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1. Introduction

1.1. Following Lusztig [11], we shall refer to (M, B), which consists of a U-module M and its canonical
basis B, as a based U-module, where U is a Drinfeld-Jimbo quantum group of finite type. Examples of
such based U-modules include any finite-dimensional simple U-module or a tensor product of several such
simple U-modules. The canonical basis on a tensor product of several finite-dimensional simple U-modules
was constructed by Lusztig [10], and it has found applications to the Kazhdan-Lusztig theory for general
linear Lie superalgebra gl(m|n) of type A [2,7].

1.2.  As a generalization of canonical bases for quantum groups, a theory of canonical basis arising
from quantum symmetric pairs (QSP, for short) (U, U?) of finite type is systematically developed in [5].
For any finite-dimensional based U-module (M,B), a new bar involution ¢, on M was formulated and
a 1,~-invariant basis B* of M (called an ¢-canonical basis for M) was constructed (see [5, Theorem 5.7]),
which satisfies some specific properties when expanded with respect to B; we shall call (M,B") a based
U*-module.
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The first examples of based U’-modules were constructed in [4] for quasi-split QSP (U, U*) of type AIIL
The s-canonical basis on a tensor product of U-modules was used to formulate a Kazhdan-Lusztig theory
on the full BGG category for ortho-symplectic Lie superalgebra of type B [4] (for type D see [1]); also see
[6] on some parabolic BGG category via a super duality approach.

1.3.  This paper is intended to supplement the two earlier papers [4,5] of the first two authors on
canonical bases arising from quantum symmetric pairs and applications to super Kazhdan-Lusztig theory;
it extends two principal results on ¢-canonical basis and super Kazhdan-Lusztig theory therein to full
generalities.

1.4. By definition of a QSP (U, U"), U’ is a coideal subalgebra of U [9]; that is, the comultiplication A
on U when restricting to U® satisfies A : U* — U*®U. Hence M ® N is a U’-module for any U*-module M
and U-module N. In the first main theorem (see Theorem 4) we show that, for a based U*-module (M, B")
and a based U-module (N, B), there exists a i,-invariant basis B*(,B on the U*-module M ® N such that
(M ® N,B*$,B) is a based U*-module. This generalizes a main result in [5] on the +-canonical basis on a
tensor product of U-modules, since a based U*-module which is not a U-module exists (cf. [4]).

The construction of the new bar involution v, on M ® N above uses a certain element ©" in a completion
of U* @ U™, which was due to [4] for quasi-split QSP of type AIII/TV and then established in Kolb [8] in
full generality with an elegant new proof. We establish the integrality of ©® by using the integrality of the
quasi-R matrix in [11] and the integrality of the quasi-X matrix in [5]. To construct the :-canonical basis
on M ® N, we use crucially a partial order, which is different from and simpler than the old one used in [5]
even when M is a U-module; the old partial order does not make much sense in our new setting.

1.5.  For the quasi-split QSP (U, U") of type AIII/AIV, the quantum group U is of type A; we let V
and W denote the natural representation of U and its dual. In this case, the 2-canonical basis on a based
U-module was first constructed in [4] when a certain parameter x = 1 (also see [1] with parameter x = 0).
The super Kazhdan-Lusztig theory for the full BGG category Op of an ortho-symplectic Lie superalgebra
g of type B in [4] (for type D see [1]) of integer or half-integer weights was formulated via the i-canonical
basis on a mixed tensor U-module with m copies of V and n copies of W, where the order of the tensor
product depends on the choice of a Borel subalgebra b in g.

As a consequence, a Kazhdan-Lusztig theory for parabolic categories O,[), where the Levi subalgebra [ in
g is a product of Lie algebras of type A, can be formulated and established via the :-canonical basis on a
tensor product U-module T of various exterior powers of V and of W. Note however not all the parabolic
categories of g-modules arise in this way; indeed a general Levi subalgebra of g is isomorphic to a product
of several Lie subalgebras of type A and a Lie subalgebra of type B.

Theorem 4, when specialized for the QSP (U, U*) of quasi-split type AIII/AIV, provides an -canonical
basis for a U*-module on the tensor product of the form A®V_ ® T. Here T is a tensor product U-module
of various exterior powers of V and of W, while A®V_ (for a > 0) is a “type B” exterior power, which is
a U*-module but not a U-module. These new -canonical bases are used to formulate the super Kazhdan-
Lusztig theory for an arbitrary parabolic BGG category O of the ortho-symplectic Lie superalgebras of type
B and D; see Theorem 10. The super Kazhdan-Lusztig polynomials tl;f(q) admit a positivity property; see
Theorem 12.

1.6.  This paper is organized as follows. Theorem 4 and its proof are presented in Section 2, and we
shall follow notations in [5] throughout Section 2. The formulation of Theorem 10 is given in Section 3; its
proof basically follows the proof for the Kazhdan-Lusztig theory for the full category O in [4, Part 2] once
we have Theorem 4 available to us. We shall follow notations in [4] throughout Section 3. To avoid much
repetition, we refer precisely and freely to the two earlier papers [4,5].
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2. Tensor product modules as based U’-modules

2.1. We shall follow the notations in [5] throughout this section.

Let U denote a quantum group of finite type over the field Q(q) associated to a root datum of type (I, -),
and let A denote its comultiplication as in [11]. We denote the bar involution on U or its based module
by .

Let U* C U be a coideal subalgebra associated to a Satake diagram such that (U, U?*) forms a quantum
symmetric pair [9]. Let A := Z[q, ¢~ ']. Let U’ be the modified version of U* and let ,U"* be its A-form,
respectively; see [5, §3.7]. Let v, be the bar involution on U U’ and 4 U". Let X, be the r-weight lattice
[5, (3.3)]. A weight (i.e., X,-weight) module of U* can be naturally regarded as a U’~module.

We introduce based U-modules generalizing [11, §27.1.2]. Let A = Q[[¢~!]] N Q(q). We write — ® — =
— ®q(q) — Whenever the base ring is Q(q).

Definition 1. Let M be a finite-dimensional weight U*-module over Q(¢) with a given Q(g)-basis B*. The
pair (M, B") is called a based U*-module if the following conditions are satisfied:

(1) B'N M, is a basis of M, for any v € X,;

(2) The A-submodule 4 M generated by B* is stable under ,U";

(3) The Q-linear involution v, : M — M defined by ,(¢) = ¢!, %,(b) = b for all b € B* is compatible
with the U-action, i.e., ¥,(um) = 1, (u),(m), for all u € U*,m € M;

(4) Let L(M) be the A-submodule of M generated by B*. Then the image of B* in L(M)/q ' L(M) forms
a Q-basis in L(M)/q ' L(M).

We shall denote by £(M) the Z[qg !]-span of B; then B* forms a Z[q~!]-basis for £(M). (There are
similar constructions for a based U-module in similar notations.)

2.2. Let Y =3 T, (with Top =1 and T, € U}) be the intertwiner (also called quasi-X matrix) of
the quantum symmetric pair (U, U") introduced in [4, Theorem 2.10]; for full generality see [3, Theorem
6.10], [5, Theorem 4.8, Remark 4.9]. It follows from [5, Theorem 5.7] (also cf. [4, Theorem 4.25]) that a
based U-module (M, B) becomes a based U*-module with a new basis B* (which is uni-triangular relative
to B) with respect to the involution v, := Y o 9.

Let Im be the completion of the Q(g)-vector space U ® U with respect to the descending sequence
of subspaces

UgU U Y UH+UTU( Y U,)eU, for N>1,u€cZl
Bt (1) >N Bt (u)= N

We have the obvious embedding of U ® U into UTQEEJ By continuity the Q(g)-algebra structure on U® U
extends to a Q(g)-algebra structure on Im We know the quasi-R matrix © lies in Ifia\lj by [11,
Theorem 4.1.2]. It follows from [5, Theorem 4.8] and [3, Theorem 6.10] that Y~! ® id and A(T) are both
in Ifeo\U

We define

—

0'=A(")-0- (T '®id) cUsU. (2.1)
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We can write

©=> 0,  wheeO, cUaU/. (2.2)
neNT

The following result first appeared in [4, Proposition 3.5] for the quantum symmetric pairs of (quasi-split)
type AIII/AIV.

Lemma 2. /8, Proposition 3.10] We have ©), € U' ® Ulf, for all p. (The element ©,, is denoted by Rz n
[8].)

Another basic ingredient which we shall need is the integrality property of ©*.

Lemma 3. We have ©}, € 4U ®4 AU}, for all p.

o

Proof. By a result of Lusztig [11, 24.1.6], we have © = Y~y ©, is integral, i.e., ©, € 4 U, ®4 4 U} . By
[5, Theorem 5.3] we have T = 3_ T, is integral, i.e., T\, € 4 U}t for each p; it follows that T~ = ()
is integral too thanks to [5, Corollary 4.11]. It is well known that the comultiplication A preserves the
A-form, i.e., A(4U) C 4U ®4 4U. The lemma follows now by the definition of ©* in (2.1). O

2.3.  Define a partial order < on X by setting p' < p if u/ — p € NI. Denote by |b| = p if an element b
in a U-module is of weight p. Now we are ready to prove the first main result of this paper.

Theorem 4. Let (M,B") be a based U'-module and (N,B) be a based U-module.

(1) For by € B, by € B, there exists a unique element by<{>,by which is 1,-invariant such that by $,by €
b1 ® by + q’1Z[q’1]B1 ® B.
(2) We have by,be € by @ by + > g Zg7 b @ b
(b%,b5)€B* X B, |b5| < b2
(3) B*$,B :={b1$0ba | b1 € B, by € B} forms a Q(q)-basis for M @ N, an A-basis for 4 M @4 4N, and
a Z[q~]-basis for L(M) ®zq-1] L(N). (This is called the w-canonical basis for M @ N.)
(4) (M ® N,B*¢,B) is a based U’-module.

Proof. It follows by Lemma 2 that the element ©* gives rise to a well-defined operator on the tensor product
M ® N. Following [4, (3.17)], we define a new bar involution on M ® N (still denoted by ,) by letting

Y, =00 (), ®¢Y)  MN — M ® N.
Recall from [11] that A(F;) = F; @ 1 + K; ® E;. Tt follows that

AM)eT®l+ > UaU.
0#peNT

Recalling (2.2), we have
=(rel)-Ael)-(rlel)=1e1. (2.3)
Let by € B* and b, € B. By (2.3) and Lemma 3, we have

Gibr @by) €by@by+ Y AY, @b (2.4)

(b}.b5)EB' xB
b 1< be]
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Applying [11, Lemma 24.2.1], there exists a t,-invariant element (b1 ® b3)" € M ® N such that

b €1 @b+ > ¢ 'ZgT Y, @b
(b],b5)EB*xB
|ba | <[bz]

This proves (2), and part (3) follows immediately.

A by now standard argument shows the uniqueness of b;<{,by as stated in (1); note a weaker condition
than (2) is used in (1).

It remains to see that (M,B"<{,B) is a based U'module. The item (3) in the definition of a based
U’-module is proved in the same way as for [4, Proposition 3.13], while the remaining items are clear.

This completes the proof. O

Remark 5.

(1) An elementary but key new ingredient in Theorem 4 above is the use of a (coarser) partial order <,
which is different from the partial order <, used in [5, (5.2)].

(2) Assume that M is a based U-module. Then the +-canonical basis for M ® N in Theorem 4 coincides
with the one in [5, Theorem 5.7], thanks to the uniqueness in Theorem 4(1).

Remark 6. Theorem 4 would be valid whenever we can establish the (weaker) integrality of ©* acting on
M ® N. This might occur when we consider more general parameters for U* than [5] or when we consider
quantum symmetric pairs of Kac-Moody type in a forthcoming work of the first two authors.

3. Applications to super Kazhdan-Lusztig theory

3.1.  In this section, we shall apply Theorem 4 to formulate and establish the (super) Kazhdan-Lusztig
theory for an arbitrary parabolic category O of modules of integer or half-integer weights for ortho-symplectic
Lie superalgebras, generalizing [4, Part 2] (also see [1]). We shall present only the details on an arbitrary
parabolic category O consisting of modules of integer weights for Lie superalgebra osp(2m + 1|2n).

3.2.  All relevant notations throughout this section shall be consistent with [4, Part 2]. In particular,
we use a comultiplication for U different from [11]; this leads to a version of the intertwiner T =37 T,
with T, € U- (compare with §2.2), and a version of Theorem 4 in which the opposite partial order and
the lattice Z[q|] are used. To further match notations with [4] in this section, we denote the A-form of any
based U or U'-modules M, as M4 (instead of 4M).

We consider the infinite-rank quantum symmetric pair (U, U") as defined in [4, Section 8] (where the
parameter is chosen to be x = 1 in the notation of [5]). It is a direct limit of quantum symmetric pairs of
type AIIL, (U(sly), U*(sly)), for N even. We denote by V the natural representation of U, and by W the
restricted dual of V.

Associated to any given 0™1"-sequence b = (by,...,by4y,) starting with 0, we have a fundamental
system of osp(2m + 1|2n), denoted by I, = {—ei, el — ef:’f |1 <i<m+mn—1}; here ¢ = ¢, for
some 1 < z < m and e} = €5 for some 1 < y < n so that {ei.” | 1 <i<m+n} form a permutation of
{ea,&n | 1 <a<m,1<b<mn}.

3.8. Let Wp, and W4, , be the Weyl group of type B, and type As_; with unit e, respectively. We
denote their corresponding Hecke algebras by Hp, and Ha,_,, with Kazhdan-Lusztig bases by {Hy|w €
W} and {Hy|w € Wa,_,}, respectively. Both algebras act naturally on the right on V®¢ and W®*; cf.
[4, Section 5]. We define
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AVo=ves [N e,
eAweWp,
AV =vE [N e,

eFweEWa,_,

We similarly define A*W_ and A*W. Note A*V_, AV, AW_ and A*W are all based U’-modules by [4,
Theorem 5.8]. We shall denote

\% if c=0,
V¢ :=
W% ife=1.

The following corollary is a direct consequence of Theorem 4.

Corollary 7. Let ¢1,...,¢, € {0,1} and ag,a1,...,ax € N. Then (a suitable completion of) the tensor
product

TP = AOV_@ATVD @ - @ A*V
is a based U'-module.

The completion above arises since we deal with quantum symmetric pairs of infinite rank, and it is a
straightforward generalization of the B-completion studied in [4, Section 9]. Note that the ¢-canonical basis
lives in T™' (instead of its completion) by Theorem 12 below.

3.4. Associated to the fundamental system Ily, are the set of positive roots @g and the Borel subalgebra
by of 0sp(2m + 1|2n). Let II; C IIj, be a subset of even simple roots. We introduce the corresponding Levi
subalgebra [ and parabolic subalgebra p of osp(2m + 1|2n):

(=@ B  osp@m+12n)a, p=1I[+bp.

aceZIliNdy

Recall [4, §7] the weight lattice X (m|n) = 3" Ze; + 7, Zej. We denote
Xt ={re X(mn) | (A\la) > 0,Ya € II}.

Let Lo(A) be the irreducible -module with highest weight A, which is extended trivially to a p-module. We
form the parabolic Verma module

ME(A) = Indg*P ™M Loy,
Definition 8. Let Of, be the category of 0sp(2m + 1|2n)-modules M such that

(i) M admits a weight space decomposition M = @ M, and dim M,, < oo;
HEX (m|n)

(ii) M decomposes over [ into a direct sum of L(\) for some X € Xl[)’+;
iii) there exist finitely many weights '), 2X,...,*\ € XhT depending on M) such that if p is a weight in
y y g b g K g

M, then p € ‘A= Na, for some i.

acllp

The morphisms in O} are all (not necessarily even) homomorphisms of osp(2m + 1|2n)-modules.
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For \ € Xl[)’+, we shall denote by L{ (\) the simple quotient of the parabolic Verma module M (}\) in
Oj, with highest weight A. Following [4, Definition 7.4], we can define the tilting modules T3 (\) in O}, for
A€ XL”L. We denote by O][[;A the full subcategory of O}, generated by all modules possessing finite parabolic
Verma flags.

3.5.  Recall the bijection X (m|n) «» ™" [4, §8.4], where an element f € ™" is understood as a
p-shifted weight. We consider the restriction X]L’+ I fff", where the index set [ [’Z:“" is defined as the
image under the bijection.

Let W be the Weyl group of [ with the corresponding Hecke algebra H;. Recall that II; C Iy, is a subset of
even simple roots. Hence we have the natural right action of 3 on the A-module T8 := Vi @4-- @4 Vf{"*"
with a standard basis M}’ € T}’l, for f € If’”‘"; cf. [4, §8.2]. We define

TR =TS8/ > TR H
eFweWy

The quotient space is an A-form TE’[ of the Q(q)-space T?' appearing in Corollary 7:
Th = A®V_ 4 @4 AV ®4 - @ A*VEF for ¢; € {0,1}, a; €N, (3.1)

where ¢; and a; are determined as follows. Let W’ denote a subgroup of the Weyl group of osp(2m + 1|2n),
W''=Wpg, X Sn=1{(50,815«s8m—1,Sm+1,- -, Sm+n—1), Where 8; = s,,, and ag = —ell’o, o = ei’"’ — e?ff
for 1 <i <m+n— 1. Then, W} is the parabolic subgroup of W’ generated by {s; | o; € II;}. Let us write
{0,1,....om+n}\{i| o € I} = {j1 < j2 < -+ < Jgt+1}- Then, a; = jiy1 — j; and ¢;41 = bj,, where it is
understood that jo = 0.

For any standard basis element M}) € TA'? with f € I[’jf", we denote by M}D’[ its image in TE’[. Then

{M}”[ fe I[’jf"} forms an A-basis of T;”[. Let

Ty'=Th'®4Z

be the specialization of TIAD’[ at ¢ = 1. Let ?/T\;[ be the B-completion of Tg’[ following [4, Section 9]. It

m—+n

follows from Corollary 7 the space f; ! admits the i-canonical basis {T;’ ’[| feny }. We can similarly
define the dual s-canonical basis {L?’[|f € I[T,”:” of Tg’[ following [4, Theorem 9.9].

3.6.  We denote by [OL;A] the Grothendieck group of the category O{;A. We have the following isomor-
phism of Z-modules:

U [0pR] — T

ML) — M;’l;[(l), for x e X
A
We define [[O{;A}] as the completion of [O{;A] such that the extension of ¥,
A bl
U [[0p3]) — Ty,
is an isomorphism of Z-modules.

The following proposition is a reformulation of the Kazhdan-Lusztig theory for the parabolic category O
of the Lie algebra so(2m + 1) (theorems of Brylinski-Kashiwara, Beilinson-Bernstein).
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Proposition 9. Let b = (0™) (that is n =0). The isomorphism ¥ : [[O{;A]] — T;[ sends

U(LL V) = L (1), V(W) =T (1), forde Xt
Note T]ZO’[ = T;[ in this case, i.e. no completion is needed.

Proof. Thanks to [4, Theorem 5.8], the 7-canonical basis on TP can be identified with the Kazhdan-Lusztig
basis (of type B) on TP. Note by [4, Theorem 5.4] that S' := D etwew, TP® . H, is a U-submodule of TP,
and it is actually a based U’-submodule of TP with its Kazhdan-Lusztig basis. Therefore the s-canonical
basis on 'Jl“z’[ in Theorem 4 can be identified with the basis in the based quotient TP /S", which is exactly the

parabolic Kazhdan-Lusztig basis. The proposition follows now from the classical Kazhdan-Lusztig theory
(cf. [4]). O

Now we can formulate the super Kazhdan-Lusztig theory for O{).

Theorem 10. The isomorphism W : [[O{;A]] — f;[ sends

w(EW) =25, RO =TR().  forde XS
Proof. Let us briefly explain the idea of the proof from [4]. The crucial new ingredient of this paper (cf.
Remark 11 below) is the existence of the ¢-canonical basis and dual :-canonical basis on TP thanks to
Theorem 4. Here the dual ¢-canonical basis refers to a version of canonical basis where the lattice Z[q| is
replaced by Z[q™1]; see [4].
We have already established the version of the theorem for the full category O of the Lie superalgebra
0sp(2m + 1|2n) in [4, Theorem 11.13]. We have the following commutative diagram of Z-modules:

[op2)] — T3

_

~

[0p]] ——= T2

(Note that the vertical arrow on the right is not a based embedding of U’modules.) Then the theorem
follows from comparison of characters entirely similar to [4, §11.2]. Note that this comparison uses only the
classical Kazhdan-Lusztig theory. O

Remark 11. In the case of the full category O (i.e., [ is the Cartan subalgebra), the theorem goes back to
[4, Theorem 11.13]. Following [4, Remark 11.16], the Kazhdan-Lusztig theory for the parabolic category Of,
with o # II; was a direct consequence of [4, Theorem 11.13], via the ¢-canonical basis in [4, Theorem 4.25]
in the 4 U-module T;’L’[ in (3.1) with ag = 0.

When ag > 0 (which corresponds to the condition agy € II; on the Levi [), the space TE’[ in (3.1) is a
A U’-module but not a 4 U-module, and hence Theorem 4 is needed.

Denote

TR M SR, Tor ) < 2l
g

By Theorem 10, t;’f(q) plays the role of Kazhdan-Lusztig polynomials for OL. The following positivity and
finiteness results generalize [4, Theorem 9.11] and follow by the same proof.
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Theorem 12.

(1) We have t];}[(q) € Nig].
(2) The sum T})’[ = M}a’[ +22, t'gaf(q)M;”[ is finite, for all f.

Remark 13. To formulate a super Kazhdan-Lusztig theory for the parabolic category O consisting of modules
of half-integer weights for osp(2m + 1|2n), we use the quantum symmetric pair (U, U*) which is a direct
limit of (U(sly), U'(sly)) for N odd; cf. [4, Sections 6, 12]. Theorem 10 holds again in this setting.

Remark 14. Following [1], a simple conceptual modification allows us to formulate a super (type D) Kazhdan-
Lusztig theory for the parabolic category O consisting of modules of integer (respectively, half-integer)
weights for osp(2m|2n). To that end, we use the -canonical basis of the module (3.1) for the quantum
symmetric pair (U, U*), where the parameter is now chosen to be x = 0 in the notation of [5]. Theorem 10
holds again in this setting, where the cases new to this paper correspond to the cases ag > 0.
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