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ABSTRACT

We propose a new model for supervised learning to rank. In
our model, the relevance labels are assumed to follow a cate-
gorical distribution whose probabilities are constructed based
on a scoring function. We optimize the training objective with
respect to the multivariate categorical variables with an unbi-
ased and low-variance gradient estimator. Learning-to-rank
methods can generally be categorized into pointwise, pair-
wise, and listwise approaches. Although our scoring function
is pointwise, the proposed framework permits flexibility over
the choice of the loss function. In our new model, the loss
function need not be differentiable and can either be pointwise
or listwise. Our proposed method achieves better or compa-
rable results on two datasets compared with existing pairwise
and listwise methods.

Index Terms— Learning to rank, Monte Carlo Gradient
Estimation, Deep learning

1. INTRODUCTION

Learning to rank is fundamental to information retrieval,
E-commerce, and many other applications, for ranking
items [1]. In this work we focus on document retrieval
without loss of generality. Document retrieval (i.e., document
ranking) has applications in large-scale item search engines,
which can generally be described as follows: There is a col-
lection of documents (items). Given a query (e.g. a query
entered by a user in the search engine), the ranking function
assigns a score to each document, quantifying the relative
relevance of the document to the query. The documents are
ranked in the descending order based on these scores and the
top ranked ones are returned.

Traditional approaches rank documents based on unsuper-
vised models of words appearing in the documents and query
and do not need any training [2]. Supervised machine learn-
ing for ranking has become popular due to the availability of
more signals related to relevance of documents, such as click
items or search log data [1].
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The bulk of machine learning methods for learning to rank
can roughly be categorized as pointwise, pairwise and list-
wise methods. Pointwise methods cast the ranking problem
as a regression problem for predicting relevance scores [3]
or a multiple ordinal classification to predict categorical rel-
evance levels [4]. Pairwise approaches take document pairs
as instances in learning, and formalize the learning-to-rank
problem as that of classification. More precisely, they collect
document pairs to query the relative ranking from the under-
lying unknown ranking lists. Classification models are then
trained with the labeled data for ranking [5]. Finally, listwise
methods use ranked document lists instead of document pairs
as instances in learning and define an optimization loss func-
tion over the entire ranked list(s) [6].

In this paper, we propose a new framework for super-
vised learning to rank. Specifically, we define a scoring func-
tion that maps the input vector of features for a document to
the probability parameters of a categorical distribution, where
each category represents the relative relevance of the input
document to the query. We then define the objective func-
tion of learning-to-rank as the expectation of a loss function,
which determines the distance between predicted and true rel-
evance labels of the input document, with respect to the cate-
gorical distribution parameterized by the scoring function. To
achieve a rich family of ranking algorithms, we employ neural
networks as scoring functions.

Due to its novel discrete structure, we exploit stochastic
gradient based optimization to learn the parameters of the
scoring function. The main difficulty arises when back-
propagating the gradients through categorical variables.
The recently proposed augment-REINFORCE-swap-merge
(ARSM) [7] gradient estimator provides a natural solution
with unbiased low-variance gradient updates during the train-
ing of our proposed learning-to-rank framework. ARSM
first uses variable augmentation, REINFORCE [8], and Rao-
Blackwellization [9] to re-express the gradient as an expec-
tation under the Dirichlet distribution, then uses variable
swapping to construct differently expressed but equivalent
expectations, and finally shares common random numbers
between these expectations to achieve significant variance
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reduction.

The proposed framework, hereby referred to as ARSM-
L2R, has main advantage over the existing learning-to-rank
methods. More precisely, due to the utilization of ARSM gra-
dient estimator, the loss function assessing the distance be-
tween predicted and true document relevance labels need not
be differentiable. This significantly enriches the choices of
loss functions that can be employed. Specifically, in our ex-
periments, we optimize the truncated normalized discounted
cumulative gain (NDCG) [10].

Comprehensive experiments conducted on benchmark
datasets demonstrate that our proposed ARSM-L2R method
achieves better or comparable results with pairwise and list-
wise approaches in terms of common ranking metrics such as
truncated NDCG and mean average precision (MAP).

The remainder of this paper is organized as follows. In
Section 2, we present the methodology, including the new
formulation of ARSM-L2R for supervised learning to rank,
and its parameter estimation using Monte Carlo gradient esti-
mates. Section 3 provides comprehensive experimental re-
sults for comparison with several existing learning-to-rank
methods. The paper is concluded in Section 4.

2. ARSM-L2R

2.1. Supervised learning to rank

In the supervised learning-to-rank setting, a set of queries
Q = {¢W,...,q"™)} is given. Each query ¢ is associated

with a list of documents d = [d"), ..., dS()w ], where d;i) and

n(" denote the jth document and size of d® respectively. In

addition, a list of scores y(*) = [yii), cees yfj()i)] is available for

each list of documents d”). The score y](.i)

evance degree of document dg»i) to query ¢, and can be a
judgment score explicitly or implicitly given by humans [6].
Higher scores imply more relevant documents.

represents the rel-

For each query-document pair (¢(*), dg-l) ), a P-dimensional
(@)
J
resented as { (z(?), y(i))}il. The objective of learning is to
create ranking functions that map the input query-document
features to scores resembling the true relevant scores. In the
following discussions, we drop the query index (i) to avoid
cluttering the notations.

In this paper, we formulate the supervised learning-
to-rank problem as maximizing an objective, expressed
as an expectation over multivariate categorical variables.
More specifically, given n documents for a query, let z; €
{1,...,C} denote the relevance label for jth document,
where C' is the number of possible levels of relevance for
each document. In our proposed generative model, each z;
is distributed according to a categorical distribution whose
probabilities are constructed based on a scoring function

vector of features ;" is constructed. The training set is rep-

To : R — RY parameterized by 6:
zj~ Cat(a(d)j)), ;= To(x;). (D

Here o(¢;) = (e%,...,e%9)/ Zle e%ic is the softmax
function. We use multi-layer perceptrons (MLPs) as scoring
functions, thus @ corresponds to the collection of weight ma-
trices of MLPs. For each realization of categorical variables
z = (z1,...,2n), we employ a loss function ¢ to determine
their distance from the true labels y = (y1, ..., yn). We then

define the learning-to-rank optimization problem as finding:

0 = arg mgn EZ~H}’:1 Cat(z,;0(e)) [0(z,y)]

= arg mgné'({)), (2)

where £(-,-) can be any loss function measuring the dissimi-
larity of two vectors of ordinal labels. We resort to stochas-
tic gradient based methods to solve the optimization problem
in (2). Backpropagating the gradient through discrete latent
variables have been recently studied extensively [7, 11-13].
For optimizing (2), the challenge lies in developing a low-
variance and unbiased estimator for its gradient with respect
to ¢, which is denoted by V4&(®).

2.2. ARSM gradient estimator

We employ Augment-REINFORCE-Swap-Merge (ARSM)
gradient estimator for training the scoring functions described
in the previous section. To describe this algorithm, we start
by the simple objective function £(¢) := E__cat((4)) [f(2)]
with respect to a univariate categorical variable, where f(z)
is the reward function and ¢ := (¢1,...,¢c). In the aug-
mentation step, the gradient of £(¢) can be expressed as an
expectation under a Dirichlet distribution as

Vo.f(#) = Ep piran /()1 - Cr)l
= 1 — Pk
z = arg kE{I?}.r.l,C} mre Pk, 3)

Given the vector 7, we denote the vector obtained af-

ter swapping kth and mth elements of 7 as w™=F .=
(e=Fk L wm=F), where 7=k = @y, A=k = o,
and for ¢ ¢ {m,k} we have 7™"=% = r.. Exploiting

the symmetrical property 7™=* ~ Dir(1¢), and sharing

common random numbers between different expectations to
significantly reduce Monte Carlo integration variance leads
to another unbiased estimator referred as ARS estimator:

v¢08(¢) = EﬂNDir(lc)[ Z:k(l - Cﬂ-k’)]?
1 C
fxﬁk — f(ZC:k) _ 5 Z f(z’!n:k})’ 4)
m=1
where 2°=% = arg ming e, 3 ﬂ;)ﬁk67¢k' and k is the

reference category. Finally, the ARS estimator can be further
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improved by considering all swap operations, and adding a
merge step to construct the ARSM estimator as

Vs E(¢) = ]E‘,rNDlr(1c) [Z f(‘ik (1/C = )| (%)

2.3. ARSM for learning to rank

To employ ARSM for learning to rank, we need to con-
sider the optimization problem with respect to the multi-
variate categorical variables z = (21, ...,2,). Let 2% =
(26=F ..., 26=F) denote the multivariate swapping whose
elements are defined, similar to those in (4) and (5), as
2=k = argming g, cy w;;ke ®i1 . Then the mul-
tivariate extension of ARSM gradient estimator for the
learning-to-rank objective in (2) can be expressed as [7]:

C

V¢ch(¢) = ]EHNH;:1 Dir(‘ll'J;lC) [Zﬁzﬁk(l/c o Trjk):| ’
k=1
. (6)
where (5% = 0(zc=F y) — 53S0 0(z™=F y). Since

we define the categorical distribution parameter ® in terms
of a neural network with parameters 8, the final gradients are
computed using the chain rule as

n C a¢JC
Vol(®) = > > V, E(®
=1 c=1
’ n C
_ vg( 3V, E(@ ¢]¢) )
j=1lc=1

The estimated gradients are then utilized in a stochastic
optimization process to learn the model parameters. Algo-
rithm 1 summarizes the parameter learning for ARSM-L2R.

2.4. Loss function and rank prediction

The loss function ¢(z, y) in (2) measures the dissimilarity be-
tween predicted categorical labels z and the true labels y. In
this work, we utilize the negative truncated NDCG as the loss
function of ARSM-L2R. The calculation of NDCG only relies
on the sorting of the predicted labels z, and the true labels y.
Furthermore, our experiments show that setting the number of
possible levels of relevance C' to be higher than the number
of true levels in y improves the performance of ARSM-L2R.
Hence, for all experiments in this paper we set C' = 20.
After the parameters of the scoring function are learned
in the training phase, the probability of different levels of
relevance for the test documents can be calculated by sim-
ply passing the documents features through the scoring func-
tion. We then construct the final scores of the test docu-
ments by a weighted combination of these probabilities, and
sort the documents based on these scores. More precisely,

input : Document labels y and query-document
features x

output: Parameters 0 of scoring function
Initialize 6 randomly;

while not converged do

Calculate categorical distribution parameters

¢ = ((l)lv ?¢n) € chn;
Sample 7; ~ Dirichlet(1¢) forj =1,...,n
Let z; = argmingeqy,... oy (In 7 — @) for
7 =1,...,n, to obtain the true categorical labels
z= (21, %n);
Initialize the diagonal of the loss matrix
L € REXC with (2, y);
for (¢, k) € {(¢c,k)}e=1:0k<c dO

Let
25=F = argming gy oy (In W?;T/k —Qjn)
forj=1,...,n

Denote z2°¢=F = (2¢=Fk .. 2¢=F);

Let Loy = Ly = E(ZC:]C, ’y)

end
Let L., = % chzl Ly fork=1,..,C;
Let gy, = Sy (Lor — L) (& — mjx) for all

(j’ C) € {(Ja c)}j:l:n,c:l:C;
Update 0 = 0 + 1y V& (P), with step size 1y

end
Algorithm 1: Parameter inference in ARSM-L2R.

given the probability of different labels p. for a test docu-
ment, we calculate its overall ranking score as chzl c X Pe,
where ¢ € {1,2,...,C} and higher values of ¢ correspond
to more relevant levels. Our experiments show that the per-
formance of ARSM-L2R is not sensitive to the choice of the
weight combination scheme.

3. EXPERIMENTS

3.1. Datasets

We evaluate the performance of ARSM-L2R on two widely
tested benchmark datasets, including a query set from Mil-
lion Query track of TREC 2007, denoted as MQ2007 [14], as
well as the OHSUMED dataset [15]. Each dataset consists of
queries, corresponding retrieved documents and labels pro-
vided by human experts. The possible relevance labels for
each document are “relevant”, “partially relevant”, and “not
relevant”. We use the 5-fold partitions provided in the origi-
nal dataset for 5-fold cross validation in the experiments. In
each fold, there are three subsets for learning: training set,
validation set and testing set. The properties of these learning
to rank datasets are presented in Table 1.
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Table 1. Properties of learning-to-rank datasets used in the
experiments.

#documents #features

~25,000,000 46
~350,000 45

dataset #queries

MQ2007 1700
OHSUMED 106

Table 2. Performance of different learning-to-rank methods
on MQ2007 dataset.

Method NDCG@l NDCG@3 NDCG@5 NDCG@10 MAP
RankSVM 0.4045 0.4019 0.4072 0.4383 0.4644
ListNet 0.4002 0.4091 0.4170 0.4440 0.4652
AdaRank-MAP 0.3821 0.3984 0.4070 0.4335 0.4577
AdaRank-NDCG 0.3876 0.4044 0.4102 0.4369 0.4602
ARSM-L2R 0.4051 0.4112 0.4159 0.4432 0.4608

3.2. Baselines

We compare the performance of our ARSM-L2R with sev-
eral state-of-the-art baselines, including a pairwise method of
RankSVM [16], a listwise method of ListNet [6], and other
listwise methods that optimize lower bounds of different eval-
uation measures: AdaRank-MAP, and AdaRank-NDCG [17].

3.3. Evaluation metrics

We use two popular learning-to-rank scoring functions to
compare the predicted rankings of the test documents with
their true rankings: truncated Normalized Discounted Cumu-
lative Gain (NDCG@ R) [10] and Mean Average Precision
(MAP) [18]. NDCG (DCG) has the effect of giving high
scores to the ranking lists in which relevant documents are
ranked high. Average Precision (AP) represents the averaged
precision over all the positions of documents with relevant
label for query ¢(”). Denoting the ranking list 7(¥) on d¥,
MAP is defined as

nt (), (6)

[ UJ y
N ZAP N NZ nm = ®
J ly]
0 @ mu’
where w; ' = ———— NDCG@ R is calculated by
1 N
== (@)
NDCG@R = NZNDCG@R

«
I
—

g
P> —
log (1 + r(l))7
)S 2 J
)

_ L
N

||Mz

DCG@ IDCG@R()

G
j

where if 7y, represents the true ranking list of d(i), then
O
IDCG@RY = Y.

2 —1_ R here represents
the truncation level.

J: '“m,e SR log, (1+r(7))

Table 3. Performance of different learning-to-rank methods
on OHSUMED dataset.

Method NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP
RankSVM 0.4958 0.4207 0.4164 0.4140 0.4468
ListNet 0.5326 0.4732 0.4432 0.4410 0.4495
AdaRank-MAP 0.5388 0.4682 0.4613 0.4429 0.4418
AdaRank-NDCG 0.5330 0.4790 0.4673 0.4496 0.4424
ARSM-L2R 0.5601 0.4642 0.4546 0.4460 0.4503

3.4. Implementation details

For the scoring function neural network, we employ a fully
connected neural network with one hidden layer of 500 units
and the fanh nonlinear activation function. We initialize the
weights of the neural network by Glorot method [19], and
train ARSM-L2R using the Adam optimizer [20] with a learn-
ing rate of 10~%. The algorithm is run for a total of 2000
epochs, and the ranking metrics on the validation sets are
monitored for choosing the best performing neural network
weights. ARSM-L2R is implemented in Tensorflow [21].

3.5. Results and discussions

We compare the performance of the different methods based
on NDCG@1, NDCG@3, NDCG@5, NDCG@10, and
MAP. The results for MQ2007 and OHSUMED datasets
are provided in Tables 2 and 3, respectively. Our ARSM-
L2R achieves the highest NDCG@1 and NDCG@3 on the
MQ2007 dataset. On the OHSUMED dataset ARSM-L2R
has a significantly higher NDCG@1 compared with all the
other methods tested. It also shows the best MAP on this
dataset. It is worth mentioning that NDCG@1 is one of the
most important metrics for ranking systems, since it quanti-
fies the relevance of the top ranked item. It is interesting to
note that our method only optimizes a rough approximation
of the evaluation metric NDCG, but shows the best perfor-
mance on both two metrics for each dataset and comparable
results for the rest of the metrics on the datasets. Our pro-
posed method achieves better or comparable performance
due to utilizing a loss function more directly related to rank-
ing performance and also taking advantage of unbiased and
low-variance gradient estimation.

4. CONCLUSIONS

We have developed a new supervised learning-to-rank model—
ARSM-L2R—that generates relevance labels based on a
categorical model with probabilities estimated by a MLP.
The training objective is optimized with respect to the mul-
tivariate categorical variables with an unbiased and low-
variance gradient estimator, ARSM. Our method can employ
a non-differentiable loss function as opposed to the existing
learning-to-rank methods. The experimental results show
that ARSM-L2R achieves better or comparable results with
pairwise and listwise approaches.
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