the results regarding how many
basis vectors we need to represent all the behavioral data of
all the users. Apparently, the larger the dictionary size is,
the better (lower) the error of representation by the squared
Frobenius norm that it can provide. On the other hand, we
can also observe that the error of representation drops
quickly with the increasing number of basis vectors in the

Figure 2. BMI estimation with three different methods.
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dictionary. With eleven basis vectors, the error of represen-
tation approaches 1.0.

A visualization of the five basis vectors are shown in
Figure 4, representing five typical health management rou-
tines used in the cohort and three levels of combinations of
the routines. For example, Pattern 1 highlights the decent
amount of calories consumed from food with less activities,
while Pattern 3 is a more balanced diet and exercise routine.
Interestingly, the learned patterns can be mapped to the offi-
cial guideline for obesity prevention (Fitch et al., 2013).

4.3. Evaluation of the planning

While the ultimate evaluation for any healthcare planning strat-
egy is to conduct clinical trials, it is expensive and often can
only be realistic at the later stage of the health improvement
plan development. On the other hand, the literature shows that
compliance to health recommendations is such a complex
behavior that the compliance levels vary from user to user and
even for the same user. Therefore, we take a pragmatic
approach to evaluate the efficacy of our strategy via data-based
simulations with scenarios that reflect different user compliance
levels. We first simulate the dynamic change of the health out-
come. Specifically, we randomly pick up three users with their
behavioral data (with last M measurements held out for evalu-
ation) to train the dynamic model using SSMO and further
derive the optimal planning as a temporal action set U using
our planning formulation. We investigate a range of

compliance levels. For example, a 80% compliance level means
80% actions are randomly picked from the optimal plan, and
the rest are from the originally observed behavior. We then pre-
dict the BMI change based on users’ learned dynamic model.

The results in Figure 5 indicate that outcomes from users’
original routines will either fluctuate and then become
worse, or stay in a plateau or continue to become worse.
While for all users, complete or partial compliance to the
optimal plans always leads to better and steady results. Note
that, we also compare our method with the population-
based planning, i.e., recommending the user with the mean
level of activities from the user’s peers. The population-
based planning might be reasonable for users with average
conditions, but may not perform as well or even result in
condition deterioration for the users with very high or low
BMI profiles. Again, as shown in Figure 5, our method out-
performs population-based planning by providing more
effective personalized plans and recommendations.

4.4. Effect of the smoothness and dictionary constraints
on recommendation

We also investigate the effectiveness of the smoothness con-
straint and the action polyhedron on the quality of the

Figure 3. Errors of representation of U based on the size of dictionary.

Figure 4. Recommended Routines (in Eq. (4.2)) and Plans (in Eq. (4.4)).

Figure 5. BMI change patterns under different user compliance levels.
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generated plannings. While the planning quality is a multi-
facet concept, a simple criterion is that the derived plan
should fit the existing behavioral patterns. Thus, our strategy
here is to randomly pick up an user and generate three opti-
mal plans: Plan A from the full model as depicted in Section
3.2; Plan B from a reduced model without the constraint
(3e) and Plan C from a further reduced model by removing
the constraint (3e) and setting k in (3a) to 0. The three
plans are drawn on top of the five typical patterns in Figure
4. It is obvious that the optimal plan derived from the full
model fits the existing patterns better, which seems to be
more realistic and has a higher likelihood to be adopted by
the users than the other two plans that are quite different
from the existing patterns. In addition, we quantitatively
evaluated this conclusion by calculating the distance between
the plans to the space defined by the basis vectors (as a
score representing how similar the plans with real-world
actions). We used cosine similarity that showed the scores
for the Plan A, B, C as 0.901, 0.856 and 0.855, respectively.

5. Conclusions

In this work, we have developed a systematic framework
that unifies dynamic modeling, sparse learning, dictionary
learning and matrix completion, to automate the personal-
ized health planning. Our method is generic and can be
applied to a wide range of health management problems
such as obesity, fitness or any chronic conditions, where the
disease process is a complex dynamic process that can be
modified by exogenous variables such as environmental,
behavioral and clinical variables. Our framework holds great
potential to provide scalable solutions for mitigating these
health problems, which can promote healthier lifestyles out-
side of clinical settings.
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