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Abstract

Consider the steady neutron transport equation in two dimensional convex
domains with an in-flow boundary condition. We establish the diffusive limit while
the boundary layers are present. Our contribution relies on a delicate decomposi-
tion of boundary data to separate the regular and singular boundary layers, novel
weighted W 1-°° estimates for the Milne problem with geometric correction in con-
vex domains, and an L?" — L framework which yields stronger remainder esti-
mates.
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1. Introduction

1.1. Problem Formulation

We consider the steady neutron transport equation in a two-dimensional
bounded convex domain with an in-flow boundary. In the spacial domain X =
(x1,x2) € Q2 where dQ2 € C* and the velocity domain w = (wy, wy) € S!, the
neutron density u€ (X, W) satisfies

e Vout +u€ —a€=0in Q x S, (1)
u¢(Xp, w) = g(xp, w) for w-v <0 and Xy € 992, ’
where
—€ /2 1 €z d
u(x) = — ut(x, w)dw; (1.2)
27T sl

v is the outward unit normal vector, with the Knudsen number 0 < ¢ << 1. We
intend to study the behavior of u€ as € — 0.

Based on the flow direction, we can divide the boundary I' = {(X, W) : X € 32}
into the in-flow boundary I'~, the out-flow boundary I'" and the grazing set '’

Im={x w):xe€dQ, w-v <0}, (1.3)
' ={X, w):XedQ, w-v >0}, (1.4)
' ={®x w):3x€d, w-v=0}. (1.5)

It is easy to see that ' = ' U '~ U I'°. In particular, the boundary condition is
only given for I'".

1.2. Background and Method

1.2.1. Asymptotic Analysis Diffusive limits, or more general hydrodynamic lim-
its, are central to connecting kinetic theory and fluid mechanics. The basic idea is to
consider the asymptotic behaviors of the solutions to Boltzmann equation, transport
equation, or Vlasov systems. Since the early 20th century, this type of problem has
been extensively studied in many different settings: steady or unsteady, linear or
nonlinear, strong solution or weak solution, etc..
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Among all these variations, one of the simplest but most important models—
neutron transport equation in bounded domains-has attracted a lot of attention since
the dawn of the atomic age. The neutron transport equation is usually regarded as a
linear prototype of the more complicated nonlinear Boltzmann equation, and thus is
an ideal starting point to develop new theories and techniques. We refer to [10-20]
for more details.

For the steady neutron transport equation, the exact solution can be approx-
imated by the sum of an interior solution U and a boundary layer ¢/. The inte-
rior solution satisfies certain fluid equations or thermodynamic equations, and the
boundary layer satisfies a half-space kinetic equation, which decays rapidly when
it is away from the boundary.

The justification of the diffusive limit usually involves two steps:

o o0
(1) Expanding U = Z fUpand U = Z ki as power series of € and proving

k=0 k=0
the coefficients Uy and Uy are well-defined. Traditionally, the estimates of

the interior solutions Uy are relatively straightforward. On the other hand,
boundary layers U satisfy one-dimensional half-space problems which lose
some key structures of the original equations. The well-posedness of boundary
layer equations are sometimes extremely difficult and it is possible that they
are actually ill-posed (for example certain type of Prandtl layers [6]).

(2) Proving that R = u® — Uy — Uy = o(1) as € — 0. Ideally, this should
be done just by expanding to the leading-order level Uy and Uy. However,
in singular perturbation problems, the estimates of the remainder R usually
involve negative powers of €, which requires an expansion to higher-order

terms Uy and Uy for N = 1 such that we have a sufficient power of €. In
N N

other words, we define R = u€ — Z ekUk — Zekl/lk for N = 1 instead of

k=0 k=0
R = u€ — Uy — Uy to get better estimates of R.

1.2.2. Classical Approach The construction of kinetic boundary layers has long
been believed to be satisfactorily solved since Bensoussan, Lions and Papanicolaou
published their remarkable paper [1] in 1979. Their formulation, based on the flat
Milne problem, was later extended to treat the nonlinear Boltzmann equation (see
[22,23]).

In detail, in €2, let n € [0, co) denote the rescaled normal variable with respect
to the boundary, t € [—m, ) the tangential variable, and ¢ € [—m, ) the velocity
variable defined in (2.21), (2.25), and (2.31). The boundary layer U/ satisfies the
flat Milne problem,

U _
sin¢a—0 Uy — Uy = 0. (1.6)
n

Unfortunately, in [24], we demonstrated that both the proof and result of this

oU
formulation are invalid due to a lack of regularity in estimating =0 Also, this glitch

was further captured by numerical tests in [21]. This pulls the whole research back
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to the starting point, and any later results based on this type of boundary layer
should be reexamined.

To be more specific, the remainder estimates require U{; € L°°, which needs
Uy

ot
oU oU
mean that 8_0 € L®°. Furthermore, this singularity 8_0 ¢ L°° will be transferred
n

n
U,
to —2 ¢ L. A careful construction of boundary data justifies this invalidity, that

€ L. However, though [1] shows that Uy € L, it does not necessarily

T
is the chain of estimates
oU, U,
R=o(l) € Uy el® & "L el® & 22 c ™, (1.7)
aT an
is broken since the rightmost estimate is wrong.
Note that the difficulty of above classical approach is purely due to the geometry
of the curved boundary 2. When 92 is flat, that is when €2 is the half space R x R,
the flat Milne problem (1.6) provides the correct description of the kinetic boundary
layer.

1.2.3. Geometric Correction While the classical method fails, a new approach
with geometric correction to the boundary layer construction has been developed
to ensure regularity in the cases of disk and annulus in [24] and [25]. The new
boundary layer U satisfies the e-Milne problem with geometric correction,
U
dng?to €
an R —en
where R, is the radius of curvature of the boundary. We proved that the solution
recovers the well-posedness and exponential decay as in the flat Milne problem,

U, N
cos¢8—¢0 Uy — Uy = 0, (1.8)

oU
and the regularity in 7 is indeed improved, that is T ¢ L. A similar formulation

was first introduced by Chandrasekhar in [3] to degcribe the transfer of radiations
with spherical symmetry, and our analysis provides a rigorous justification of its
implementation in the construction of kinetic boundary layers.

However, this new method fails to treat more general domains. Roughly speak-
ing, we have two contradictory goals to achieve:

e To prove diffusive limits, the remainder estimates require higher-order regular-
ity estimates of the boundary layer.

. . € oUy . .
e The geometric correction ——— cos ¢3_0 in the boundary layer equation

K
is related to the curvature of the boundary curve, which prevents higher-order

regularity estimates.

In other words, the improvement of regularity is still not enough to close the proof.
We may analyze the effects of different domains and formulations as follows:

. . € U C
e In the absence of the geometric correction ——— cos ¢a—¢0, which is the
Kk — €N

oU
flat Milne problem as in [1], the key tangential derivative 8_0 is not bounded.
T

Therefore, the expansion breaks down.
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oU
e In the domain of disk or annulus, when R, is constant, as in [24] and [25], 8_0
T

is bounded, since the tangential derivative 37 commutes with the equation, and
T

. U
thus we do not even need to estimate 8—0.
n

. . . U
e For general smooth convex domains, when R, is a function of t, 8_0 relates
T

U,
to the normal derivative 8_0’ which has been shown to be possibly unbounded

in [24]. Therefore, we get stuck again at the regularity estimates.

1.2.4. Diffusive Boundary In [7] and [8], for the case of diffusive boundary, we
pushed the above argument from both sides, that is improvements in remainder
estimates and boundary layer regularity.

In detail, consider the boundary layer expansion

U, T, w) ~Up(n, T, W) + eldi (n, T, W). (1.9)

The diffusive boundary condition

N 1 o oL I
u (Xo, w) = 5/“ Oue(xo, w)(w - v) dw + eg(xo, w) (1.10)
w-y>

leads to an important simplification: Uy = 0. As stated in [24], the next-order
boundary layer ¢/ must formally satisfy

ou
sinqb—1 + €

ol -
e —— — 4+ U U =0. 1.11
S o coso U~ 1 (1.11)

e . . ou .
Naturally, the diffusive limit requires an estimate of 8—] Here, a key observation
T

0
is that W = ﬂ satisfies
aT

i ¢8W+ ¢3W+W w
SiIn @ — —COSQ—— —
on R —en ¢

3, R u
= € cosp L. (1.12)
R, —en\ R, —€n ap

Note that the right-hand side is part of the {/; equation and its estimate depends on
ou a ou a
sin ¢a—l. In other words, the estimate of 8—1 depends on sin q)a—l, not just 8—1
T

which is possibly unbounded. The sin ¢ is crucial to eliminate the singularity. This
forms the major proof in [7] and [8], that is the weighted regularity of ;.

Our main idea is to delicately track ¢/} along the characteristics in the mild
formulation, and prove the weighted W' > estimates of the boundary layer. In

. ou . .
particular, we showed that e is bounded even when R, is not constant for general
T

convex domains. Furthermore, with a novel L%" — > framework, we prove a new
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remainder estimate, which does not require any higher regularity estimates of the
boundary layer.

In summary, in [7] and [8], we proved the diffusive limit: u€ converges to the
solution of a Laplace’s equation with Neumann boundary condition.

1.2.5. In-Flow Boundary and Basic Ideas It is notable that, for the case of in-
flow boundary as equation (1.1), the situation is much worse. The leading-order
boundary layer U is no longer zero:

. aZ/{() € 81/[0 -

—+ — — + Uy —Uy =0, 1.13
sin ¢ . +RK—677 cos ¢ o + Uy — Uy (1.13)
. ol € ol - 81/{0

—_—t — —+ U U = — —_— 1.14
sin ¢ o + R —en cos ¢ o0 + U 1 cos ¢ P ( )

2
The remainder contains the term aa—zil, which depends on the estimate of 88—5_/;0
Then we must prove W2 estimates in the boundary layer equation. In principle,
this is impossible for general kinetic equations as [5] pointed out.

On the other hand, we have a key observation that actually the singularity that
prevents higher-order regularity concentrates in the neighborhood of the grazing
set, so it is natural to isolate the singular part from the whole solution and tackle
them in different approaches.

Inspired by [21], we introduce a new regularization argument. Instead of trying
different weighted norms, we may also modify the boundary data and smoothen
the boundary layer in this modified problem.

To be precise, we decompose the boundary data g = & + &, such that

e the boundary layer % with data ¢, which we call regular boundary layer, attains

2
- eL®, Y=g
in most of the region except a small neighborhood of the grazing set;
o the boundary layer 4 with data &, which we call singular boundary layer, attains

second-order regularity in the tangential direction, that is

only first-order regularity in the tangential direction that is — € L, but the

T
support of & is restricted to a very small neighborhood of the grazing set with
diameter €“ for some 0 < o < 1.

In other words, for the remainder estimates, the extra power of € comes from two
sources: % gains power by expanding to the higher order, and Ll gains power
through a small support €“.

Definitely, this decomposition comes with a price. Even if we assume a—g =

. Y
O (1), after the decomposition, we can at most have % = 0(e™*) and % =
0(e™). We have to prove a much stronger weighted W !> estimates to suppress
such loss of power in €. Moreover, this decomposition introduces two contradictory

goals in the estimates:
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e toobtain W2 estimate of % with data &, we want « to be as small as possible;
the smaller « is (better smoothness of ¢), the better estimates we get;

e to obtain W1 estimate of {{ with data &, we want « to be as large as possible;
the larger « is (smaller support of &), the better estimates we get.

This balance is quite delicate and the estimates for the e-Milne problem with geo-
metric correction in [7,24,25] and [8] are not sufficient. We have to start from
scratch and prove the stronger version.

1.2.6. Main Methods To fully solve such a problem, we need an intricate synthe-
sis of previously developed methods, and the fresh regularization argument stated
above.

We inherit and modify the following ideas and techniques, which can be con-
sidered the minor contribution:

e Geometric Correction:
The e-Milne problem with geometric correction for f = % or 4,
. of € af _
sinp— + —— cos ¢ — —f=3S, 1.15
Vor R e gt (1.15)
has been shown to be the correct formulation to describe kinetic boundary layers
(see [24]). In this paper, we start from scratch and justify the detailed dependence
of f on the source term S. In particular, we isolate the contribution of S and S —S.
e Canonical Weighted W > Estimates of Boundary Layers:
The weighted W !+ estimates in €-Milne problem with geometric correction is

0
the key to estimate 8_f (see [7]). In this paper, we highlight the dependence of
T

W12 norm on the characteristic curves and the boundary data. The convexity
and the kinetic distance

1

R, — 2\ 2
;mwr:@-(-iiﬁmm>>, (1.16)

K

is key to this proof.

e Remainder Estimates:
This is the key step to reduce the regularity requirement in boundary layers. It
was originally developed in [24] and later strengthened in [7]. In the remainder
equation for R(¥, w) = u® — U — U,

ew-ViR+R—R =S, (1.17)
the estimate justified in [24] using the L% — L framework is
1 .
IR oo < — IISIIz2 + higher-order terms. (1.18)
€

We intend to show that ||R|;« = o(1) as € — 0. Since we cannot expand
to higher-order boundary layers to further improve S, the coefficient € =3 is too
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singularity. A key improvement in [7] for the diffusive boundary case is to develop
the L2 — L™ framework to prove a stronger estimate for m > 2,
1
IRl S ——

~ oy

- T ||S||L am_ + higher-order terms. (1.19)

2m—1

In this paper, we adapt it to treat the in-flow boundary case with a modified
L™ — L™ framework. The main idea is to introduce a special test function in
the weak formulation to treat R and R — R separately, and further to bootstrap
in order to improve the L estimate by a modified double Duhamel’s principle.
The proof relies on a delicate analysis using interpolation and Young’s inequality.

The key novelty of this paper lies in the innovative regularization argument and the
corresponding regularity estimates, which constitute the major contribution:

o Improved Weighted W!-* Estimates of Boundary Layers:
We combine several different formulations to track the characteristics and justify
that the solution of (1.15) satisfies

af
an

af
———cos¢p—
R —€n Blo]

< Clin(e)® (nanoo +

L®L>® '

i

L®L>®

0
(e+§)—p

S o0 J o0
” + ISl oo,

LOO

n N
Zan

+ IlfIILooLoc), (1.20)

L>®L>

where the boundary data p = ¢ or &. The extra weight € 4+ ¢ suppresses the

9
singularity in — and —. In particular, the estimate does not depend on —.
a9 a9 d¢

a € a
This is the key step to isolate the contributions of sin —f and ——— cos d)—f,
an R —€n a¢

which is crucial, later on, for the W2 estimates.
The estimate is obtained through a delicate absorbing argument and a novel
characteristic analysis of half-space kinetic equations.

2
° Py Estimate of Regular Boundary Layer:
T

As pointed out in [5], weighted W2 > estimates of general kinetic equations are
not available. This is true even for %7 with modified boundary data. In principle,

Uy 9*U . .
we cannot bound ——— and ——-. Instead, we propose a delicate analysis to
In? Rl
2

. 0 . .
show that we can estimate without referring to the other second-order

972
derivatives. This is quite unusual and cannot be done in a direct fashion.

Roughly speaking, we need a chain of estimates
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5. = 15 G)
LooLoo ot at Lo,
- d 3@/0 4 € ¢ d 352/0
— | — ——cos¢p— | —
gan 0T LOL© RK —€n 8(15 at L[
- € o ¢ 0 (3%0)
RK —€n ¢ Lo,
U
= Lcosqﬁ—o (1.21)
R, —€n 09 || o000

Here, none of these steps is a direct application of the above improved weighted
W1 egtimates. Instead, we need a careful arrangement of these terms and utilize
absorbing arguments in a delicate way. Eventually, we can justify that

oYU,
221

- ~ Y (1.22)

2m
L2m—1

]
¢ — Estimate with Smallness of Singular Boundary Layer:

nge, the major difficulty is to preserve the smallness of boundary data. The

key observation is that in our proof of well-posedness and W !> estimates,

we only use two types of quantities: the integral in ¢ and the value along the
characteristics. Therefore, we introduce adomain decompositionas xj : ¢ < €
and x» : ¢ = €%, and estimate {{ in each domain separately.

(1) x1:since & = O(1), we know that Ll = O (1) and its major contribution
is from the boundary data, so it is relatively large but restricted to a small
domain for o > 0.

(2) xo:since & = 0, we know that { = O(€*) and its major contribution is
from the non-local operator $1, so it is relatively small and spread over most
of the domain. .

In the remainder estimate, the estimate of 4 is in L2»-T, so we can combine

these two contributions in an integral to obtain smallness

alo

— 2mmita, 1.23
Y (1.23)

€

2m
L2m—T1

Applying these new techniques, we successfully obtain the diffusive limit: ¢ con-
verges to the solution of a Laplace’s equation with Dirichlet boundary condition.

1.3. Main Theorem
Theorem 1.1. Assume g(X9, w) € C (7). Then for the steady neutron transport

equation (1.1), there exists a unique solution u¢ (X, w) € L (Q x SYY. Moreover;
forany 0 < § << 1, the solution obeys the estimate

|4 = U = U] sty S CO, (1.24)



2094 LE1 Wu

where U (X) satisfies the Laplace equation with Dirichlet boundary condition

AUG) =0 in @,
{U(?co) = D(Zo) on 89, (1:25)

and U(n, T, ¢) satisfies the e-Milne problem with geometric correction

sind)% — ;cosd)y +U-U=0,
UQ, 7, ) = g(t, ¢) — D(t) for sing >0, :
UL,t,¢0)=UL, T, ZIP])

for L = e_%, Zp] = —¢, n the rescaled normal variable, Tt the tangential
variable, and ¢ the velocity variable.

Remark 1.2. The implicitly defined function D is determined through the study of
the e-Milne problem with geometric correction

sin¢ﬂ: — ;cosqﬁg +F—-F=0,
an R (t) —en ap (1.27)
F@, t,¢) =g(t,¢) for sing >0, :

F(L,t,¢)=F(L,t, Z[9]).

Theorems 4.3 and 4.8 confirm that there exists 77 (t) € R such that 7 — Fp,
satisfies desired L? and L estimates. The proof of these theorems shows that the
mapping g — JF is one-to-one and linear. Here we simply take D(t) = Fr(t)
and it can also be rewritten as D(X).

Remark 1.3. The boundary layer ¢/ is defined through the equation (1.26). Based
on the analysis in Theorems 4.3, 4.8, and 4.9, we know that i/ € L is uniquely
determined and decays exponentially fast to zero as  — oo. The mapping g — U
is linear and it provides the boundary data D for the interior solution.

Remark 1.4. Note that the effects of the boundary layer decay very fast away from
the boundary. Roughly speaking, this theorem states that for X not very close to
the boundary, u€ (X, W) can be approximated by the solution of a Laplace equation
with Dirichlet boundary condition.

1.4. Notation and Paper Structure

Throughout this paper, C > 0 denotes a constant that only depends on the
domain €2, but does not depend on the data or €. It is referred as universal and can
change from one inequality to another. When we write C(z), it means a certain
positive constant depending on the quantity z. We write a < b to denote a < Cb.

This paper is organized as follows: in Section 2, we present the asymptotic
analysis of the equation (1.1) and introduce the decomposition of boundary layers;
in Section 3, we establish the L well-posedness of the remainder equation; in
Section 4, we prove the well-posedness and decay of the e-Milne problem with
geometric correction; in Section 5, we study the weighted regularity of the e-Milne
problem with geometric correction; finally, in Section 6, we give a detailed analysis
of the asymptotic expansion and prove the main theorem.
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Remark 1.5. The general structure of this paper is very similar to that of [7] and [8].
In particular, Section 3,4 and 5 seem to be an obvious adaption of the corresponding
theorems there. However, we introduce new techniques to delicately improve the
results of [7], so it needs a careful handling and a fresh start from scratch.

2. Asymptotic Analysis

In this section, we will present the asymptotic expansions of the neutron trans-
port equation (1.1).
2.1. Interior Expansion
We define the interior expansion as follows:
UG, ) ~ Up(E, ) + €U) &, B) + €2 Ua (X, B), 2.1)

where Uy can be determined by comparing the order of € by plugging (2.1) into
the equation (1.1). Thus we have

Uy — Uy =0, (2.2)
Uy —U, =—w- VU, (2.3)
Uy — Uy = —w -V, Uj. (2.4)

Plugging (2.2) into (2.3), we obtain
Uy =U; —w- VUp. (2.5)
Plugging (2.5) into (2.4), we get
Uy — Uy = —w - V(U — 0 - VUp)
= — - VU1 + i, Uo + w3ds, ., Uo + 2wiw2d}, ., Up. (2.6)
Integrating (2.6) over w € S', we achieve the final form

Ay 00 =0, 2.7

which further implies Uy (X, w) satisfies the equation

Uy = U,
{ AU = 0. 8)
In a similar fashion, for k = 1, 2, Uy, satisfies
Uk :Uk_ﬁ)'VxUk—ls
(2.9)

Ax(jk = —/ w - VUp_1 dw.
sl

It is easy to see that Uy satisfies an elliptic equation. However, the boundary condi-
tion of Uy is unknown at this stage, since generally Uy does not necessarily satisfy
the in-flow boundary condition of (1.1). Therefore, we have to resort to boundary
layers.
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2.2. Boundary Layer Expansion

Besides the Cartesian coordinate system for interior solutions, we need a local
coordinate system in a neighborhood of the boundary to describe boundary layers.

Assume the Cartesian coordinate system is X = (x1, x). Using polar coor-
dinates system (r,0) € [0, 00) x [—m, ) and choosing pole in €2, we assume
Xo € 0Qis

{xl,o =r(#)cosb, (2.10)

X2,0 = V(G) sin6,

where r(0) > 0 is a given function describing the boundary 9€2. Our local coor-
dinate system is similar to the polar coordinate system, but varies to satisfy the
specific requirements.

In a neighborhood of the boundary, for each 6, we have the outward unit normal
vector

} <r(9)cos9 +7r'(0)sin6 r(0)sinf —r (9)0059> . 2.11)

“\ V@rerer @6

We can determine each point X € € as X = Xo — s where j is the normal distance
to a boundary point Xo. In detail, this means

r(0)cos® +r'(0)sin 6

r@?2+r6)7? 2.12)

r(0)sind — r’(0) cos

rO7 +1'6)

d
where r'(0) = d_; Itis easy to see that £ = 0 denotes the boundary €2 and u > 0

x1 =r(@)cosb —pu

X2 =r(@)sind — u

denotes the interior of €2 (before touching the other side of the domain boundary).
(u, 0) is the desired local coordinate system.
By chain rule (see [7]), we may deduce that

00 _ MP ol _ N 00 _ NP o _ M 2.13)
0x] _P3+QM’ 0x] P’ axz_P3+Qll’ 3)62_ P’ '
where

P=(? -i-r/z)%, O=rr"—r>=2r'"*, M =—rsin6 +r cosb,
N = rcosf + r’siné. (2.14)

Therefore, note the fact that for CZ convex domains, the curvature is

r2 4282 —rp”

k() = 3 (2.15)
(}”2 + r/2)§
and the radius of curvature is
2 243
Re(6) = v ) 2.16)

k(0) TRy
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Substitution 1:
Let (x1, x2) — (u, 0) with (i, 0) € [0, Ryin) X [—m, ) for Ry, = ming R, as
r(0) cosf + r'(0) sin 6

x| = r(@) cosf — 1% r(0)2 T r/(9)2

. r(6)sin6 — '(8) cos 0 2.17)
X =r(@)sinfd —
r(©)% +r'(0)%
and then the equation (1.1) is transformed into
< —rcos@ —r’'sin@ —rsiné)—kr’cos@)@uE
el wy I + w» I
(r2 +V’2)7 (r2 +V’2)7 ou
n —rsin® +r' cos 6 N rcosd +r'sinf '\ du¢ u =0
el w w u® —uc =0,
A=k PG+ DA — k) ) 90
u¢(0,6,w) = g(@, w) for w-v <0,
(2.18)
where
w.azwerOSO—i—r’sinQ wzrsin@—r’C(l)SQ (2.19)
(r2 + r/2)§ (r2 + r/2)§
Noting the fact that
2
M 2+ N\?2 [ —rcos® —r'sinf
P P N 2+ r/2)%
2
—rsinf +r’ cos @
+ . =1, (2.20)
(2 + 7123
we can further simplify (2.18).
Substitution 2:
Let6 — t witht € [—m, ) as
. rsin® — ' cosf
SINT = 2—/2)1,
r=+r=)2
rcos@ + r'sinf (2.21)
COST = ——————
(}’2 + r/2)§
which implies
d
d—; — k(242 > 0. (2.22)
Then the equation (1.1) is transformed into
. ous € . ouc
—€ (w1 coST + wysinT) % R (wysint — wyCcOST)
K K T H (2.23)

+u¢ —u¢ =0,
u€0,7,w) =g(r,w) for w-v <0,
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where
WV = wjcosT + wysinT. (2.24)

Substitution 3:

R .
We further make the scaling transform for © — n with n € |:0, mm) as
€

n=4 (2.25)
€
which implies
ou¢ 19u
Lot (2.26)
ou € dan
Then the equation (1.1) is transformed into
. ou¢ € . ou€
—| wicost 4+ wysint — ———(wysint —wycosT
an R, —e€n aT (2.27)
4u¢ —u¢ =0, ’
u¢0,7,w) =g(r,w) for w-v <0,
where
W-V =wcosT + wysinT. (2.28)
Substitution 4:
Define the velocity substitution for (wy, wy) — & with & € [—m, ) as
w) = —siné
{ wy = —cosé&. (2.29)
We have the succinct form of the equation (1.1) as
in(z + &) 2 — c+62 pu—ic =0
sin(t — — ————cos(t u® —ut =0,
an Ry —€& at (2.30)

u€(, 1,&) = g(1,&) for sin(t +&) > 0.

Substitution 5:
As [24] and [7] reveal, we need a further rotational substitution for & — ¢ with
¢ €[—m, ) as

p=1t+¢& (2.31)
and achieve the form
S.n¢8u€ € cos du¢ n u u =0
n¢g——— ——— u® —u® =0,
on R —€n ¢ T (2.32)

u¢(0, 1, ¢) = g(r,¢) for sing > 0.

This step is trying to compensate the variations of the normal vector v along the
boundary. A bi-product of such substitution is that we decompose the tangential
derivative and introduce a new velocity derivative.
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We define the boundary layer expansion as follows:

u(771 T, d)) ~ Z/{O(na T, ¢) + EUI(U, T, ¢)7 (233)

where U can be determined by comparing the order of € via plugging (2.33) into
the equation (2.32). Thus, in a neighborhood of the boundary, we have

. 0Uy € Uy -
0 cos¢ Tl Uy — Uy =0, 2.34
sin ¢ on RK—enCOS¢ 39 + U ] (2.34)
. oy € oy - 1 Uy
e —— — U U = — —, (235
sin ¢ o R —en cos ¢ o0 + Uy 1 R —en cos ¢ Py ( )
where
_ 1 i
it ©) = 5 / U(n. 7. 6) . (2.36)
T J—n

We call this type of equations the e-Milne problem with geometric correction.

2.3. Decomposition and Modification

In this section, we introduce the important decomposition of boundary data,
which can greatly improve the regularity. The idea is adapted from [21] for the flat
Milne problem.

Consider the e-Milne problem with geometric correction with L = ¢~ 2 and

Z1P) = -,

af af
s1n¢——R UCS¢_¢+f f=0,

1, ¢) = g(¢) for sing >0,
f(L,¢) = f(L, ZI$]).

(2.37)

We assume that g(¢) is not a constant and 0 < g(¢) < 1. This is always achievable
and we do not lose the generality since the equation is linear. For some o > 0
which will be determined later, define two C*° auxiliary functions

for ¢ € (0,€*1U [ — €%, m),

0
81(9) = {g(¢) for ¢ € [2€%, 7w — 2¢%], (2.38)
and
)1 for ¢ € (0,€*]1U [ — €%, 7),
82(9) = {g(qs) for ¢ € [26%, 7 — 2€]. (2.39)

A standard construction using mollifier justifies the existence of g; fori = 1, 2.

e 9
B;fﬁl' < Ce @ and W:g" < Ce 2. Let fi(n, ¢) and

f2(n, ¢) be the solutions to the equation (2.37) with in-flow data g1 (¢) and g2 (¢)

Also, we can easily obtain
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respectively. Then by Theorem 4.8, we know f and f; are well-defined in L°°. By
Theorem 4.10, they satisfy the maximum principle, which means

10,07 — f1(0) = £1(0,77) — f1(0) = — f1(0) < O, (2.40)
£0,07) — £0) = £0,77) — LO)=1— £0)>0. (241)

Therefore, there exists a constant 0 < A < 1 such that

(10,09 = /i) + (1 =1 (£0.0) - @) =0, 242)
M(AO7) = fi@) + 1 =1(LO.7) = AO) =0.  (243)

Let g, (¢) = Ag1(¢) + (1 — 1) g2(¢) and the corresponding solution to the equation
2.37)is fo.(n, ¢). We have

£1(0,07) = f2(0) = f2(0,77) = f2(0) = 0. (2.44)

Since for ¢ € (0,€“] U [wr — €%, ), g» = 1 — A is a constant, we naturally have

il
98 _ 0. We may formally solve from equation (2.37) that

¢

af)L 1 € ag)\
A = cos¢p—-
R, —en ¢

0 |=0,¢€(0,ev1Ulr —e, ) sin ¢ $e(0,6¥1U[r —e?, )

) =0. (245)

()

n=0,p€(0,e¥U[r —e%*,m)

Note that g, (¢) = g(¢) for ¢ € [2€%, m — 2¢€“], so our modification is restricted
to a small region near the grazing set and we can smoothen the normal derivative
at the boundary.

This method can be easily generalized to treat other g(¢). In principle, for
g(¢) € C!, we can define a decomposition

(@) =9 (9) + &(9), (2.46)

such that &(¢) = 0 for singg = 2¢%, and the solution to the equation (2.37)
with in-flow data ¢ (¢) has L° normal derivative at n=0. Such a decomposition

d
comes with a price. Originally, we have H I8 H < C. However, now we only

have

LOO

d
< Ce ™ and "—6
d¢

< Ce™@ due to the short-ranged cut-off
LOO
function.
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2.4. Matching Procedure

The bridge between the interior solution and boundary layer is the boundary
condition of (1.1), so we first consider the boundary expansion

Uo + % + o = g, (2.47)
Ui+ % =0. (2.48)

Here % and i1y are boundary layers corresponding to the decomposed boundary
data & and & respectively. We call % the regular boundary layer and 4 the singular
boundary layer. They should both satisfy the e-Milne problem with geometric
correction.

Step O: Preliminaries.

Define the weight function

R, —€n 2\ 2
t(n, @) = (1 — <R— cos ¢> ) . (2.49)
Let
€
F(esn, 1) = —m, (2.50)

and the length for e-Milne problem as L = e_%. For ¢ € [—m, 7], denote Z[¢] =
—9.

Step 1: Construction of %, tly and Uj.

Define the zeroth-order boundary layer as

w0, T )= Fom, T, ¢) — ffogL(r),
0.7 9.7 —
sinq)a—0 + F(e;n, 1) COS¢T¢O + o — Fo =0,
n

(2.51)
00, 1,9) =9 (z, ¢) for sing > 0,
Fo(L, T, ¢) = Fo(L, T, ZI$]),
with %, (7) is defined in Theorems 4.3 and 4.8, and
ﬂ{)(fl’a% ¢) = SO(T” T, ¢) - E%L (T)5
. 0 . _O R
smqﬁﬁ—}—F(e,n, T)Ccos ¢ o0 + Fo — S0 =0, (2.52)

500, 7, ) = &(t, ) for sing > 0,
So(L, 7, ¢) =Jo(L, 7, Z[$)),

with §o, 1 (7) is defined in Theorems 4.3 and 4.8. Also, we define the zeroth-order
interior solution Uy (X, w) as

Uo(¥, ) = Up(%),
ADo(H) =0 in , (2.53)
Uo(Xo) = Fo,0(t) + Fo,L(r) on 9.
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Roughly speaking .%y 1. (t) and o, 1. (t) represent the value of .%( and o at infinity
(since L — oo as € — 0).

Step 2: Construction of %4 and Uj.

Define the first-order boundary layer as

U, t,0)=F1(0n, 1,¢) — F1,L(1),
1 0%

0.7 0.7 —
sm¢— + F(e; n, t)cos¢—¢ + I - F=— ¢—
an

R —en
Z10,1,¢9) =w - V, Up(0, T, w) for sing > 0,
FUL, T, 9) =F1(L, T, Z$)),

(2.54)

with .%| 1 (t) is defined in Theorem 4.3 and Theorem 4.8. Then we define the
first-order interior solution U; (X, w) as

Ui(X, w) = Uy (X) — w - VyUp(X, W),

AT (R) = —/ (a} YV, Up (X, a'))) dib in Q, (2.55)
_ St
Ui(xo) = f1,.(r) on 9.

Note that we do not define 4 here.

Step 3: Construction of Us.

Since we do not expand to %5 and i,, we define the second-order interior solution
as

Up(X, W) = Us(¥) — 0 - VU1 (X, W),

AT () = —f (w VU (R, J))) di in Q, (2.56)
_ St
U, (%p) =0 on 9L2.

Here, we might have O (¢€?) error in this step due to the trivial boundary data. Thanks
to the remainder estimate, it will not affect the diffusive limit.
3. Remainder Estimate

In this section, we consider the remainder equation for u(x, w):

{ew~qu+u—u=f(x»w) in €, (3.1)

u(Xg, W) = h(xp, w) for w-v <0 and Xy € 992.

We define the L” norm with 1 £ p < 0o and L norms in € x S' as usual:

1
> o - S\ 7

I fllLr@xsty = (LL' [f (X, w)|? dlde> ; (3.2)

I £l oo (@xsty = €sSSUPG iyeaxs! |f (X, ). (3.3)
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Define the L? norm with 1 < p < oo and L® norms on the boundary as follows:

N Y2
T (//Flf(x,w)l”lwwl dwdx) , (3.4)
1
> o - o > -\7
1oy = ([[ 1G5 aiai) (5
I
Il fll ooy = €SSSUP (¢ @yer |f (X, W), (3.6)
1l sy = esssup G yers |f G ). (3.7)

From now on, we denote dy = (w - v) di> dX on the boundary.
In the following, we always assume that Q2 is convex and bounded. The proof
can be decomposed into two major steps:

o L2 estimates:
Directly energy estimates can bound |[u — u||12(q g1y, SO the key is how to con-
trol iz. Here, we utilize the spectral gap of the transport operator w - V, in bounded
domains to construct special test functions such that ||u|| 7 2 ©@xsh shows up explic-
itly in the weak formulation. In particular, in the L>" estimates, we apply Young’s
inequality and interpolation estimates to tackle the other terms in the weak formu-
lation.
e L°° estimates:

This is based on the mild formulation. We use Duhamel’s principle to rewrite the
solution along the characteristics. Moreover, we may expand & into the velocity inte-
gral and apply Duhamel’s principle again to get multiple integrals. Here, convexity
and boundedness guarantee that the mild formulation will not produce singularities
inside the domain (see [9]). Then a delicate substitution will transform pointwise
estimates into the control of space integrals, which is provided by the above L>"
estimates.

This general method constitutes the so-called L>" — L> framework.

The remainder estimates for the neutron transport equation with diffusive
boundary was proved in [7] and [8]. The case with in-flow boundary was first
shown in [24] based on L2 — L™ framework. The main results in [24] are as
follows:

Theorem 3.1. The unique solution u(x, w) to the equation (3.1) satisfies

1 1 1
1 ||u||L2(r+) + ||M||L2(Q><Sl) é C<E_2 ||f||L2(gsz1) + 1 ||h||L2(rf) ) (3-8)
€2 €2

Theorem 3.2. The unique solution u(x, w) to the equation (3.1) satisfies
1
lull ooy + Nl poo(xsty = C(E_’; I fllz2@xsty + 1 1l oo (@xsty

1
+— lIhllp2r-y + 1l oo -y ) (3.9)

€2

The existence and uniqueness of solution u (X, w) was justified in [24]. Here
we will focus on the a priori estimates and prove an improved version.
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3.1. L*" Estimate

In the following, we assume m > 2 is aninteger and let o(1) denote a sufficiently
small constant.

Lemma 3.3. (Green’s identity) Assume u(X, w), v(¥, w) € L*(Q2 x S and w -
Veu, w-Vev € L2(Q x SY) with u, v e L>(T). Then

// ((17) -Veu)v + (w - qu)v> dxdw = f uvdy. (3.10)
QxS r
Proof. See [2, Chapter 9] and [4]. O

Theorem 3.4. The unique solution u(x, w) to the equation (3.1) satisfies

1 _ 1 _
— el 2y + il 2m@xesty + < lu —ull2@xst
€2

1
= C<0(1)6’" ( lull = @xst) + ||u||L°°(F+))

1 1
o W lexsy + Z I 2o o o
1

+— lll2 -y + ”h"L’"(F—)>~ (3.11)
€2

Proof. Step 1: Kernel Estimate.

Applying Green’s identity to the equation (3.1). Then for any ¢ € L*(2 x S')
satisfying w - V¢ € L?(€2 x S') and ¢ € L*(I"), we have

e/u¢dy—e// (@-Vx¢)u+// (u—ﬁ)¢:// fo. (3.12)
r QxS! QxS! QxS!

Our goal is to choose a particular test function ¢. We first construct an auxiliary
function &. Naturally u € L% (Q x S!) implies i € L>"(£2) which further leads to

()1 e L (2). We define £(X) on  satisfying

_ (7\2m—1
{Ag = (i1) in Q, (3.13)

E=0 on 9Q2.

In the bounded domain €2, based on the standard elliptic estimates, we have a unique
& satisfying

< - 2m71’ — —2m—1
161 o oy o SC| @] = ClAIG, . G4
We plug the test function

¢ =—w- V& (3.15)

into the weak formulation (3.12) and estimate each term there. By Sobolev embed-
ding theorem, we have
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—12m—1
19120 < @ < ClEN s 2 < Clal}g, (.16
< < —12m—1
191, o, o S CUEN o < ClAT G, (3.17)

Then we can decompose

—6// (@'chb)bt:—f// (W - V)i
QxS! QxS!

—€ // (W - Vi) (u — it). (3.18)
QxS!

We estimate the two term on the right-hand side of (3.18) separately. By (3.13) and
(3.15), we have

—€ // (W - V)it
QxS!

=c //Q o 1Z<w1(w1311€ + w20128) + wa (w1912 + wzazzé))

= G// ﬁ<w%311§ + w%322$) = 2677/ u(d11§ + 9226)
QxS! Q

= ellal 5 g - (3.19)

In the second equality, the cross terms vanish due to the symmetry of the integral
over S!. On the other hand, for the second term in (3.18), Holder’s inequality and
the elliptic estimate imply

—€ // (W - Vi) (u —it) = Ce [lu — itll pom(qust) Va9
QxS!

LQ*(Q)
§ C€ ||M — M”LZm(ngl) “E” 22%(9)
< Cellu — ullp2m@xsty ”””LZm(Q) (3.20)

Based on (3.14), (3.16), (3.17), Sobolev embedding theorem and the trace theorem,
we have

m < m S m
IVl iy oy S CIVEN 1 am S CUVAEN y n
< < 2m—1
< ClEN 2, o S ClAITL G - (321)

Based on (3.14), (3.17) and Holder’s inequality, we have

e/u¢>dy=6/ u¢dy+6/ ugp dy
r r+ -

< Ce V&N, o (llulle(r+) + ||h||Lm(r—)>

< Ce a2ty o) (nuan(m + Wl ey ) (3.22)



2106 LE1 Wu

Also, we have

J[ =0 < Cloliaguan I = il
X

< Clal g, It = ill2@us) (3.23)
[ #9510l I Iz
X
< Clal g 1/ 12@xs - (3.24)

Collecting terms in (3.19), (3.20), (3.22), (3.23) and (3.24), we obtain
€ ”’ZHLZ’”(QXSI é C(E ||I/t — ’/_t”Lz'"(QxSl) + ||I/£ — ﬁl'Lz(QxSl) +€ ||M||Lm([‘+)

+ 1 l2@xsty + € lhllpma-) ) (3.25)

Step 2: Energy Estimate.
In the weak formulation (3.12), we may take the test function ¢ = u to get the
energy estimate

1 2 -2 //
= d — = . 3.26
26/1_‘ |M| Y + ||M u”LZ(QXSl) axs! fM ( )

This naturally implies

€ Nulagpr, + it — 22 g0, = / /Q kel 62D

On the other hand, we can square on both sides of (3.25) to obtain

21512 2 =12
€ ”u”LZm(stl) § C<6 ”M - u”LZ’"(QXSl) + ||l/l u”LZ(QXSl +€ ”u”L”’(l'”r)

Multiplying (3.28) by a sufficiently small constant and adding it to (3.27) to absorb
lu — MIILQ(QxSI), we deduce

=12
€ ”””LZ(Fﬂ + 6 ”M”Lzm(QXSl + ||M - u”LZ(QXSl)

< C(e2 llu — ﬁnizm(gxsl) + e llull sy + 1172 s

xS!

By interpolation estimate and Young’s inequality, we have

2 m=2 1 2 2 m—2
el ey < el ey el 2 sy = ( el U1 r+)>< ”””LI‘”‘”))
€ m
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1 2 2 m—=2 m—=2 m=2
= C< ) IIMII’L"Z(F+)> +0(1)<€ m IIMIIL?fO(r+))

2

€ m
< ¢ o
S — = lullp2qovy +o(Dem flullpoor+) - (3.30)
€ 2m
Similarly, we have
_ L _om=l
“I/t - M”Lz’"(QxSl) = ”I/t - u”Zz(QXSl) ||M - u||L’c;l<>(QXSI)

1 1 m—1 m—1
— | — _g|m 2 AR
- < ,-,,,21 ||I/l u”LZ(QXSl))<€ m ”l/l M”Loc(QXSl))
€ m

1 L "

€ m?

m—1 m—1 m—1
w2 u—ul "
+O(1)(€ ”M u||L°°(Q><Sl))

C - 1 _
§ P ||I/l — u”LZ(stl) + 0(1)6’" ||I/l — M”Loo(ngl) .
€ m

(3.31)

. 1 . .
We need this extra e for the convenience of L* estimate. Then we know for
sufficiently small €,

_m=2 2
 ullfmrsy S CEH Nl oy + 0D ullf oo
2
< o(De llullFa sy + 0D [l oo oy - (3.32)

Similarly, we have

2 P 2 2m=2 P 242 2
€ ||M - u”LZm(stl) é € mn ||M - MHLZ(QXSI) + 0(1)6 +m ”u”LOO(QXSI)

A

o(1) lu |+ o(heta

”M ||i°°(Q><S1) .
(3.33)

=12
- u”LZ(stl

Inserting (3.32) and (3.33) into (3.29), we can absorb |lu —ull;2qxs1) and
2

120+ into left-hand side to obtain

€ [lull

2 217112 il12
€ ||u“L2(F+) te ”u“Lzm(QxS]) + llu = M”LZ(QXS])

2
< C(o(l)ezw ( 124117 oo st + ||u||ioo(m) + /172

+//Q g fute 127y + € ||h||im(r)>. (3.34)
X

We can decompose

/f fu:/f f12+// Flu— i), (3.35)
QxSl QxSl QxS!
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Holder’s inequality and Cauchy’s inequality imply

//QS I R ] FEe 90
< = IIfIIi oo T o @l o gygry s (3:36)

and
//Q Slf(u—ﬁ)gC||f||iz(ml)+o(1)||u—ﬁ||iz(ml). (3.37)
X

Hence, absorbing €2 || into left-hand side of

(3.34), we get

and |u — it|?

LZW(QXSI LZ(Q Sl)

2 201512 2
€ ||M||L2(1—~+) + € ”M“LZm(ngl) + llu — u||L2(Q><S1)

2
g C<0(1)62+”’ ( ||M||ioc(g><sl) + “u||%oo([‘+)>

1 2 2
+ ”f”LZ(stl 6_2 ”f”LZr%i’il(Q +e€ ”h“LZ(F’)

xS
+eX Al m ey ) (3.38)
which implies

1 _ 1 -
T ||M||L2(r+) + ”u”LZW(QXSl) + Z ||M — u”LZ(QXSI)
2

1
S C<0(1)Em<”’/l”L°°(Q><S]) + |Iu||L0<>(r+)>

1
- ||f||L2(Q><Sl) t3 ||f|| L2 xS g Al 2 -y
+ 2l Loy ) (3.39)
O
3.2. L Estimate
Theorem 3.5. The unique solution u(x, w) to the equation (3.1) satisfies
lull oo (@xsty = C<61+m I f 12 @xsh) + 2 + 1l Lo xsty
1
+—— 2oy + — lhllpn -y + ||h||L°°(l"))~ (3.40)
62+m €m
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Proof. Step 1: Double Duhamel iterations.
We can rewrite the equation (3.1) along the characteristics as

p
u@E, B) = h(E — ey, H)e" +/ f(; — e(tp — 5)ib, J;)e*(“’*s) ds
0

1 I . . R
(/ u(x —e(tp — s)w, w,) dwt>e_(t”_s) ds, (3.41)
Sl

27 Jo
where the backward exit time ¢, is defined as
(X, W) =inf{t = 0: (X —etw, w) e '}, (3.42)

which represents the first time that the characteristics track back and hit the in-flow
boundary. Note we have replaced u by the integral of u over the dummy velocity
variable w;. For the last term in this formulation, we apply the Duhamel’s principle

again to u()_c' —e(tp, — W, J)t> and obtain
Iy
u@@, B) = h(E — ey, H)e™™ + / f()? — e(ty — 5)ib, 11})6_(”’_“) ds
0

1 [ R i o ]
+— </ h(x — 6([}; - S)w — ESpWy, wt)C_sb dwt)e_([b_s) ds
21 0 sl

1 p Sh . .
+E A </Sl</0 f(x—e(tb—s)w

—e(sp — 1)y, J),>e—“b—’> dr> dw,>e—<’b—” ds

1 tp Sh . .
+— <[ (/ ﬁ(x—e(tb—s)w
2 0 sl 0

—e(sp — r)ﬁ),)e*“b*’) dr) dﬁ)l>e(”’s) ds, (3.43)
where the exiting time from ()? —e(ty —s)w, 171,) is defined as

sp(%. 0, 5, i) = inf{r =0 : (2 — ety — 8)ib — eridy, J;t) eT™). (3.44)

Step 2: Estimates of all but the last term in (3.43).
We can directly estimate as follows:

h(F — etpiv, W)e ™| < Nhll oo » 545)
1 ) R i o ]

R / (/ h(.x - G(tb - S)w — ESpWy, w[)e_sb dwt>e_(th_s) ds

21 Jo sl
= Wl zoor-y s (3.46)

I
V f()? — ety — )i, u?)e*“b*s) ds| < 1l egxst) (3.47)
0
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1 173 Sh
—/ (/ (f f(xX—e(ty —sHw
2 0 S 0

—e(sp — r)Wy;, wy)e 6" dr) dﬁ),)e(tbs) ds

Step 3: Estimates of the last term in (3.43).
Now we decompose the last term in (3.43) as

p Sh I tp
[ R T AR RT A
0 st Jo 0 St sbfréﬁ 0 Sl sbfrzé

for some small § > O to be determined later. We can estimate /; directly as

1p Sh
I < / e—“h—”(/ ]l Lo sty dr) ds < C8 [lull ooqusty - (3.50)
0 max(0,s,—3)

Then we can bound /> as

p max (0,sp—3)
L < c/ / / ‘u(f — ety — )ib
0 st Jo

—e(sy — r)ﬁ),) e~ =9 dr dib, ds. (3.51)

By the definition of #;, and s;,, we always have X — e(f, — s)w — €(sp — r)w; € Q.
Hence, we may interchange the order of integration and apply Holder’s inequality
to obtain

I8 max (0,s,—38)
L < c/ ((/ / 1Q(£—e(tb—s)ﬁ;—e(sb—r)w,)
0 st Jo

1

N N N 2m 2m
‘ﬁ(x —€(tpy —s)w — €(sp —r)w,) dw;, dr)

max(0,s,—3)
x(/ / lg(fc—e(tb—s)ﬁ)
st Jo
2m—1

2m
—e(sp — r)ﬂ),) dw, dr> >e_(’b_s) ds. (3.52)

Note that w; € S!, which is essentially a one-dimensional variable. Thus, we may
write it in a new variable ¥ as W, = (cos ¥, sin ¥r). Then we define the change of
variable [—7, T)XR — Q: (Y, r) = (y1, 2) = ¥ = X—€(tp—s)W—e(sp—1) Wy,
that is

y1 =x1 —€(tp —s)wy — €(sp — 1) cos Y,

y2 =xp —€(tp — s)wy — €(sp — 1) sin . (3.53)

Therefore, for s, — r = 8, we can directly compute the Jacobian

’3()’1, y2)| H —e(sp — 1) sinyr € cos ¥

_ 200 2
S | = e(sb—r)cos¢esin1/fH_e(sb r) =2 €8, (3.54)
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Hence, we may simplify (3.52) as

1p
Iz,c/ (/ ()2 dy) ~-9) 4
0
=
/ ( / )" dy) e~ (=9 g
6m82m

= —7 ||14||L2m(g2><§1) (3.55)

Em(SZm

IN

Step 4: Synthesis.
In summary, collecting (3.45), (3.46), (3.47), (3.48), (3.50) and (3.55), for any
(X, w) € Q x S, we have

(%, D)) < C8 llull poggrsty + il 2m st

emd2m

+C< ”f”LDO(QXSl) + ”h”Loo(r—) ) (356)

1 - -
Let § be sufficiently small such that C§ < —. Taking supremum over (X, w) € '™

in (3.56) and using Theorem 3.4, we have

1
el ooty = 3 lull poo(@xsty + C<0(1)( lull oo (@xsty + ||M||Loo<r+))

1
+61+1 ||f||L2(stl) + 1 £l 7(9 shy + ||f||L00(gz><sl)
1
+——— Il + — ||h||Lm(r y + 1Al oo - )) (3.57)
62+ Em

Absorbing o(1) [|ul| oo (r+) into the left-hand side, we obtain
1
||14||L00(r+) = B ||M||L<>0(stl) +C|o(D) ”M”LOO(QXS])

1
+El+ I fl2@xsty + = e £l L2 @xs)) + 1 f Lo @xsh

1
+——— lallp2q0-y + — IAallpm -y + Rl poo -y ) (3.58)
eztm em

Taking supremum over (X, W) € £ X S'in (3.56) and using Theorem 3.4, we have
1
]l (st < 5 Nullzacsy + c(oa)( oo @ty + Il ooy )

1
+— Iflle2axsy + =51 +1 AN, 2

+ 1f Lo @xst
61+ 6 m ( )

T (xS

1
+—— Il + — ||h||Lm(r ) + 1l oo - )) (3.59)
62 m Em



2112 LE1 Wu
Inserting (3.58) into (3.59), we obtain
lullLo@xsty S 5 IIMIILoO(szxsl) + C(O(l) llull oo (axst)

1
+€]+m I f 22 @xsty + ||f|| L7 axshy + 1 £l Lo @xsty

1 1
+—— Il 2y + — Wl oy + Il oo - )> (3.60)
e?+* €m

1
Absorb 2 ||u||Lm(st1) and o(1) ||u||LOO(QXs1) into the left-hand side, we obtain

+ 1 f e @xsh)

1 1
||M||Loo(nxsl §C< L IlflILZ(QxS])+ 2+1 (vl

2m
¢! LIn=T (QxS!)

1
+—— lhllp2r-y + T Al Lm -y + 172l oo r-) ) (3.61)
€m

€2 m

O

4. Well-Posedness of ¢-Milne Problem with Geometric Correction

We consider the e-Milne problem with geometric correction

d 9 _
sim% +F() cos¢£ L f— T = S8,

(0, ¢) = h(¢) for sing >0,
f(L.®) = f(L, Z[$).

“4.1)

for f(n, ¢) in the domain (n, ¢) € [0, L] x [—m, ) where L = 6_%,%[(#] =—¢
and

F(n) = —RL_GU, 4.2)

for the radius of curvature R,. Here, for convenience, we temporarily ignore the

superscript on € and t. Define a potential function V () satisfying V (0) = 0 and

oV
— = —F(n). Then we can direct compute

an
Ry
V(n)=In <—) . 4.3)
R, —€n
We define the norms in the space (1, ¢) € [0, L] x [—m, ) as follows:
L pm %
If 22 = ( /0 f |f (. $)I? d¢dn> : (4.4)
—7IT

I fll oo oo = esssupy gyeqo, Lix(—m,7) | F (1 D (4.5)

1

T 2
11l oo =eSSSUPne[0,L]< / | f(n. o) d¢>) : (4.6)



Boundary Layer of Transport Equation with In-Flow Boundary 2113

Similarly,

1
Ifll = ( / (. )P dqs) " @.7)
ML = esssupge_r ) [/ (0, )] (4.83)

Also, we define the weighted norms at in-flow boundary as

1

2
2 = (/ ¢ 0|h<¢>|2sin¢d¢) , (49)
Inllpe = eSSSUPgin >0 |h(p)] . (4.10)
Also define
(f. 8y (M) = Fm, $)gn, ¢)do (4.11)

as the L? inner product in ¢.
In the following, we will always assume that for some C, K > 0 uniform in €,

AT H K"SH <c. 412
Il + |eXrs| < @12)

The well-posedness, exponential decay and maximum principle of the equation
(4.1) has been well studied in [24]. Here we will focus on the a priori estimates
and present detail analysis for the dependence of f on the boundary data 4 and the
source term S.

4.1. L? Estimates

4.1.1. S =0 Case Assume that S satisfies S(n) = 0 for any 7. We may decom-
pose the solution

f, @) =qrm) +rrm. ¢), (4.13)

where the hydrodynamical part g s is in the null space of the operator f — f,and
the microscopic part r ¢ is the orthogonal complement, that is

| I _
arm=—| fo.o)d¢=f. ri(n.¢)=,0.¢) —qs0. “14)

In what follows, when there is no confusion, we simply write f = g + r.

Lemma 4.1. Assume (4.12) holds and S(n) = Oforanyn € [0, L). Then the unique
solution f(n, ¢) to the equation (4.1) satisfies

Iz = C(IIhIILz + |IS||L2L2>, (4.15)
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and there exists qr € R such that

L
gl = C(IIhIILZ_ + IISI|L2L2> +C ‘/0 (sing, S)y (y)dy|, (4.16)

lg —qrlipzr2 = C(Ilhlle_ + ||S||L2L2>

L L 2 3
+C(/ (/ (sing, S)y () dy> dr;) . (4.17)
0 n
Also, for any n € [0, L],
(sing, r)y (n) = 0. (4.18)

Proof. Step 1: Estimate of r.
Multiplying f on both sides of (4.1) and integrating over ¢ € [—, ), we get the
energy estimate

Ed_n( 3¢
= (S, [y (). (4.19)

1 d d
f. fsing)y (n) + F(n) <—f, fcos¢> ) + Ir i3
¢

An integration by parts reveals
af 1 .
F(n) <8—, fCOS¢> (m = S F@) (f, fsing)y (). (4.20)
¢ , 2

Also, the assumption S (n) = 0 leads to

(S, flg M) =(S,q)y () + (S, 1)y () = (S, 1)y (). 4.21)

Hence, we have the simplified form of (4.19) as follows:

%din (f. fsing)y (n) + %F(n) (f. fsing)y () + [rl72 = (S.7)g ().
(4.22)
Define
a(n) = % (f. fsing)y (). (4.23)
Then (4.22) can be rewritten as follows:
j—‘;‘ + Fmam) + lrmli72 = (S, r)y (n). (4.24)

We can solve this differential equation for o on [, L] and [0, n] respectively to
obtain
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L
a(n) = a(L)exp (/ F(y)d(y)>
n

L y
+[ exp (/ F(2) dZ) ( IIr(y)Iliz —(S,r)g (y)) dy,
n n

n
a(n) = a(0)exp < - /0 F(y) d(y)>

2115

(4.25)

n n
+/0 exp ( - / F(z) dZ) < —Ir)lI72 + (S, r)g (y)> dy. (4.26)
y

The specular reflexive boundary f (L, ¢) = f(L, Z[¢]) ensuresa(L) = 0. Hence,

based on (4.25), we have

L y
a(n) = / exp (/ F(2) dZ) ( — (8, 1)y (y)> dy
n n

L
2 [ (sirs0ay.
n
Also, (4.26) implies
n
a(n) = a(0) exp ( —fo F(y)d(y)>

+ / " exp < - / "F@ dz) ( ey (y)) dy
0 y

n
< Clnl; +c | ((S, M <y)> dy.
due to the fact

1 1
a(0) = (singf, f)y (0) = 5(/ , Oh2(¢> sin¢d¢> S Clinl3, -

Then in (4.26) taking n = L, from «(L) = 0, we have
L y
/O exp ( /0 F@) dz> Ir ()12, dy
L y
< a(0) +f GXP</ F(Z)dZ> (S,r)g () dy
0 0

L
< ClAIE: +€ [ 18,05 ().

On the other hand, we can directly estimate as follows:

L y L
fo exp (/O F(z) dz) lrII7, dy = C/O Ir)II7, dy.

Combining (4.30) and (4.31) yields

L L
/0 Il dn < C A1, + C/O (8. rhg () dy.

(4.27)

(4.28)

(4.29)

(4.30)

431

4.32)
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By Cauchy’s inequality, we have

L L 4 L
’ /0 (S.7)g (y)dy‘ < Co fo lr ()72 dn+ & /0 1S3 dn., (4.33)

L
for Cp > 0 small. Therefore, absorbing / llr(n) ||i2 dn and summarizing (4.32)
0
and (4.33), we deduce

L L
/O lr(ll7, dn < C<||h||iz + fo NI dn). (4.34)

Step 2: Orthogonality relation.
A direct integration over ¢ € [—m, ) in (4.1) implies

din (sing, f)y () = —F<cos¢, j—f;>¢ ) + S = —F (sing, f)y (1),

(4.35)

due to § = 0. The specular reflexive boundary f(L,¢) = f(L,Z[¢]) implies
(sing, f)4 (L) = 0. Then we have

(sing, f)y (n) = 0. (4.36)
It is easy to see

(sing, q)g (7) = 0. (4.37)
Hence, we may derive

(sing, r)g (m) = 0. (4.38)

This leads to orthogonal relation (4.18).
Step 3: Estimate of ¢g.
Multiplying sin ¢ on both sides of (4.1) and integrating over ¢ € [—m, ) lead to

(%7 <sin2 é. f>¢ (n) = —(sing, r),, (n) — F(n) <sin¢cos ¢, %>¢ ()

+ (sing, S)y (). (4.39)
We can further integrate by parts as follows:
0
— F(m) <Sin¢COS¢, £> (m) = F(n) (cos(29), f)g (n)
¢
= F(n) (cos(2¢), 1)y (). (4.40)

Using the orthogonal relation (4.18), we obtain

d
W (sin*e. £) (0= F) (€03(20).r) (1) + (sing. )y (.
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Define
= (sin? . 4.41
B <sm P, f>¢ €)) ( )

Hence, we can integrate (4.41) over [0, ] to get that

n n
B — B0) 2/0 F(y) {cos(2¢), 1)y () dy +/0 (sing, )y (y)dy.

(4.42)
Then the initial data
1
2 3
pO) = (sin*6. 1) © < ((f, £ Isindl)y (0)> Isin 112,
1
< c(<f, Flsingl), (0)>2. 4.43)
Obviously, we have
(f. f Isin gl (0) = / P sing dg
2
—/ <f(0, (]5)) sin ¢ d¢. (4.44)
sin p<0

However, based on the definition of «(n) and (4.27), we can obtain
2
| wasingas+ [ ( £, ¢>> sin dp = 2/(0)
sin >0 sin p<0

L
> ¢ /0 (S. 1) () dy.

Hence, we can deduce

L

2
- f (f(o, ¢>>) sing d < / 12($) sinp dg + C / (S.7)s () dy
sin p<0 sin >0 0

L
gc(uhniz + /0 1SI2, dn>. (4.45)

From (4.34), we can deduce
B(0) = C( Al 2 + ||S||L2L2>' (4.46)

Since F € L'[0, L1 N L?[0, L], r € L*([0, L] x [—7, 7)), by (4.46) and (4.15),
we have

L L
Iﬁ(L)|§|5(0)|+/() F(y) (cos(2¢), ) (y) dy +/0 (sing, S)y (y) dy
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L
éC(IIhlle_+||S||L2L2)+CIIF||L2L2IIVIIL2L2+ /0 (sing, S)y (y) dy

L
< C(IIhlng + IISIILsz) + /0 (sing, S)p (y)dy|. (4.47)
We define
L
qr = L)z (4.48)
Isin 112,

Naturally, we have

L
|qL|<C<||h||Lz+||S||L2Lz)+c‘/0 <sin¢,S>¢<y>dy'. (4.49)

Note that g7, is not necessarily g(L). Moreover,

L

L
B(L) — B(n) = / F(y) (cos2)., 1)y (3) dy + / (sing. Sy (v) dy. (4.50)
n n
Note
_ - 2 _ .2 2
B = (sin’6. f) () =(sin9.q) @+ (sin’.r) )
= Isingl}z + (sin” g.r) (0. *51)
Thus we can estimate

lIsin @125 llg () — qrll 2
= B(L) — in ¢,
B(L) — B +{sin” 9. r) ()

L L
SC( f |F(y) (cos(2¢), r(y)) dy| dn + f (sing, S)y (y)dy
n n

<sin2 é, r>¢ (n)‘ )

L
s C( Il 2 +/ LEODHIr )Nz dy
n

+

+

L
/ (sing, )y (¥) dy'). (4.52)
n

Then we integrate (4.52) over 1 € [0, L]. Cauchy’s inequality implies

L L
f (/ FO D)2 dy)
0 n

2 L L
dn < ||r||iszfO / [F()? dydy
n

< Clrli3ap0 (4.53)
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Hence, we have

lg —qrlipzp2 = C( Al 2 + ||S||L2L2>

L L 2 3
+C</ (/ (sin ¢, S)¢ ) dy) dn) . (4.54)
0 n

O

4.12. S # 0 Case For general S, we define S = S+(S-38) = So + Skr.

Lemma 4.2. Assume (4.12) holds. The unique solution f(n, ¢) to the equation
(4.1) satisfies

1

L L 2 7
||r||Lsz§c(||h||Lz+||S||L2Lz)+C(/O (f \SQ(y>|dy> dn) :
n

(4.55)

and there exists qr. € R such that

gl = C(IIhIILz + IISI|L2L2>

’

L L L
+c‘/0 <sin¢,sR>¢(y>dy‘+C‘fo / 1500 dyds
n
(4.56)

lg —qrliz2e = C(IIhlle_ + IISIILsz)

L L 2 2
+c( /0 < / <sin¢,SR>¢<y>dy) dn)
1
L L /L 2 3
e[ ([ [ rorso)e) e
0 n Jy

Also, for any n € [0, L],

L
(sing, r)y (n) = — f e M=VOISH (y) dy. (4.58)
n
Proof. We can apply superposition property for this linear problem. For simplicity,

we just call the above estimates as the L? estimates.
Step 1: Construction of auxiliary function f!.
We first solve f! as the solution to
. of! af! _
sm¢% + Fyeos¢ L1 f1 = F' = Sp(n. ),

a9
10, ¢) = h(¢) for sing > 0, (4.59)

FIL, ¢) = fUL, ZI$)).
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Since Sg = 0, by Lemma 4.1, we know there exists a unique solution f!
satisfying the L? estimate.
Step 2: Construction of auxiliary function f2.
We seek a function f2 satisfying

! f? F s d So=0 4.60
~ 5 n(sm(l)——i- (n)cosc/)—d)) ¢+ Sp =0. (4.60)

The following analysis shows this type of function can always be found. An inte-
gration by parts transforms the equation (4.60) into

T 2 T
- / sin¢% dp — | F(n)singf>de + 2759 = 0. 4.61)

Setting
f3(¢.m) = a(n)sing. (4.62)
and plugging this ansatz into (4.61), we have
da T .2 T .2
- — sin“ ¢ dep — F(n)a(n) sin“¢pd¢ + 27w Sp = 0. (4.63)
dn J_; -7
Hence, we have
da
- d_ﬁ — F(ma() +2Sp =0. (4.64)

This is a first order linear ordinary differential equation, which possesses infinite
solutions. We can directly solve it to obtain

n n y
a(n) = eXp<—/0 F(y) dy) (a(O) +/O exp(fo F(2) dz)ZSQ(y) dy).

(4.65)
We may take
L y
a(0) = —/ exp (f F(2) dz)ZSQ(y) dy. (4.66)
0 0
Then, we can directly verify
L
ai =€ [ 50 dy, (4.67)
n

and f? satisfies the L? estimate.
Step 3: Construction of auxiliary function f3.
Based on above construction, we can directly verify that

b4 8f2 f2
f (—smqb——F(n)cos¢—¢—f + 2 +SQ>d¢—O. (4.68)

-7
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Then we can solve f3 as the solution to

af3 af3

1 — — 3_ _3

sin ¢ o +F(17)Zcos¢a + f 27‘
B . of of 2 = 4
——51n¢—an —F(r])cosqﬁ—8 —f + f 4+ S0, (4.69)

30, ¢) = —a(0)sing for sing > 0,
3L, ¢) = 3L, ZIP)).

By (4.68), we can apply Lemma 4.1 to obtain a unique solution £ satisfying the
L? estimate.

Step 4: Construction of auxiliary function f*.

We now define f* = f2 + f3 and an explicit verification shows

of af i}
Sin‘f’%*‘F(ﬂ)COSfﬁ%+f4—f4=SQ(77,¢),
£4(0,¢) =0 for sing > 0,

AL, ¢) = fHL, Z($)),

(4.70)

and f* satisfies the L? estimate.
In summary, we deduce that ! 4+ f* is the solution of (4.1) and satisfies the
L? estimate. O

Combining all above, letting f;, = g, we have the following theorem:

Theorem 4.3. Assume (4.12) holds. There exists fi € R satisfying

L
Ll = C( IAll2 + ||S||L2L2) +C ‘/0 (sing, Sr)y (v) dy

L L
+C'/ / |So()| dydn
0 Jn

such that the unique solution f(n, @) to the equation (4.1) satisfies

, 471

If = folee = C(Ilhlle + ||S||L2L2>

1

L L 2 2
+c< fo ( f <sin¢,sR>¢<y>dy) dn)
n
L L 2 3
+c</ (/ \SQ@)\dy) dn)
0 n
L L oL 2 3
+c</ (/ / |SQ(z)}dzdy> dn) . (@72)
0 n Jy

Here C represents some constant uniform in €.
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4.2. L*° Estimates
4.2.1. Formulation Consider the e-transport problem for f(n, ¢) in (n,¢) €
[0, L] x [—7, 7)

) a
singb% + F(n) cos¢£ +f=H® ¢),

(0, ¢) =h(¢) for sing >0,
f(L, )= f(L,ZI$).

(4.73)

Here, we assume H = S 4 f € L. Define the energy as follows:
E(m,¢)=eV® cosg. (4.74)

Along the characteristics, this energy is conserved and the equation can be simplified
as follows:

sin qbi—j: + f=H. 4.75)

Since V is increasing, an implicit function n7 (57, ¢) can be determined through
E(, @) =", (4.76)

which means (7, ¢g) with singg = 0 is on the same characteristics as (1, ¢).
Define the quantities for 0 < 5’ < ™ as follows:

¢'(n. ¢:n') = cos™! (ev(”/)‘v(’” cos ¢), @.77)
R 0, ¢ )] = —cos ™! (VD cosg) = ¢/, g1 1), (478)

where the inverse trigonometric function can be defined single-valued in the domain
[0, 7) and the quantities are always well-defined due to the monotonicity of V.
Finally we put

" 1
Gra @) = [ ————
T sin (e ei0)

We can rewrite the solution to the equation (4.73) along the characteristics as

de. (4.79)

f(n, @) =KIhl(n, ¢) + TIHI(, ¢), (4.80)

where
Region I:
For sin¢ > 0,

KIR1Gr. §) = h(®' (1, 5 0)) exp(—Gyo). (4.81)

0 H (i ¢/t g31)) /
T[H](m, ¢) = / exp(=Gy,y) dn. (4.82)
0 sin (¢’(n, é; n’))
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Region II:
Forsing < 0 and |E(n, ¢)] < e VD),
Klhl(n, ¢) = h(¢'(n, $; 0)) exp(=G .0 — GL.y) (4.83)
L H(n/, ¢'(n, ¢: n’)) /
TIH](m, ¢) = / : exp(—=Gr .y — Grp)dn
0 sin (qﬁ/(n, ¢; n/))
L H (o 219/ (1, ¢:1)1)
+/ exp(G,,,y) dn'. (4.84)
v sin (¢ ¢ )
Region III:
Forsing < 0 and |E(n, ¢)| = e V),
KU1, 6) = h(¢/G1. 63 0)) exp(=Goye o = Gy ) (4.85)
7t H(n’, ¢'(n, $; n’)) ,
TIH](n, ¢) = / exp(=Gp+y — Gyt ) dn

0 sin(¢'(n.g:m))
/n+ H(n/,«%’[qﬁ/(n, b n/)])
+
n sin <¢’(n, é; 77’))

Here, the decomposition of regions is based on whether the characteristics touches
n = L and sin¢ = 0. In order to achieve the estimate of f, we need to control
K[h] and T[H].

exp(G,.y) dn’. (4.86)

4.2.2. Preliminaries We first give several technical lemmas to be used for proving
L estimates of f. The proofs are given in [24, Lemma 4.7-4.9], so we omit them
here.

Lemma 4.4. For any 0 £ B < 1, we have

|PICIR | Lo oo < Ml o - (4.87)
In particular,
IR oo poe = 1Al oo (4.88)
Lemma 4.5. The integral operator T satisfies
ITTH Lo = I H |l oo oo, (4.89)
1
and forany 0 < 8 < >
[e” T oy < [P H | oo (4.90)

Lemma 4.6. For any § > 0 there is a constant C (8) > 0 independent of data such
that

ITTH N poor2 = C@ONH 212 + SI1H || oo (4.91)
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4.2.3. Estimates of ¢-Milne Equation with Geometric Correction Consider
the equation satisfied by ¥ = f — f as follows:

gmﬁz+nmmwﬂz+%=%+&
an g

7(0.¢) = p(¢) :=h(¢) — fL for sing >0,
V(L,¢) =7 (L, Z[$).

(4.92)

Theorem 4.7. Assume (4.12) holds. The unique solution f(n, @) to the equation
(4.1) satisfies

If = fellpseree = C<|fL| + lAllpee 4+ 1Sl poopoe +11f = fL||L2L2)- (4.93)

Proof. We first show the following important facts:

||77”L2L2 = 170 1212, (4.94)

||y_”LocLoo é ”7/||L°°L2‘ (495)

We can directly derive them by Cauchy’s inequality as follows:
5 L pm 1\2 b4 2
M= [ [ (5) ([ roueras) asa
e = [ () (L
L pm 1 m )
<[ [ (G)( [ aerae)asa
0 -7 4 -
L

= /0 ( 2, ¢') d¢’) dn = 171255 (4.96)
_ _ 1 T 2
|73 e = sup 72(n) = sup (2— ¥ (0, ¢) d¢)
n n T J—x
2 m m

< sup (%) ([ (1. ) d¢>)(/ 12d¢>)
n v - -

= sup ( 2, ) d¢) = 1712 - (4.97)
n -7

Then by Lemma 4.6, (4.94) and (4.95), we can show

|70 o2 = COT ] 122 + 817 | 11
S COIV Nag + 817 2. (4.98)

By (4.92),
¥ =K[pl+ T[¥)+TIS]. (4.99)
Therefore, based on Lemma 4.4, Lemma 4.5 and (4.98), we can directly estimate

17 Wpeer2 S IKIP N oo 2 + N T IS poo 2 + CEONY N2z + 817 Ml oo 2
S lplipe + SNz + CONY N2z + 81 poor2. (4.100)
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1
We can take § = 2 to obtain

17 o2 = C(II”f/lleLz + llpllge + ||S||L°°L°°)' (4.101)

Therefore, based on Lemma 4.5, (4.101) and (4.95), we can achieve
W oo oo S WKIPI Lo oo + 1T IS oo oo + | TT7|| oo o

< C< Ipll o + ISl Lo + M%‘MLW)
< C( Ipll o + 1Sl oo + ||”V||LooLz)

< C( Il + ISl pooroe + II”//||L2L2>- (4.102)
O
Combining Theorem 4.7 and Theorem 4.3, we deduce the main theorem.

Theorem 4.8. Assume (4.12) holds. There exists f1, € R satisfying

L
|fLl = C(IIhIILz + ||S||L2L2> +C '/0 (sing, Sr)g (¥) dy'

L L
+C’f / |So(»)| dydn
0 Jn

such that the unique solution f(n, @) to the equation (4.1) satisfies

) (4.103)

If = fellpseree = C<||h||L2_ + ISl 22 + N1l + ||S||L°°L°°>

L L 2 2
+c( /O ( f <sin¢,sk>¢(y)dy) dn)
n

L
/0 (sing. Sg)s () dy'

L L
+C V / [So()| dydn'
0 Jn
L L 2 3
+c(f (/ |SQ(y>|dy) dn)
0 n
L L /L 2 3
~|—C<f </ / |SQ(z)|dzdy> dn) . (4.109)
0 n Jy

Here C represents some constant uniform in €.

+C
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4.3. Exponential Decay

In this section, we prove the spatial decay of the solution to the e-Milne problem
with geometric correction.

Theorem 4.9. Assume (4.12) holds. For Ko > 0 sufficiently small, there exists
f1r € R satisfying

L
|fLl = C(IIhIILz + ||S||L2L2> +C ’/0 (sing, Sr)y () dy'

L L
+C‘/ / |So(»)| dydn
0 Jn

such that the unique solution f(n, @) to the equation (4.1) satisfies

) (4.105)

I/ = Fellsors < C( 2 + |eKons

dER
e T Wl + [e5ns|

L L 2 >
+c(/0 eZKO"(f (sing, Sr)y (y)dy> dn)
n

L
/0 (sinb, Skl (y)dy‘

L L
+C'f / [So)| dydn‘
0 Jn
L L 2 i
e[ o) )
0 n
L L rL 2 3
+c<f e2K0"<f / 1S0(2)| dzdy) dn) . (4.106)
0 n Jy

Here C represents some constant uniform in €.

+C

Proof. Define Z = eX0"¢ for v = f — f;.
Step 1: L? estimates.
We use the decomposition in (4.14). The orthogonal property reveals

(fs fsing)y (n) = (r,rsing)y (). (4.107)

Multiplying e?X0” f on both sides of equation (4.1) and integrating over ¢ €
[—m, ), we obtain
li 2Kon ; l 2Kon i
e (r, rsing)y (n) | + 5 F(n)| e (r, rsing)y, (1)
2 dn 2
—e2Kon (Ko (rorsing), () — (r.r)y (n))

= e*01(S, )y (). (4.108)
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.1 .
For Ky < min X K ; for K in (4.12), we have

3 1
3 lr@)lI72 = =Ko (r, rsing)y () + (r, r)g () = 5 lr@)ll7. . (4.109)

Similar to the proof of Lemma 4.1, formula as (4.108) and (4.109) imply

2
1212 )’

(4.110)

2 L
HeKonr = /0 e2Kon (. r)g () dn = C( ”h”ii + HeKonS

From the proof of Lemma 4.1 and Cauchy’s inequality, we can deduce
b i 2
f e KO"( (f . ) = ) d¢> dn
0 -1

L b4 L k4 2
gf e2K077(/ rz(n,¢)d¢) dn+/ e““”(/ (q(n)—qL) d¢) dn
0 - 0 -
L
< /0 K00 ()2, dy
L L 2
+/0 e”“(/ [FOD)I ()1l 2 dy) dn
n
L L 2
+/ e”“(/ (sing, S), (y)dy> dn
0 n

2
sc(mi+[es]],,.)

L L L
+c( /0 Ko ()17, dn)( /0 ezKO("ﬂ’)Fz(y)dydn)
n
L L 2
+/O 62K°”</ (sing, )4 (y)dy) dn
n
< 2 Kon 2
< C<||h||L2+ |e¥ors L2L2)
L L L
+c( / &Ko |1 ()12, dn)( f f Fz(y)dydn)
0 0 n
L L 2
+f0 e2K0"<f (sing, )4 (y)dy) dn
n

2 L
) + / e?Kon
L?L2 0

L 2
(/ (sing, S), (y)dy) dn. 4.111)
n

< c(um@z + [eors
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This completes the proof of the L? estimate when S = 0. By the method introduced
in Lemma 4.2, we can extend the above L? estimates to the general S case. Note all
the auxiliary functions constructed in Lemma 4.2 satisfy the estimates. We have

1Zll2p2 = C(IIhIILz_ + I|S||L2L2>

L L 2 bl
+c</0 ezKon</ (sing, Sg)g (y)dy) dn)
n
L L 2 3
+C(f0 e2K°”</ 1So)| dy) dn>
n
L L L 2 3
+C</ e2K0'7</ / 1S0(2) dzdy) dn> . (4.112)
0 n Jy

Step 2: L estimates.
Z satisfies the equation

. 0Z 0Z - .
sm¢>a—+F(n)cos¢>£+Z=Z+e S + KosingZ,
n

2(0,¢) = p(@) = h(®) — f1, for sing >0 (+-113)
Z(L,p) = Z(L, Z[9)).
Then by Lemma 4.6, (4.94) and (4.95), we can show
HZ” LXL? § C((S)“ZHLZLZ + ‘SHZHLOOLOC
< CONZN2g2 + 81 Zl oo 2. 4.114)
We know
Z =K[pl+ T[Z +eXK07s + Ky singZ]. (4.115)

Therefore, based on Lemma 4.4 and (4.98), we can directly estimate
1Zler2 £ WKLPN erz + [ TEE8)
HIT[KosingZllpoo2 + CONZN 212 + SN Z]l oo 2
S Ul + |e507s| Kol Zlwrs + COIZ 20
+Z | poop2- (4.116)

1
We can take § = E to obtain

1Z ]l o2 < c( Il + |e5ors| + Kol Zlisrs + ||Z||L2Lz>.
4.117)

Then based on Lemma 4.4, Lemma 4.5, Lemma 4.6 and (4.117), we can deduce

1Zl e < WKLPMsops + | TS|+ 2] e
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+Kosin@Z|| poopoo

< lpllps + [eX1S| |+ 1Z] g + KollZIlzero

OOLOO

< lpllps + [eX1S| |+ 1Zlprs + Kol Zlipeps

< C(||Z||L2Lz + He’(o'?s s

+HCKOUSHLOOL°° + ”p”LZO + KO”Z”LooLoo). (4118)

Taking K sufficiently small, we absorb K| Z||;~~ to the left-hand side and
obtain

1Zll s < c(nansz + |efors|

+ |eFors| L+ ||p||Loo)-

(4.119)

L21? L>®L>®

Then the final result is obvious. O

4.4. Maximum Principle
In [24], the author proved the maximum principle.

Theorem 4.10. The unique solution f(n, ¢) to the equation with S = 0 satisfies
the maximum principle, that is

inf h(¢) = f(n,¢) = sup h(e). (4.120)
sin ¢>0 sin¢>0

5. Regularity of e-Milne Problem with Geometric Correction

In this section, we study the regularity of the e-Milne problem with geometric
correction (4.1). Define the weight function

1
R, — 2\ 2
t(n, ¢) = (1 - (R—E” cosqb) ) . (5.1)

For n = 0, ¢ reduces to sin¢ and it is zero only at the grazing set. The farther
(n, ¢) is away from the grazing set, the larger ¢ is. Also, we can easily show that

%

i 0. (5.2)

. 0¢
sin¢p— + F(n)cos¢
an

Along the characteristics, ¢ is a constant.
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We use the notation from previous section, that is ¥’ (n, ¢) = f(n, ¢) — fL
satisfies the difference equation

oY oY -
sing— + F(n)cosp— + ¥ =¥ + 8,
an )

(0, ¢) = p(¢) = h(¢) — fr for sing >0,
V(L,¢) =V (L, Z[$).

(5.3)

The regularity has been thoroughly studied in [7]. Hence, here we will focus on
the a priori estimates and prove an improved version of the regularity theorem. For
simplicity, we always assume the quantities discussed are well-defined. The major

. S . . 0
upshot is that we can avoid using the information of 3"

5.1. Mild Formulation

Taking n derivative in (5.3) and multiplying ¢, we obtain the e-transport problem
oY
for o/ = ¢— as
on

0. 0./ -
sing— + F(n)cosp— + o = + Sy,
an o)

A(0.9) = pus(9) for sing >0, G4
(L, ¢) = (L, R),
where p ., and S, will be specified later with
7 1 ™ f(’l, ¢)
o0y =5 [ D6 do (5.5)
21 ]z S (1. 1) v
Here for clarity, we use dummy variable ¢.. Define the energy as before
~V) R —€n
E(n,¢)=e "1 cos¢:cos¢R—. (5.6)
K

Along the characteristics, where this energy is conserved and ¢ is a constant, the
equation (5.4) can be simplified as follows:

do/ ~
n

Also, we recall the notation to describe the characteristics in Section 4.2. Similar to
e-Milne problem with geometric correction, we can define the solution along the
characteristics as follows:

A (1, ) = Klpoyl + T + Soy), (5.8)

where
Region I:
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For sin¢ > 0,
Klpor] = por (901, 6 0)) exp(~Gro) (5.9)
; 0 (7 + S (1 9/ 01, 831
T + Su/] =/ exp(—Gy) dy’. (5.10)
0 sin (¢’(n, ¢ n’))
Region II:

Forsing < 0and |E(n, ¢)| S e VL),
Klpor) = o (901, 8:0)) exp(=Gro — Gy (5.11)
. L + S)(n’,¢/(n, ¢ n’))
T + Sy = /
0 sin (d)’(n, ¢ n’))
/L (o +8)(n. 218’ (. 63 1)1)
+
v sin(¢gs )

exp(=Gp.y — G, dny

exp(—G,y ) dn'.

(5.12)
Region III:
Forsing < 0 and |E(n, ¢)| = e V),
Kol = per (900, 6:0)) exp(~Gog = Gy (5.13)
i 7t (o + S (i /0, 91) /
T + Soy] = / exp(—=Gy+ y — G+ ) dn
0 sin (¢’(n, ¢; n’))

v (o + ) (0 B (0, 65 1)) ,
_|_/ : exp(=Gy ) dn.
. sin (¢/(n. 5 )

(5.14)

Then we need to estimate K[p/] and ’7'[437~ + S.7] in each region. We assume
0<§ << land0 < &y << 1 are small quantities which will be determined later.
Since we always assume that (77, ¢) and (', ¢’) are on the same characteristics,
when there is no confusion, we simply write ¢’ or ¢’(5) instead of ¢'(5, ¢; 1').
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5.2. Region I: sing > 0
We consider

Kpor] = por (901, 93 0)) exp(—Gr0)

. /n (o + ) (0 901, 4:1))
T i (eogi)

Based on Lemma 4.7, Lemma 4.8, we can directly obtain

Il oopoo = IPorllpoe
1708 M poopoo = ISerll oo oo

Hence, we only need to estimate

R /n o/ (0 901, ¢:1))

: exp(—G,,) dn'.
0 sin (¢/(n. g5 )

We divide it into several steps as follows:
Step O: Preliminaries.
We have

R, —en/
E(n', ¢") = —KR cos ¢’

K

We can directly obtain

1 2
c',¢') = —\/R,% - ((RK —en’)cos ¢>’)

R,

1
oV RE = (R — )2 + (R — en))2sin’ @,
K

exp(—G ) dn'.

= RLK<\/R’% —(Rc —en)? + \/(R,( —en’)? sin? ¢/)
< C<JeT7/+sin¢/>,

and

1
C01¢) 2 =[R2 = (R = en))? 2 Cer.

Also, we know for 0 < ' < 7 that,

R. — 2
sin¢’:\/1—cosz¢/:\/l— (RK—E”> cos2 ¢
« — €

77/

(5.15)

(5.16)

(5.17)
(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)
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V(R —en)?sin’ ¢ + 2R — en — €/)(en — en') cos? ¢

5.24
ap—— (5.24)
Since
0S 2R —en—en)(en—en)cos’p S 2Ree(n—1),  (5.25)
we have
sing < sing’ < 2\/ sinZ ¢ 4+ e(n — 1), (5.26)
which means
1 1 1
<——<—. (527)
2(/sin2¢p +e(n—n) sing’ ~ sing
Therefore,
" 1 " 1
- ———dy = —/ dy
—/77’ sin ¢’ (y) n 2\/sin2 ¢+en—y)
1
= —<sin¢ — \/sinqu +e(n— n/)>
€
_ n—n
sing + v/sin? ¢ +e(n — )
n—rn'
< - . (5.28)
2\/sin2¢ +e(n—n')
Define a cut-off function y € C*°[—m, ] satisfying
__ | L for Ising| <6,
x(@) = { 0 for |[sin¢| > 28, (529)

In the following, we will divide the estimate of / into several cases based on the
value of sin @, |cos ¢|, sin¢’, en’ and € (n — ). Let 1 denote the indicator function.
We write

n n
1 =/0 1{sin¢gao}1{|cos¢|;ao}+/o 1{0§sin¢§80}1{x(¢*)<1}
Lossing<so L @o=01( /eyzging)

n
n
Lio<sing<sn1 =01, . L2 o<cn—p
{0<sin p <o} Hx (¢)=1} {ﬁésm¢} (sin? p<e(n—n')}
n
Losing <ol Hx@0=111( /ey <sin gy Lisin? 6 Ze(n-))
n

Ljjcos gl <60)
h+L+1s+ 15+ Ie. (5.30)

,
,
,
g
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Step 1: Estimate of I; for sin¢ = 8y and |cos ¢| = 8.
Forsin ¢ 2 g and |cos ¢| = 8y, we do not need the mild formulation of 7. Instead,
we directly estimate

9
lo7| < ‘—7/ ) (5.31)
an

We will estimate 1 based on the characteristics of ¥ itself instead of the derivative.
Here, we will use two formulations of the equation (5.3):

e Formulation I: n is the principal variable, ¢ = ¢(n), and the equation can be
rewritten as

dv -
n

e Formulation II: ¢ is the principal variable, n = 7(¢) and the equation can be
rewritten as

F(n) cos ¢% +¥ =Y +8. (5.33)

These two formulations are equivalent and can be applied to different regions of
the domain.
We may decompose ¥ = ¥ + ¥ where 7] satisfies

sind)a—qj/1 + F(n)cosd)a—qj/1 + N =Y,

an ¢ (5.34)
7100, ¢) = p(¢) for sing > 0, )
N(L, ¢) = N(L, Z[$)),

and 75 satisfies

singba—y/2 + F(n) cosqb% + 7% =3S,

on 99 (5.35)
%0, ¢) =0 for sin¢g > 0, ’
(L, ¢) = V2 (L, Z9)).

Assume 7 is well-defined in L. Then by tracking along the characteristics, we
can easily see that #] and 75 are well-defined.

Using Formulation I, we rewrite the equation (5.34) along the characteristics
as

T
5101.8) = ex0 (~Gp) (p(60) + [T exp (Gra) 0
0 sin (¢'(n))
(5.36)

where (7', ¢), (0, ¢’(0)) and (1, ¢) are on the same characteristic with sin ¢’ = 0,
and

! 1
Gy = / N —1 (5.37)
s sin (¢9))
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Taking the n derivative on both sides of (5.36), we have

88—41;1=X1+X2+X3—|—X4+X5, (5.38)
where
3G Ay ,
X| = —exp (—Gn,o) 8;77,0 <P<¢/(O)) +/0 % exp (G,]/’o) dn >,
sin n
(5.39)
op(#'©)
X2 = exp (_GU’O) T, (540)
- Z%) (5.41)
cos (¢'01) g/ ('
X4 = —exp (—Gyo) / 7 (') exp (Gyy.0) S_n2(<¢/( /)>> ¢af7” Lay, (542)
i n
Yy G,y
Xs = exp (—Gy0) f D e (Gyo) . (5.43)
0 sin (¢'(n)) n

Then we need to estimate each term. This procedure is standard, so we omit the
details. Note the fact that for 0 < n’ < n, we have sin ¢’ = sin¢ = §y and

/n.;exp( nn)d" /ooe_ydyzl, (5.44)
0 sin (¢'(n)) 0

with the substitution y = G, ,. The estimates can be listed as follows:

C C ||op C
IX1] = =17 llpeopee, X2l S — || X3 S =17 lpeor, (5.45)
8o 3o 3o
C
X4l S — 17 llpoopoe,  1Xs| = _||4//”L°0L°°‘ (5.46)
8o 30
In total, we have
Yoo ). 5.47
232 S ([2] i) s

Using Formulation II, we rewrite the equation (5.35) along the characteristics as

o S(n@n.e) /
(1, §) = exp (—H¢,¢*)f exp (Hy p,) d’, (5.48)

b F(n’(¢’)> cos ¢/
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where (17, ¢'), (0, ¢) and (n, ¢) are on the same characteristic with sin¢’ > 0,
and

t 1
= / F(n'@®) coss

Taking n derivative on both sides of (5.48), we have

Y5
3—’72=Y1+Y2+Y3+Y4+Y5, (5.50)

dg. (5.49)

where

exp (Hy ¢,) d¢’, (5.51)

9H. ¢ S(n' @), ¢
Y1 = —exp (—Hy.g,) ¢’¢*/¢ ( )

- Jo. F(n9))cosg’
50,40 9.
2= ) cosgy on (5-52)
¢
Y3 = —exp (—H¢,¢*)f S(n’(¢>’),¢’)
¢>k
I oF (1'@)) ,
5 exp (H¢/,¢*) do’, (5.53)
F2(n@))cosg
¢ S(n'@), ¢ IH,
Yy = exp (—Hy.p,) / ( ) exp (Hy' ,) 8¢n’¢* d¢',  (5.54)

o F(n/(¢/)) cos ¢’

o dyS(n @) 8) g0
Y5=exp(—H¢>,¢u)/ ' ( ) n3(¢)
o F(n'(@))cosg’

exp (Hy p,) d¢'.  (5.55)

Then we just need to estimate each term. Along the characteristics, we know
eV cosp’ = e VM cos g, (5.56)
which implies
cos¢’ = eV =V cos¢ 2 eV (O-V) cos¢ = eV(O)_V(L)&). (5.57)

We can further deduce that

5 5
cos @ > (1 - 6—)50 > 20 (5.58)

when € is sufficiently small. Also, we have

¢ o0
f —xp(Hpy) 4 < / eVdy=1, (559
% F(n’((])’)) cos ¢’ 0
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with the substitution y = Hy, 4. Similarly to X; estimates, we may directly obtain

C C C
V1] = —ISllpoopoes Y2l = —[ISllpoopoe, V3] = —|[ISllpeopee, (5.60)
8o 80 do

C C|aS
[Yal = —IISllpeopoc, Y5l = —|l—— (5.61)
80 (SO 87) LooLoo
In total, we have
(k)
s - (||S||L°°L°0 H ) (5.62)
377 377 LR[00

Combining (5.47) and (5.62), we have
2] < |24 |22

an an an
C ap aS
é —( - + ||S||LooLoo + H_ + ||7/||L°°L°°>- (5-63)
3o L>® On || o0

Hence, noting that ¢ = sin ¢ = 8y, we know

s§(lal,

Step 2: Estimate of I5 for 0 < sing < 8g and x (¢4) < 1.

aS
Ut 1Sl oo oo + HC% + II”f/IleLoo)- (5.64)

Lo

‘We have
LT e ) , )
= — — 1 - ) ) (0, dy) Aoy
) ano ( 21— 00) /0 40 4o
1 !/
si Y exp(=Gy,,y) dn
Y s
o [ cor (1= x00) L 0, )
smd)’ exp(—G,, n’)dﬂ (5.65)

Based on the e-Milne problem of ¥ as

841/ /, % / BAV /’ * / 7 (o
sinm(;Td’) +F( >cos¢*% VG b0 — Tl
=S, ¢s). (5.66)
we have
87/(”/’ @+) _ 1 , 34//(7]/’ ®+) ,
o —-—ﬂn¢*<FKn)am¢*——5$:———%¢%n,¢n

—7 () - S, ¢*>) (5.67)
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Hence, inserting (5.67) into (5.65), we have the term in the large paranthesis

~ T 0V (1, by
o= w1~ x(%)v)% do,

—TT

=~ c0/.9)(1-x@0) ("V(n/, 9 =7 () = S, ¢*)) do

-7 Sind)*
" Y ’ a7 (', $x)
= | 090 (1= x(@0) G F O cos g 5 4o
N S 3 (5.68)

Using the definition of x, we may directly obtain

|| = ‘ | z e’ ) (1 - x(6) (V(nt ¢ — 7 () = S, ¢*)) d¢*‘

Sin ¢,

C 4 -
< 3 ‘/. (7(77/, ¢ — V(') — SO, ¢*)> do,
C
< §<||7/||L°0LOO + ||S||L°0L°°)~ (5.69)

On the other hand, an integration by parts yields

~ T 9 1 / /
b = /” T (g“(n’,cb/)(l ~ x(¢*)>sin¢*F(n )COS¢>*)7/(17 ) do.,

(5.70)
which further implies that
~ Ce
|| = Z1W i (5.71)
Since we can use substitution to show
|
| G exe-Gupan <1 (5.72)
o sing¢’ ’
we have
< 1 € T ,
L= C 3 + 2 17|l Loopoe + IIS1 Lo oo | Sin—d),exp(—Gn,n’)dn
1 €
= C(g + 8_2) <||”V||LvoLoc + ||S||L°°L°°>- (5.73)

Step 3: Estimate of I3 for 0 < sing < 8¢, x (¢5) = 1 and /en’ = sin¢’.
Based on (5.21), this implies

c(n,¢) < Cylen.

Then combining this with (5.22), we can directly obtain
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s, ¢
/_mn 00 ) 4o

<c / A, $) Ay < C8\ | op . (5.74)
-5

Hence, we have

n
] < 8l [l oo /0 exXp(=G ) dif < COIl oo (575)

1
sin ¢’
Step 4: Estimate of I for 0 < sing < 8o, x(¢s) = 1, /en’ < sing’ and

sin? ¢ < e(n — ).
Based on (5.21), this implies

(', ¢") < Csing'. (5.76)

Based on (5.28), we have

n—n

[IA

1 1 n—1
_G ,z_f gy m (5.77)
m y Sng' () = 2t —1)

Hence, considering ¢ (n', ¢s) = /€1, we know

c(n's ¢ )
14| < /0(/%;(’7 o X90) (', $s) dop vy

- ¢’ ¢")
S C ﬂ /’ * d * - _G , d /
a /0' (/;5 C(U/, ¢*) (n ¢ ) ¢ > sin ¢/ eXp( n.n ) n

n 8 1 sin ¢’
< oo 00 ES - 4 !
= Cl o fo (/_aé“(n/,%) a0 )sinqs/ (= Crr)

|
< C(S”@(”LOOLOO/ \/—_/exp(—G,,,,]/)dn’

)
< csnﬂanm/ Fexp( S E" )dn’. (5.78)

/
Define z = 77—, which implies dn’ = € dz. Substituting this into above integral, we
€

n
e 1 n
Ll < C8| | ooy |~ — —c/l-)a
[14] = CO|l || oo, /0 ﬁexp< . Z) z
cs| || /1—1 c /! d
- 00 J 00 ex — - —
e\ Jo ETP e )
+/ 1 < c. /! )d) (5.79)
€X' - ——Z z]). .
1 \/E P €

exp(—Gy,y) dn’

have

N
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We can estimate these two terms separately:

L [ L
/—exp(—C E—z)dzi/ —dz=2.
0 VZ € 0
n

5.80
7 (5.80)
<1 n € Ui
—exp| - C,/——z sz/ ex (—C/——z)dz
/1 vz p( € ) N P €
rP=1_; 00
< 2/ re=C1dr < oo. (5.81)
0

Hence, we know

[I4] = C8|1.4 || poo o0 (5.82)
Step 5: Estimate of Is for 0 < sing < &g, x(¢s) = 1, en' < sing’ and
sin? ¢ = e(n — 7).
Based on (5.21), this implies

¢, ¢') < Csing'.

(5.83)
Based on (5.28), we have
n 1 Cin—n'
~ Gy = —/ L gy S0 (5.84)
y sing’(y) sin ¢
Hence, we have

neortl C(n—n/))
I5| < C|| ;00700 ——— do, —— 7 ) dy. (585
51 2 €l /0 (fsq(n’,qs*) ¢>eXp< sin ¢ 7. (3:89)

Here, we use a different way to estimate the inner integral. We use substitution to
find

8 1 8 1
— d¢, =
/—5 5(77/’ ¢*) ¢ /

do
—5 J/RZ — (R —en)2cos¢?

sin ¢y small $ cos
o) / s d
—5 /RZ — (R — €n/)2 cos ¢2

=C/6 COS Py

- d
—6 /R2 — (R — €n)2 + (R, — €n/)? sin ¢2

)‘=S£1¢* (:'/A(s 1

dy
5 VRZ — (R — €n)2 + (Re — en')2y?
(5.86)
Define

p= \/R% — (R —en)? = \/ZRKEn’ —e2n? < Cyen’, q=R.—e€n 2C,

r= g < Cyen.

(5.87)
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Then we have

8
/85(77 ¢*

[IA

5 v/ p? +qzy2
2 1
—dy§Cf ——dy
) /p2+q2y2 ) /r2+y2

|
§C/0 Ty2c1y=<1n(y+ r2+y2)—1n(r))
(1
(1

2

0

N

nQ+Vr2+4)— 1n(r)> < c<1 + ln(r))
< C( 1+ (el + [In()| ) (5.88)
Hence, we know
[Is| £ Clle || oo /On <1 + [In(e)| + |1n(n/)|>

exp <—M) dr'. (5.89)
sin ¢

We may directly compute

‘/n (1 + [In(e)| ) exp <——C(’? — "/)) dn’
0 sin ¢

Hence, we only need to estimate

‘/ |ln(n)|exp( ng )> dn’|.

If n < 2, using Cauchy’s inequality, we have

’/ \lnm)!exp( ¢”)) dy’

1 ) . 1

< (/71112(77’) dn’>2 (fieXP (——ZC@ L )) dn’>2
0 0 sin ¢

2 1 o 1

< (/ (1) dn/>2(/ne><p (——ZC@ L )) dn’>2
0 0 sin ¢

< (/sing. (5.92)

< Csing(1 + |In(e)]).  (5.90)

(5.91)

If n = 2, we decompose and apply Cauchy’s inequality to obtain

lIn(n)| exp —Y 4y
’/ ( 1n¢ )
| oten (2

[ ron ()
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2 _ 1
< ([wonan) ([[on (2050 ) ar)
0 sin ¢
+ln(L)‘f exp( Cn—n) )
sin ¢
< c(,/sm + [In(e)| sm¢> c(l + [In(e)] )w/sin¢>. (5.93)

Hence, we have

151 = €1+ IIn@)] )v/Boll 7l - (5:94)
Step 6: Estimate of I for |cos ¢| < 8.
We have

L Tt ¢ ’
I = E 0 (/;n 5(7’)”4)*)%(77 s ) d¢*> ng¢’ exp(— Gﬂ n’)dﬂ

_ 1 7 T Y 3V (', ¢s) 1 /
=5/, (/_nan,m(l—x(m)) o d¢*) Gng PG dn

I T c(n', ¢ , ) 1
— ” AN, Px) doy G, )dn’. (5.95
+2ﬂ A (/;HX(¢)§(77/7¢*) (', ¢x) do. ¢,6XP( p)dn’. ( )
The first term can be estimated as I5:
1 " T / /7 4V(n/’ ¢*) 1 /
— 1= X(90)) —7 dgb, ) — ~Gy
= ( e (1= 0 90) = 46 ) o exp(= Gy
1 €
= C(E + 3—2> <|I"f/||LooLoo + IISIILvoLoo)- (5.96)

It is easy to check that \/en’ < sin¢ < sin ¢’ and sin® ¢ > € (1 — 1), so the second
term can be estimated as /5.

N ) !
A * s P d * .
ho(/ X927 A O 6 40 ) =
< C(1+1n@1)Vsing sup_ |1, )]

Isin | <

<c(1+m@l) sup | gl (5:97)
Isin | <8

exp(—Gy, ) dn’

1
Note that now we lose the smallness since sin ¢ > o so we need a more detailed

analysis. Actually, the value of |.<7| for |sin ¢| < 8, is covered in I, I3, Iy, Is and
the following I I, 113, I 14, I11. Therefore, in fact, we get the estimate

L f ¢, ¢/) / > 1
A * ) *d* .
2n0</ (¢)§(,¢*) (', ¢x) dop Sng

<c(1+ |1n<e>|)(||pﬂ||Lgo + ||S£¢||Loom)

exp(—Gy, ) dn’
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1
+C(1+ el ) (5 + ;—2> <||7/||L°°L°0 + ||S||L°°L°°>

+C(1+ IInce1 ) (5 + (1+ 1) )\/87)) |7 || oo o0 (5.98)
Therefore, we have
151 < o1+ |1n(6)|><||ng||L°° + ||Sﬂ||LooLoo>
1 €
+C(1+ ) (5 + 5—2) (anw + ||S||LooLoo)
+C<1 + |In(e)| ) (5 + (1 + [Ine)| )J%) 17 || oo (5.99)

Step 7: Synthesis.
Collecting all the terms in previous steps, we have proved

nsc(r+ |1n<e>|)(||p@/||Loo + ||S(Q¢||Loopo)

C ap
+6§(H§a¢

aS
an

+ ISl poor + Hé“

+ II”f/IILwLoo)

LOO

1
+C(1+ )] ) (5 + ;—2) <||7/||LooLoo + ||S||L°0L°°)

+C(1+ IIneel ) (8 +(1+ o)l )/%) |l oo poo. (5.100)

L L™

5.3. Region II: sin¢ < 0 and |E(n, ¢)| < eV
We consider

Klporl = por (91, #:0)) exp(=Gr0 = GLy) (5.101)

i L+ (¢ g5 )
T + Sy = [

0 sin (@' 4im)
/L (o +5)(n, 218’ (. 83 1)1)
n sin <¢’(n, b n’))

GXP(—GL,n’ - GL,n) dﬁ/

+

exp(=G ) dn. (5.102)

Based on Lemma 4.7, Lemma 4.8, we can directly obtain

IKIpr 1l = 1 perllpoe s (5.103)
T[Sl = 1Sl oo oo (5.104)
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Hence, we only need to estimate
L ﬂi(n/, ¢'(n, ¢: n’)) /
; exp(_GL,n’ - GL,r]) d77
sin <¢’(n, ¢; n’))
/L o (0, 21/ (n, 95 1))
_|_
" sin (rb’(m ¢; n/))

11=T[d+sd]=/
0

exp(_Gn/,n) dr]/-
(5.105)
Ul
In particular, since the integral / -+ can be estimated as in Region I, so we only
0

L
need to estimate the integral / -+ -. Also, noting that fact that
"

exp(=Gr,y — GLy) < exp(—=Gy p), (5.106)

we only need to estimate

L ﬁi(n’, R (n, ¢; n’)])
/ exp(—G,y.,) dn. (5.107)
n

sin (91, ¢: 1)
Here the proof is almost identical to that in Region I, so we only point out the key
differences.

Step 0: Preliminaries.
We need to update one key result. For 0 < n < 7/,

R _ 2
sing’ = /1 —cosz¢/=\/l— (RK—€U/> cos2 ¢
o — €

n
V(R —en)2sin’ ¢ + (2R, — en — ey)(en’ — €n) cos? ¢
N RK - 6’7/
< Ising]. (5.108)
Then we have
s 1 r_
[ sy s - (5.109)
p  sing’(y) sin |

In the following, we will divide the estimate of // into several cases based on the
value of sin @, |cos ¢/, sin ¢’ and en’. We write

L L
= / Lisin g <—s0}L{1cos ¢l 250} +/ 1 sy<sing<orlinn<n
n n

L
+/n 1{ 80<sm¢<0}1 x@o=n1 {/en'Zsin ¢’}
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L
+/ Lso<sing <01 Lix@o=111{ /er<sing)
; Jens
L
+/ Ljcos 1< a0}
n
=ILh+1hL+1L+114+11s. (5.110)

Step 1: Estimate of 11; for sin¢ < —&p.
We first estimate sin ¢’. Along the characteristics, we know that

eV cos¢p’ = e~V cos ¢, (5.111)
which implies that

cosg’ ="MV o5 < VBV O o5 ¢

=e/D=VO J1 52, (5.112)

We can further deduce that

2N —1
cos¢ < (1—%) 1 - 82 (5.113)

Then we have

R
5
sin¢’;\/1—(1—;—2> (1—53)350—e%>3°, (5.114)

K

when € is sufficiently small.

Similar to Region I, we will use two formulations to handle different terms and
we will decompose ¥ = ¥] + 5.

Using Formulation I, we rewrite the #] equation along the characteristics as

%11, 8) = p(9/(©)) exp(~Gro — GLy)

L va)
+/ ) exp(—=Gp y — G ) dn’
0 sin

(¢

L )
+/ &exp(—Gn/,n)dn’, (5.115)
v sin (¢/(n))

where (', ¢’) and (1, ¢) are on the same characteristic with sin ¢’ 2 0. Then taking
n derivative on both sides of (5.115) yields

A
a_r;:X1+X2+X3+X4+X5+X6+X7, (5.116)

where
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(¢> (0))

X1 = exp(—=Gr.o— GL,y), (5.117)
3G 9G
( (0))exp( Gro—Gup, n)< 3;’0+ 8;’"), (5.118)
cos (¢'(n) 3¢ (1
/ ") ( ) ¢a(n)exp(—GL’,7f —Grydn, (5.119)
s (o)) O
/ y(") exp(—GL,,,/ ~GL,)
sin ¢/(77’)
X(aGL’" + —aGL’">dnC (5.120)
an an
cos ¢(77) 9
/ () ) ¢a(n)GXp(—Gngn)dn/, (5.121)
sin? (¢'()) O
L
Xe = —/ ﬂexp( Gy, ,7) G dn/, (5.122)
7 sin (cb/(n’)) an
A0
o= (5.123)

We need to estimate each term. The estimates are standard, so we only list the
results:

C ||op

C C
, X2l = —Ipllipe . 1X31 S — 17|l poopoes
3o 3o

C

|X4] = %H“I/IILW, (5.124)
C C

[X5] < — 17 llpopoo, 1 X6l S — 171l pop 0,
o 8o

C
1X7] < %HV/HLOOLOO' (5.125)

In total, we have

N
an

ap
<& <||p||Lm H— +|W||Loom). (5.126)
L()O

Using Formulation II, we rewrite the #5 equation along the characteristics as
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s(n@. )
(@) cos(@")

o S(nre).e)
—l—/ exp(—Hy 4) d¢’, (5.127)
o F(n@))cos(@)

¢*
Y, ) =/ . exp(—Hy+ g — H_p+ 9) d¢’

where (', @), (0, @), (L, ¢*), (L, —¢*) and (n, ¢) are on the same characteristic
with sin¢’ = 0 and ¢* = 0. Then taking n derivative on both sides of (5.127)
yields

%ZY‘+Y2+Y3+Y4+Y5+Y6+Y7+Ys, (5.128)
where
_ S, ¢Y) B dp*
Yy = mexp( H_gx ¢) 37
S0, ¢.) 26,
_m eXp(—H¢*y¢* — H7¢*’¢) 877 , (5.129)
v 1 IF (n'(@)
Y= - / s(n@).¢) (@)
& F 2(n’(d)’)) cos(¢/)  OM
exp(—H¢*,¢/ — H_¢*’¢) d¢/, (5130)
. /w s(n@).¢)
3=
- F(n@)) cos(@)
O H gy g OH_
exp(—Hyr. = H¢*,¢)( ;’n"" + 87‘;’ *¢) de’, (5.13D)
¢* a ,S 77/((1)/)’ ¢/ (A
Ys =/ n ( ) ana(¢)exp(—H¢*,¢/ CH e dd,
» F (n’(¢’)) cos(¢’) M
(5.132)
___S@=Y 89
Ys = F(L) cos(—¢*) exp( H_‘/’ ,¢>) an ’ (5.133)
1 0F (')

Yo = _d)*S "(¢), ¢’
6__/¢ (”(¢)’¢)F2(n'<¢’>)cos(¢’> o

exp(—Hy 4) dg, (5.134)



2148 LE1 Wu

—o* S(n'(9". ¢’ ,
Y; = —/ ( ) exp(—Hy ) 190 4y (5.135)
s F(n@))cos@) on
oy S(n @) ) g
Yg:/ ! ( ) 8”8(¢)exp(—H¢,,,¢)d¢’. (5.136)
o F(n@))cosig)

We need to estimate each term. The estimates are standard, so we only list the
results:

Y1l = —ISligeoroe, Y2l = —ISllpoopee, Y3l = —IISllpoore,
So ) 8o

Cl|aS
Yal = — = , (5.137)
8() 877 L[
C C C
1Ys| = —ISligooroe, Yol = —ISllpoopee, Y71 = —IISllpooree,
o do o
ClaS
|Y3| £ —|— . (5.138)
50 87’] L[
In total, we have
Vs C N
‘— < —<||S||LooLoo + H— ) (5.139)
87’] 80 87’] L°[o©
Combining (5.126) and (5.139), noting that { = sin¢ = &y, we have
C ap
11 S — o) —|— H _— + S 00 J 00
11| = 88<||p”L §8¢ i INF293
aS
+H€a— + ||”V||LocLoo>. (5.140)
Nl poopoe
Step 2: Estimate of 11, for —8g < sin¢ < 0 and x(¢4) < 1.
This is similar to the estimate of /5 based on the integral
Lo
/
[] Wexp(—Gn/’n) d?’] § 1. (5141)
Then we have
1 €
D] = sty IV llgoopoe + ISl Loer ). (5.142)

Step 3: Estimate of 115 for =89 < sin¢g < 0, x(¢4) = 1 and /e’ = sing’.
This is similar to the estimate of I3, we have

I 13] = C8||.9 || oo oo (5.143)

Step 4: Estimate of 11, for =89 < sin¢g < 0, x(¢s) = 1 and /e’ < sing'.
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This step is different. We do not need to further decompose the cases. Based on

(5.109), we have,

' =
|sin g’

Then following the same argument in estimating /5, we obtain

— Gy (5.144)

A

L
[[14] < CWHLW/ (1+|1n<e)|+ |1n(n’)|>

n

exp — ) 4y (5.145)
|sm¢|
If n = 2, we directly obtain
/ L ’r_
rlnm)\exp( ") dy'| < '/ In(n') exp (—”. ”) dif
|sin ¢ 2 |sin ¢|

< In(2) ‘/Lexp (_77/ — ) dn
- 2 sin @|

< ¢y/|sing|. (5.146)

If n < 2, we decompose as

_77 /
o -0
< / _77 -1 /
< fn |1n(n)|eXp( |sin¢|) dn

L ’ ’7/_’7 /
+‘/2 |1n(n)|exp (_|sin¢|> dn’|.

The second term is identical to the estimate in = 2. We apply Cauchy’s inequality

to the first term
-1 /
ln(n) exp( ) dn
| | |sin ¢|

3 2 2>y — 3
<( / 1n2<n’>dn’) ( / exp( (|Zm qf) dn)
n n
é(/ lnz(n/)dn/)2</ eXP( 201 n)) dn>2
0 " [sin ¢ |

< ¢/|singl. (5.148)

Hence, we have

(5.147)

[115] £ C(1 + [In(€)) /80| || oo .- (5.149)



2150 LE1 Wu

Step 5: Estimate of [ I5 for |cos ¢| < §p.
This is similar to the estimate of I, we have

1151 < c(1+ |ln(€)|)(||PJJ||Li° + ||Sd||Lo<>Loo)
1
+c(1+ |1n(e>|)(§ + ;—2) (n"f/nLooLoo + ||S||L°°L°°)
+o(1+ |1n(e>|)(a +(1+ o)l )/%) | || oo e (5.150)

Step 6: Synthesis.
Collecting all the terms in previous steps, we have proved

e+ |1n<e>|)(||pm|po + ||S(Q/||Loopo)

C ap N
+=( ||oo+H— +||S||oooo+”— +|I“I/|Ioooo>
6(2)(PL §8¢ . L®L 5877 I L®L
1 €
+C(1+1m@l ) (5 + 5—2) <||7/||Loom + ||S||L°°L°°)
+C(1+ IIncel ) (8 +(1+ el >\/30> 11| o .- (5.151)

5.4. Region IlI: sing < 0 and |E(n, ¢)| = e~V L)
We consider
Klpal = p,of(cb’(n, é; 0)) exp(=Gy+ 0 — Gyt ) (5.152)
) v (T + ) (0 9. 0 ))
T + Sy] = /
0 sin (d)’(m é; n/))
/n+ (o + So) (0 2 (0, 650
+
1 sin (¢’(n, ®; n’))

exp(=Gy+ oy — G+ ) dn

exp(—G,y ) dn'.

(5.153)

Based on [24, Lemma 4.7, Lemma 4.8], we still have
IKIparll = lperllpee (5.154)
TS 1l = 11Ser Il oo oo (5.155)

Hence, we only need to estimate
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_ nt ﬂi(n’, ¢’ (n, ¢; n/))
I =T[d] = / exp(=Gyt y — G+ ) dnf

0 sin (¢ g5 )
/n+ o (0. 218’ (0, ¢ 1))
+
" sin (¢’(n, b n’))

exp(—Gyy ) dn'. (5.156)

Note that |E(n, ¢)| = e~V L) implies
e VW cosp = e V), (5.157)

Hence, we can further deduce that

cosg = eVM=VIL) > VO-VL) > (1 - %) (5.158)
K

Hence, we know

T2

2

Isin ¢| < 1-(1-%) < et (5.159)
K

Hence, when ¢ is sufficiently small, we always have
sing| < ¥ < 8. (5.160)

This means we do not need to bother with the estimate of sin¢ < —8 as Step 1 in
estimating 7 and /1. Also, it is not necessary to discuss the case |cos ¢| < dp.

n
Then the integral / (- - -) is similar to the argument in Region I, and the integral
0

77+
/ (- - ) is similar to the argument in Region II. Hence, combining the methods
1

in Region I and Region II, we can show the desired result, that is
< c(1+ |1n<e>|)(||pm«||Lgo + ||SM||LW)

1
+C(1+ el ) (3 + ;—2) (anm + ||S||LooLoo>

+C(1+IInce ) <s + (1+ o) )/%) | || oo g (5.161)

5.5. Estimate of Normal Derivative

Theorem 5.1. The solution < to the equation (5.4) satisfies
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| oo e < C|In(e)] <||p£i||L°° + ||S,Qi||L°°L°°>

op
d¢

+ anm). (5.162)

+C |Ine)® (nanoo + Hc

LOO

as

HISl Leop + S
Ml LeeLoe

Proof. Combining the analysis in above three regions and taking supremum over

all (n, ¢), we have

1l < C(1+ |1n<e)|)( Pl + ||S,ﬂ||LooLoc)

+C(|| || +H;a” 18]
) )4 ) L L[>
85 - 0 || oo
MY
+H;— + WnLoom)
87] Lo [0

1
+C(1+n)]) (5 + ;—2> <||7/||Loomo + ||S||moo>
+C(1+ IInce1 ) (5 +(1+ el )JaT)) | lp. (5.163)

Then we choose quantities § and &y to perform the absorbing argument. First we

-1
choose § = CO<1 + [In(e)| ) for Cyp > O sufficiently small such that

1
Cs < 7. (5.164)
—4
Then we take 8y = C()(l n |1n(6)|> such that
2 1
c(1+m@r) Vo< 5 (5.165)

for € sufficiently small. Note that this mild decay of §¢ with respect to € also justifies
the assumption in Case III that

2

1

N
[IA

¢ (5.166)

3 )
for € sufficiently small. Hence, we can absorb all the term related to ||.o7|| f oo ;00 ON
the right-hand side of (5.163) to the left-hand side to obtain

I | oo < C |In(e)] <||PJJ||L°° + ”SMHLDCLOO)

0
+C [In(e)[® <||p||Loc + Hz—”
B L) L>®

0S
ISl pooroe + Ca—
n

+ “7/||L°°L°°>' (5.167)
LOOLOO
O
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5.6. A Priori Estimate of Derivatives
In this subsection, we further estimate the normal and velocity derivatives.

Theorem 5.2. The solution ¥ to the difference equation (5.3) satisfies

g‘_

oY
an

+ HF( )cosq&ﬂ
e

(€+§)%

+ Il”f/llLooLm). (5.168)

Lo L L°°L°O

< Clin(e)[® (nanm

LOO

Y
+IS oo poo + §8—
n

L[>

Proof. Based on Theorem 5.1, we have

[l oe = C [In(e)] (”Pd”LT + IISwIILwLoo>

ap
+C 1 8( m+H —
In()* { Il £ 3 .

aS
FISN oo oo + Hﬁﬁ + II”f/IILOOLoo>. (5.169)

LOL™>

Taking derivatives on both sides of (5.3) and multiplying ¢, we have

Doy = —€COs ¢8—‘; —p+7(0) + S0, ¢), (5.170)

S —8— — + ﬁ (5.171)
= zcs¢a¢ ‘5 :

) oF . .
Since |F(n)| < Ce and . < CeF, we may directly estimate
n

IperllLoe = C( Pl + €

_ T ISlpeepee + II”//IILOOLoo>, (5.172)
7/
F(n) COS¢—

. 5.173
¢ L°°L°°> ( )

Then inserting (5.172) and (5.173) into (5.169), we derive

aS
g‘_

(N TS C(é ' 3
LoOL00 n

/7
[ || oo oo < Ce F(n)008¢—
8¢ Lo
] 8 . -
+C |In(e)| <||p||L (6+§)8¢ =

0S5
+IIS foopoo + HCa—
n

+ ||7/||LooLoo>. (5.174)
Lo



2154 LE1 Wu

Since
oY oY
|| oo = ||E—— 2 ||sing— , (5.175)
9N | oo o0 0N | oo o0
we know
Y oY
singp— < Ce|F(n)cos¢p—
3’7 Lo ® ad) [oo] 00
8 ap
+C ()" ( lIpllpe + || (e + ) —
3¢ || 1

N
HISH oo oo + v
n

L®L>

Considering the equation (5.3), since £(n, ¢) = |sin ¢|, we have

HF( )cos¢87/ < sinqb8
r} ~ p— ~
3¢ Lo®L>® 877 L® [
1Y Npooroe + |7 | oo poo + ISHpooro
oY
< Ce|F(n)cos¢p—
8¢ LR[00
0
+C|1n(e>|8(||p||Loo+ €+
0 || Lo
0S
ISl pooree + Hé— + II”f/IILwLoo)
87] Loo [0
(5.177)
. oY . . .
Absorbing || F'(n) cos d)% into the left-hand side, we obtain
LooL®
oV ap
F () cos p—— < Clin(e)® (npn s+ e+
H ¢ || poopoo b= 0¢ ||
0S8
ISl pooree + HC— + II"//lleLOO)
37] Loo [0
(5.178)
Therefore, we further derive
oY op
H@— < Clinge)® (npuLgo + e+
37] Lo [ ad) L™

N
FlISH poopoo + H(ﬁ + ||7/||L°°L°°)- (5.179)

L[>

O
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Theorem 5.3. For Ko > 0 sufficiently small, the solution ¥ to the difference equa-
tion (5.3) satisfies

oY oY
eKomg — + |[eXon F () cos¢—
877 Loo 00 ¢ Loo],00
< Clin(e)l® (nanoc (€ + ;)—
0S8
H KO”SH eKong 22 HeKOWH ) (5.180)
LOOLOO 87] Lo [ LXL>®

Proof. This proof is almost identical to Theorem 5.2. The only difference is that
Sz is added by K< sin ¢. When K| is sufficiently small, we can also absorb them
into the left-hand side. Hence, this is obvious. O

6. Diffusive Limit

6.1. Analysis of Regular Boundary Layer

In this subsection, we will justify that the regular boundary layers are all well-
defined.
Step 1: Well-Posedness of 7.
Uy satisfies the e-Milne problem with geometric correction

0 9 _
sinq)ﬂ + F(n)cosq)ﬂ + U — U =0,
an 99

(0.7, $) = 9 (x, $) — Fo(r) for sing > 0, ©.D
U (L, T, ) = UL, T, ZI$]),
Therefore, since |4~ < C, by Theorem 4.9, we know
HeKO"% H <c. 6.2)
L®L®
Step 2: Tangential Derivatives of %.
0
The t derivative W = % satisfies
T
. dW k14 - R/ B
s1n¢8— + F(n) cosqb— +W-W= R—F(n)cosqﬁ 0p
n _
09 0% (6.3)

W@, t,¢) = P — (7, ¢) — a—(t) for sin¢g > 0,
W(L,t,¢) =W(L, 7, ZI$]),
where R, represents the 6 derivative of R,. Here we need the regularity estimates

of %0.
Based on Theorem 5.3, we know
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eKonF(n) COS¢8_%
09
< Clin(e)? (H%llm i (G 2oy s HQKOW‘)”LW>
L™

< Clin(e)[®.

09
Note that here although H %

LOO
of this negative power. Therefore, by Theorem 4.9, we have

HeKO"WH < Clin(e)[.
L®L>

Step 3: Well-Posedness of 7.
I satisfies the e-Milne problem with geometric correction

sind)aa—%1 + F(n) cosqba—%1 + U — U = cos @,
n ¢ K — €N

U(0,7,¢) = b - V,Uo(Xo, ©) — F1..(t) for sing > 0,
(L, t,9) =2(L,t, Z$)).

Therefore, by Theorem 4.9, we know

Hekon%l H < CHCKMWHLOOL& <cC [In(e)|®.

L®L>®
Step 4: Tangential Derivatives of 7.

U
The t derivative V = 8—1 satisfies
T

aVv aVv _
sing— 4+ F(n)cosp— +V =V =851 + S + S3,
an d¢

V(©,1,¢) = %(&3 -V Up(Xg, W) — ﬁl’L(r)) for sin¢g > 0,
V(L,t,9)=V(L,t, Z[$)),

where
S R, Fan) ¢8%1
= — cosp—-—,
! R, —e€n 7 ¢
R/
Sy =——5  —~Wcosg,
(R — 677)2
A4
S3 = cosp—.
R —€n aT
Based on Theorem 5.3, we have
o
”eKW’S] H < Clle®o"F(n) cos ¢—1
L ¢ Lo [

6.4)

< Ce™, with the help of € 4 ¢, we can get rid

(6.5)

(6.6)

6.7)

(6.8)

(6.9)

(6.10)

6.11)

6.12)
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eKon

cos ¢

< c(
LXL>®

d w
+ [ eKomg — cos ¢
On \ R —e€n

C(HeKO”WH +
Lo

Rx—fﬂ

eKongﬂ
an

A

Rl
ClleXon ——« _wcos¢
LeoL (R — €n)?

c eKO”WH

|ers:]

A

LOOL™>®

A

Loogoe’
eKona_W
L®Lo® ot

Jos:]

[IA
a

Lore
Step 5: Tangential Derivatives of W.

ow
The t derivative Z = ¥ satisfies

., 0Z 1Z -
sing— 4+ F(n)cosp— +7Z —Z =T, + T,
an a9

929 32320 .
ZO0,7,9) = m(r, ¢) — W(T) for sin¢g > 0,

Z(L,t,9) = Z(L, T, Z[9)),
where

T R Facoss 2
=— cos p—,
YT TR ¢

d R BE)
T =—— u F —_—
) 8T(RK_EH) () cos g5

Based on Theorem 5.3, we have

I PN

ow
Kon g
. e (n) cos ¢ o0

L°°L°°’

U
HeK"”Tg ” <C H F(n) cos ¢a—¢0

LOL™> L0 [,00

Therefore, we have
6595y 5597, O
LooL® LoOL®

KoM F () cos qba—W

C
+ 20

Lo

In total, we have

L°°L°°>
L°°L°°>’

< CIn(e)|}.

2157

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)
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o] g [ 2] o+ 73]

L®Loo L®L0o
eKoﬂé-a_W
an

L>®L>®

§cumaﬁ+c<

L

) 6.21)
LXL>®

Hence, we need the regularity estimate of W. However, this cannot be done directly.
We will first study the normal derivative of %.
Step 6: Regularity of Normal Derivative.

ow
Kon g
+|e (n) cos ¢ )

U
The normal derivative A = 8_0 satisfies
n

i %—i—F() %—i—A—A— € F(n) %

sm¢8 n cos¢8 = R—en 1) cos ¢ o0

A0, 1,9) = 7.1 (F(n) COS¢*8E¢ (t.¢) —9(0.7.¢) + %(0. 7, ¢)> for sin¢ > 0,
sin ¢ Blo)

AL, T, ¢) = A(L, T, ZI$)),
(6.22)

This is where the cut-off in ¢ plays a role. Based on the construction of ¢ and using

0A
- <
(6+§)a¢(0,¢,f)

L

HeKOr]AH < c( 1A, ¢, D)~ + )
e (6.23)

|F ()| £ Ce, weknow [|A(0, ¢, )|, < Ce™ and

Ce™“. Therefore, using Theorem 4.9, we have

X0 F (1)) cos ¢88—?;O

By Theorem 5.3, we know that

eKO"é‘%

0A
KoM F (1) cos p—
an a9

+
L

L>®L>®

Kon € F 0%
R P cos g

L°°L°°>

K01 F (1) cos ¢%
Loo Lo

) (6.24)
LX®L>®

into the left-hand side to obtain

gcm@FG“+

L>®°L>®

+

b € Uy
Kon -
© é‘877<R—enF(n)COS(i) 8(]5)

gcm@ﬁGﬂ+e

A
eKo1 F (1)) cos ¢a—

+€ o0

JdA
Kon -
e (n) cos ¢ 00

Then we may absorb
LOOL®
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0A 0A
eKong —— + [ eXo"F(5) cos g — < Ce ™ In(e)|}.
87] Loo [0 a¢ Loo[,°
(6.25)
Step 7: Regularity of Tangential Derivative.
We turn to the regularity of W. Based on Theorem 5.3, we have
ow ow
eKomg —— + ||eX" F () cos p —
377 L[ a(b Lo
R U
< Clin(e)[® (1 + Ko K F(y) cos p——
RK —€n 8¢ L°[0©
] R U
+ eKO"g“—(—”F(n) COS¢—O) )
87] RK —€n 8¢ Lo [00
AU
< CIn(e) 3 (1 + [[eX07 F (1) cos p —2
0A
+(eXo"F (1) cos p — )
8¢ L®[©
< Ce ™ [In(e)|'®. (6.26)
Step 8: Synthesis.
Using above estimates, we actually have shown that
HeKoan L SCE @) (6.27)

Theorem 6.1. For Ko > 0 sufficiently small, the regular boundary layer satisfies

| "% || o = C. X012 | e < Clin(e) .
A% A%

eKon ﬂ < Cln(o)®, eKOW—‘Ll < Ce=|in(ey)t6 (20
0t LXL>® at Lo,

6.2. Analysis of Singular Boundary Layer

In this subsection, we will justify that the singular boundary layers are all well-
defined.
Step 1: Well-Posedness of Llg.
$lo satisfies the e-Milne problem with geometric correction

sinqﬁﬁ + F(n)cosq&% + 8y — o = 0,
an 36

$40(0, 7, ¢) = B(z, ¢) — Fo.1. () for sing > 0, (6.29)
Ho(L, 7, ¢) = o(L, v, Z[P]).
Therefore, by Theorem 4.9, we know
HeKO"ilo H <c. (6.30)

L®L®
However, this is not sufficient for future use and we need more detailed analysis.
We will divide the domain (7, ¢) € [0, L] x [—m, ) into two regions:
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e RegionI x;: 0 < ¢ < 2¢”.
e RegionIl yp:2¢* < ¢ < 1.

Here we use y; torepresent either the corresponding region or the indicator function.
It is easy to see that & = 0 in Region II. Similarly we decompose the solution
o = x14o + x2to = f1 + f> in these two regions. In the following, the estimates
for f; will be restricted to the region x; for i = 1, 2. Using Theorem 4.3, we can
easily show that

Ly, S Ce. 6.31)

e

The key to L*° estimates in Theorem 4.10 is Lemma 4.6 and Lemma 4.7. Their
proofs are basically tracking along the characteristics. Hence, we know that

oo, s el el .+ el
He to LOCLOO_C<€ s L°°L2+ e L®L?
Kon a| -Kon
< c(Jermol b5
+3”e’<0'7 £ H ) (6.32)
L>®L>®

Thus, considering x1® = & and x»® = 0, we may directly obtain

S I (P e
(S - (nxl P T

< c(nxl@nm + |eFonsto]

L2212

+-8e¥

] B ET
Lo L>®Lo°

<c<1+se“ eKorl £, H —1—8HeK°"f2H ) (6.33)
LX®L>® LXL>®
SAE NS QPEL TS R
|eforp) < <|IX2 I+ [eonio]
< Kon o Kon
< c<||X2es||Loo+ ST I L

wolenrl )

< C<e°‘ + 8e”

ST R HLOOLOO). (6.34)

L>®L®>®

Letting 8 small, absorbing HeKO" fi ” and HeKO" f H we know

[, [OoO] 0
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Kon H <c(1 3” Kon H 6.35
He T4l [~ ( o™ o, ) (6.35)

|e*n]

< C(e“ + 8¢”
Lo

eKon g, HLOOLOO) (6.36)

Combining them together, we can easily see that

Kor H <c 6.37
H S| e =€ (6.37)
Kon H < Ce, 6.38
He 2 L®Lo® — € ( )
In total, we can derive
H Kong, H < ce. (6.39)
L[

Step 2: Regularity of L.

This is very similar to the well-posedness proof, we will also consider the regularity
of Ly in two regions. Note that in the proof of Theorem 5.3, the L estimates relies
on two kinds of quantities:

on the same characteristics.

79

° / ;‘&d(p for some 1 > 0.
—x 07

Correspondingly, we may handle them separately: for the first case, since ¢ is

preserved along the characteristics, we can directly separate the estimate of f; and

f>; for the second case, we may use the simple domain decomposition

T 9 3
f 4&07 9dp= [ ¢ M 4+ cﬁdas
- o on x2 O
gc(e il H G > (6.40)
37’] LoeL2 L2

Then following a similar absorbing argument as in above well-posedness proof, we
have

ekong ?;l + (X" F () cos ¢ a{;
LXL>® LX®L>®
< Clin(e)f* (uesnpo e KO%HLW)
< Clln(e)®, (6.41)
eKon o2 + [eKonf of
{ 87’} Loo [0 © (n) COS¢ a(b Lo,
< Clnge) (H KoanHL R HLOCLOO) < Ce® [In(e) . (6.42)
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< Ce™, with the help of € + ¢, we can get rid of

0%
Note that although || —
09 | 1o

this negative power.
Step 3: Tangential Derivatives of ly.

0
The 7 derivative P = 8& satisfies
T

P P . R, 9
sin¢W +F(cos¢——+P—P= " _KenF(n)COW%,

980 (t) for sing > 0, (6.43)

08
P(Ov T, d)) = B_T(T’ ¢) -
P(L,t,¢) = P(L,t, Z[d]).

It is easy to check that

T 8110 b
/ cosp—do = Upsing dp =0, (6.44)
—TT a¢ —TT
due to the orthogonal property. Hence, using Theorem 4.3 with o = 0, we have
HeK"”P < Ce® [In(e) [}, (6.45)
L1212
which further implies that
Jexorpy | <c([2® + |eorp
LooL>® — 0T | oo L21?
dtlo
+[eXon F () cos p— )
8¢ Lo© [,
< Clinge)l*, (6.46)
a
[e%o7 P, HLOOLOO < C(eKO"HPHLsz + ¢ |Xon F () cos ‘t’a_]; e
af2
Kon
+[e™ " F(n) cosp— )
00 || oop 00
< Ce*|In(e) [, (6.47)
0 0
where P; = i and P, = ﬁ
at at

Theorem 6.2. Let

(6.48)

x1:0=¢ < 2%,
X212 <S¢ <1

For Ko > 0 sufficiently small, the singular boundary layer satisfies

||eK0n(X1uO) ”LooLoc § C7 ||eK0n(X2LL0) HLocLoo § Ceaa
a d
eKonM < C|In(e)|?, eKon(LuO) < Ce” [In(e) 8.
ot L ot Loo[,©

(6.49)
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6.3. Analysis of Interior Solution

2163

In this subsection, we will justify that the interior solutions are all well-defined.

Step 1: Well-Posedness of Uy.
Uy satisfies an elliptic equation

Up(x, w) = Up(¥),
éxU()(;C) =0 in £,
Uo(X0) = Fo.L(t) + Fo,.(r) on 9.

Based on standard elliptic theory, we have

1000 < (105 + IS0l 54 ) < €

Step 2: Well-Posedness of Uj.
U, satisfies an elliptic equation

U, w) = Uy (X) — w - Vo Up(X, W),
AT R) = —/ (i VeUo(E. ) dib in @,
S'

Ui(Y%o) = fi..(r) on 3.

Based on standard elliptic theory, we have

1030y = C( ”i%’L”HS + ||U0||H2(Q)> < Clln(e)®.

2(0%)

Step 3: Well-Posedness of Us.
U, satisfies an elliptic equation

Ur(¥, ) = Up(¥) — 0 - Vi Uy (¥, 1),
AOH () = —/ (i Vo0 . ) i in 2.
_ St

U>(X%) =0 on 9%2.

Based on standard elliptic theory, we have

Theorem 6.3. The interior solution satisfies

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

10l g3y = €. NUillgsgy < Cln@*, [U2llg3q) < C lne)*. (6.56)
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6.4. Proof of Main Theorem
Theorem 6.4. Assume g(Xo, w) € C 4(T7). Then for the steady neutron transport
equation (1.1), there exists a unique solution u€(x, w) € L™ (2 x SYY. Moreover;
forany O < § << 1, the solution obeys the estimate

Ju€ = U = U] oo g < C(8)ez ™, (6.57)

where U (X) satisfies the Laplace equation with Dirichlet boundary condition

AUKX) =0 in Q,
{ U (Xg) = D(Xp) on 0%, (6.58)
and U(n, t, @) satisfies the e-Milne problem with geometric correction
a a -
sin¢—u — ;cosqb—u +U—-U=0,
n Re(T) —€n ¢ (6.59)
UQO, t,9) =g(t,¢) — D(t) for sing > 0, ’
UL, 7, ¢) =UL, T, ZIP)),
for L = 6*%, Z|pl = —¢, n the rescaled normal variable, T the tangential

variable, and ¢ the velocity variable.

Proof. Based on Theorem 3.5, we know there exists a unique u€ (x, w) € L>(2 x
S, so we focus on the diffusive limit. We divide the proof into several steps:
Step 1: Remainder definitions.

We define the remainder as

2 1
R=u =Y Uy =Y U -sy=u"-—0-2-92, (6.60)
k=0 k=0

where
0 = Uy + €U, + €U, (6.61)
2=+ e, (6.62)
0 = Y. (6.63)

Noting the equation (2.32) is equivalent to the equation (1.1), we write £ to denote
the neutron transport operator as follows:

Llul=€w -Veu+u—u

. ¢8u € " ou n u n _ (6.64)
=Simnme — — — COS _— —_— —U. .
9 Tac) T

Step 2: Estimates of L[Q].
The interior contribution can be estimated as

LIOl=€w-ViQ+ Q0 — Q=€ Vel (6.65)
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By Theorem 6.3, we have

I£L0Y @y < | €% - Vi < CE IV Uall pqanst)

L®(QxS!)
< Ce3n(e)?. (6.66)
This implies
1101 2@xs1) < C€ [Ine)[*, (6.67)
m S 3 1 8 .
1L 2, ) = €€ (I, (6.68)
ILLQ1N Lo (usty = Ce [In(e)[®. (6.69)

Step 3: Estimates of £2.
We need to estimate % + €% . The boundary layer contribution can be estimated
as

(% 4
n
€ 0 U + €7y) (U + €h)
— cos ¢ +
R, —e€n dp at
+(U + €) — (U + €)
1 LA
2
=— . 6.70
€ RK—enCOS¢ Py ( )
By Theorem 6.1, we have
4
” —e? cosqb—1 < Cé? &
RK —€n at L®(QxS!) at L®(©xS!)
< Ce*|In(e) 8. (6.71)

o
Also, the exponential decay of 8—1 and the rescaling of n = s implies that
T €

1 o o
‘ —¢? cosq&—1 <e aa
RK —€n aT L2(2xSh) at L2(2xSh)
2 Rmin % %
Se (/ / (Rmin — 1) ‘B_(M’ 7) def)
7 L

mm

(/ / (Rmin — €1) H_(n 7)
Ce3 % |Ine)[® (/ / e 2Kon gy dr>2

< Ce3 [In(e)|® . (6.72)

II/\
N\Ul

dn dr)

A
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Similarly, we have

'—62 cos g1 . < Ce 0~ “Ine)®.  (6.73)
RK—GH 817 Lm(QXS])
In total, we have
5
IL[2]1M 2 axsty = Ce2™ IIn(e)[®, (6.74)
< (3 8
ILI2]1 L2 xsh) S Cemm ™ In(e)|”, (6.75)
ILL2]l| sty S Ce** [In(e)[®. (6.76)

Step 4: Estimates of £Q.
We need to estimate ${y. The boundary layer contribution can be estimated as

Cltlo] = sin¢% - G_encow(ﬁ + %) 11l — dlo

99
! ¢% 6.77)
R, — er]

By Theorem 6.2, we have

1 3 3
H_e (p& < Ce uo
Re—en "ot Loo(@xS1) ELE P
< Celln(e)|®. (6.78)

a
Also, the exponential decay of 8& and the rescaling n = ® implies
T €

1 il
—€ cosp—
R, —€n at

L2(QxSh H L2(QxS!h)

T Ruin T 3P1
ge<// /xl(Rmm—u)”—w,r)
-7 JO -7 it L
2

1
2
de du dr)

T Rpin T 9 %
+e< / / / 22 (R — 1) H— d¢>dudf>
3
<e (f / / 31 (Rusin — €n) H—(w) d¢dndf)
3(/ / / X2(Rmin — €1) H—(n,f) d¢dndf>
< C( 143 “+ez+°‘ |ln(e)|8< e 2Kon dndr)2

< Ce 3 In(e) B . (6.79)
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Here the smallness of x; quantity comes from the small domain |¢| < €% and
In| < €22=1 The smallness of X2 quantity comes from the extra €* for0 < o < 1.
Similarly, we have

1 9

' ce b s . < cemH ). (6.80)
RK —€n ot Lm(QXSl)
In total, we have
11211 2@ty  CeH3 In(o)®, (6.81)
ILI21 om < Cer it |In(e)[® (6.82)
L2m=T(QxS!)

IL[2]1| L~ @xst) < Ce [In(e)[E. (6.83)

Step 5: Source Term and Boundary Condition.
In summary, since L[u€] = 0, collecting estimates in Step 2 to Step 4, we can
prove

ILIRI 2 sty < C(eia + e1+3°‘> lIne)|8, (6.84)
ICIRIN o o) S C(GS—zin—a +62—2},,+a> In@®.  (6.85)
ILIRT sty < C(eH + e> lIn(e)[®. (6.86)

We can directly obtain that the boundary data is satisfied up to O (¢), so we know
that

IRl 2r-) = < Cé€?, (6.87)
IR pm(r—y < Ce?, (6.88)
IRl ey < Cé? (6.89)

Step 6: Diffusive Limit.
Hence, the remainder R satisfies the equation

€w-ViR+R—R=L[R] in 2 x8S!, (6.90)
R=R for w-v <0 and Xy € 9L2. ’
By Theorem 3.5, we have, for m sufficiently large, that
IR L xsty = C<el+ ILIRI L2 xst) + ||£[ 1l L2 xshy

+ IR oo gnsty

1 1
+—— IRl2q0—) + — IR pm =y + IRl Loo(r-) )
extm €m

1
< C( 1 (ei‘“+e‘+3a) lIn(e)[®
el
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1
+—— <€3—21n—a + 62—2:,,+a> lIn(e)|* + () lIn(e)|*
2t
1 2 [P 2
+——(€)+ — () +(¢7)
e2tm €m
< C(el—z%—“ +e°‘—z‘7n) lIn(e)® . 6.91)
Here, we need
3 3
1—%—a>0, a—%>0, (6.92)
which means that
3 1 3 (6.93)
— <a<]l——. .
2m « 2m

For m > 3, this is always achievable. Also, we know that
min{el—%—“+e“—%} = 2e3. (6.94)
o

Since it is easy to see that

2 1
S U+ Y
k=1 k=1

our result naturally follows. We simply take U = Uy and U = % + Up. It is
obvious that I/ satisfies the e-Milne problem with geometric correction with the
full boundary data g(¢, t) — .%o, (t) — Fo.L (7). This completes the proof of main
theorem. 0O

< Ce, (6.95)
Loo(2xS!)
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