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1. Introduction

1.1. Following Lusztig [11], we shall refer to (M, B), which consists of a U-module M and its canonical 
basis B, as a based U-module, where U is a Drinfeld-Jimbo quantum group of finite type. Examples of 
such based U-modules include any finite-dimensional simple U-module or a tensor product of several such 
simple U-modules. The canonical basis on a tensor product of several finite-dimensional simple U-modules 
was constructed by Lusztig [10], and it has found applications to the Kazhdan-Lusztig theory for general 
linear Lie superalgebra gl(m|n) of type A [2,7].

1.2. As a generalization of canonical bases for quantum groups, a theory of canonical basis arising 
from quantum symmetric pairs (QSP, for short) (U, Uı) of finite type is systematically developed in [5]. 
For any finite-dimensional based U-module (M, B), a new bar involution ψı on M was formulated and 
a ψı-invariant basis Bı of M (called an ı-canonical basis for M) was constructed (see [5, Theorem 5.7]), 
which satisfies some specific properties when expanded with respect to B; we shall call (M, Bı) a based 
Uı-module.
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The first examples of based Uı-modules were constructed in [4] for quasi-split QSP (U, Uı) of type AIII. 
The ı-canonical basis on a tensor product of U-modules was used to formulate a Kazhdan-Lusztig theory 
on the full BGG category for ortho-symplectic Lie superalgebra of type B [4] (for type D see [1]); also see 
[6] on some parabolic BGG category via a super duality approach.

1.3. This paper is intended to supplement the two earlier papers [4,5] of the first two authors on 
canonical bases arising from quantum symmetric pairs and applications to super Kazhdan-Lusztig theory; 
it extends two principal results on ı-canonical basis and super Kazhdan-Lusztig theory therein to full 
generalities.

1.4. By definition of a QSP (U, Uı), Uı is a coideal subalgebra of U [9]; that is, the comultiplication Δ
on U when restricting to Uı satisfies Δ : Uı → Uı⊗U. Hence M⊗N is a Uı-module for any Uı-module M
and U-module N . In the first main theorem (see Theorem 4) we show that, for a based Uı-module (M, Bı)
and a based U-module (N, B), there exists a ψı-invariant basis Bı♦ıB on the Uı-module M ⊗N such that 
(M ⊗N, Bı♦ıB) is a based Uı-module. This generalizes a main result in [5] on the ı-canonical basis on a 
tensor product of U-modules, since a based Uı-module which is not a U-module exists (cf. [4]).

The construction of the new bar involution ψı on M ⊗N above uses a certain element Θı in a completion 
of Uı ⊗ U+, which was due to [4] for quasi-split QSP of type AIII/IV and then established in Kolb [8] in 
full generality with an elegant new proof. We establish the integrality of Θı by using the integrality of the 
quasi-R matrix in [11] and the integrality of the quasi-K matrix in [5]. To construct the ı-canonical basis 
on M ⊗N , we use crucially a partial order, which is different from and simpler than the old one used in [5]
even when M is a U-module; the old partial order does not make much sense in our new setting.

1.5. For the quasi-split QSP (U, Uı) of type AIII/AIV, the quantum group U is of type A; we let V
and W denote the natural representation of U and its dual. In this case, the ı-canonical basis on a based 
U-module was first constructed in [4] when a certain parameter κ = 1 (also see [1] with parameter κ = 0). 
The super Kazhdan-Lusztig theory for the full BGG category Ob of an ortho-symplectic Lie superalgebra 
g of type B in [4] (for type D see [1]) of integer or half-integer weights was formulated via the ı-canonical 
basis on a mixed tensor U-module with m copies of V and n copies of W , where the order of the tensor 
product depends on the choice of a Borel subalgebra b in g.

As a consequence, a Kazhdan-Lusztig theory for parabolic categories Ol
b, where the Levi subalgebra l in 

g is a product of Lie algebras of type A, can be formulated and established via the ı-canonical basis on a 
tensor product U-module T of various exterior powers of V and of W . Note however not all the parabolic 
categories of g-modules arise in this way; indeed a general Levi subalgebra of g is isomorphic to a product 
of several Lie subalgebras of type A and a Lie subalgebra of type B.

Theorem 4, when specialized for the QSP (U, Uı) of quasi-split type AIII/AIV, provides an ı-canonical 
basis for a Uı-module on the tensor product of the form ∧aV− ⊗ T . Here T is a tensor product U-module 
of various exterior powers of V and of W , while ∧aV− (for a > 0) is a “type B” exterior power, which is 
a Uı-module but not a U-module. These new ı-canonical bases are used to formulate the super Kazhdan-
Lusztig theory for an arbitrary parabolic BGG category O of the ortho-symplectic Lie superalgebras of type 
B and D; see Theorem 10. The super Kazhdan-Lusztig polynomials tbgf (q) admit a positivity property; see 
Theorem 12.

1.6. This paper is organized as follows. Theorem 4 and its proof are presented in Section 2, and we 
shall follow notations in [5] throughout Section 2. The formulation of Theorem 10 is given in Section 3; its 
proof basically follows the proof for the Kazhdan-Lusztig theory for the full category O in [4, Part 2] once 
we have Theorem 4 available to us. We shall follow notations in [4] throughout Section 3. To avoid much 
repetition, we refer precisely and freely to the two earlier papers [4,5].
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2. Tensor product modules as based Uı-modules

2.1. We shall follow the notations in [5] throughout this section.
Let U denote a quantum group of finite type over the field Q(q) associated to a root datum of type (I, ·), 

and let Δ denote its comultiplication as in [11]. We denote the bar involution on U or its based module 
by ψ.

Let Uı ⊂ U be a coideal subalgebra associated to a Satake diagram such that (U, Uı) forms a quantum 
symmetric pair [9]. Let A := Z[q, q−1]. Let U̇ı be the modified version of Uı and let AU̇ı be its A-form, 
respectively; see [5, §3.7]. Let ψı be the bar involution on Uı, U̇ı and AU̇ı. Let Xı be the ı-weight lattice 
[5, (3.3)]. A weight (i.e., Xı-weight) module of Uı can be naturally regarded as a U̇ı-module.

We introduce based Uı-modules generalizing [11, §27.1.2]. Let A = Q[[q−1]] ∩Q(q). We write − ⊗− =
− ⊗Q(q) − whenever the base ring is Q(q).

Definition 1. Let M be a finite-dimensional weight Uı-module over Q(q) with a given Q(q)-basis Bı. The 
pair (M, Bı) is called a based Uı-module if the following conditions are satisfied:

(1) Bı ∩Mν is a basis of Mν , for any ν ∈ Xı;
(2) The A-submodule AM generated by Bı is stable under AU̇ı;
(3) The Q-linear involution ψı : M → M defined by ψı(q) = q−1, ψı(b) = b for all b ∈ Bı is compatible 

with the U̇ı-action, i.e., ψı(um) = ψı(u)ψı(m), for all u ∈ U̇ı, m ∈ M ;
(4) Let L(M) be the A-submodule of M generated by Bı. Then the image of Bı in L(M)/q−1L(M) forms 

a Q-basis in L(M)/q−1L(M).

We shall denote by L(M) the Z[q−1]-span of Bı; then Bı forms a Z[q−1]-basis for L(M). (There are 
similar constructions for a based U-module in similar notations.)

2.2. Let Υ =
∑

μ Υμ (with Υ0 = 1 and Υμ ∈ U+
μ ) be the intertwiner (also called quasi-K matrix) of 

the quantum symmetric pair (U, Uı) introduced in [4, Theorem 2.10]; for full generality see [3, Theorem 
6.10], [5, Theorem 4.8, Remark 4.9]. It follows from [5, Theorem 5.7] (also cf. [4, Theorem 4.25]) that a 
based U-module (M, B) becomes a based Uı-module with a new basis Bı (which is uni-triangular relative 
to B) with respect to the involution ψı := Υ ◦ ψ.

Let ̂U ⊗ U be the completion of the Q(q)-vector space U ⊗ U with respect to the descending sequence 
of subspaces

U ⊗ U−U0( ∑
ht(μ)≥N

U+
μ

)
+ U+U0( ∑

ht(μ)≥N

U−
μ

)
⊗ U, for N ≥ 1, μ ∈ ZI.

We have the obvious embedding of U ⊗U into ̂U⊗ U. By continuity the Q(q)-algebra structure on U ⊗U
extends to a Q(q)-algebra structure on ̂U ⊗ U. We know the quasi-R matrix Θ lies in ̂U ⊗ U by [11, 
Theorem 4.1.2]. It follows from [5, Theorem 4.8] and [3, Theorem 6.10] that Υ−1 ⊗ id and Δ(Υ) are both 
in ̂U ⊗ U.

We define

Θı = Δ(Υ) · Θ · (Υ−1 ⊗ id) ∈ ̂U ⊗ U. (2.1)
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We can write

Θı =
∑
μ∈NI

Θı
μ, where Θı

μ ∈ U ⊗ U+
μ . (2.2)

The following result first appeared in [4, Proposition 3.5] for the quantum symmetric pairs of (quasi-split) 
type AIII/AIV.

Lemma 2. [8, Proposition 3.10] We have Θı
μ ∈ Uı ⊗ U+

μ , for all μ. (The element Θı
μ is denoted by Rθ

μ in 
[8].)

Another basic ingredient which we shall need is the integrality property of Θı.

Lemma 3. We have Θı
μ ∈ AU ⊗A AU+

μ , for all μ.

Proof. By a result of Lusztig [11, 24.1.6], we have Θ =
∑

ν∈NI Θν is integral, i.e., Θν ∈ AU−
ν ⊗A AU+

ν . By 
[5, Theorem 5.3] we have Υ =

∑
μ∈NI Υμ is integral, i.e., Υμ ∈ AU+

μ for each μ; it follows that Υ−1 = ψ(Υ)
is integral too thanks to [5, Corollary 4.11]. It is well known that the comultiplication Δ preserves the 
A-form, i.e., Δ(AU) ⊂ AU ⊗A AU. The lemma follows now by the definition of Θı in (2.1). �

2.3. Define a partial order < on X by setting μ′ < μ if μ′ − μ ∈ NI. Denote by |b| = μ if an element b
in a U-module is of weight μ. Now we are ready to prove the first main result of this paper.

Theorem 4. Let (M, Bı) be a based Uı-module and (N, B) be a based U-module.

(1) For b1 ∈ Bı, b2 ∈ B, there exists a unique element b1♦ıb2 which is ψı-invariant such that b1♦ıb2 ∈
b1 ⊗ b2 + q−1Z[q−1]Bı ⊗ B.

(2) We have b1♦ıb2 ∈ b1 ⊗ b2 +
∑

(b′1,b′2)∈Bı×B,|b′2|<|b2|
q−1Z[q−1] b′1 ⊗ b′2.

(3) Bı♦ıB := {b1♦ıb2 | b1 ∈ Bı, b2 ∈ B} forms a Q(q)-basis for M ⊗N , an A-basis for AM ⊗A AN , and 
a Z[q−1]-basis for L(M) ⊗Z[q−1] L(N). (This is called the ı-canonical basis for M ⊗N .)

(4) (M ⊗N, Bı♦ıB) is a based Uı-module.

Proof. It follows by Lemma 2 that the element Θı gives rise to a well-defined operator on the tensor product 
M ⊗N . Following [4, (3.17)], we define a new bar involution on M ⊗N (still denoted by ψı) by letting

ψı := Θı ◦ (ψı ⊗ ψ) : M ⊗N −→ M ⊗N.

Recall from [11] that Δ(Ei) = Ei ⊗ 1 + K̃i ⊗ Ei. It follows that

Δ(Υ) ∈ Υ ⊗ 1 +
∑

0�=μ∈NI

U ⊗ U+
μ .

Recalling (2.2), we have

Θı
0 = (Υ ⊗ 1) · (1 ⊗ 1) · (Υ−1 ⊗ 1) = 1 ⊗ 1. (2.3)

Let b1 ∈ Bı and b2 ∈ B. By (2.3) and Lemma 3, we have

ψı(b1 ⊗ b2) ∈ b1 ⊗ b2 +
∑

(b′1,b
′
2)∈Bı×B
′

A b′1 ⊗ b′2. (2.4)
|b2|<|b2|
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Applying [11, Lemma 24.2.1], there exists a ψı-invariant element (b1 ⊗ b2)ı ∈ M ⊗N such that

b1♦ıb2 ∈ b1 ⊗ b2 +
∑

(b′1,b
′
2)∈Bı×B

|b′2|<|b2|

q−1Z[q−1] b′1 ⊗ b′2.

This proves (2), and part (3) follows immediately.
A by now standard argument shows the uniqueness of b1♦ıb2 as stated in (1); note a weaker condition 

than (2) is used in (1).
It remains to see that (M, Bı♦ıB) is a based Uı-module. The item (3) in the definition of a based 

Uı-module is proved in the same way as for [4, Proposition 3.13], while the remaining items are clear.
This completes the proof. �

Remark 5.

(1) An elementary but key new ingredient in Theorem 4 above is the use of a (coarser) partial order <, 
which is different from the partial order <ı used in [5, (5.2)].

(2) Assume that M is a based U-module. Then the ı-canonical basis for M ⊗ N in Theorem 4 coincides 
with the one in [5, Theorem 5.7], thanks to the uniqueness in Theorem 4(1).

Remark 6. Theorem 4 would be valid whenever we can establish the (weaker) integrality of Θı acting on 
M ⊗N . This might occur when we consider more general parameters for Uı than [5] or when we consider 
quantum symmetric pairs of Kac-Moody type in a forthcoming work of the first two authors.

3. Applications to super Kazhdan-Lusztig theory

3.1. In this section, we shall apply Theorem 4 to formulate and establish the (super) Kazhdan-Lusztig 
theory for an arbitrary parabolic category O of modules of integer or half-integer weights for ortho-symplectic 
Lie superalgebras, generalizing [4, Part 2] (also see [1]). We shall present only the details on an arbitrary 
parabolic category O consisting of modules of integer weights for Lie superalgebra osp(2m + 1|2n).

3.2. All relevant notations throughout this section shall be consistent with [4, Part 2]. In particular, 
we use a comultiplication for U different from [11]; this leads to a version of the intertwiner Υ =

∑
μ Υμ

with Υμ ∈ Û− (compare with §2.2), and a version of Theorem 4 in which the opposite partial order and 
the lattice Z[q] are used. To further match notations with [4] in this section, we denote the A-form of any 
based U or Uı-modules M , as MA (instead of AM).

We consider the infinite-rank quantum symmetric pair (U, Uı) as defined in [4, Section 8] (where the 
parameter is chosen to be κ = 1 in the notation of [5]). It is a direct limit of quantum symmetric pairs of 
type AIII, (U(slN ), Uı(slN )), for N even. We denote by V the natural representation of U, and by W the 
restricted dual of V .

Associated to any given 0m1n-sequence b = (b1, . . . , bm+n) starting with 0, we have a fundamental 
system of osp(2m + 1|2n), denoted by Πb = {−εb11 , εbii − ε

bi+1
i+1 | 1 ≤ i ≤ m + n − 1}; here ε0i = εx for 

some 1 ≤ x ≤ m and ε1j = εȳ for some 1 ≤ y ≤ n so that {εbii | 1 ≤ i ≤ m + n} form a permutation of 
{εa, εb | 1 ≤ a ≤ m, 1 ≤ b ≤ n}.

3.3. Let WBs
and WAs−1 be the Weyl group of type Bs and type As−1 with unit e, respectively. We 

denote their corresponding Hecke algebras by HBs
and HAs−1 , with Kazhdan-Lusztig bases by {Hw|w ∈

WBs
} and {Hw|w ∈ WAs−1}, respectively. Both algebras act naturally on the right on V⊗s and W⊗s; cf. 

[4, Section 5]. We define
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∧sV− = V⊗s
/ ∑

e �=w∈WBs

V⊗s ·Hw,

∧sV = V⊗s
/ ∑

e �=w∈WAs−1

V⊗s ·Hw.

We similarly define ∧sW− and ∧sW . Note ∧sV−, ∧sV , ∧sW− and ∧sW are all based Uı-modules by [4, 
Theorem 5.8]. We shall denote

V c :=
{
V if c = 0,
W if c = 1.

The following corollary is a direct consequence of Theorem 4.

Corollary 7. Let c1, . . . , ck ∈ {0, 1} and a0, a1, . . . , ak ∈ N. Then (a suitable completion of) the tensor 
product

Tb,l = ∧a0V− ⊗ ∧a1V c1 ⊗ · · · ⊗ ∧akV ck

is a based Uı-module.

The completion above arises since we deal with quantum symmetric pairs of infinite rank, and it is a 
straightforward generalization of the B-completion studied in [4, Section 9]. Note that the ı-canonical basis 
lives in Tb,l (instead of its completion) by Theorem 12 below.

3.4. Associated to the fundamental system Πb are the set of positive roots Φ+
b and the Borel subalgebra 

bb of osp(2m + 1|2n). Let Πl ⊂ Πb be a subset of even simple roots. We introduce the corresponding Levi 
subalgebra l and parabolic subalgebra p of osp(2m + 1|2n):

l = hm|n
⊕ ⊕

α∈ZΠl∩Φb

osp(2m + 1|2n)α, p = l + bb.

Recall [4, §7] the weight lattice X(m|n) =
∑m

i=1 Zεi +
∑n

j=1 Zεj . We denote

X l,+
b = {λ ∈ X(m|n) | (λ|α) ≥ 0, ∀α ∈ Πl}.

Let L0(λ) be the irreducible l-module with highest weight λ, which is extended trivially to a p-module. We 
form the parabolic Verma module

M l
b(λ) := Indosp(2m+1|2n)

p L0(λ).

Definition 8. Let Ol
b be the category of osp(2m + 1|2n)-modules M such that

(i) M admits a weight space decomposition M =
⊕

μ∈X(m|n)
Mμ, and dimMμ < ∞;

(ii) M decomposes over l into a direct sum of Ll(λ) for some λ ∈ X l,+
b ;

(iii) there exist finitely many weights 1λ, 2λ, . . . , kλ ∈ X l,+
b (depending on M) such that if μ is a weight in 

M , then μ ∈ iλ−
∑

α∈Πb
Nα, for some i.

The morphisms in Ol
b are all (not necessarily even) homomorphisms of osp(2m + 1|2n)-modules.
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For λ ∈ X l,+
b , we shall denote by Ll

b(λ) the simple quotient of the parabolic Verma module M l
b(λ) in 

Ol
b with highest weight λ. Following [4, Definition 7.4], we can define the tilting modules T l

b(λ) in Ol
b, for 

λ ∈ X l,+
b . We denote by Ol,Δ

b the full subcategory of Ol
b generated by all modules possessing finite parabolic 

Verma flags.

3.5. Recall the bijection X(m|n) ↔ Im+n [4, §8.4], where an element f ∈ Im+n is understood as a 
ρ-shifted weight. We consider the restriction X l,+

b ↔ Im+n
l,+ , where the index set Im+n

l,+ is defined as the 
image under the bijection.

Let Wl be the Weyl group of l with the corresponding Hecke algebra Hl. Recall that Πl ⊂ Πb is a subset of 
even simple roots. Hence we have the natural right action of Hl on the A-module Tb

A := V b1
A ⊗A · · ·⊗AV bm+n

A

with a standard basis Mb
f ∈ Tb

A, for f ∈ Im+n
l

; cf. [4, §8.2]. We define

Tb,l
A = Tb

A

/ ∑
e �=w∈Wl

Tb
A ·Hw.

The quotient space is an A-form Tb,l
A of the Q(q)-space Tb,l appearing in Corollary 7:

Tb,l
A = ∧a0V−,A ⊗A ∧a1V c1

A ⊗A · · · ⊗A ∧akV ck
A , for ci ∈ {0, 1}, ai ∈ N, (3.1)

where ci and ai are determined as follows. Let W ′ denote a subgroup of the Weyl group of osp(2m + 1|2n), 
W ′ = WBm

× Sn = 〈s0, s1, . . . , sm−1, sm+1, . . . , sm+n−1〉, where si = sαi
, and α0 = −εb01 , αi = εbii − ε

bi+1
i+1

for 1 ≤ i ≤ m + n − 1. Then, Wl is the parabolic subgroup of W ′ generated by {si | αi ∈ Πl}. Let us write 
{0, 1, . . . , m + n} \ {i | αi ∈ Πl} = {j1 < j2 < · · · < jk+1}. Then, ai = ji+1 − ji and ci+1 = bji , where it is 
understood that j0 = 0.

For any standard basis element Mb
f ∈ Tb

A with f ∈ Im+n
l,+ , we denote by Mb,l

f its image in Tb,l
A . Then 

{Mb,l
f |f ∈ Im+n

l,+ } forms an A-basis of Tb,l
A . Let

Tb,l
Z = Tb,l

A ⊗A Z

be the specialization of Tb,l
A at q = 1. Let T̂b,l

Z be the B-completion of Tb,l
Z following [4, Section 9]. It 

follows from Corollary 7 the space T̂b,l
Z admits the ı-canonical basis {Tb,l

f |f ∈ Im+n
l,+ }. We can similarly 

define the dual ı-canonical basis {Lb,l
f |f ∈ Im+n

l,+ } of T̂b,l
Z following [4, Theorem 9.9].

3.6. We denote by [Ol,Δ
b ] the Grothendieck group of the category Ol,Δ

b . We have the following isomor-
phism of Z-modules:

Ψ : [Ol,Δ
b ] −→ Tb,l

Z

M l
b(λ) �→ Mb,l

fb

λ
(1), for λ ∈ X l,+

b .

We define [[Ol,Δ
b ]] as the completion of [Ol,Δ

b ] such that the extension of Ψ,

Ψ : [[Ol,Δ
b ]] −→ T̂b,l

Z ,

is an isomorphism of Z-modules.
The following proposition is a reformulation of the Kazhdan-Lusztig theory for the parabolic category O

of the Lie algebra so(2m + 1) (theorems of Brylinski-Kashiwara, Beilinson-Bernstein).
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Proposition 9. Let b = (0m) (that is n = 0). The isomorphism Ψ : [[Ol,Δ
b ]] −→ Tb,l

Z sends

Ψ([Ll
b(λ)]) = Lb,l

fb

λ
(1), Ψ([T l

b(λ)]) = Tb,l
fb

λ
(1), for λ ∈ X l,+

b .

Note T̂b,l
Z = Tb,l

Z in this case, i.e. no completion is needed.

Proof. Thanks to [4, Theorem 5.8], the ı-canonical basis on Tb can be identified with the Kazhdan-Lusztig 
basis (of type B) on Tb. Note by [4, Theorem 5.4] that Sl :=

∑
e �=w∈Wl

Tb ·Hw is a Uı-submodule of Tb, 
and it is actually a based Uı-submodule of Tb with its Kazhdan-Lusztig basis. Therefore the ı-canonical 
basis on Tb,l

A in Theorem 4 can be identified with the basis in the based quotient Tb/Sl, which is exactly the 
parabolic Kazhdan-Lusztig basis. The proposition follows now from the classical Kazhdan-Lusztig theory 
(cf. [4]). �

Now we can formulate the super Kazhdan-Lusztig theory for Ol
b.

Theorem 10. The isomorphism Ψ : [[Ol,Δ
b ]] −→ T̂b,l

Z sends

Ψ([Ll
b(λ)]) = Lb,l

fb

λ
(1), Ψ([T l

b(λ)]) = Tb,l
fb

λ
(1), for λ ∈ X l,+

b .

Proof. Let us briefly explain the idea of the proof from [4]. The crucial new ingredient of this paper (cf. 
Remark 11 below) is the existence of the ı-canonical basis and dual ı-canonical basis on T̂b,l thanks to 
Theorem 4. Here the dual ı-canonical basis refers to a version of canonical basis where the lattice Z[q] is 
replaced by Z[q−1]; see [4].

We have already established the version of the theorem for the full category O of the Lie superalgebra 
osp(2m + 1|2n) in [4, Theorem 11.13]. We have the following commutative diagram of Z-modules:

[[Ol,Δ
b ]] T̂b,l

Z

[[OΔ
b ]] T̂b

Z

(Note that the vertical arrow on the right is not a based embedding of Uı-modules.) Then the theorem 
follows from comparison of characters entirely similar to [4, §11.2]. Note that this comparison uses only the 
classical Kazhdan-Lusztig theory. �
Remark 11. In the case of the full category O (i.e., l is the Cartan subalgebra), the theorem goes back to 
[4, Theorem 11.13]. Following [4, Remark 11.16], the Kazhdan-Lusztig theory for the parabolic category Ol

b
with α0 �= Πl was a direct consequence of [4, Theorem 11.13], via the ı-canonical basis in [4, Theorem 4.25]
in the AU-module Tb,l

A in (3.1) with a0 = 0.
When a0 > 0 (which corresponds to the condition α0 ∈ Πl on the Levi l), the space Tb,l

A in (3.1) is a 

AUı-module but not a AU-module, and hence Theorem 4 is needed.

Denote

Tb,l
f = Mb,l

f +
∑
g

tbgf (q)Mb,l
g , for tbgf (q) ∈ Z[q].

By Theorem 10, tbgf (q) plays the role of Kazhdan-Lusztig polynomials for Ol
b. The following positivity and 

finiteness results generalize [4, Theorem 9.11] and follow by the same proof.
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Theorem 12.

(1) We have tb,lgf (q) ∈ N[q].
(2) The sum Tb,l

f = Mb,l
f +

∑
g t

b
gf (q)Mb,l

g is finite, for all f .

Remark 13. To formulate a super Kazhdan-Lusztig theory for the parabolic category O consisting of modules 
of half-integer weights for osp(2m + 1|2n), we use the quantum symmetric pair (U, Uı) which is a direct 
limit of (U(slN ), Uı(slN )) for N odd; cf. [4, Sections 6, 12]. Theorem 10 holds again in this setting.

Remark 14. Following [1], a simple conceptual modification allows us to formulate a super (type D) Kazhdan-
Lusztig theory for the parabolic category O consisting of modules of integer (respectively, half-integer) 
weights for osp(2m|2n). To that end, we use the ı-canonical basis of the module (3.1) for the quantum 
symmetric pair (U, Uı), where the parameter is now chosen to be κ = 0 in the notation of [5]. Theorem 10
holds again in this setting, where the cases new to this paper correspond to the cases a0 > 0.
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