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Abstract

Consider the steady neutron transport equation in two dimensional convex
domains with an in-flow boundary condition. We establish the diffusive limit while
the boundary layers are present. Our contribution relies on a delicate decomposi-
tion of boundary data to separate the regular and singular boundary layers, novel
weightedW 1,∞ estimates for the Milne problem with geometric correction in con-
vex domains, and an L2m − L∞ framework which yields stronger remainder esti-
mates.
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1. Introduction

1.1. Problem Formulation

We consider the steady neutron transport equation in a two-dimensional
bounded convex domain with an in-flow boundary. In the spacial domain �x =
(x1, x2) ∈ � where ∂� ∈ C4 and the velocity domain �w = (w1, w2) ∈ S

1, the
neutron density uε(�x, �w) satisfies

{
ε �w · ∇xu

ε + uε − ūε = 0 in � × S
1,

uε(�x0, �w) = g(�x0, �w) for �w · �ν < 0 and �x0 ∈ ∂�,
(1.1)

where

ūε(�x) = 1

2π

∫
S1
uε(�x, �w) d �w; (1.2)

�ν is the outward unit normal vector, with the Knudsen number 0 < ε << 1. We
intend to study the behavior of uε as ε → 0.

Based on the flow direction, we can divide the boundary	 = {(�x, �w) : �x ∈ ∂�}
into the in-flow boundary 	−, the out-flow boundary 	+ and the grazing set 	0

	− = {(�x, �w) : �x ∈ ∂�, �w · �ν < 0}, (1.3)

	+ = {(�x, �w) : �x ∈ ∂�, �w · �ν > 0}, (1.4)

	0 = {(�x, �w) : �x ∈ ∂�, �w · �ν = 0}. (1.5)

It is easy to see that 	 = 	+ ∪ 	− ∪ 	0. In particular, the boundary condition is
only given for 	−.

1.2. Background and Method

1.2.1. AsymptoticAnalysis Diffusive limits, ormore general hydrodynamic lim-
its, are central to connecting kinetic theory and fluid mechanics. The basic idea is to
consider the asymptotic behaviors of the solutions to Boltzmann equation, transport
equation, or Vlasov systems. Since the early 20th century, this type of problem has
been extensively studied in many different settings: steady or unsteady, linear or
nonlinear, strong solution or weak solution, etc..
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Among all these variations, one of the simplest but most important models—
neutron transport equation in bounded domains-has attracted a lot of attention since
the dawn of the atomic age. The neutron transport equation is usually regarded as a
linear prototype of themore complicated nonlinear Boltzmann equation, and thus is
an ideal starting point to develop new theories and techniques. We refer to [10–20]
for more details.

For the steady neutron transport equation, the exact solution can be approx-
imated by the sum of an interior solution U and a boundary layer U . The inte-
rior solution satisfies certain fluid equations or thermodynamic equations, and the
boundary layer satisfies a half-space kinetic equation, which decays rapidly when
it is away from the boundary.

The justification of the diffusive limit usually involves two steps:

(1) ExpandingU =
∞∑
k=0

εkUk and U =
∞∑
k=0

εkUk as power series of ε and proving

the coefficients Uk and Uk are well-defined. Traditionally, the estimates of
the interior solutions Uk are relatively straightforward. On the other hand,
boundary layers Uk satisfy one-dimensional half-space problems which lose
some key structures of the original equations. The well-posedness of boundary
layer equations are sometimes extremely difficult and it is possible that they
are actually ill-posed (for example certain type of Prandtl layers [6]).

(2) Proving that R = uε − U0 − U0 = o(1) as ε → 0. Ideally, this should
be done just by expanding to the leading-order level U0 and U0. However,
in singular perturbation problems, the estimates of the remainder R usually
involve negative powers of ε, which requires an expansion to higher-order
terms UN and UN for N � 1 such that we have a sufficient power of ε. In

other words, we define R = uε −
N∑

k=0

εkUk −
N∑

k=0

εkUk for N � 1 instead of

R = uε −U0 − U0 to get better estimates of R.

1.2.2. Classical Approach The construction of kinetic boundary layers has long
been believed to be satisfactorily solved since Bensoussan, Lions and Papanicolaou
published their remarkable paper [1] in 1979. Their formulation, based on the flat
Milne problem, was later extended to treat the nonlinear Boltzmann equation (see
[22,23]).

In detail, in �, let η ∈ [0,∞) denote the rescaled normal variable with respect
to the boundary, τ ∈ [−π, π) the tangential variable, and φ ∈ [−π, π) the velocity
variable defined in (2.21), (2.25), and (2.31). The boundary layer U0 satisfies the
flat Milne problem,

sin φ
∂U0

∂η
+ U0 − Ū0 = 0. (1.6)

Unfortunately, in [24], we demonstrated that both the proof and result of this

formulation are invalid due to a lack of regularity in estimating
∂U0

∂τ
. Also, this glitch

was further captured by numerical tests in [21]. This pulls the whole research back



2088 Lei Wu

to the starting point, and any later results based on this type of boundary layer
should be reexamined.

To be more specific, the remainder estimates require U1 ∈ L∞, which needs
∂U0

∂τ
∈ L∞. However, though [1] shows that U0 ∈ L∞, it does not necessarily

mean that
∂U0

∂η
∈ L∞. Furthermore, this singularity

∂U0

∂η
/∈ L∞ will be transferred

to
∂U0

∂τ
/∈ L∞. A careful construction of boundary data justifies this invalidity, that

is the chain of estimates

R = o(1) ⇐ U1 ∈ L∞ ⇐ ∂U0

∂τ
∈ L∞ ⇐ ∂U0

∂η
∈ L∞, (1.7)

is broken since the rightmost estimate is wrong.
Note that the difficulty of above classical approach is purely due to the geometry

of the curved boundary ∂�.When ∂� is flat, that iswhen� is the half spaceR×R
+,

the flatMilne problem (1.6) provides the correct description of the kinetic boundary
layer.

1.2.3. Geometric Correction While the classical method fails, a new approach
with geometric correction to the boundary layer construction has been developed
to ensure regularity in the cases of disk and annulus in [24] and [25]. The new
boundary layer U0 satisfies the ε-Milne problem with geometric correction,

sin φ
∂U0

∂η
+ ε

Rκ − εη
cosφ

∂U0

∂φ
+ U0 − Ū0 = 0, (1.8)

where Rκ is the radius of curvature of the boundary. We proved that the solution
recovers the well-posedness and exponential decay as in the flat Milne problem,

and the regularity in τ is indeed improved, that is
∂U0

∂τ
∈ L∞. A similar formulation

was first introduced by Chandrasekhar in [3] to describe the transfer of radiations
with spherical symmetry, and our analysis provides a rigorous justification of its
implementation in the construction of kinetic boundary layers.

However, this new method fails to treat more general domains. Roughly speak-
ing, we have two contradictory goals to achieve:

• To prove diffusive limits, the remainder estimates require higher-order regular-
ity estimates of the boundary layer.

• The geometric correction
ε

Rκ − εη
cosφ

∂U0

∂φ
in the boundary layer equation

is related to the curvature of the boundary curve, which prevents higher-order
regularity estimates.

In other words, the improvement of regularity is still not enough to close the proof.
We may analyze the effects of different domains and formulations as follows:

• In the absence of the geometric correction
ε

Rκ − εη
cosφ

∂U0

∂φ
, which is the

flat Milne problem as in [1], the key tangential derivative
∂U0

∂τ
is not bounded.

Therefore, the expansion breaks down.
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• In the domain of disk or annulus, when Rκ is constant, as in [24] and [25],
∂U0

∂τ

is bounded, since the tangential derivative
∂

∂τ
commutes with the equation, and

thus we do not even need to estimate
∂U0

∂η
.

• For general smooth convex domains, when Rκ is a function of τ ,
∂U0

∂τ
relates

to the normal derivative
∂U0

∂η
, which has been shown to be possibly unbounded

in [24]. Therefore, we get stuck again at the regularity estimates.

1.2.4. Diffusive Boundary In [7] and [8], for the case of diffusive boundary, we
pushed the above argument from both sides, that is improvements in remainder
estimates and boundary layer regularity.

In detail, consider the boundary layer expansion

U(η, τ, �w) ∼ U0(η, τ, �w) + εU1(η, τ, �w). (1.9)

The diffusive boundary condition

uε(�x0, �w) = 1

2

∫
�w·�ν>0

uε(�x0, �w)( �w · �ν) d �w + εg(�x0, �w) (1.10)

leads to an important simplification: U0 = 0. As stated in [24], the next-order
boundary layer U1 must formally satisfy

sin φ
∂U1

∂η
+ ε

Rκ − εη
cosφ

∂U1

∂φ
+ U1 − Ū1 = 0. (1.11)

Naturally, the diffusive limit requires an estimate of
∂U1

∂τ
. Here, a key observation

is that W = ∂U1

∂τ
satisfies

sin φ
∂W

∂η
+ ε

Rκ − εη
cosφ

∂W

∂φ
+ W − W̄

= − ∂τ Rκ

Rκ − εη

(
ε

Rκ − εη
cosφ

∂U1

∂φ

)
. (1.12)

Note that the right-hand side is part of the U1 equation and its estimate depends on

sin φ
∂U1

∂η
. In other words, the estimate of

∂U1

∂τ
depends on sin φ

∂U1

∂η
, not just

∂U1

∂η
which is possibly unbounded. The sin φ is crucial to eliminate the singularity. This
forms the major proof in [7] and [8], that is the weighted regularity of U1.

Our main idea is to delicately track U1 along the characteristics in the mild
formulation, and prove the weighted W 1,∞ estimates of the boundary layer. In

particular, we showed that
∂U1

∂τ
is bounded evenwhen Rκ is not constant for general

convex domains. Furthermore, with a novel L2m − L∞ framework, we prove a new
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remainder estimate, which does not require any higher regularity estimates of the
boundary layer.

In summary, in [7] and [8], we proved the diffusive limit: uε converges to the
solution of a Laplace’s equation with Neumann boundary condition.

1.2.5. In-Flow Boundary and Basic Ideas It is notable that, for the case of in-
flow boundary as equation (1.1), the situation is much worse. The leading-order
boundary layer U0 is no longer zero:

sin φ
∂U0

∂η
+ ε

Rκ − εη
cosφ

∂U0

∂φ
+ U0 − Ū0 = 0, (1.13)

sin φ
∂U1

∂η
+ ε

Rκ − εη
cosφ

∂U1

∂φ
+ U1 − Ū1 = − cosφ

∂U0

∂τ
. (1.14)

The remainder contains the term
∂U1

∂τ
, which depends on the estimate of

∂2U0

∂τ 2
.

Then we must prove W 2,∞ estimates in the boundary layer equation. In principle,
this is impossible for general kinetic equations as [5] pointed out.

On the other hand, we have a key observation that actually the singularity that
prevents higher-order regularity concentrates in the neighborhood of the grazing
set, so it is natural to isolate the singular part from the whole solution and tackle
them in different approaches.

Inspired by [21], we introduce a new regularization argument. Instead of trying
different weighted norms, we may also modify the boundary data and smoothen
the boundary layer in this modified problem.

To be precise, we decompose the boundary data g = G + G, such that

• the boundary layerU with dataG , whichwe call regular boundary layer, attains

second-order regularity in the tangential direction, that is
∂2U

∂τ 2
∈ L∞; G = g

in most of the region except a small neighborhood of the grazing set;
• the boundary layerUwith dataG, whichwe call singular boundary layer, attains

only first-order regularity in the tangential direction that is
∂U

∂τ
∈ L∞, but the

support of G is restricted to a very small neighborhood of the grazing set with
diameter εα for some 0 < α < 1.

In other words, for the remainder estimates, the extra power of ε comes from two
sources: U gains power by expanding to the higher order, and U gains power
through a small support εα .

Definitely, this decomposition comes with a price. Even if we assume
∂g

∂φ
=

O(1), after the decomposition, we can at most have
∂G

∂φ
= O(ε−α) and

∂G

∂φ
=

O(ε−α). We have to prove a much stronger weighted W 1,∞ estimates to suppress
such loss of power in ε. Moreover, this decomposition introduces two contradictory
goals in the estimates:
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• to obtainW 2,∞ estimate ofU with dataG , wewant α to be as small as possible;
the smaller α is (better smoothness of G ), the better estimates we get;

• to obtainW 1,∞ estimate of Uwith dataG, we want α to be as large as possible;
the larger α is (smaller support of G), the better estimates we get.

This balance is quite delicate and the estimates for the ε-Milne problem with geo-
metric correction in [7,24,25] and [8] are not sufficient. We have to start from
scratch and prove the stronger version.

1.2.6. MainMethods To fully solve such a problem, we need an intricate synthe-
sis of previously developed methods, and the fresh regularization argument stated
above.

We inherit and modify the following ideas and techniques, which can be con-
sidered the minor contribution:

• Geometric Correction:
The ε-Milne problem with geometric correction for f = U or U,

sin φ
∂ f

∂η
+ ε

Rκ − εη
cosφ

∂ f

∂φ
+ f − f̄ = S, (1.15)

has been shown to be the correct formulation to describe kinetic boundary layers
(see [24]). In this paper, we start from scratch and justify the detailed dependence
of f on the source term S. In particular, we isolate the contribution of S̄ and S− S̄.

• Canonical WeightedW 1,∞ Estimates of Boundary Layers:
The weighted W 1,∞ estimates in ε-Milne problem with geometric correction is

the key to estimate
∂ f

∂τ
(see [7]). In this paper, we highlight the dependence of

W 1,∞ norm on the characteristic curves and the boundary data. The convexity
and the kinetic distance

ζ(η, φ) =
(
1 −

(
Rκ − εη

Rκ

cosφ

)2) 1
2

, (1.16)

is key to this proof.
• Remainder Estimates:
This is the key step to reduce the regularity requirement in boundary layers. It
was originally developed in [24] and later strengthened in [7]. In the remainder
equation for R(�x, �w) = uε −U − U ,

ε �w · ∇x R + R − R̄ = S, (1.17)

the estimate justified in [24] using the L2 − L∞ framework is

‖R‖L∞ � 1

ε3
‖S‖L2 + higher-order terms. (1.18)

We intend to show that ‖R‖L∞ = o(1) as ε → 0. Since we cannot expand
to higher-order boundary layers to further improve S, the coefficient ε−3 is too
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singularity.Akey improvement in [7] for the diffusive boundary case is to develop
the L2m − L∞ framework to prove a stronger estimate for m � 2,

‖R‖L∞ � 1

ε2+ 1
m

‖S‖
L

2m
2m−1

+ higher-order terms. (1.19)

In this paper, we adapt it to treat the in-flow boundary case with a modified
L2m − L∞ framework. The main idea is to introduce a special test function in
the weak formulation to treat R̄ and R − R̄ separately, and further to bootstrap
in order to improve the L∞ estimate by a modified double Duhamel’s principle.
The proof relies on a delicate analysis using interpolation andYoung’s inequality.

The key novelty of this paper lies in the innovative regularization argument and the
corresponding regularity estimates, which constitute the major contribution:

• Improved WeightedW1,∞ Estimates of Boundary Layers:
We combine several different formulations to track the characteristics and justify
that the solution of (1.15) satisfies

∥∥∥∥ζ
∂ f

∂η

∥∥∥∥
L∞L∞

+
∥∥∥∥ ε

Rκ − εη
cosφ

∂ f

∂φ

∥∥∥∥
L∞L∞

� C |ln(ε)|8
(

‖p‖L∞− +
∥∥∥∥(ε + ζ )

∂p

∂φ

∥∥∥∥
L∞−

+ ‖S‖L∞L∞

+
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖ f ‖L∞L∞

)
, (1.20)

where the boundary data p = G or G. The extra weight ε + ζ suppresses the

singularity in
∂G

∂φ
and

∂G

∂φ
. In particular, the estimate does not depend on

∂S

∂φ
.

This is the key step to isolate the contributions of sin
∂ f

∂η
and

ε

Rκ − εη
cosφ

∂ f

∂φ
,

which is crucial, later on, for the W 2,∞ estimates.

The estimate is obtained through a delicate absorbing argument and a novel
characteristic analysis of half-space kinetic equations.

• ∂2

∂τ 2
Estimate of Regular Boundary Layer:

As pointed out in [5], weighted W 2,∞ estimates of general kinetic equations are
not available. This is true even forU with modified boundary data. In principle,

we cannot bound
∂2U0

∂η2
and

∂2U0

∂φ2 . Instead, we propose a delicate analysis to

show that we can estimate
∂2U0

∂τ 2
without referring to the other second-order

derivatives. This is quite unusual and cannot be done in a direct fashion.

Roughly speaking, we need a chain of estimates
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∥∥∥∥∂U1

∂τ

∥∥∥∥
L∞L∞

⇐
∥∥∥∥ ∂

∂τ

(
∂U0

∂τ

)∥∥∥∥
L∞L∞

⇐
∥∥∥∥ζ

∂

∂η

(
∂U0

∂τ

)∥∥∥∥
L∞L∞

+
∥∥∥∥ ε

Rκ − εη
cosφ

∂

∂φ

(
∂U0

∂τ

)∥∥∥∥
L∞L∞

⇐
∥∥∥∥ ε

Rκ − εη
cosφ

∂

∂φ

(
∂U0

∂η

)∥∥∥∥
L∞L∞

⇐
∥∥∥∥ ε

Rκ − εη
cosφ

∂U0

∂φ

∥∥∥∥
L∞L∞

. (1.21)

Here, none of these steps is a direct application of the above improved weighted
W 1,∞ estimates. Instead, we need a careful arrangement of these terms and utilize
absorbing arguments in a delicate way. Eventually, we can justify that

∥∥∥∥ε2
∂U1

∂τ

∥∥∥∥
L

2m
2m−1

∼ ε3−
1
2m −α. (1.22)

• ∂

∂τ
Estimate with Smallness of Singular Boundary Layer:

Here, the major difficulty is to preserve the smallness of boundary data. The
key observation is that in our proof of well-posedness and W 1,∞ estimates,
we only use two types of quantities: the integral in φ and the value along the
characteristics. Therefore,we introduce a domain decomposition asχ1 : ζ � εα

and χ2 : ζ � εα , and estimate U in each domain separately.
(1) χ1: since G = O(1), we know that U = O(1) and its major contribution

is from the boundary data, so it is relatively large but restricted to a small
domain for α > 0.

(2) χ2: since G = 0, we know that U = O(εα) and its major contribution is
from the non-local operator Ū, so it is relatively small and spread over most
of the domain.

In the remainder estimate, the estimate of U is in L
2m

2m−1 , so we can combine
these two contributions in an integral to obtain smallness

∥∥∥∥ε
∂U0

∂τ

∥∥∥∥
L

2m
2m−1

∼ ε2−
1
2m +α. (1.23)

Applying these new techniques, we successfully obtain the diffusive limit: uε con-
verges to the solution of a Laplace’s equation with Dirichlet boundary condition.

1.3. Main Theorem

Theorem 1.1. Assume g(�x0, �w) ∈ C4(	−). Then for the steady neutron transport
equation (1.1), there exists a unique solution uε(�x, �w) ∈ L∞(� × S

1). Moreover,
for any 0 < δ << 1, the solution obeys the estimate

∥∥uε −U − U
∥∥
L∞(�×S1)

� C(δ)ε
1
2−δ, (1.24)
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where U (�x) satisfies the Laplace equation with Dirichlet boundary condition{
�xU (�x) = 0 in �,

U (�x0) = D(�x0) on ∂�,
(1.25)

and U(η, τ, φ) satisfies the ε-Milne problem with geometric correction⎧⎪⎪⎨
⎪⎪⎩
sin φ

∂U
∂η

− ε

Rκ(τ ) − εη
cosφ

∂U
∂φ

+ U − Ū = 0,

U(0, τ, φ) = g(τ, φ) − D(τ ) for sin φ > 0,
U(L , τ, φ) = U(L , τ,R[φ])

(1.26)

for L = ε− 1
2 , R[φ] = −φ, η the rescaled normal variable, τ the tangential

variable, and φ the velocity variable.

Remark 1.2. The implicitly defined function D is determined through the study of
the ε-Milne problem with geometric correction⎧⎪⎪⎨

⎪⎪⎩
sin φ

∂F
∂η

− ε

Rκ(τ ) − εη
cosφ

∂F
∂φ

+ F − F̄ = 0,

F(0, τ, φ) = g(τ, φ) for sin φ > 0,
F(L , τ, φ) = F(L , τ,R[φ]).

(1.27)

Theorems 4.3 and 4.8 confirm that there exists FL(τ ) ∈ R such that F − FL

satisfies desired L2 and L∞ estimates. The proof of these theorems shows that the
mapping g → FL is one-to-one and linear. Here we simply take D(τ ) = FL(τ )

and it can also be rewritten as D(�x0).
Remark 1.3. The boundary layer U is defined through the equation (1.26). Based
on the analysis in Theorems 4.3, 4.8, and 4.9, we know that U ∈ L∞ is uniquely
determined and decays exponentially fast to zero as η → ∞. The mapping g → U
is linear and it provides the boundary data D for the interior solution.

Remark 1.4. Note that the effects of the boundary layer decay very fast away from
the boundary. Roughly speaking, this theorem states that for �x not very close to
the boundary, uε(�x, �w) can be approximated by the solution of a Laplace equation
with Dirichlet boundary condition.

1.4. Notation and Paper Structure

Throughout this paper, C > 0 denotes a constant that only depends on the
domain �, but does not depend on the data or ε. It is referred as universal and can
change from one inequality to another. When we write C(z), it means a certain
positive constant depending on the quantity z. We write a � b to denote a � Cb.

This paper is organized as follows: in Section 2, we present the asymptotic
analysis of the equation (1.1) and introduce the decomposition of boundary layers;
in Section 3, we establish the L∞ well-posedness of the remainder equation; in
Section 4, we prove the well-posedness and decay of the ε-Milne problem with
geometric correction; in Section 5, we study the weighted regularity of the ε-Milne
problemwith geometric correction; finally, in Section 6, we give a detailed analysis
of the asymptotic expansion and prove the main theorem.
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Remark 1.5. The general structure of this paper is very similar to that of [7] and [8].
In particular, Section 3, 4 and 5 seem to be an obvious adaption of the corresponding
theorems there. However, we introduce new techniques to delicately improve the
results of [7], so it needs a careful handling and a fresh start from scratch.

2. Asymptotic Analysis

In this section, we will present the asymptotic expansions of the neutron trans-
port equation (1.1).

2.1. Interior Expansion

We define the interior expansion as follows:

U (�x, �w) ∼ U0(�x, �w) + εU1(�x, �w) + ε2U2(�x, �w), (2.1)

where Uk can be determined by comparing the order of ε by plugging (2.1) into
the equation (1.1). Thus we have

U0 − Ū0 = 0, (2.2)

U1 − Ū1 = − �w · ∇xU0, (2.3)

U2 − Ū2 = − �w · ∇xU1. (2.4)

Plugging (2.2) into (2.3), we obtain

U1 = Ū1 − �w · ∇xŪ0. (2.5)

Plugging (2.5) into (2.4), we get

U2 − Ū2 = − �w · ∇x (Ū1 − �w · ∇xŪ0)

= − �w · ∇xŪ1 + w2
1∂

2
x1x1Ū0 + w2

2∂
2
x2x2Ū0 + 2w1w2∂

2
x1x2Ū0. (2.6)

Integrating (2.6) over �w ∈ S
1, we achieve the final form

�xŪ0 = 0, (2.7)

which further implies U0(�x, �w) satisfies the equation{
U0 = Ū0,

�xŪ0 = 0.
(2.8)

In a similar fashion, for k = 1, 2, Uk satisfies⎧⎨
⎩
Uk = Ūk − �w · ∇xUk−1,

�xŪk = −
∫
S1

�w · ∇xUk−1 d �w.
(2.9)

It is easy to see that Ūk satisfies an elliptic equation. However, the boundary condi-
tion of Ūk is unknown at this stage, since generally Uk does not necessarily satisfy
the in-flow boundary condition of (1.1). Therefore, we have to resort to boundary
layers.
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2.2. Boundary Layer Expansion

Besides the Cartesian coordinate system for interior solutions, we need a local
coordinate system in a neighborhood of the boundary to describe boundary layers.

Assume the Cartesian coordinate system is �x = (x1, x2). Using polar coor-
dinates system (r, θ) ∈ [0,∞) × [−π, π) and choosing pole in �, we assume
�x0 ∈ ∂� is {

x1,0 = r(θ) cos θ,

x2,0 = r(θ) sin θ,
(2.10)

where r(θ) > 0 is a given function describing the boundary ∂�. Our local coor-
dinate system is similar to the polar coordinate system, but varies to satisfy the
specific requirements.

In a neighborhood of the boundary, for each θ , we have the outward unit normal
vector

�ν =
(
r(θ) cos θ + r ′(θ) sin θ√

r(θ)2 + r ′(θ)2
,
r(θ) sin θ − r ′(θ) cos θ√

r(θ)2 + r ′(θ)2

)
. (2.11)

We can determine each point �x ∈ �̄ as �x = �x0−μ�ν whereμ is the normal distance
to a boundary point �x0. In detail, this means

⎧⎪⎪⎨
⎪⎪⎩
x1 = r(θ) cos θ − μ

r(θ) cos θ + r ′(θ) sin θ√
r(θ)2 + r ′(θ)2

,

x2 = r(θ) sin θ − μ
r(θ) sin θ − r ′(θ) cos θ√

r(θ)2 + r ′(θ)2
,

(2.12)

where r ′(θ) = dr

dθ
. It is easy to see thatμ = 0 denotes the boundary ∂� andμ > 0

denotes the interior of � (before touching the other side of the domain boundary).
(μ, θ) is the desired local coordinate system.

By chain rule (see [7]), we may deduce that

∂θ

∂x1
= MP

P3 + Qμ
,

∂μ

∂x1
= −N

P
,

∂θ

∂x2
= N P

P3 + Qμ
,

∂μ

∂x2
= M

P
, (2.13)

where

P = (r2 + r ′2)
1
2 , Q = rr ′′ − r2 − 2r ′2, M = −r sin θ + r ′ cos θ,

N = r cos θ + r ′ sin θ. (2.14)

Therefore, note the fact that for C2 convex domains, the curvature is

κ(θ) = r2 + 2r ′2 − rr ′′

(r2 + r ′2) 3
2

, (2.15)

and the radius of curvature is

Rκ(θ) = 1

κ(θ)
= (r2 + r ′2) 3

2

r2 + 2r ′2 − rr ′′ . (2.16)
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Substitution 1:
Let (x1, x2) → (μ, θ) with (μ, θ) ∈ [0, Rmin) × [−π, π) for Rmin = minθ Rκ as

⎧⎪⎪⎨
⎪⎪⎩
x1 = r(θ) cos θ − μ

r(θ) cos θ + r ′(θ) sin θ√
r(θ)2 + r ′(θ)2

,

x2 = r(θ) sin θ − μ
r(θ) sin θ − r ′(θ) cos θ√

r(θ)2 + r ′(θ)2
,

(2.17)

and then the equation (1.1) is transformed into
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε

(
w1

−r cos θ − r ′ sin θ

(r2 + r ′2) 1
2

+ w2
−r sin θ + r ′ cos θ

(r2 + r ′2) 1
2

)
∂uε

∂μ

+ε

(
w1

−r sin θ + r ′ cos θ

(r2 + r ′2)(1 − κμ)
+ w2

r cos θ + r ′ sin θ

(r2 + r ′2)(1 − κμ)

)
∂uε

∂θ
+ uε − ūε = 0,

uε(0, θ, �w) = g(θ, �w) for �w · �ν < 0,

(2.18)

where

�w · �ν = w1
r cos θ + r ′ sin θ

(r2 + r ′2) 1
2

+ w2
r sin θ − r ′ cos θ

(r2 + r ′2) 1
2

. (2.19)

Noting the fact that

(
M

P

)2

+
(
N

P

)2

=
(

−r cos θ − r ′ sin θ

(r2 + r ′2) 1
2

)2

+
(

−r sin θ + r ′ cos θ

(r2 + r ′2) 1
2

)2

= 1, (2.20)

we can further simplify (2.18).
Substitution 2:
Let θ → τ with τ ∈ [−π, π) as

⎧⎪⎪⎨
⎪⎪⎩

sin τ = r sin θ − r ′ cos θ

(r2 + r ′2) 1
2

,

cos τ = r cos θ + r ′ sin θ

(r2 + r ′2) 1
2

,

(2.21)

which implies

dτ

dθ
= κ(r2 + r ′2)

1
2 > 0. (2.22)

Then the equation (1.1) is transformed into⎧⎪⎪⎨
⎪⎪⎩

−ε (w1 cos τ + w2 sin τ)
∂uε

∂μ
− ε

Rκ − μ
(w1 sin τ − w2 cos τ)

∂uε

∂τ
+uε − ūε = 0,

uε(0, τ, �w) = g(τ, �w) for �w · �ν < 0,

(2.23)
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where

�w · �ν = w1 cos τ + w2 sin τ. (2.24)

Substitution 3:

We further make the scaling transform for μ → η with η ∈
[
0,

Rmin

ε

)
as

η = μ

ε
, (2.25)

which implies

∂uε

∂μ
= 1

ε

∂uε

∂η
. (2.26)

Then the equation (1.1) is transformed into⎧⎪⎪⎨
⎪⎪⎩

−
(

w1 cos τ + w2 sin τ

)
∂uε

∂η
− ε

Rκ − εη

(
w1 sin τ − w2 cos τ

)
∂uε

∂τ
+uε − ūε = 0,

uε(0, τ, �w) = g(τ, �w) for �w · �ν < 0,

(2.27)

where

�w · �ν = w1 cos τ + w2 sin τ. (2.28)

Substitution 4:
Define the velocity substitution for (w1, w2) → ξ with ξ ∈ [−π, π) as{

w1 = − sin ξ

w2 = − cos ξ.
(2.29)

We have the succinct form of the equation (1.1) as⎧⎨
⎩
sin(τ + ξ)

∂uε

∂η
− ε

Rκ − εξ
cos(τ + ξ)

∂uε

∂τ
+ uε − ūε = 0,

uε(0, τ, ξ) = g(τ, ξ) for sin(τ + ξ) > 0.
(2.30)

Substitution 5:
As [24] and [7] reveal, we need a further rotational substitution for ξ → φ with
φ ∈ [−π, π) as

φ = τ + ξ (2.31)

and achieve the form⎧⎨
⎩
sin φ

∂uε

∂η
− ε

Rκ − εη
cosφ

(
∂uε

∂φ
+ ∂uε

∂τ

)
+ uε − ūε = 0,

uε(0, τ, φ) = g(τ, φ) for sin φ > 0.
(2.32)

This step is trying to compensate the variations of the normal vector ν along the
boundary. A bi-product of such substitution is that we decompose the tangential
derivative and introduce a new velocity derivative.
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We define the boundary layer expansion as follows:

U(η, τ, φ) ∼ U0(η, τ, φ) + εU1(η, τ, φ), (2.33)

where Uk can be determined by comparing the order of ε via plugging (2.33) into
the equation (2.32). Thus, in a neighborhood of the boundary, we have

sin φ
∂U0

∂η
− ε

Rκ − εη
cosφ

∂U0

∂φ
+ U0 − Ū0 = 0, (2.34)

sin φ
∂U1

∂η
− ε

Rκ − εη
cosφ

∂U1

∂φ
+ U1 − Ū1 = 1

Rκ − εη
cosφ

∂U0

∂τ
, (2.35)

where

Ūk(η, τ ) = 1

2π

∫ π

−π

Uk(η, τ, φ) dφ. (2.36)

We call this type of equations the ε-Milne problem with geometric correction.

2.3. Decomposition and Modification

In this section, we introduce the important decomposition of boundary data,
which can greatly improve the regularity. The idea is adapted from [21] for the flat
Milne problem.

Consider the ε-Milne problem with geometric correction with L = ε− 1
2 and

R[φ] = −φ,
⎧⎪⎪⎨
⎪⎪⎩
sin φ

∂ f

∂η
− ε

Rκ − εη
cosφ

∂ f

∂φ
+ f − f̄ = 0,

f (0, φ) = g(φ) for sin φ > 0,
f (L , φ) = f (L ,R[φ]).

(2.37)

We assume that g(φ) is not a constant and 0 � g(φ) � 1. This is always achievable
and we do not lose the generality since the equation is linear. For some α > 0
which will be determined later, define two C∞ auxiliary functions

g1(φ) =
{
0 for φ ∈ (0, εα] ∪ [π − εα, π),

g(φ) for φ ∈ [2εα, π − 2εα], (2.38)

and

g2(φ) =
{
1 for φ ∈ (0, εα] ∪ [π − εα, π),

g(φ) for φ ∈ [2εα, π − 2εα]. (2.39)

A standard construction using mollifier justifies the existence of gi for i = 1, 2.

Also, we can easily obtain

∣∣∣∣∂gi∂φ

∣∣∣∣ � Cε−α and

∣∣∣∣∂
2gi

∂φ2

∣∣∣∣ � Cε−2α . Let f1(η, φ) and

f2(η, φ) be the solutions to the equation (2.37) with in-flow data g1(φ) and g2(φ)
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respectively. Then by Theorem 4.8, we know f1 and f2 are well-defined in L∞. By
Theorem 4.10, they satisfy the maximum principle, which means

f1(0, 0
+) − f̄1(0) = f1(0, π

−) − f̄1(0) = − f̄1(0) < 0, (2.40)

f2(0, 0
+) − f̄2(0) = f2(0, π

−) − f̄2(0) = 1 − f̄2(0) > 0. (2.41)

Therefore, there exists a constant 0 < λ < 1 such that

λ
(
f1(0, 0

+) − f̄1(0)
)

+ (1 − λ)
(
f2(0, 0

+) − f̄2(0)
)

= 0, (2.42)

λ
(
f1(0, π

−) − f̄1(0)
)

+ (1 − λ)
(
f2(0, π

−) − f̄2(0)
)

= 0. (2.43)

Let gλ(φ) = λg1(φ)+ (1−λ)g2(φ) and the corresponding solution to the equation
(2.37) is fλ(η, φ). We have

fλ(0, 0
+) − f̄λ(0) = fλ(0, π

−) − f̄λ(0) = 0. (2.44)

Since for φ ∈ (0, εα] ∪ [π − εα, π), gλ = 1 − λ is a constant, we naturally have
∂gλ

∂φ
= 0. We may formally solve from equation (2.37) that

∂ fλ
∂η

∣∣∣∣
η=0,φ∈(0,εα]∪[π−εα,π)

= 1

sin φ

(
ε

Rκ − εη
cosφ

∂gλ

∂φ

∣∣∣∣
φ∈(0,εα]∪[π−εα,π)

−
(
fλ − f̄λ

)∣∣∣∣
η=0,φ∈(0,εα]∪[π−εα,π)

)
= 0. (2.45)

Note that gλ(φ) = g(φ) for φ ∈ [2εα, π − 2εα], so our modification is restricted
to a small region near the grazing set and we can smoothen the normal derivative
at the boundary.

This method can be easily generalized to treat other g(φ). In principle, for
g(φ) ∈ C1, we can define a decomposition

g(φ) = G (φ) + G(φ), (2.46)

such that G(φ) = 0 for sin φ � 2εα , and the solution to the equation (2.37)
with in-flow data G (φ) has L∞ normal derivative at η=0. Such a decomposition

comes with a price. Originally, we have

∥∥∥∥ ∂g

∂φ

∥∥∥∥
L∞

� C . However, now we only

have

∥∥∥∥∂G

∂φ

∥∥∥∥
L∞

� Cε−α and

∥∥∥∥∂G

∂φ

∥∥∥∥
L∞

� Cε−α due to the short-ranged cut-off

function.
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2.4. Matching Procedure

The bridge between the interior solution and boundary layer is the boundary
condition of (1.1), so we first consider the boundary expansion

U0 + U0 + U0 = g, (2.47)

U1 + U1 = 0. (2.48)

Here U0 and U0 are boundary layers corresponding to the decomposed boundary
data G andG respectively. We callU the regular boundary layer andU the singular
boundary layer. They should both satisfy the ε-Milne problem with geometric
correction.
Step 0: Preliminaries.
Define the weight function

ζ(η, φ) =
(
1 −

(
Rκ − εη

Rκ

cosφ

)2) 1
2

. (2.49)

Let

F(ε; η, τ) = − ε

Rκ(τ ) − εη
, (2.50)

and the length for ε-Milne problem as L = ε− 1
2 . For φ ∈ [−π, π ], denoteR[φ] =

−φ.
Step 1: Construction of U0, U0 and U0.
Define the zeroth-order boundary layer as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U0(η, τ, φ) = F0(η, τ, φ) − F0,L(τ ),

sin φ
∂F0

∂η
+ F(ε; η, τ) cosφ

∂F0

∂φ
+ F0 − F̄0 = 0,

F0(0, τ, φ) = G (τ, φ) for sin φ > 0,
F0(L , τ, φ) = F0(L , τ,R[φ]),

(2.51)

withF0,L(τ ) is defined in Theorems 4.3 and 4.8, and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U0(η, τ, φ) = F0(η, τ, φ) − F0,L(τ ),

sin φ
∂F0

∂η
+ F(ε; η, τ) cosφ

∂F0

∂φ
+ F0 − F̄0 = 0,

F0(0, τ, φ) = G(τ, φ) for sin φ > 0,
F0(L , τ, φ) = F0(L , τ,R[φ]),

(2.52)

with F0,L(τ ) is defined in Theorems 4.3 and 4.8. Also, we define the zeroth-order
interior solution U0(�x, �w) as

⎧⎨
⎩
U0(�x, �w) = Ū0(�x),
�xŪ0(�x) = 0 in �,

Ū0(�x0) = F0,L(τ ) + F0,L(τ ) on ∂�.

(2.53)
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Roughly speakingF0,L(τ ) and F0,L(τ ) represent the value ofF0 and F0 at infinity
(since L → ∞ as ε → 0).
Step 2: Construction of U1 and U1.
Define the first-order boundary layer as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U1(η, τ, φ) = F1(η, τ, φ) − F1,L(τ ),

sin φ
∂F1

∂η
+ F(ε; η, τ) cosφ

∂F1

∂φ
+ F1 − F̄1 = 1

Rκ − εη
cosφ

∂U0

∂τ
,

F1(0, τ, φ) = �w · ∇xU0(0, τ, �w) for sin φ > 0,
F1(L , τ, φ) = F1(L , τ,R[φ]),

(2.54)

with F1,L(τ ) is defined in Theorem 4.3 and Theorem 4.8. Then we define the
first-order interior solution U1(�x, �w) as

⎧⎪⎪⎨
⎪⎪⎩
U1(�x, �w) = Ū1(�x) − �w · ∇xU0(�x, �w),

�xŪ1(�x) = −
∫
S1

(
�w · ∇xU0(�x, �w)

)
d �w in �,

Ū1(�x0) = f1,L(τ ) on ∂�.

(2.55)

Note that we do not define U1 here.
Step 3: Construction of U2.
Since we do not expand toU2 and U2, we define the second-order interior solution
as

⎧⎪⎪⎨
⎪⎪⎩
U2(�x, �w) = Ū2(�x) − �w · ∇xU1(�x, �w),

�xŪ2(�x) = −
∫
S1

(
�w · ∇xU1(�x, �w)

)
d �w in �,

Ū2(�x0) = 0 on ∂�.

(2.56)

Here, wemight have O(ε3) error in this step due to the trivial boundary data. Thanks
to the remainder estimate, it will not affect the diffusive limit.

3. Remainder Estimate

In this section, we consider the remainder equation for u(�x, �w):

{
ε �w · ∇xu + u − ū = f (�x, �w) in �,

u(�x0, �w) = h(�x0, �w) for �w · �ν < 0 and �x0 ∈ ∂�.
(3.1)

We define the L p norm with 1 � p < ∞ and L∞ norms in � × S
1 as usual:

‖ f ‖L p(�×S1) =
(∫

�

∫
S1

| f (�x, �w)|p d �w d�x
) 1

p

, (3.2)

‖ f ‖L∞(�×S1) = esssup(�x, �w)∈�×S1 | f (�x, �w)| . (3.3)
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Define the L p norm with 1 � p < ∞ and L∞ norms on the boundary as follows:

‖ f ‖L p(	) =
( ∫∫

	

| f (�x, �w)|p | �w · �ν| d �w d�x
) 1

p

, (3.4)

‖ f ‖L p(	±) =
( ∫∫

	±
| f (�x, �w)|p | �w · �ν| d �w d�x

) 1
p

, (3.5)

‖ f ‖L∞(	) = esssup(�x, �w)∈	 | f (�x, �w)| , (3.6)

‖ f ‖L∞(	±) = esssup(�x, �w)∈	± | f (�x, �w)| . (3.7)

From now on, we denote dγ = ( �w · �ν) d �w d�x on the boundary.
In the following, we always assume that � is convex and bounded. The proof

can be decomposed into two major steps:

• L2m estimates:
Directly energy estimates can bound ‖u − ū‖L2(�×S1), so the key is how to con-
trol ū. Here, we utilize the spectral gap of the transport operator �w · ∇x in bounded
domains to construct special test functions such that ‖ū‖L2m (�×S1) shows up explic-
itly in the weak formulation. In particular, in the L2m estimates, we apply Young’s
inequality and interpolation estimates to tackle the other terms in the weak formu-
lation.

• L∞ estimates:
This is based on the mild formulation. We use Duhamel’s principle to rewrite the
solution along the characteristics.Moreover,wemay expand ū into the velocity inte-
gral and apply Duhamel’s principle again to get multiple integrals. Here, convexity
and boundedness guarantee that the mild formulation will not produce singularities
inside the domain (see [9]). Then a delicate substitution will transform pointwise
estimates into the control of space integrals, which is provided by the above L2m

estimates.

This general method constitutes the so-called L2m − L∞ framework.
The remainder estimates for the neutron transport equation with diffusive

boundary was proved in [7] and [8]. The case with in-flow boundary was first
shown in [24] based on L2 − L∞ framework. The main results in [24] are as
follows:

Theorem 3.1. The unique solution u(�x, �w) to the equation (3.1) satisfies

1

ε
1
2

‖u‖L2(	+) + ‖u‖L2(�×S1) � C

(
1

ε2
‖ f ‖L2(�×S1) + 1

ε
1
2

‖h‖L2(	−)

)
. (3.8)

Theorem 3.2. The unique solution u(�x, �w) to the equation (3.1) satisfies

‖u‖L∞(	+) + ‖u‖L∞(�×S1) � C

(
1

ε3
‖ f ‖L2(�×S1) + ‖ f ‖L∞(�×S1)

+ 1

ε
3
2

‖h‖L2(	−) + ‖h‖L∞(	−)

)
. (3.9)

The existence and uniqueness of solution u(�x, �w) was justified in [24]. Here
we will focus on the a priori estimates and prove an improved version.
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3.1. L2m Estimate

In the following,we assumem > 2 is an integer and let o(1) denote a sufficiently
small constant.

Lemma 3.3. (Green’s identity) Assume u(�x, �w), v(�x, �w) ∈ L2(� × S
1) and �w ·

∇xu, �w · ∇xv ∈ L2(� × S
1) with u, v ∈ L2(	). Then

∫∫
�×S1

(
( �w · ∇xu)v + ( �w · ∇xu)v

)
d�x d �w =

∫
	

uv dγ. (3.10)

Proof. See [2, Chapter 9] and [4]. �

Theorem 3.4. The unique solution u(�x, �w) to the equation (3.1) satisfies

1

ε
1
2

‖u‖L2(	+) + ‖ū‖L2m (�×S1) + 1

ε
‖u − ū‖L2(�×S1)

� C

(
o(1)ε

1
m

(
‖u‖L∞(�×S1) + ‖u‖L∞(	+)

)

+1

ε
‖ f ‖L2(�×S1) + 1

ε2
‖ f ‖

L
2m

2m−1 (�×S1)

+ 1

ε
1
2

‖h‖L2(	−) + ‖h‖Lm (	−)

)
. (3.11)

Proof. Step 1: Kernel Estimate.
Applying Green’s identity to the equation (3.1). Then for any φ ∈ L2(� × S

1)

satisfying �w · ∇xφ ∈ L2(� × S
1) and φ ∈ L2(	), we have

ε

∫
	

uφ dγ − ε

∫∫
�×S1

( �w · ∇xφ)u +
∫∫

�×S1
(u − ū)φ =

∫∫
�×S1

f φ. (3.12)

Our goal is to choose a particular test function φ. We first construct an auxiliary
function ξ . Naturally u ∈ L∞(�×S

1) implies ū ∈ L2m(�) which further leads to

(ū)2m−1 ∈ L
2m

2m−1 (�). We define ξ(�x) on � satisfying
{

�ξ = (ū)2m−1 in �,

ξ = 0 on ∂�.
(3.13)

In the bounded domain�, based on the standard elliptic estimates, we have a unique
ξ satisfying

‖ξ‖
W

2, 2m
2m−1 (�)

� C
∥∥∥(ū)2m−1

∥∥∥
L

2m
2m−1 (�)

= C ‖ū‖2m−1
L2m (�)

. (3.14)

We plug the test function

φ = − �w · ∇xξ (3.15)

into the weak formulation (3.12) and estimate each term there. By Sobolev embed-
ding theorem, we have
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‖φ‖L2(�) � C ‖ξ‖H1(�) � C ‖ξ‖
W

2, 2m
2m−1 (�)

� C ‖ū‖2m−1
L2m (�)

, (3.16)

‖φ‖
L

2m
2m−1 (�)

� C ‖ξ‖
W

1, 2m
2m−1 (�)

� C ‖ū‖2m−1
L2m (�)

. (3.17)

Then we can decompose

− ε

∫∫
�×S1

( �w · ∇xφ)u = −ε

∫∫
�×S1

( �w · ∇xφ)ū

−ε

∫∫
�×S1

( �w · ∇xφ)(u − ū). (3.18)

We estimate the two term on the right-hand side of (3.18) separately. By (3.13) and
(3.15), we have

−ε

∫∫
�×S1

( �w · ∇xφ)ū

= ε

∫∫
�×S1

ū

(
w1(w1∂11ξ + w2∂12ξ) + w2(w1∂12ξ + w2∂22ξ)

)

= ε

∫∫
�×S1

ū

(
w2
1∂11ξ + w2

2∂22ξ

)
= 2επ

∫
�

ū(∂11ξ + ∂22ξ)

= ε ‖ū‖2mL2m (�)
. (3.19)

In the second equality, the cross terms vanish due to the symmetry of the integral
over S1. On the other hand, for the second term in (3.18), Hölder’s inequality and
the elliptic estimate imply

− ε

∫∫
�×S1

( �w · ∇xφ)(u − ū) � Cε ‖u − ū‖L2m (�×S1) ‖∇xφ‖
L

2m
2m−1 (�)

� Cε ‖u − ū‖L2m (�×S1) ‖ξ‖
W

2, 2m
2m−1 (�)

� Cε ‖u − ū‖L2m (�×S1) ‖ū‖2m−1
L2m (�)

. (3.20)

Based on (3.14), (3.16), (3.17), Sobolev embedding theorem and the trace theorem,
we have

‖∇xξ‖
L

m
m−1 (	)

� C ‖∇xξ‖
W

1
2m , 2m

2m−1 (	)
� C ‖∇xξ‖

W
1, 2m

2m−1 (�)

� C ‖ξ‖
W

2, 2m
2m−1 (�)

� C ‖ū‖2m−1
L2m (�)

. (3.21)

Based on (3.14), (3.17) and Hölder’s inequality, we have

ε

∫
	

uφ dγ = ε

∫
	+

uφ dγ + ε

∫
	−

uφ dγ

� Cε ‖∇xξ‖
L

m
m−1 (	)

(
‖u‖Lm (	+) + ‖h‖Lm (	−)

)

� Cε ‖ū‖2m−1
L2m (�×S1)

(
‖u‖Lm (	+) + ‖h‖Lm (	−)

)
. (3.22)
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Also, we have∫∫
�×S1

(u − ū)φ � C ‖φ‖L2(�×S1) ‖u − ū‖L2(�×S1)

� C ‖ū‖2m−1
L2m (�)

‖u − ū‖L2(�×S1) , (3.23)∫∫
�×S1

f φ � C ‖φ‖L2(�×S1) ‖ f ‖L2(�×S1)

� C ‖ū‖2m−1
L2m (�)

‖ f ‖L2(�×S1) . (3.24)

Collecting terms in (3.19), (3.20), (3.22), (3.23) and (3.24), we obtain

ε ‖ū‖L2m (�×S1) � C

(
ε ‖u − ū‖L2m (�×S1) + ‖u − ū‖L2(�×S1) + ε ‖u‖Lm (	+)

+‖ f ‖L2(�×S1) + ε ‖h‖Lm (	−)

)
, (3.25)

Step 2: Energy Estimate.
In the weak formulation (3.12), we may take the test function φ = u to get the
energy estimate

1

2
ε

∫
	

|u|2 dγ + ‖u − ū‖2L2(�×S1)
=

∫∫
�×S1

f u. (3.26)

This naturally implies

ε ‖u‖2L2(	+)
+ ‖u − ū‖2L2(�×S1)

=
∫∫

�×S1
f u + ε ‖h‖2L2(	−)

. (3.27)

On the other hand, we can square on both sides of (3.25) to obtain

ε2 ‖ū‖2L2m (�×S1)
� C

(
ε2 ‖u − ū‖2L2m (�×S1)

+ ‖u − ū‖2L2(�×S1)
+ ε2 ‖u‖Lm (	+)

+‖ f ‖2L2(�×S1)
+ ε2 ‖h‖2Lm (	−)

)
, (3.28)

Multiplying (3.28) by a sufficiently small constant and adding it to (3.27) to absorb
‖u − ū‖2

L2(�×S1)
, we deduce

ε ‖u‖2L2(	+)
+ ε2 ‖ū‖2L2m (�×S1)

+ ‖u − ū‖2L2(�×S1)

� C

(
ε2 ‖u − ū‖2L2m (�×S1)

+ ε2 ‖u‖Lm (	+) + ‖ f ‖2L2(�×S1)

+
∫∫

�×S1
f u + ε ‖h‖2L2(	−)

+ ε2 ‖h‖2Lm (	−)

)
. (3.29)

By interpolation estimate and Young’s inequality, we have

‖u‖Lm (	+) � ‖u‖
2
m
L2(	+)

‖u‖
m−2
m

L∞(	+)
=

(
1

ε
m−2
m2

‖u‖
2
m
L2(	+)

)(
ε

m−2
m2 ‖u‖

m−2
m

L∞(	+)

)
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� C

(
1

ε
m−2
m2

‖u‖
2
m
L2(	+)

)m
2 + o(1)

(
ε

m−2
m2 ‖u‖

m−2
m

L∞(	+)

) m
m−2

� C

ε
m−2
2m

‖u‖L2(	+) + o(1)ε
1
m ‖u‖L∞(	+) . (3.30)

Similarly, we have

‖u − ū‖L2m (�×S1) � ‖u − ū‖
1
m
L2(�×S1)

‖u − ū‖
m−1
m

L∞(�×S1)

=
(

1

ε
m−1
m2

‖u − ū‖
1
m
L2(�×S1)

)(
ε

m−1
m2 ‖u − ū‖

m−1
m

L∞(�×S1)

)

� C

(
1

ε
m−1
m2

‖u − ū‖
1
m
L2(�×S1)

)m

+o(1)

(
ε

m−1
m2 ‖u − ū‖

m−1
m

L∞(�×S1)

) m
m−1

� C

ε
m−1
m

‖u − ū‖L2(�×S1) + o(1)ε
1
m ‖u − ū‖L∞(�×S1) .

(3.31)

We need this extra ε
1
m for the convenience of L∞ estimate. Then we know for

sufficiently small ε,

ε2 ‖u‖2Lm (	+)
� Cε2−

m−2
m ‖u‖2L2(	+)

+ o(1)ε2+
2
m ‖u‖2L∞(	+)

� o(1)ε ‖u‖2L2(	+)
+ o(1)ε2+

2
m ‖u‖2L∞(	+)

. (3.32)

Similarly, we have

ε2 ‖u − ū‖2L2m (�×S1)
� ε2−

2m−2
m ‖u − ū‖2L2(�×S1)

+ o(1)ε2+
2
m ‖u‖2L∞(�×S1)

� o(1) ‖u − ū‖2L2(�×S1)
+ o(1)ε2+

2
m ‖u‖2L∞(�×S1)

.

(3.33)

Inserting (3.32) and (3.33) into (3.29), we can absorb ‖u − ū‖L2(�×S1) and
ε ‖u‖2

L2(	+)
into left-hand side to obtain

ε ‖u‖2L2(	+)
+ ε2 ‖ū‖2L2m (�×S1)

+ ‖u − ū‖2L2(�×S1)

� C

(
o(1)ε2+

2
m

(
‖u‖2L∞(�×S1)

+ ‖u‖2L∞(	+)

)
+ ‖ f ‖2L2(�×S1)

+
∫∫

�×S1
f u + ε ‖h‖2L2(	−)

+ ε2 ‖h‖2Lm (	−)

)
. (3.34)

We can decompose∫∫
�×S1

f u =
∫∫

�×S1
f ū +

∫∫
�×S1

f (u − ū). (3.35)
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Hölder’s inequality and Cauchy’s inequality imply

∫∫
�×S1

f ū � ‖ f ‖
L

2m
2m−1 (�×S1)

‖ū‖L2m (�×S1)

� C

ε2
‖ f ‖2

L
2m

2m−1 (�×S1)
+ o(1)ε2 ‖ū‖2L2m (�×S1)

, (3.36)

and ∫∫
�×S1

f (u − ū) � C ‖ f ‖2L2(�×S1)
+ o(1) ‖u − ū‖2L2(�×S1)

. (3.37)

Hence, absorbing ε2 ‖ū‖2
L2m (�×S1)

and ‖u − ū‖2
L2(�×S1)

into left-hand side of
(3.34), we get

ε ‖u‖2L2(	+)
+ ε2 ‖ū‖2L2m (�×S1)

+ ‖u − ū‖2L2(�×S1)

� C

(
o(1)ε2+

2
m

(
‖u‖2L∞(�×S1)

+ ‖u‖2L∞(	+)

)

+‖ f ‖2L2(�×S1)
+ 1

ε2
‖ f ‖2

L
2m

2m−1 (�×S1)
+ ε ‖h‖2L2(	−)

+ε2 ‖h‖2Lm (	−)

)
, (3.38)

which implies

1

ε
1
2

‖u‖L2(	+) + ‖ū‖L2m (�×S1) + 1

ε
‖u − ū‖L2(�×S1)

� C

(
o(1)ε

1
m

(
‖u‖L∞(�×S1) + ‖u‖L∞(	+)

)

+1

ε
‖ f ‖L2(�×S1) + 1

ε2
‖ f ‖

L
2m

2m−1 (�×S1)
+ 1

ε
1
2

‖h‖L2(	−)

+‖h‖Lm (	−)

)
. (3.39)

�


3.2. L∞ Estimate

Theorem 3.5. The unique solution u(�x, �w) to the equation (3.1) satisfies

‖u‖L∞(�×S1) � C

(
1

ε1+ 1
m

‖ f ‖L2(�×S1) + 1

ε2+ 1
m

‖ f ‖
L

2m
2m−1 (�×S1)

+ ‖ f ‖L∞(�×S1)

+ 1

ε
1
2+ 1

m

‖h‖L2(	−) + 1

ε
1
m

‖h‖Lm (	−) + ‖h‖L∞(	−)

)
. (3.40)
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Proof. Step 1: Double Duhamel iterations.
We can rewrite the equation (3.1) along the characteristics as

u(�x, �w) = h(�x − εtb �w, �w)e−tb +
∫ tb

0
f
(
�x − ε(tb − s) �w, �w

)
e−(tb−s) ds

+ 1

2π

∫ tb

0

( ∫
S1
u
(
�x − ε(tb − s) �w, �wt

)
d �wt

)
e−(tb−s) ds, (3.41)

where the backward exit time tb is defined as

tb(�x, �w) = inf{t � 0 : (�x − εt �w, �w) ∈ 	−}, (3.42)

which represents the first time that the characteristics track back and hit the in-flow
boundary. Note we have replaced ū by the integral of u over the dummy velocity
variable �wt . For the last term in this formulation, we apply the Duhamel’s principle

again to u
(
�x − ε(tb − s) �w, �wt

)
and obtain

u(�x, �w) = h(�x − εtb �w, �w)e−tb +
∫ tb

0
f
(
�x − ε(tb − s) �w, �w

)
e−(tb−s) ds

+ 1

2π

∫ tb

0

( ∫
S1
h
(
�x − ε(tb − s) �w − εsb �wt , �wt

)
e−sb d �wt

)
e−(tb−s) ds

+ 1

2π

∫ tb

0

( ∫
S1

( ∫ sb

0
f
(
�x − ε(tb − s) �w

−ε(sb − r) �wt , �wt

)
e−(sb−r) dr

)
d �wt

)
e−(tb−s) ds

+ 1

2π

∫ tb

0

( ∫
S1

( ∫ sb

0
ū
(
�x − ε(tb − s) �w

−ε(sb − r) �wt

)
e−(sb−r) dr

)
d �wt

)
e−(tb−s) ds, (3.43)

where the exiting time from
(
�x − ε(tb − s) �w, �wt

)
is defined as

sb(�x, �w, s, �wt ) = inf{r � 0 :
(
�x − ε(tb − s) �w − εr �wt , �wt

)
∈ 	−}. (3.44)

Step 2: Estimates of all but the last term in (3.43).
We can directly estimate as follows:

∣∣h(�x − εtb �w, �w)e−tb
∣∣ � ‖h‖L∞(	−) , (3.45)∣∣∣∣ 1

2π

∫ tb

0

( ∫
S1
h
(
�x − ε(tb − s) �w − εsb �wt , �wt

)
e−sb d �wt

)
e−(tb−s) ds

∣∣∣∣
� ‖h‖L∞(	−) , (3.46)∣∣∣∣

∫ tb

0
f
(
�x − ε(tb − s) �w, �w

)
e−(tb−s) ds

∣∣∣∣ � ‖ f ‖L∞(�×S1) , (3.47)
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∣∣∣∣ 1

2π

∫ tb

0

(∫
S1

( ∫ sb

0
f (�x − ε(tb − s) �w

−ε(sb − r) �wt , �wt )e
−(sb−r) dr

)
d �wt

)
e−(tb−s) ds

∣∣∣∣ � ‖ f ‖L∞(�×S1) . (3.48)

Step 3: Estimates of the last term in (3.43).
Now we decompose the last term in (3.43) as

∫ tb

0

∫
S1

∫ sb

0
=

∫ tb

0

∫
S1

∫
sb−r�δ

+
∫ tb

0

∫
S1

∫
sb−r�δ

= I1 + I2, (3.49)

for some small δ > 0 to be determined later. We can estimate I1 directly as

I1 �
∫ tb

0
e−(tb−s)

( ∫ sb

max(0,sb−δ)

‖u‖L∞(�×S1) dr

)
ds � Cδ ‖u‖L∞(�×S1) . (3.50)

Then we can bound I2 as

I2 � C
∫ tb

0

∫
S1

∫ max(0,sb−δ)

0

∣∣∣ū(
�x − ε(tb − s) �w

−ε(sb − r) �wt

)∣∣∣ e−(tb−s) dr d �wt ds. (3.51)

By the definition of tb and sb, we always have �x − ε(tb − s) �w − ε(sb − r) �wt ∈ �̄.
Hence, we may interchange the order of integration and apply Hölder’s inequality
to obtain

I2 � C
∫ tb

0

((∫
S1

∫ max(0,sb−δ)

0
1�

(
�x − ε(tb − s) �w − ε(sb − r) �wt

)

∣∣∣ū(
�x − ε(tb − s) �w − ε(sb − r) �wt

)∣∣∣2m d �wt dr

) 1
2m

×
(∫

S1

∫ max(0,sb−δ)

0
1�

(
�x − ε(tb − s) �w

−ε(sb − r) �wt

)
d �wt dr

) 2m−1
2m

)
e−(tb−s) ds. (3.52)

Note that �wt ∈ S
1, which is essentially a one-dimensional variable. Thus, we may

write it in a new variable ψ as �wt = (cosψ, sinψ). Then we define the change of
variable [−π, π)×R → � : (ψ, r) → (y1, y2) = �y = �x−ε(tb−s) �w−ε(sb−r) �wt ,
that is {

y1 = x1 − ε(tb − s)w1 − ε(sb − r) cosψ,

y2 = x2 − ε(tb − s)w2 − ε(sb − r) sinψ.
(3.53)

Therefore, for sb − r � δ, we can directly compute the Jacobian∣∣∣∣∂(y1, y2)

∂(ψ, r)

∣∣∣∣ =
∣∣∣∣
∣∣∣∣−ε(sb − r) sinψ ε cosψ

ε(sb − r) cosψ ε sinψ

∣∣∣∣
∣∣∣∣ = ε2(sb − r) � ε2δ. (3.54)
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Hence, we may simplify (3.52) as

I2 � C
∫ tb

0

(∫
�

1

ε2δ
|ū(�y)|2m d�y

) 1
2m

e−(tb−s) ds

� C

ε
1
m δ

1
2m

∫ tb

0

(∫
�

|ū(�y)|2m d�y
) 1

2m

e−(tb−s) ds

� C

ε
1
m δ

1
2m

‖ū‖L2m (�×S1) . (3.55)

Step 4: Synthesis.
In summary, collecting (3.45), (3.46), (3.47), (3.48), (3.50) and (3.55), for any
(�x, �w) ∈ �̄ × S

1, we have

|u(�x, �w)| � Cδ ‖u‖L∞(�×S1) + C

ε
1
m δ

1
2m

‖ū‖L2m (�×S1)

+C

(
‖ f ‖L∞(�×S1) + ‖h‖L∞(	−)

)
. (3.56)

Let δ be sufficiently small such that Cδ � 1

2
. Taking supremum over (�x, �w) ∈ 	+

in (3.56) and using Theorem 3.4, we have

‖u‖L∞(	+) � 1

2
‖u‖L∞(�×S1) + C

(
o(1)

(
‖u‖L∞(�×S1) + ‖u‖L∞(	+)

)

+ 1

ε1+ 1
m

‖ f ‖L2(�×S1) + 1

ε2+ 1
m

‖ f ‖
L

2m
2m−1 (�×S1)

+ ‖ f ‖L∞(�×S1)

+ 1

ε
1
2+ 1

m

‖h‖L2(	−) + 1

ε
1
m

‖h‖Lm (	−) + ‖h‖L∞(	−)

)
. (3.57)

Absorbing o(1) ‖u‖L∞(	+) into the left-hand side, we obtain

‖u‖L∞(	+) � 1

2
‖u‖L∞(�×S1) + C

(
o(1) ‖u‖L∞(�×S1)

+ 1

ε1+ 1
m

‖ f ‖L2(�×S1) + 1

ε2+ 1
m

‖ f ‖
L

2m
2m−1 (�×S1)

+ ‖ f ‖L∞(�×S1)

+ 1

ε
1
2+ 1

m

‖h‖L2(	−) + 1

ε
1
m

‖h‖Lm (	−) + ‖h‖L∞(	−)

)
. (3.58)

Taking supremum over (�x, �w) ∈ �×S
1 in (3.56) and using Theorem 3.4, we have

‖u‖L∞(�×S1) � 1

2
‖u‖L∞(�×S1) + C

(
o(1)

(
‖u‖L∞(�×S1) + ‖u‖L∞(	+)

)

+ 1

ε1+ 1
m

‖ f ‖L2(�×S1) + 1

ε2+ 1
m

‖ f ‖
L

2m
2m−1 (�×S1)

+ ‖ f ‖L∞(�×S1)

+ 1

ε
1
2+ 1

m

‖h‖L2(	−) + 1

ε
1
m

‖h‖Lm (	−) + ‖h‖L∞(	−)

)
. (3.59)
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Inserting (3.58) into (3.59), we obtain

‖u‖L∞(�×S1) � 1

2
‖u‖L∞(�×S1) + C

(
o(1) ‖u‖L∞(�×S1)

+ 1

ε1+ 1
m

‖ f ‖L2(�×S1) + 1

ε2+ 1
m

‖ f ‖
L

2m
2m−1 (�×S1)

+ ‖ f ‖L∞(�×S1)

+ 1

ε
1
2+ 1

m

‖h‖L2(	−) + 1

ε
1
m

‖h‖Lm (	−) + ‖h‖L∞(	−)

)
. (3.60)

Absorb
1

2
‖u‖L∞(�×S1) and o(1) ‖u‖L∞(�×S1) into the left-hand side, we obtain

‖u‖L∞(�×S1) � C

(
1

ε1+ 1
m

‖ f ‖L2(�×S1) + 1

ε2+ 1
m

‖ f ‖
L

2m
2m−1 (�×S1)

+ ‖ f ‖L∞(�×S1)

+ 1

ε
1
2 + 1

m

‖h‖L2(	−) + 1

ε
1
m

‖h‖Lm (	−) + ‖h‖L∞(	−)

)
. (3.61)

�


4. Well-Posedness of ε-Milne Problem with Geometric Correction

We consider the ε-Milne problem with geometric correction⎧⎪⎪⎨
⎪⎪⎩
sin φ

∂ f

∂η
+ F(η) cosφ

∂ f

∂φ
+ f − f̄ = S(η, φ),

f (0, φ) = h(φ) for sin φ > 0,
f (L , φ) = f (L ,R[φ]).

(4.1)

for f (η, φ) in the domain (η, φ) ∈ [0, L]× [−π, π) where L = ε− 1
2 ,R[φ] = −φ

and

F(η) = − ε

Rκ − εη
, (4.2)

for the radius of curvature Rκ . Here, for convenience, we temporarily ignore the
superscript on ε and τ . Define a potential function V (η) satisfying V (0) = 0 and
∂V

∂η
= −F(η). Then we can direct compute

V (η) = ln

(
Rκ

Rκ − εη

)
. (4.3)

We define the norms in the space (η, φ) ∈ [0, L] × [−π, π) as follows:

‖ f ‖L2L2 =
( ∫ L

0

∫ π

−π

| f (η, φ)|2 dφ dη

) 1
2

, (4.4)

‖ f ‖L∞L∞ = esssup(η,φ)∈[0,L]×[−π,π) | f (η, φ)| , (4.5)

‖ f ‖L∞L2 = esssupη∈[0,L]
( ∫ π

−π

| f (η, φ)|2 dφ

) 1
2

. (4.6)
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Similarly,

‖ f (η)‖L2 =
( ∫ π

−π

| f (η, φ)|2 dφ

) 1
2

, (4.7)

‖ f (η)‖L∞ = esssupφ∈[−π,π) | f (η, φ)| . (4.8)

Also, we define the weighted norms at in-flow boundary as

‖h‖L2− =
(∫

sin φ>0
|h(φ)|2 sin φ dφ

) 1
2

, (4.9)

‖h‖L∞− = esssupsin φ>0 |h(φ)| . (4.10)

Also define

〈 f, g〉φ (η) =
∫ π

−π

f (η, φ)g(η, φ) dφ (4.11)

as the L2 inner product in φ.
In the following, we will always assume that for some C, K > 0 uniform in ε,

‖h‖L∞− +
∥∥∥eKηS

∥∥∥
L∞L∞ � C. (4.12)

The well-posedness, exponential decay and maximum principle of the equation
(4.1) has been well studied in [24]. Here we will focus on the a priori estimates
and present detail analysis for the dependence of f on the boundary data h and the
source term S.

4.1. L2 Estimates

4.1.1. S̄ = 0 Case Assume that S satisfies S̄(η) = 0 for any η. We may decom-
pose the solution

f (η, φ) = q f (η) + r f (η, φ), (4.13)

where the hydrodynamical part q f is in the null space of the operator f − f̄ , and
the microscopic part r f is the orthogonal complement, that is

q f (η) = 1

2π

∫ π

−π

f (η, φ) dφ = f̄ , r f (η, φ) = f (η, φ) − q f (η). (4.14)

In what follows, when there is no confusion, we simply write f = q + r .

Lemma 4.1. Assume (4.12) holds and S̄(η) = 0 for any η ∈ [0, L]. Then the unique
solution f (η, φ) to the equation (4.1) satisfies

‖r‖L2L2 � C

(
‖h‖L2− + ‖S‖L2L2

)
, (4.15)
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and there exists qL ∈ R such that

|qL | � C

(
‖h‖L2− + ‖S‖L2L2

)
+ C

∣∣∣∣
∫ L

0
〈sin φ, S〉φ (y) dy

∣∣∣∣ , (4.16)

‖q − qL‖L2L2 � C

(
‖h‖L2− + ‖S‖L2L2

)

+C

( ∫ L

0

( ∫ L

η

〈sin φ, S〉φ (y) dy

)2

dη

) 1
2

. (4.17)

Also, for any η ∈ [0, L],
〈sin φ, r〉φ (η) = 0. (4.18)

Proof. Step 1: Estimate of r .
Multiplying f on both sides of (4.1) and integrating over φ ∈ [−π, π), we get the
energy estimate

1

2

d

dη
〈 f, f sin φ〉φ (η) + F(η)

〈
∂ f

∂φ
, f cosφ

〉
φ

(η) + ‖r(η)‖2L2

= 〈S, f 〉φ (η). (4.19)

An integration by parts reveals

F(η)

〈
∂ f

∂φ
, f cosφ

〉
φ

(η) = 1

2
F(η) 〈 f, f sin φ〉φ (η). (4.20)

Also, the assumption S̄(η) = 0 leads to

〈S, f 〉φ (η) = 〈S, q〉φ (η) + 〈S, r〉φ (η) = 〈S, r〉φ (η). (4.21)

Hence, we have the simplified form of (4.19) as follows:

1

2

d

dη
〈 f, f sin φ〉φ (η) + 1

2
F(η) 〈 f, f sin φ〉φ (η) + ‖r(η)‖2L2 = 〈S, r〉φ (η).

(4.22)

Define

α(η) = 1

2
〈 f, f sin φ〉φ (η). (4.23)

Then (4.22) can be rewritten as follows:

dα

dη
+ F(η)α(η) + ‖r(η)‖2L2 = 〈S, r〉φ (η). (4.24)

We can solve this differential equation for α on [η, L] and [0, η] respectively to
obtain
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α(η) = α(L) exp

( ∫ L

η

F(y) d(y)

)

+
∫ L

η

exp

( ∫ y

η

F(z) dz

)(
‖r(y)‖2L2 − 〈S, r〉φ (y)

)
dy, (4.25)

α(η) = α(0) exp

(
−

∫ η

0
F(y) d(y)

)

+
∫ η

0
exp

(
−

∫ η

y
F(z) dz

)(
− ‖r(y)‖2L2 + 〈S, r〉φ (y)

)
dy. (4.26)

The specular reflexive boundary f (L , φ) = f (L ,R[φ]) ensuresα(L) = 0.Hence,
based on (4.25), we have

α(η) �
∫ L

η

exp

( ∫ y

η

F(z) dz

)(
− 〈S, r〉φ (y)

)
dy

� −C
∫ L

η

〈S, r〉φ (y) dy. (4.27)

Also, (4.26) implies

α(η) � α(0) exp

(
−

∫ η

0
F(y) d(y)

)

+
∫ η

0
exp

(
−

∫ η

y
F(z) dz

)(
〈S, r〉φ (y)

)
dy

� C ‖h‖2
L2−

+ C
∫ η

0

(
〈S, r〉φ (y)

)
dy, (4.28)

due to the fact

α(0) = 1

2
〈sin φ f, f 〉φ (0) � 1

2

( ∫
sin φ>0

h2(φ) sin φ dφ

)
� C ‖h‖2

L2−
. (4.29)

Then in (4.26) taking η = L , from α(L) = 0, we have
∫ L

0
exp

(∫ y

0
F(z) dz

)
‖r(y)‖2L2 dy

� α(0) +
∫ L

0
exp

(∫ y

0
F(z) dz

)
〈S, r〉φ (y) dy

� C ‖h‖2
L2−

+ C
∫ L

0
〈S, r〉φ (y) dy. (4.30)

On the other hand, we can directly estimate as follows:
∫ L

0
exp

( ∫ y

0
F(z) dz

)
‖r(y)‖2L2 dy � C

∫ L

0
‖r(y)‖2L2 dy. (4.31)

Combining (4.30) and (4.31) yields
∫ L

0
‖r(η)‖2L2 dη � C ‖h‖2

L2−
+ C

∫ L

0
〈S, r〉φ (y) dy. (4.32)
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By Cauchy’s inequality, we have
∣∣∣∣
∫ L

0
〈S, r〉φ (y) dy

∣∣∣∣ � C0

∫ L

0
‖r(η)‖2L2 dη + 4

C0

∫ L

0
‖S(η)‖2L2 dη, (4.33)

for C0 > 0 small. Therefore, absorbing
∫ L

0
‖r(η)‖2L2 dη and summarizing (4.32)

and (4.33), we deduce
∫ L

0
‖r(η)‖2L2 dη � C

(
‖h‖2

L2−
+

∫ L

0
‖S(η)‖2L2 dη

)
. (4.34)

Step 2: Orthogonality relation.
A direct integration over φ ∈ [−π, π) in (4.1) implies

d

dη
〈sin φ, f 〉φ (η) = −F

〈
cosφ,

d f

dφ

〉
φ

(η) + S̄(η) = −F 〈sin φ, f 〉φ (η),

(4.35)

due to S̄ = 0. The specular reflexive boundary f (L , φ) = f (L ,R[φ]) implies
〈sin φ, f 〉φ (L) = 0. Then we have

〈sin φ, f 〉φ (η) = 0. (4.36)

It is easy to see

〈sin φ, q〉φ (η) = 0. (4.37)

Hence, we may derive

〈sin φ, r〉φ (η) = 0. (4.38)

This leads to orthogonal relation (4.18).
Step 3: Estimate of q.
Multiplying sin φ on both sides of (4.1) and integrating over φ ∈ [−π, π) lead to

d

dη

〈
sin2 φ, f

〉
φ

(η) = −〈sin φ, r〉φ (η) − F(η)

〈
sin φ cosφ,

∂ f

∂φ

〉
φ

(η)

+〈sin φ, S〉φ (η). (4.39)

We can further integrate by parts as follows:

− F(η)

〈
sin φ cosφ,

∂ f

∂φ

〉
φ

(η) = F(η) 〈cos(2φ), f 〉φ (η)

= F(η) 〈cos(2φ), r〉φ (η). (4.40)

Using the orthogonal relation (4.18), we obtain

d

dη

〈
sin2 φ, f

〉
φ

(η) = F(η) 〈cos(2φ), r〉φ (η) + 〈sin φ, S〉φ (η).
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Define

β(η) =
〈
sin2 φ, f

〉
φ

(η). (4.41)

Hence, we can integrate (4.41) over [0, η] to get that

β(η) − β(0) =
∫ η

0
F(y) 〈cos(2φ), r〉φ (y) dy +

∫ η

0
〈sin φ, S〉φ (y) dy.

(4.42)

Then the initial data

β(0) =
〈
sin2 φ, f

〉
φ

(0) �
(

〈 f, f |sin φ|〉φ (0)

) 1
2 ‖sin φ‖

3
2
L2

� C

(
〈 f, f |sin φ|〉φ (0)

) 1
2

. (4.43)

Obviously, we have

〈 f, f |sin φ|〉φ (0) =
∫
sin φ>0

h2(φ) sin φ dφ

−
∫
sin φ<0

(
f (0, φ)

)2

sin φ dφ. (4.44)

However, based on the definition of α(η) and (4.27), we can obtain

∫
sin φ>0

h2(φ) sin φ dφ +
∫
sin φ<0

(
f (0, φ)

)2

sin φ dφ = 2α(0)

� −C
∫ L

0
〈S, r〉φ (y) dy.

Hence, we can deduce

−
∫
sin φ<0

(
f (0, φ)

)2

sin φ dφ �
∫
sin φ>0

h2(φ) sin φ dφ + C
∫ L

0
〈S, r〉φ (y) dy

� C

(
‖h‖2

L2−
+

∫ L

0
‖S(η)‖2L2 dη

)
. (4.45)

From (4.34), we can deduce

β(0) � C

(
‖h‖L2− + ‖S‖L2L2

)
. (4.46)

Since F ∈ L1[0, L] ∩ L2[0, L], r ∈ L2([0, L] × [−π, π)), by (4.46) and (4.15),
we have

|β(L)| � |β(0)| +
∣∣∣∣∣
∫ L

0
F(y) 〈cos(2φ), r〉φ (y) dy

∣∣∣∣∣ +
∣∣∣∣∣
∫ L

0
〈sin φ, S〉φ (y) dy

∣∣∣∣∣



2118 Lei Wu

� C

(
‖h‖L2− + ‖S‖L2L2

)
+ C‖F‖L2L2‖r‖L2L2 +

∣∣∣∣∣
∫ L

0
〈sin φ, S〉φ (y) dy

∣∣∣∣∣
� C

(
‖h‖L2− + ‖S‖L2L2

)
+

∣∣∣∣∣
∫ L

0
〈sin φ, S〉φ (y) dy

∣∣∣∣∣ . (4.47)

We define

qL = β(L)

‖sin φ‖2
L2

. (4.48)

Naturally, we have

|qL | � C

(
‖h‖L2− + ‖S‖L2L2

)
+ C

∣∣∣∣
∫ L

0
〈sin φ, S〉φ (y) dy

∣∣∣∣ . (4.49)

Note that qL is not necessarily q(L). Moreover,

β(L) − β(η) =
∫ L

η

F(y) 〈cos(2φ), r〉φ (y) dy +
∫ L

η

〈sin φ, S〉φ (y) dy. (4.50)

Note

β(η) =
〈
sin2 φ, f

〉
φ

(η) =
〈
sin2 φ, q

〉
φ

(η) +
〈
sin2 φ, r

〉
φ

(η)

= q(η) ‖sin φ‖2L2 +
〈
sin2 φ, r

〉
φ

(η). (4.51)

Thus we can estimate

‖sin φ‖2L2 ‖q(η) − qL‖L2

= β(L) − β(η) +
〈
sin2 φ, r

〉
φ

(η)

� C

( ∫ L

η

∣∣F(y) 〈cos(2φ), r(y)〉φ dy
∣∣ dη +

∣∣∣∣
∫ L

η

〈sin φ, S〉φ (y) dy

∣∣∣∣
+

∣∣∣∣
〈
sin2 φ, r

〉
φ

(η)

∣∣∣∣
)

� C

(
‖r(η)‖L2 +

∫ L

η

|F(y)| ‖r(y)‖L2 dy

+
∣∣∣∣
∫ L

η

〈sin φ, S〉φ (y) dy

∣∣∣∣
)

. (4.52)

Then we integrate (4.52) over η ∈ [0, L]. Cauchy’s inequality implies

∫ L

0

( ∫ L

η

|F(y)| ‖r(y)‖L2 dy

)2

dη � ‖r‖2L2L2

∫ L

0

∫ L

η

|F(y)|2 dy dη

� C‖r‖2L2L2 . (4.53)
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Hence, we have

‖q − qL‖L2L2 � C

(
‖h‖L2− + ‖S‖L2L2

)

+C

( ∫ L

0

( ∫ L

η

〈sin φ, S〉φ (y) dy

)2

dη

) 1
2

. (4.54)

�


4.1.2. S̄ �= 0 Case For general S, we define S = S̄ + (S − S̄) = SQ + SR .

Lemma 4.2. Assume (4.12) holds. The unique solution f (η, φ) to the equation
(4.1) satisfies

‖r‖L2L2 � C

(
‖h‖L2− + ‖S‖L2L2

)
+ C

( ∫ L

0

( ∫ L

η

∣∣SQ(y)
∣∣ dy

)2

dη

) 1
2

,

(4.55)

and there exists qL ∈ R such that

|qL | � C

(
‖h‖L2− + ‖S‖L2L2

)

+C

∣∣∣∣
∫ L

0
〈sin φ, SR〉φ (y) dy

∣∣∣∣ + C

∣∣∣∣
∫ L

0

∫ L

η

∣∣SQ(y)
∣∣ dy dη

∣∣∣∣ ,
(4.56)

‖q − qL‖L2L2 � C

(
‖h‖L2− + ‖S‖L2L2

)

+C

( ∫ L

0

(∫ L

η

〈sin φ, SR〉φ (y) dy

)2

dη

) 1
2

+C

( ∫ L

0

(∫ L

η

∫ L

y

∣∣SQ(z)
∣∣ dz dy

)2

dη

) 1
2

. (4.57)

Also, for any η ∈ [0, L],

〈sin φ, r〉φ (η) = −
∫ L

η

eV (η)−V (y)SQ(y) dy. (4.58)

Proof. We can apply superposition property for this linear problem. For simplicity,
we just call the above estimates as the L2 estimates.
Step 1: Construction of auxiliary function f 1.
We first solve f 1 as the solution to⎧⎪⎪⎨

⎪⎪⎩
sin φ

∂ f 1

∂η
+ F(η) cosφ

∂ f 1

∂φ
+ f 1 − f̄ 1 = SR(η, φ),

f 1(0, φ) = h(φ) for sin φ > 0,
f 1(L , φ) = f 1(L ,R[φ]).

(4.59)
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Since S̄R = 0, by Lemma 4.1, we know there exists a unique solution f 1

satisfying the L2 estimate.
Step 2: Construction of auxiliary function f 2.
We seek a function f 2 satisfying

− 1

2π

∫ π

−π

(
sin φ

∂ f 2

∂η
+ F(η) cosφ

∂ f 2

∂φ

)
dφ + SQ = 0. (4.60)

The following analysis shows this type of function can always be found. An inte-
gration by parts transforms the equation (4.60) into

−
∫ π

−π

sin φ
∂ f 2

∂η
dφ −

∫ π

−π

F(η) sin φ f 2 dφ + 2π SQ = 0. (4.61)

Setting

f 2(φ, η) = a(η) sin φ. (4.62)

and plugging this ansatz into (4.61), we have

− da

dη

∫ π

−π

sin2 φ dφ − F(η)a(η)

∫ π

−π

sin2 φ dφ + 2π SQ = 0. (4.63)

Hence, we have

− da

dη
− F(η)a(η) + 2SQ = 0. (4.64)

This is a first order linear ordinary differential equation, which possesses infinite
solutions. We can directly solve it to obtain

a(η) = exp

(
−

∫ η

0
F(y) dy

)(
a(0) +

∫ η

0
exp

( ∫ y

0
F(z) dz

)
2SQ(y) dy

)
.

(4.65)

We may take

a(0) = −
∫ L

0
exp

(∫ y

0
F(z) dz

)
2SQ(y) dy. (4.66)

Then, we can directly verify

|a(η)| � C
∫ L

η

∣∣SQ(y)
∣∣ dy, (4.67)

and f 2 satisfies the L2 estimate.
Step 3: Construction of auxiliary function f 3.
Based on above construction, we can directly verify that

∫ π

−π

(
− sin φ

∂ f 2

∂η
− F(η) cosφ

∂ f 2

∂φ
− f 2 + f̄ 2 + SQ

)
dφ = 0. (4.68)
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Then we can solve f 3 as the solution to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sin φ
∂ f 3

∂η
+ F(η) cosφ

∂ f 3

∂φ
+ f 3 − f̄ 3

= − sin φ
∂ f 2

∂η
− F(η) cosφ

∂ f 2

∂φ
− f 2 + f̄ 2 + SQ,

f 3(0, φ) = −a(0) sin φ for sin φ > 0,
f 3(L , φ) = f 3(L ,R[φ]).

(4.69)

By (4.68), we can apply Lemma 4.1 to obtain a unique solution f 3 satisfying the
L2 estimate.
Step 4: Construction of auxiliary function f 4.
We now define f 4 = f 2 + f 3 and an explicit verification shows

⎧⎪⎪⎨
⎪⎪⎩
sin φ

∂ f 4

∂η
+ F(η) cosφ

∂ f 4

∂φ
+ f 4 − f̄ 4 = SQ(η, φ),

f 4(0, φ) = 0 for sin φ > 0,
f 4(L , φ) = f 4(L ,R[φ]),

(4.70)

and f 4 satisfies the L2 estimate.
In summary, we deduce that f 1 + f 4 is the solution of (4.1) and satisfies the

L2 estimate. �

Combining all above, letting fL = qL , we have the following theorem:

Theorem 4.3. Assume (4.12) holds. There exists fL ∈ R satisfying

| fL | � C

(
‖h‖L2− + ‖S‖L2L2

)
+ C

∣∣∣∣
∫ L

0
〈sin φ, SR〉φ (y) dy

∣∣∣∣
+C

∣∣∣∣
∫ L

0

∫ L

η

∣∣SQ(y)
∣∣ dy dη

∣∣∣∣ , (4.71)

such that the unique solution f (η, φ) to the equation (4.1) satisfies

‖ f − fL‖L2L2 � C

(
‖h‖L2− + ‖S‖L2L2

)

+C

( ∫ L

0

( ∫ L

η

〈sin φ, SR〉φ (y) dy

)2

dη

) 1
2

+C

( ∫ L

0

( ∫ L

η

∣∣SQ(y)
∣∣ dy

)2

dη

) 1
2

+C

( ∫ L

0

( ∫ L

η

∫ L

y

∣∣SQ(z)
∣∣ dz dy

)2

dη

) 1
2

. (4.72)

Here C represents some constant uniform in ε.
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4.2. L∞ Estimates

4.2.1. Formulation Consider the ε-transport problem for f (η, φ) in (η, φ) ∈
[0, L] × [−π, π)⎧⎪⎪⎨

⎪⎪⎩
sin φ

∂ f

∂η
+ F(η) cosφ

∂ f

∂φ
+ f = H(η, φ),

f (0, φ) = h(φ) for sin φ > 0,
f (L , φ) = f (L ,R[φ]).

(4.73)

Here, we assume H = S + f̄ ∈ L∞. Define the energy as follows:

E(η, φ) = e−V (η) cosφ. (4.74)

Along the characteristics, this energy is conserved and the equation canbe simplified
as follows:

sin φ
d f

dη
+ f = H. (4.75)

Since V is increasing, an implicit function η+(η, φ) can be determined through

|E(η, φ)| = e−V (η+), (4.76)

which means (η+, φ0) with sin φ0 = 0 is on the same characteristics as (η, φ).
Define the quantities for 0 � η′ � η+ as follows:

φ′(η, φ; η′) = cos−1
(
eV (η′)−V (η) cosφ

)
, (4.77)

R[φ′(η, φ; η′)] = − cos−1
(
eV (η′)−V (η) cosφ

)
= −φ′(η, φ; η′), (4.78)

where the inverse trigonometric function can be defined single-valued in the domain
[0, π) and the quantities are always well-defined due to the monotonicity of V .
Finally we put

Gη,η′(φ) =
∫ η

η′
1

sin
(
φ′(η, φ; ξ)

) dξ. (4.79)

We can rewrite the solution to the equation (4.73) along the characteristics as

f (η, φ) = K[h](η, φ) + T [H ](η, φ), (4.80)

where
Region I:
For sin φ > 0,

K[h](η, φ) = h
(
φ′(η, φ; 0)

)
exp(−Gη,0), (4.81)

T [H ](η, φ) =
∫ η

0

H
(
η′, φ′(η, φ; η′)

)

sin
(
φ′(η, φ; η′)

) exp(−Gη,η′) dη′. (4.82)
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Region II:
For sin φ < 0 and |E(η, φ)| � e−V (L),

K[h](η, φ) = h(φ′(η, φ; 0)) exp(−GL ,0 − GL ,η) (4.83)

T [H ](η, φ) =
∫ L

0

H
(
η′, φ′(η, φ; η′)

)

sin
(
φ′(η, φ; η′)

) exp(−GL ,η′ − GL ,η) dη
′

+
∫ L

η

H
(
η′,R[φ′(η, φ; η′)]

)

sin
(
φ′(η, φ; η′)

) exp(Gη,η′) dη′. (4.84)

Region III:
For sin φ < 0 and |E(η, φ)| � e−V (L),

K[h](η, φ) = h
(
φ′(η, φ; 0)

)
exp(−Gη+,0 − Gη+,η) (4.85)

T [H ](η, φ) =
∫ η+

0

H
(
η′, φ′(η, φ; η′)

)

sin
(
φ′(η, φ; η′)

) exp(−Gη+,η′ − Gη+,η) dη
′

+
∫ η+

η

H
(
η′,R[φ′(η, φ; η′)]

)

sin
(
φ′(η, φ; η′)

) exp(Gη,η′) dη′. (4.86)

Here, the decomposition of regions is based on whether the characteristics touches
η = L and sin φ = 0. In order to achieve the estimate of f , we need to control
K[h] and T [H ].
4.2.2. Preliminaries Wefirst give several technical lemmas to be used for proving
L∞ estimates of f . The proofs are given in [24, Lemma 4.7-4.9], so we omit them
here.

Lemma 4.4. For any 0 � β � 1, we have∥∥eβηK[h]∥∥L∞L∞ � ‖h‖L∞− . (4.87)

In particular,

‖K[h]‖L∞L∞ � ‖h‖L∞− . (4.88)

Lemma 4.5. The integral operator T satisfies

‖T [H ]‖L∞L∞ � ‖H‖L∞L∞ , (4.89)

and for any 0 � β � 1

2∥∥eβηT [H ]∥∥L∞L∞ �
∥∥eβηH

∥∥
L∞L∞ . (4.90)

Lemma 4.6. For any δ > 0 there is a constant C(δ) > 0 independent of data such
that

‖T [H ]‖L∞L2 � C(δ)‖H‖L2L2 + δ‖H‖L∞L∞ . (4.91)
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4.2.3. Estimates of ε-Milne Equation with Geometric Correction Consider
the equation satisfied by V = f − fL as follows:⎧⎪⎪⎨

⎪⎪⎩
sin φ

∂V

∂η
+ F(η) cosφ

∂V

∂φ
+ V = V̄ + S,

V (0, φ) = p(φ) := h(φ) − fL for sin φ > 0,
V (L , φ) = V (L ,R[φ]).

(4.92)

Theorem 4.7. Assume (4.12) holds. The unique solution f (η, φ) to the equation
(4.1) satisfies

‖ f − fL‖L∞L∞ � C

(
| fL | + ‖h‖L∞− + ‖S‖L∞L∞ + ‖ f − fL‖L2L2

)
. (4.93)

Proof. We first show the following important facts:∥∥V̄ ∥∥
L2L2 � ‖V ‖L2L2 , (4.94)∥∥V̄ ∥∥

L∞L∞ � ‖V ‖L∞L2 . (4.95)

We can directly derive them by Cauchy’s inequality as follows:

∥∥V̄ ∥∥2
L2L2 =

∫ L

0

∫ π

−π

(
1

2π

)2( ∫ π

−π

V (η, φ′) dφ′
)2

dφ dη

�
∫ L

0

∫ π

−π

(
1

2π

)( ∫ π

−π

V 2(η, φ′) dφ′
)
dφ dη

=
∫ L

0

( ∫ π

−π

V 2(η, φ′) dφ′
)
dη = ‖V ‖2L2L2 . (4.96)

∥∥V̄ ∥∥2
L∞L∞ = sup

η
V̄ 2(η) = sup

η

(
1

2π

∫ π

−π

V (η, φ) dφ

)2

� sup
η

(
1

2π

)2( ∫ π

−π

V 2(η, φ) dφ

)( ∫ π

−π

12 dφ

)

= sup
η

(∫ π

−π

V 2(η, φ) dφ

)
= ‖V ‖2L∞L2 . (4.97)

Then by Lemma 4.6, (4.94) and (4.95), we can show∥∥T [V̄ ]∥∥L∞L2 � C(δ)
∥∥V̄ ∥∥

L2L2 + δ
∥∥V̄ ∥∥

L∞L∞
� C(δ)‖V ‖L2L2 + δ‖V ‖L∞L2 . (4.98)

By (4.92),

V = K[p] + T [V̄ ] + T [S]. (4.99)

Therefore, based on Lemma 4.4, Lemma 4.5 and (4.98), we can directly estimate

‖V ‖L∞L2 � ‖K[p]‖L∞L2 + ‖T [S]‖L∞L2 + C(δ)‖V ‖L2L2 + δ‖V ‖L∞L2

� ‖p‖L∞− + ‖S‖L∞L∞ + C(δ)‖V ‖L2L2 + δ‖V ‖L∞L2 . (4.100)
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We can take δ = 1

2
to obtain

‖V ‖L∞L2 � C

(
‖V ‖L2L2 + ‖p‖L∞− + ‖S‖L∞L∞

)
. (4.101)

Therefore, based on Lemma 4.5, (4.101) and (4.95), we can achieve

‖V ‖L∞L∞ � ‖K[p]‖L∞L∞ + ‖T [S]‖L∞L∞ + ∥∥T [V̄ ]∥∥L∞L∞

� C

(
‖p‖L∞− + ‖S‖L∞L∞ + ∥∥V̄ ∥∥

L∞L∞

)

� C

(
‖p‖L∞− + ‖S‖L∞L∞ + ‖V ‖L∞L2

)

� C

(
‖p‖L∞− + ‖S‖L∞L∞ + ‖V ‖L2L2

)
. (4.102)

�

Combining Theorem 4.7 and Theorem 4.3, we deduce the main theorem.

Theorem 4.8. Assume (4.12) holds. There exists fL ∈ R satisfying

| fL | � C

(
‖h‖L2− + ‖S‖L2L2

)
+ C

∣∣∣∣
∫ L

0
〈sin φ, SR〉φ (y) dy

∣∣∣∣
+C

∣∣∣∣
∫ L

0

∫ L

η

∣∣SQ(y)
∣∣ dy dη

∣∣∣∣ , (4.103)

such that the unique solution f (η, φ) to the equation (4.1) satisfies

‖ f − fL‖L∞L∞ � C

(
‖h‖L2− + ‖S‖L2L2 + ‖h‖L∞− + ‖S‖L∞L∞

)

+C

( ∫ L

0

( ∫ L

η

〈sin φ, SR〉φ (y) dy

)2

dη

) 1
2

+C

∣∣∣∣
∫ L

0
〈sin φ, SR〉φ (y) dy

∣∣∣∣
+C

∣∣∣∣
∫ L

0

∫ L

η

∣∣SQ(y)
∣∣ dy dη

∣∣∣∣

+C

( ∫ L

0

( ∫ L

η

∣∣SQ(y)
∣∣ dy

)2

dη

) 1
2

+C

( ∫ L

0

( ∫ L

η

∫ L

y

∣∣SQ(z)
∣∣ dz dy

)2

dη

) 1
2

. (4.104)

Here C represents some constant uniform in ε.
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4.3. Exponential Decay

In this section, we prove the spatial decay of the solution to the ε-Milne problem
with geometric correction.

Theorem 4.9. Assume (4.12) holds. For K0 > 0 sufficiently small, there exists
fL ∈ R satisfying

| fL | � C

(
‖h‖L2− + ‖S‖L2L2

)
+ C

∣∣∣∣
∫ L

0
〈sin φ, SR〉φ (y) dy

∣∣∣∣
+C

∣∣∣∣
∫ L

0

∫ L

η

∣∣SQ(y)
∣∣ dy dη

∣∣∣∣ , (4.105)

such that the unique solution f (η, φ) to the equation (4.1) satisfies

‖ f − fL‖L∞L∞ � C

(
‖h‖L2− +

∥∥∥eK0ηS
∥∥∥
L2L2

+ ‖h‖L∞− +
∥∥∥eK0ηS

∥∥∥
L∞L∞

)

+C

( ∫ L

0
e2K0η

( ∫ L

η

〈sin φ, SR〉φ (y) dy

)2

dη

) 1
2

+C

∣∣∣∣
∫ L

0
〈sin φ, SR〉φ (y) dy

∣∣∣∣
+C

∣∣∣∣
∫ L

0

∫ L

η

∣∣SQ(y)
∣∣ dy dη

∣∣∣∣

+C

( ∫ L

0
e2K0η

( ∫ L

η

∣∣SQ(y)
∣∣ dy

)2

dη

) 1
2

+C

( ∫ L

0
e2K0η

( ∫ L

η

∫ L

y

∣∣SQ(z)
∣∣ dz dy

)2

dη

) 1
2

. (4.106)

Here C represents some constant uniform in ε.

Proof. Define Z = eK0ηV for V = f − fL .
Step 1: L2 estimates.
We use the decomposition in (4.14). The orthogonal property reveals

〈 f, f sin φ〉φ (η) = 〈r, r sin φ〉φ (η). (4.107)

Multiplying e2K0η f on both sides of equation (4.1) and integrating over φ ∈
[−π, π), we obtain

1

2

d

dη

(
e2K0η 〈r, r sin φ〉φ (η)

)
+ 1

2
F(η)

(
e2K0η 〈r, r sin φ〉φ (η)

)

−e2K0η

(
K0 〈r, r sin φ〉φ (η) − 〈r, r〉φ (η)

)

= e2K0η 〈S, f 〉φ (η). (4.108)
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For K0 < min

{
1

2
, K

}
for K in (4.12), we have

3

2
‖r(η)‖2L2 � −K0 〈r, r sin φ〉φ (η) + 〈r, r〉φ (η) � 1

2
‖r(η)‖2L2 . (4.109)

Similar to the proof of Lemma 4.1, formula as (4.108) and (4.109) imply

∥∥∥eK0ηr
∥∥∥2
L2L2

=
∫ L

0
e2K0η 〈r, r〉φ (η) dη � C

(
‖h‖2

L2−
+

∥∥∥eK0ηS
∥∥∥2
L2L2

)
.

(4.110)

From the proof of Lemma 4.1 and Cauchy’s inequality, we can deduce

∫ L

0
e2K0η

( ∫ π

−π

( f (η, φ) − fL)2 dφ

)
dη

�
∫ L

0
e2K0η

( ∫ π

−π

r2(η, φ) dφ

)
dη +

∫ L

0
e2K0η

(∫ π

−π

(
q(η) − qL

)2
dφ

)
dη

�
∫ L

0
e2K0η ‖r(η)‖2L2 dη

+
∫ L

0
e2K0η

( ∫ L

η

|F(y)| ‖r(y)‖L2 dy

)2

dη

+
∫ L

0
e2K0η

( ∫ L

η

〈sin φ, S〉φ (y) dy

)2

dη

� C

(
‖h‖2

L2−
+

∥∥∥eK0ηS
∥∥∥2
L2L2

)

+C

( ∫ L

0
e2K0η ‖r(η)‖2L2 dη

)(∫ L

0

∫ L

η

e2K0(η−y)F2(y) dy dη

)

+
∫ L

0
e2K0η

( ∫ L

η

〈sin φ, S〉φ (y) dy

)2

dη

� C

(
‖h‖2

L2−
+

∥∥∥eK0ηS
∥∥∥2
L2L2

)

+C

( ∫ L

0
e2K0η ‖r(η)‖2L2 dη

)(∫ L

0

∫ L

η

F2(y) dy dη

)

+
∫ L

0
e2K0η

( ∫ L

η

〈sin φ, S〉φ (y) dy

)2

dη

� C

(
‖h‖2

L2−
+

∥∥∥eK0ηS
∥∥∥2
L2L2

)
+

∫ L

0
e2K0η

(∫ L

η

〈sin φ, S〉φ (y) dy

)2

dη. (4.111)
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This completes the proof of the L2 estimate when S̄ = 0. By the method introduced
in Lemma 4.2, we can extend the above L2 estimates to the general S case. Note all
the auxiliary functions constructed in Lemma 4.2 satisfy the estimates. We have

‖Z‖L2L2 � C

(
‖h‖L2− + ‖S‖L2L2

)

+C

( ∫ L

0
e2K0η

(∫ L

η

〈sin φ, SR〉φ (y) dy

)2

dη

) 1
2

+C

( ∫ L

0
e2K0η

(∫ L

η

∣∣SQ(y)
∣∣ dy

)2

dη

) 1
2

+C

( ∫ L

0
e2K0η

(∫ L

η

∫ L

y

∣∣SQ(z)
∣∣ dz dy

)2

dη

) 1
2

, (4.112)

Step 2: L∞ estimates.
Z satisfies the equation⎧⎪⎪⎨

⎪⎪⎩
sin φ

∂Z

∂η
+ F(η) cosφ

∂Z

∂φ
+ Z = Z̄ + eK0ηS + K0 sin φZ ,

Z(0, φ) = p(φ) = h(φ) − fL for sin φ > 0
Z(L , φ) = Z(L ,R[φ]).

(4.113)

Then by Lemma 4.6, (4.94) and (4.95), we can show∥∥Z̄∥∥
L∞L2 � C(δ)

∥∥Z̄∥∥
L2L2 + δ

∥∥Z̄∥∥
L∞L∞

� C(δ)‖Z‖L2L2 + δ‖Z‖L∞L2 . (4.114)

We know

Z = K[p] + T [Z̄ + eK0ηS + K0 sin φZ ]. (4.115)

Therefore, based on Lemma 4.4 and (4.98), we can directly estimate

‖Z‖L∞L2 � ‖K[p]‖L∞L2 +
∥∥∥T [eK0ηS]

∥∥∥
L∞L2

+‖T [K0 sin φZ ]‖L∞L2 + C(δ)‖Z‖L2L2 + δ‖Z‖L∞L2

� ‖p‖L∞− +
∥∥∥eK0ηS

∥∥∥
L∞L∞ + K0‖Z‖L∞L∞ + C(δ)‖Z‖L2L2

+δ‖Z‖L∞L2 . (4.116)

We can take δ = 1

2
to obtain

‖Z‖L∞L2 � C

(
‖p‖L∞− +

∥∥∥eK0ηS
∥∥∥
L∞L∞ + K0‖Z‖L∞L∞ + ‖Z‖L2L2

)
.

(4.117)

Then based on Lemma 4.4, Lemma 4.5, Lemma 4.6 and (4.117), we can deduce

‖Z‖L∞L∞ � ‖K[p]‖L∞L∞ +
∥∥∥T [eK0ηS]

∥∥∥
L∞L∞ + ∥∥Z̄∥∥

L∞L∞
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+‖K0 sin φZ‖L∞L∞

� ‖p‖L∞− +
∥∥∥eK0ηS

∥∥∥
L∞L∞ + ∥∥Z̄∥∥

L∞L∞ + K0‖Z‖L∞L∞

� ‖p‖L∞− +
∥∥∥eK0ηS

∥∥∥
L∞L∞ + ‖Z‖L∞L2 + K0‖Z‖L∞L∞

� C

(
‖Z‖L2L2 +

∥∥∥eK0ηS
∥∥∥
L2L2

+
∥∥∥eK0ηS

∥∥∥
L∞L∞ + ‖p‖L∞− + K0‖Z‖L∞L∞

)
. (4.118)

Taking K0 sufficiently small, we absorb K0‖Z‖L∞L∞ to the left-hand side and
obtain

‖Z‖L∞L∞ � C

(
‖Z‖L2L2 +

∥∥∥eK0ηS
∥∥∥
L2L2

+
∥∥∥eK0ηS

∥∥∥
L∞L∞ + ‖p‖L∞−

)
.

(4.119)

Then the final result is obvious. �


4.4. Maximum Principle

In [24], the author proved the maximum principle.

Theorem 4.10. The unique solution f (η, φ) to the equation with S = 0 satisfies
the maximum principle, that is

inf
sin φ>0

h(φ) � f (η, φ) � sup
sin φ>0

h(φ). (4.120)

5. Regularity of ε-Milne Problem with Geometric Correction

In this section, we study the regularity of the ε-Milne problem with geometric
correction (4.1). Define the weight function

ζ(η, φ) =
(
1 −

(
Rκ − εη

Rκ

cosφ

)2) 1
2

. (5.1)

For η = 0, ζ reduces to sin φ and it is zero only at the grazing set. The farther
(η, φ) is away from the grazing set, the larger ζ is. Also, we can easily show that

sin φ
∂ζ

∂η
+ F(η) cosφ

∂ζ

∂φ
= 0. (5.2)

Along the characteristics, ζ is a constant.
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We use the notation from previous section, that is V (η, φ) = f (η, φ) − fL
satisfies the difference equation

⎧⎪⎪⎨
⎪⎪⎩
sin φ

∂V

∂η
+ F(η) cosφ

∂V

∂φ
+ V = V̄ + S,

V (0, φ) = p(φ) = h(φ) − fL for sin φ > 0,
V (L , φ) = V (L ,R[φ]).

(5.3)

The regularity has been thoroughly studied in [7]. Hence, here we will focus on
the a priori estimates and prove an improved version of the regularity theorem. For
simplicity, we always assume the quantities discussed are well-defined. The major

upshot is that we can avoid using the information of
∂S

∂φ
.

5.1. Mild Formulation

Takingη derivative in (5.3) andmultiplying ζ , we obtain the ε-transport problem

for A = ζ
∂V

∂η
as

⎧⎪⎪⎨
⎪⎪⎩
sin φ

∂A

∂η
+ F(η) cosφ

∂A

∂φ
+ A = ˜A + SA ,

A (0, φ) = pA (φ) for sin φ > 0,
A (L , φ) = A (L , Rφ),

(5.4)

where pA and SA will be specified later with

˜A (η, φ) = 1

2π

∫ π

−π

ζ(η, φ)

ζ(η, φ∗)
A (η, φ∗) dφ∗. (5.5)

Here for clarity, we use dummy variable φ∗. Define the energy as before

E(η, φ) = e−V (η) cosφ = cosφ
Rκ − εη

Rκ

. (5.6)

Along the characteristics, where this energy is conserved and ζ is a constant, the
equation (5.4) can be simplified as follows:

sin φ
dA

dη
+ A = ˜A + SA . (5.7)

Also, we recall the notation to describe the characteristics in Section 4.2. Similar to
ε-Milne problem with geometric correction, we can define the solution along the
characteristics as follows:

A (η, φ) = K[pA ] + T [ ˜A + SA ], (5.8)

where
Region I:
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For sin φ > 0,

K[pA ] = pA
(
φ′(η, φ; 0)

)
exp(−Gη,0) (5.9)

T [ ˜A + SA ] =
∫ η

0

( ˜A + SA )
(
η′, φ′(η, φ; η′)

)

sin
(
φ′(η, φ; η′)

) exp(−Gη,η′) dη′. (5.10)

Region II:
For sin φ < 0 and |E(η, φ)| � e−V (L),

K[pA ] = pA
(
φ′(η, φ; 0)

)
exp(−GL ,0 − GL ,η) (5.11)

T [ ˜A + SA ] =
∫ L

0

( ˜A + S)
(
η′, φ′(η, φ; η′)

)

sin
(
φ′(η, φ; η′)

) exp(−GL ,η′ − GL ,η) dη
′

+
∫ L

η

( ˜A + S)
(
η′,R[φ′(η, φ; η′)]

)

sin
(
φ′(η, φ; η′)

) exp(−Gη′,η) dη
′.

(5.12)

Region III:
For sin φ < 0 and |E(η, φ)| � e−V (L),

K[pA ] = pA
(
φ′(η, φ; 0)

)
exp(−Gη+,0 − Gη+,η) (5.13)

T [ ˜A + SA ] =
∫ η+

0

( ˜A + SA )
(
η′, φ′(η, φ; η′)

)

sin
(
φ′(η, φ; η′)

) exp(−Gη+,η′ − Gη+,η) dη
′

+
∫ η+

η

( ˜A + SA )
(
η′,R[φ′(η, φ; η′)]

)

sin
(
φ′(η, φ; η′)

) exp(−Gη′,η) dη
′.

(5.14)

Then we need to estimate K[pA ] and T [ ˜A + SA ] in each region. We assume
0 < δ << 1 and 0 < δ0 << 1 are small quantities which will be determined later.
Since we always assume that (η, φ) and (η′, φ′) are on the same characteristics,
when there is no confusion, we simply write φ′ or φ′(η′) instead of φ′(η, φ; η′).
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5.2. Region I: sin φ > 0

We consider

K[pA ] = pA
(
φ′(η, φ; 0)

)
exp(−Gη,0) (5.15)

T [ ˜A + SA ] =
∫ η

0

( ˜A + SA )
(
η′, φ′(η, φ; η′)

)

sin
(
φ′(η, φ; η′)

) exp(−Gη,η′) dη′. (5.16)

Based on Lemma 4.7, Lemma 4.8, we can directly obtain

‖K[pA ]‖L∞L∞ � ‖pA ‖L∞− , (5.17)

‖T [SA ]‖L∞L∞ � ‖SA ‖L∞L∞ . (5.18)

Hence, we only need to estimate

I = T [ ˜A ] =
∫ η

0

˜A
(
η′, φ′(η, φ; η′)

)

sin
(
φ′(η, φ; η′)

) exp(−Gη,η′) dη′. (5.19)

We divide it into several steps as follows:
Step 0: Preliminaries.
We have

E(η′, φ′) = Rκ − εη′

Rκ

cosφ′. (5.20)

We can directly obtain

ζ(η′, φ′) = 1

Rκ

√
R2

κ −
(

(Rκ − εη′) cosφ′
)2

= 1

Rκ

√
R2

κ − (Rκ − εη′)2 + (Rκ − εη′)2 sin2 φ′,

� 1

Rκ

(√
R2

κ − (Rκ − εη′)2 +
√

(Rκ − εη′)2 sin2 φ′
)

� C

(√
εη′ + sin φ′

)
, (5.21)

and

ζ(η′, φ′) � 1

Rκ

√
R2

κ − (Rκ − εη′)2 � C
√

εη′. (5.22)

Also, we know for 0 � η′ � η that,

sin φ′ =
√
1 − cos2 φ′ =

√
1 −

(
Rκ − εη

Rκ − εη′

)2

cos2 φ (5.23)
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=
√

(Rκ − εη′)2 sin2 φ + (2Rκ − εη − εη′)(εη − εη′) cos2 φ

Rκ − εη′ . (5.24)

Since

0 � (2Rκ − εη − εη′)(εη − εη′) cos2 φ � 2Rκε(η − η′), (5.25)

we have

sin φ � sin φ′ � 2
√
sin2 φ + ε(η − η′), (5.26)

which means

1

2
√
sin2 φ + ε(η − η′)

� 1

sin φ′ � 1

sin φ
. (5.27)

Therefore,

−
∫ η

η′
1

sin φ′(y)
dy � −

∫ η

η′
1

2
√
sin2 φ + ε(η − y)

dy

= 1

ε

(
sin φ −

√
sin2 φ + ε(η − η′)

)

= − η − η′

sin φ +
√
sin2 φ + ε(η − η′)

� − η − η′

2
√
sin2 φ + ε(η − η′)

. (5.28)

Define a cut-off function χ ∈ C∞[−π, π ] satisfying

χ(φ) =
{
1 for |sin φ| � δ,

0 for |sin φ| � 2δ,
(5.29)

In the following, we will divide the estimate of I into several cases based on the
value of sin φ, |cosφ|, sin φ′, εη′ and ε(η−η′). Let 1 denote the indicator function.
We write

I =
∫ η

0
1{sin φ�δ0}1{|cosφ|�δ0} +

∫ η

0
1{0�sin φ�δ0}1{χ(φ∗)<1}

+
∫ η

0
1{0�sin φ�δ0}1{χ(φ∗)=1}1{√εη′�sin φ′}

+
∫ η

0
1{0�sin φ�δ0}1{χ(φ∗)=1}1{√εη′�sin φ′}1{sin2 φ�ε(η−η′)}

+
∫ η

0
1{0�sin φ�δ0}1{χ(φ∗)=1}1{√εη′�sin φ′}1{sin2 φ�ε(η−η′)}

+
∫ η

0
1{|cosφ|�δ0}

= I1 + I2 + I3 + I4 + I5 + I6. (5.30)
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Step 1: Estimate of I1 for sin φ � δ0 and |cosφ| � δ0.
For sin φ � δ0 and |cosφ| � δ0, we do not need themild formulation ofA . Instead,
we directly estimate

|A | �
∣∣∣∣∂V∂η

∣∣∣∣ . (5.31)

Wewill estimate I1 based on the characteristics of V itself instead of the derivative.
Here, we will use two formulations of the equation (5.3):

• Formulation I: η is the principal variable, φ = φ(η), and the equation can be
rewritten as

sin φ
dV

dη
+ V = V̄ + S. (5.32)

• Formulation II: φ is the principal variable, η = η(φ) and the equation can be
rewritten as

F(η) cosφ
dV

dφ
+ V = V̄ + S. (5.33)

These two formulations are equivalent and can be applied to different regions of
the domain.

We may decompose V = V1 + V2 where V1 satisfies⎧⎪⎪⎨
⎪⎪⎩
sin φ

∂V1

∂η
+ F(η) cosφ

∂V1

∂φ
+ V1 = V̄ ,

V1(0, φ) = p(φ) for sin φ > 0,
V1(L , φ) = V1(L ,R[φ]),

(5.34)

and V2 satisfies ⎧⎪⎪⎨
⎪⎪⎩
sin φ

∂V2

∂η
+ F(η) cosφ

∂V2

∂φ
+ V2 = S,

V2(0, φ) = 0 for sin φ > 0,
V2(L , φ) = V2(L ,R[φ]).

(5.35)

Assume V is well-defined in L∞. Then by tracking along the characteristics, we
can easily see that V1 and V2 are well-defined.

Using Formulation I, we rewrite the equation (5.34) along the characteristics
as

V1(η, φ) = exp
(−Gη,0

) (
p
(
φ′(0)

)
+

∫ η

0

V̄ (η′)

sin
(
φ′(η′)

) exp
(
Gη′,0

)
dη′

)

(5.36)

where (η′, φ′), (0, φ′(0)) and (η, φ) are on the same characteristic with sin φ′ � 0,
and

Gt,s =
∫ t

s

1

sin
(
φ′(ξ)

) dξ. (5.37)
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Taking the η derivative on both sides of (5.36), we have

∂V1

∂η
= X1 + X2 + X3 + X4 + X5, (5.38)

where

X1 = − exp
(−Gη,0

) ∂Gη,0

∂η

(
p
(
φ′(0)

)
+

∫ η

0

V̄ (η′)

sin
(
φ′(η′)

) exp
(
Gη′,0

)
dη′

)
,

(5.39)

X2 = exp
(−Gη,0

) ∂p
(
φ′(0)

)
∂η

, (5.40)

X3 = V̄ (η)

sin φ
, (5.41)

X4 = − exp
(−Gη,0

) ∫ η

0
V̄ (η′) exp

(
Gη′,0

) cos
(
φ′(η′)

)

sin2
(
φ′(η′)

) ∂φ′(η′)
∂η

dη′, (5.42)

X5 = exp
(−Gη,0

) ∫ η

0

V̄ (η′)

sin
(
φ′(η′)

) exp
(
Gη′,0

) ∂Gη′,0
∂η

dη′. (5.43)

Then we need to estimate each term. This procedure is standard, so we omit the
details. Note the fact that for 0 � η′ � η, we have sin φ′ � sin φ � δ0 and

∫ η

0

1

sin
(
φ′(η′)

) exp
(−Gη,η′

)
dη′ �

∫ ∞

0
e−y dy = 1, (5.44)

with the substitution y = Gη,η′ . The estimates can be listed as follows:

|X1| � C

δ0
‖V ‖L∞L∞ , |X2| � C

δ0

∥∥∥∥ ∂p

∂φ

∥∥∥∥
L∞−

, |X3| � C

δ0
‖V ‖L∞L∞ , (5.45)

|X4| � C

δ0
‖V ‖L∞L∞ , |X5| � C

δ0
‖V ‖L∞L∞ . (5.46)

In total, we have
∣∣∣∣∂V1

∂η

∣∣∣∣ � C

δ0

( ∥∥∥∥ ∂p

∂φ

∥∥∥∥
L∞−

+ ‖V ‖L∞L∞

)
. (5.47)

Using Formulation II, we rewrite the equation (5.35) along the characteristics as

V2(η, φ) = exp
(−Hφ,φ∗

) ∫ φ

φ∗

S
(
η′(φ′), φ′

)

F
(
η′(φ′)

)
cosφ′

exp
(
Hφ′,φ∗

)
dφ′, (5.48)
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where (η′, φ′), (0, φ∗) and (η, φ) are on the same characteristic with sin φ′ � 0,
and

Ht,s =
∫ t

s

1

F
(
η′(ξ)

)
cos ξ ′

dξ. (5.49)

Taking η derivative on both sides of (5.48), we have

∂V2

∂η
= Y1 + Y2 + Y3 + Y4 + Y5, (5.50)

where

Y1 = − exp
(−Hφ,φ∗

) ∂Hφ,φ∗
∂η

∫ φ

φ∗

S
(
η′(φ′), φ′

)

F
(
η′(φ′)

)
cosφ′

exp
(
Hφ′,φ∗

)
dφ′, (5.51)

Y2 = S(0, φ∗)
F(0) cosφ∗

∂φ∗
∂η

, (5.52)

Y3 = − exp
(−Hφ,φ∗

) ∫ φ

φ∗
S
(
η′(φ′), φ′)

1

F2
(
η′(φ′)

)
cosφ′

∂F
(
η′(φ′)

)
∂η

exp
(
Hφ′,φ∗

)
dφ′, (5.53)

Y4 = exp
(−Hφ,φ∗

) ∫ φ

φ∗

S
(
η′(φ′), φ′

)

F
(
η′(φ′)

)
cosφ′

exp
(
Hφ′,φ∗

) ∂Hφ′,φ∗
∂η

dφ′, (5.54)

Y5 = exp
(−Hφ,φ∗

) ∫ φ

φ∗

∂η′ S
(
η′(φ′), φ′

)

F
(
η′(φ′)

)
cosφ′

∂η′(φ′)
∂η

exp
(
Hφ′,φ∗

)
dφ′. (5.55)

Then we just need to estimate each term. Along the characteristics, we know

e−V (η′) cosφ′ = e−V (η) cosφ, (5.56)

which implies

cosφ′ = eV (η′)−V (η) cosφ � eV (0)−V (L) cosφ � eV (0)−V (L)δ0. (5.57)

We can further deduce that

cosφ′ �
(
1 − ε

1
2

Rκ

)
δ0 � δ0

2
, (5.58)

when ε is sufficiently small. Also, we have
∫ φ

φ∗

1

F
(
η′(φ′)

)
cosφ′

exp
(
Hφ,φ′

)
dφ′ �

∫ ∞

0
e−y dy = 1, (5.59)
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with the substitution y = Hφ,φ′ . Similarly to Xi estimates, we may directly obtain

|Y1| � C

δ0
‖S‖L∞L∞ , |Y2| � C

δ0
‖S‖L∞L∞ , |Y3| � C

δ0
‖S‖L∞L∞ , (5.60)

|Y4| � C

δ0
‖S‖L∞L∞ , |Y5| � C

δ0

∥∥∥∥∂S

∂η

∥∥∥∥
L∞L∞

. (5.61)

In total, we have ∣∣∣∣∂V2

∂η

∣∣∣∣ � C

δ0

(
‖S‖L∞L∞ +

∥∥∥∥∂S

∂η

∥∥∥∥
L∞L∞

)
. (5.62)

Combining (5.47) and (5.62), we have∣∣∣∣∂V∂η

∣∣∣∣ �
∣∣∣∣∂V1

∂η

∣∣∣∣ +
∣∣∣∣∂V2

∂η

∣∣∣∣
� C

δ0

( ∥∥∥∥ ∂p

∂φ

∥∥∥∥
L∞−

+ ‖S‖L∞L∞ +
∥∥∥∥∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)
. (5.63)

Hence, noting that ζ � sin φ � δ0, we know

I1 � C

δ20

( ∥∥∥∥ζ
∂p

∂φ

∥∥∥∥
L∞−

+ ‖S‖L∞L∞ +
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)
. (5.64)

Step 2: Estimate of I2 for 0 � sin φ � δ0 and χ(φ∗) < 1.
We have

I2 = 1

2π

∫ η

0

( ∫ π

−π

ζ(η′, φ′)
ζ(η′, φ∗)

(
1 − χ(φ∗)

)
A (η′, φ∗) dφ∗

)

1

sin φ′ exp(−Gη,η′) dη′

= 1

2π

∫ η

0

( ∫ π

−π

ζ(η′, φ′)
(
1 − χ(φ∗)

)∂V (η′, φ∗)
∂η′ dφ∗

)

1

sin φ′ exp(−Gη,η′) dη′. (5.65)

Based on the ε-Milne problem of V as

sin φ∗
∂V (η′, φ∗)

∂η′ + F(η′) cosφ∗
∂V (η′, φ∗)

∂φ∗
+ V (η′, φ∗) − V̄ (η′)

= S(η′, φ∗), (5.66)

we have

∂V (η′, φ∗)
∂η′ = − 1

sin φ∗

(
F(η′) cosφ∗

∂V (η′, φ∗)
∂φ∗

+ V (η′, φ∗)

−V̄ (η′) − S(η′, φ∗)
)

(5.67)
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Hence, inserting (5.67) into (5.65), we have the term in the large paranthesis

˜A : =
∫ π

−π

ζ(η′, φ′)
(
1 − χ(φ∗)v)

∂V (η′, φ∗)
∂η′ dφ∗

= −
∫ π

−π

ζ(η′, φ′)
(
1 − χ(φ∗)

) 1

sin φ∗

(
V (η′, φ∗) − V̄ (η′) − S(η′, φ∗)

)
dφ∗

−
∫ π

−π

ζ(η′, φ′)
(
1 − χ(φ∗)

) 1

sin φ∗
F(η′) cosφ∗

∂V (η′, φ∗)
∂φ∗

dφ∗

: = ˜A1 + ˜A2. (5.68)

Using the definition of χ , we may directly obtain

∣∣∣ ˜A1

∣∣∣ =
∣∣∣∣
∫ π

−π

ζ(η′, φ′)
(
1 − χ(φ∗)

) 1

sin φ∗

(
V (η′, φ∗) − V̄ (η′) − S(η′, φ∗)

)
dφ∗

∣∣∣∣
� C

δ

∣∣∣∣
∫ π

−π

(
V (η′, φ∗) − V̄ (η′) − S(η′, φ∗)

)
dφ∗

∣∣∣∣
� C

δ

(
‖V ‖L∞L∞ + ‖S‖L∞L∞

)
. (5.69)

On the other hand, an integration by parts yields

˜A2 =
∫ π

−π

∂

∂φ∗

(
ζ(η′, φ′)

(
1 − χ(φ∗)

) 1

sin φ∗
F(η′) cosφ∗

)
V (η′, φ∗) dφ∗,

(5.70)

which further implies that

∣∣∣ ˜A2

∣∣∣ � Cε

δ2
‖V ‖L∞L∞ . (5.71)

Since we can use substitution to show∫ η

0

1

sin φ′ exp(−Gη,η′) dη′ � 1, (5.72)

we have

|I2| � C

(
1

δ
+ ε

δ2

)(
‖V ‖L∞L∞ + ‖S‖L∞L∞

) ∫ η

0

1

sin φ′ exp(−Gη,η′) dη′

� C

(
1

δ
+ ε

δ2

)(
‖V ‖L∞L∞ + ‖S‖L∞L∞

)
. (5.73)

Step 3: Estimate of I3 for 0 � sin φ � δ0, χ(φ∗) = 1 and
√

εη′ � sin φ′.
Based on (5.21), this implies

ζ(η′, φ′) � C
√

εη′.

Then combining this with (5.22), we can directly obtain
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∫ π

−π

ζ(η′, φ′)
ζ(η′, φ∗)

χ(φ∗)A (η′, φ∗) dφ∗

� C
∫ δ

−δ

A (η′, φ∗) dφ∗ � Cδ‖A ‖L∞L∞ . (5.74)

Hence, we have

|I3| � Cδ‖A ‖L∞L∞
∫ η

0

1

sin φ′ exp(−Gη,η′) dη′ � Cδ‖A ‖L∞L∞ . (5.75)

Step 4: Estimate of I4 for 0 � sin φ � δ0, χ(φ∗) = 1,
√

εη′ � sin φ′ and
sin2 φ � ε(η − η′).

Based on (5.21), this implies

ζ(η′, φ′) � C sin φ′. (5.76)

Based on (5.28), we have

− Gη,η′ = −
∫ η

η′
1

sin φ′(y)
dy � − η − η′

2
√

ε(η − η′)
� −C

√
η − η′

ε
. (5.77)

Hence, considering ζ(η′, φ∗) �
√

εη′, we know

|I4| � C
∫ η

0

( ∫ π

−π

ζ(η′, φ′)
ζ(η′, φ∗)

χ(φ∗)A (η′, φ∗) dφ∗
)

1

sin φ′ exp(−Gη,η′) dη′

� C
∫ η

0

( ∫ δ

−δ

1

ζ(η′, φ∗)
A (η′, φ∗) dφ∗

)
ζ(η′, φ′)
sin φ′ exp(−Gη,η′) dη′

� C‖A ‖L∞L∞
∫ η

0

( ∫ δ

−δ

1

ζ(η′, φ∗)
dφ∗

)
sin φ′

sin φ′ exp(−Gη,η′) dη′

� Cδ‖A ‖L∞L∞
∫ η

0

1√
εη′ exp(−Gη,η′) dη′

� Cδ‖A ‖L∞L∞
∫ η

0

1√
εη′ exp

(
− C

√
η − η′

ε

)
dη′. (5.78)

Define z = η′

ε
, which implies dη′ = ε dz. Substituting this into above integral, we

have

|I4| � Cδ‖A ‖L∞L∞
∫ η

ε

0

1√
z
exp

(
− C

√
η

ε
− z

)
dz

= Cδ‖A ‖L∞L∞

(∫ 1

0

1√
z
exp

(
− C

√
η

ε
− z

)
dz

+
∫ η

ε

1

1√
z
exp

(
− C

√
η

ε
− z

)
dz

)
. (5.79)
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We can estimate these two terms separately:
∫ 1

0

1√
z
exp

(
− C

√
η

ε
− z

)
dz �

∫ 1

0

1√
z
dz = 2. (5.80)

∫ η
ε

1

1√
z
exp

(
− C

√
η

ε
− z

)
dz �

∫ η
ε

1
exp

(
− C

√
η

ε
− z

)
dz

t2= η
ε
−z

� 2
∫ ∞

0
te−Ct dt < ∞. (5.81)

Hence, we know

|I4| � Cδ‖A ‖L∞L∞ . (5.82)

Step 5: Estimate of I5 for 0 � sin φ � δ0, χ(φ∗) = 1,
√

εη′ � sin φ′ and
sin2 φ � ε(η − η′).

Based on (5.21), this implies

ζ(η′, φ′) � C sin φ′. (5.83)

Based on (5.28), we have

− Gη,η′ = −
∫ η

η′
1

sin φ′(y)
dy � −C(η − η′)

sin φ
. (5.84)

Hence, we have

|I5| � C‖A ‖L∞L∞
∫ η

0

( ∫ δ

−δ

1

ζ(η′, φ∗)
dφ∗

)
exp

(
−C(η − η′)

sin φ

)
dη′. (5.85)

Here, we use a different way to estimate the inner integral. We use substitution to
find∫ δ

−δ

1

ζ(η′, φ∗)
dφ∗ =

∫ δ

−δ

1√
R2

κ − (Rκ − εη′)2 cosφ2∗
dφ∗

sin φ∗ small
� C

∫ δ

−δ

cosφ∗√
R2

κ − (Rκ − εη′)2 cosφ2∗
dφ∗

= C
∫ δ

−δ

cosφ∗√
R2

κ − (Rκ − εη′)2 + (Rκ − εη′)2 sin φ2∗
dφ∗

y=sin φ∗= C
∫ δ

−δ

1√
R2

κ − (Rκ − εη′)2 + (Rκ − εη′)2y2
dy.

(5.86)

Define

p =
√
R2

κ − (Rκ − εη′)2 =
√
2Rκεη′ − ε2η′2 � C

√
εη′, q = Rκ − εη′ � C,

r = p

q
� C

√
εη′. (5.87)
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Then we have∫ δ

−δ

1

ζ(η′, φ∗)
dφ∗ � C

∫ δ

−δ

1√
p2 + q2y2

dy

� C
∫ 2

−2

1√
p2 + q2y2

dy � C
∫ 2

−2

1√
r2 + y2

dy

� C
∫ 2

0

1√
r2 + y2

dy =
(
ln(y +

√
r2 + y2) − ln(r)

)∣∣∣∣
2

0

� C

(
ln(2 +

√
r2 + 4) − ln(r)

)
� C

(
1 + ln(r)

)

� C

(
1 + |ln(ε)| + ∣∣ln(η′)

∣∣ ). (5.88)

Hence, we know

|I5| � C‖A ‖L∞L∞
∫ η

0

(
1 + |ln(ε)| + ∣∣ln(η′)

∣∣ )

exp

(
−C(η − η′)

sin φ

)
dη′. (5.89)

We may directly compute∣∣∣∣
∫ η

0

(
1 + |ln(ε)|

)
exp

(
−C(η − η′)

sin φ

)
dη′

∣∣∣∣ � C sin φ(1 + |ln(ε)|). (5.90)

Hence, we only need to estimate∣∣∣∣
∫ η

0

∣∣ln(η′)
∣∣ exp

(
−C(η − η′)

sin φ

)
dη′

∣∣∣∣ . (5.91)

If η � 2, using Cauchy’s inequality, we have∣∣∣∣
∫ η

0

∣∣ln(η′)
∣∣ exp

(
−C(η − η′)

sin φ

)
dη′

∣∣∣∣
�

(∫ η

0
ln2(η′) dη′

) 1
2
( ∫ η

0
exp

(
−2C(η − η′)

sin φ

)
dη′

) 1
2

�
(∫ 2

0
ln2(η′) dη′

) 1
2
( ∫ η

0
exp

(
−2C(η − η′)

sin φ

)
dη′

) 1
2

�
√
sin φ. (5.92)

If η � 2, we decompose and apply Cauchy’s inequality to obtain∣∣∣∣
∫ η

0

∣∣ln(η′)
∣∣ exp

(
−C(η − η′)

sin φ

)
dη′

∣∣∣∣
�

∣∣∣∣
∫ 2

0

∣∣ln(η′)
∣∣ exp

(
−C(η − η′)

sin φ

)
dη′

∣∣∣∣+
∣∣∣∣
∫ η

2
ln(η′) exp

(
−C(η − η′)

sin φ

)
dη′

∣∣∣∣
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�
(∫ 2

0
ln2(η′) dη′

) 1
2
(∫ 2

0
exp

(
−2C(η − η′)

sin φ

)
dη′

) 1
2

+ ln(L)

∣∣∣∣
∫ η

2
exp

(
−C(η − η′)

sin φ

)
dη′

∣∣∣∣
� C

(√
sin φ + |ln(ε)| sin φ

)
� C

(
1 + |ln(ε)|

)√
sin φ. (5.93)

Hence, we have

|I5| � C
(
1 + |ln(ε)|

)√
δ0‖A ‖L∞L∞ . (5.94)

Step 6: Estimate of I6 for |cosφ| < δ0.
We have

I6 = 1

2π

∫ η

0

( ∫ π

−π

ζ(η′, φ′)
ζ(η′, φ∗)

A (η′, φ∗) dφ∗
)

1

sin φ′ exp(−Gη,η′ ) dη′

= 1

2π

∫ η

0

( ∫ π

−π
ζ(η′, φ′)

(
1 − χ(φ∗)

)∂V (η′, φ∗)

∂η′ dφ∗
)

1

sin φ′ exp(−Gη,η′ ) dη′

+ 1

2π

∫ η

0

( ∫ π

−π
χ(φ∗)

ζ(η′, φ′)
ζ(η′, φ∗)

A (η′, φ∗) dφ∗
)

1

sin φ′ exp(−Gη,η′ ) dη′. (5.95)

The first term can be estimated as I2:

1

2π

∫ η

0

( ∫ π

−π

ζ(η′, φ′)
(
1 − χ(φ∗)

)V (η′, φ∗)
∂η′ dφ∗

)
1

sin φ′ exp(−Gη,η′) dη′

� C

(
1

δ
+ ε

δ2

)(
‖V ‖L∞L∞ + ‖S‖L∞L∞

)
. (5.96)

It is easy to check that
√

εη′ � sin φ � sin φ′ and sin2 φ � ε(η−η′), so the second
term can be estimated as I5.

1

2π

∫ η

0

( ∫ π

−π

χ(φ∗)
ζ(η′, φ′)
ζ(η′, φ∗)

A (η′, φ∗) dφ∗
)

1

sin φ′ exp(−Gη,η′) dη′

� C
(
1 + |ln(ε)|

)√
sin φ sup

|sin φ∗|�δ

|A (η, φ∗)|

� C
(
1 + |ln(ε)|

)
sup

|sin φ∗|�δ

|A (η, φ∗)| . (5.97)

Note that now we lose the smallness since sin φ � 1

2
, so we need a more detailed

analysis. Actually, the value of |A | for |sin φ| � δ, is covered in I2, I3, I4, I5 and
the following I I2, I I3, I I4, I I I . Therefore, in fact, we get the estimate

1

2π

∫ η

0

( ∫ π

−π

χ(φ∗)
ζ(η′, φ′)
ζ(η′, φ∗)

A (η′, φ∗) dφ∗
)

1

sin φ′ exp(−Gη,η′) dη′

� C
(
1 + |ln(ε)|

)(
‖pA ‖L∞− + ‖SA ‖L∞L∞

)
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+C
(
1 + |ln(ε)|

)(
1

δ
+ ε

δ2

)(
‖V ‖L∞L∞ + ‖S‖L∞L∞

)

+C
(
1 + |ln(ε)|

)(
δ +

(
1 + |ln(ε)|

)√
δ0

)
‖A ‖L∞L∞ . (5.98)

Therefore, we have

|I6| � C
(
1 + |ln(ε)|

)(
‖pA ‖L∞− + ‖SA ‖L∞L∞

)

+C
(
1 + |ln(ε)|

)(
1

δ
+ ε

δ2

)(
‖V ‖L∞L∞ + ‖S‖L∞L∞

)

+C
(
1 + |ln(ε)|

)(
δ +

(
1 + |ln(ε)|

)√
δ0

)
‖A ‖L∞L∞ . (5.99)

Step 7: Synthesis.
Collecting all the terms in previous steps, we have proved

|I | � C
(
1 + |ln(ε)|

)(
‖pA ‖L∞− + ‖SA ‖L∞L∞

)

+C

δ20

( ∥∥∥∥ζ
∂p

∂φ

∥∥∥∥
L∞−

+ ‖S‖L∞L∞ +
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)

+C
(
1 + |ln(ε)|

)(
1

δ
+ ε

δ2

)(
‖V ‖L∞L∞ + ‖S‖L∞L∞

)

+C
(
1 + |ln(ε)|

)(
δ +

(
1 + |ln(ε)|

)√
δ0

)
‖A ‖L∞L∞ . (5.100)

5.3. Region II: sin φ < 0 and |E(η, φ)| � e−V (L)

We consider

K[pA ] = pA
(
φ′(η, φ; 0)

)
exp(−GL ,0 − GL ,η) (5.101)

T [ ˜A + SA ] =
∫ L

0

( ˜A + S)
(
η′, φ′(η, φ; η′)

)

sin
(
φ′(η, φ; η′)

) exp(−GL ,η′ − GL ,η) dη
′

+
∫ L

η

( ˜A + S)
(
η′,R[φ′(η, φ; η′)]

)

sin
(
φ′(η, φ; η′)

) exp(−Gη′,η) dη
′. (5.102)

Based on Lemma 4.7, Lemma 4.8, we can directly obtain

|K[pA ]| � ‖pA ‖L∞− , (5.103)

|T [SA ]| � ‖SA ‖L∞L∞ . (5.104)
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Hence, we only need to estimate

I I = T [ ˜A + SA ] =
∫ L

0

˜A
(
η′, φ′(η, φ; η′)

)

sin
(
φ′(η, φ; η′)

) exp(−GL ,η′ − GL ,η) dη
′

+
∫ L

η

˜A
(
η′,R[φ′(η, φ; η′)]

)

sin
(
φ′(η, φ; η′)

) exp(−Gη′,η) dη
′.

(5.105)

In particular, since the integral
∫ η

0
· · · can be estimated as in Region I, so we only

need to estimate the integral
∫ L

η

· · · . Also, noting that fact that

exp(−GL ,η′ − GL ,η) � exp(−Gη′,η), (5.106)

we only need to estimate

∫ L

η

˜A
(
η′,R[φ′(η, φ; η′)]

)

sin
(
φ′(η, φ; η′)

) exp(−Gη′,η) dη
′. (5.107)

Here the proof is almost identical to that in Region I, so we only point out the key
differences.
Step 0: Preliminaries.
We need to update one key result. For 0 � η � η′,

sin φ′ =
√
1 − cos2 φ′ =

√
1 −

(
Rκ − εη

Rκ − εη′

)2

cos2 φ

=
√

(Rκ − εη′)2 sin2 φ + (2Rκ − εη − εη′)(εη′ − εη) cos2 φ

Rκ − εη′
� |sin φ| . (5.108)

Then we have

−
∫ η′

η

1

sin φ′(y)
dy � −η′ − η

|sin φ| . (5.109)

In the following, we will divide the estimate of I I into several cases based on the
value of sin φ, |cosφ|, sin φ′ and εη′. We write

I I =
∫ L

η

1{sin φ�−δ0}1{|cosφ|�δ0} +
∫ L

η

1{−δ0�sin φ�0}1{χ(φ∗)<1}

+
∫ L

η

1{−δ0�sin φ�0}1{χ(φ∗)=1}1{√εη′�sin φ′}
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+
∫ L

η

1{−δ0�sin φ�0}1{χ(φ∗)=1}1{√εη′�sin φ′}

+
∫ L

η

1{|cosφ|�δ0}

= I I1 + I I2 + I I3 + I I4 + I I5. (5.110)

Step 1: Estimate of I I1 for sin φ � −δ0.
We first estimate sin φ′. Along the characteristics, we know that

e−V (η′) cosφ′ = e−V (η) cosφ, (5.111)

which implies that

cosφ′ = eV (η′)−V (η) cosφ � eV (L)−V (0) cosφ

= eV (L)−V (0)
√
1 − δ20 . (5.112)

We can further deduce that

cosφ′ �
(
1 − ε

1
2

Rκ

)−1√
1 − δ20 . (5.113)

Then we have

sin φ′ �

√
1 −

(
1 − ε

1
2

Rκ

)−2

(1 − δ20) � δ0 − ε
1
4 >

δ0

2
, (5.114)

when ε is sufficiently small.
Similar to Region I, we will use two formulations to handle different terms and

we will decompose V = V1 + V2.
Using Formulation I, we rewrite the V1 equation along the characteristics as

V1(η, φ) = p
(
φ′(0)

)
exp(−GL ,0 − GL ,η)

+
∫ L

0

V̄ (η′)

sin
(
φ′(η′)

) exp(−GL ,η′ − GL ,η) dη
′

+
∫ L

η

V̄ (η′)

sin
(
φ′(η′)

) exp(−Gη′,η) dη
′, (5.115)

where (η′, φ′) and (η, φ) are on the same characteristic with sin φ′ � 0. Then taking
η derivative on both sides of (5.115) yields

∂V1

∂η
= X1 + X2 + X3 + X4 + X5 + X6 + X7, (5.116)

where
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X1 =
∂p

(
φ′(0)

)
∂η

exp(−GL ,0 − GL ,η), (5.117)

X2 = −p
(
φ′(0)

)
exp(−GL ,0 − GL ,η)

(
∂GL ,0

∂η
+ ∂GL ,η

∂η

)
, (5.118)

X3 = −
∫ L

0
V̄ (η′)

cos
(
φ′(η′)

)

sin2
(
φ′(η′)

) ∂φ′(η′)
∂η

exp(−GL ,η′ − GL ,η) dη
′, (5.119)

X4 = −
∫ L

0

V̄ (η′)

sin
(
φ′(η′)

) exp(−GL ,η′ − GL ,η)

×
(

∂GL ,η′

∂η
+ ∂GL ,η

∂η

)
dη′, (5.120)

X5 = −
∫ L

η

V̄ (η′)
cos

(
φ′(η′)

)

sin2
(
φ′(η′)

) ∂φ′(η′)
∂η

exp(−Gη′,η) dη
′, (5.121)

X6 = −
∫ L

η

V̄ (η′)

sin
(
φ′(η′)

) exp(−Gη′,η)
∂Gη′,η

∂η
dη′, (5.122)

X7 = − V̄ (η)

sin(φ)
. (5.123)

We need to estimate each term. The estimates are standard, so we only list the
results:

|X1| � C

δ0

∥∥∥∥ ∂p

∂φ

∥∥∥∥
L∞−

, |X2| � C

δ0
‖p‖L∞− , |X3| � C

δ0
‖V ‖L∞L∞ ,

|X4| � C

δ0
‖V ‖L∞L∞ , (5.124)

|X5| � C

δ0
‖V ‖L∞L∞ , |X6| � C

δ0
‖V ‖L∞L∞ ,

|X7| � C

δ0
‖V ‖L∞L∞ . (5.125)

In total, we have

∣∣∣∣∂V1

∂η

∣∣∣∣ � C

δ0

(
‖p‖L∞ +

∥∥∥∥ ∂p

∂φ

∥∥∥∥
L∞

+ ‖V ‖L∞L∞

)
. (5.126)

Using Formulation II, we rewrite the V2 equation along the characteristics as
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V2(η, φ) =
∫ φ∗

φ∗

S
(
η′(φ′), φ′

)

F
(
η′(φ′)

)
cos(φ′)

exp(−Hφ∗,φ′ − H−φ∗,φ) dφ′

+
∫ −φ∗

φ

S
(
η′(φ′), φ′

)

F
(
η′(φ′)

)
cos(φ′)

exp(−Hφ′,φ) dφ′, (5.127)

where (η′, φ′), (0, φ∗), (L , φ∗), (L ,−φ∗) and (η, φ) are on the same characteristic
with sin φ′ � 0 and φ∗ � 0. Then taking η derivative on both sides of (5.127)
yields

∂V2

∂η
= Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + Y8, (5.128)

where

Y1 = S(L , φ∗)
F(L) cos(φ∗)

exp(−H−φ∗,φ)
∂φ∗

∂η

− S(0, φ∗)
F(0) cos(φ∗)

exp(−Hφ∗,φ∗ − H−φ∗,φ)
∂φ∗
∂η

, (5.129)

Y2 = −
∫ φ∗

φ∗
S
(
η′(φ′), φ′) 1

F2
(
η′(φ′)

)
cos(φ′)

∂F
(
η′(φ′)

)
∂η

exp(−Hφ∗,φ′ − H−φ∗,φ) dφ′, (5.130)

Y3 = −
∫ φ∗

φ∗

S
(
η′(φ′), φ′

)

F
(
η′(φ′)

)
cos(φ′)

exp(−Hφ∗,φ′ − H−φ∗,φ)

(
∂Hφ∗,φ′

∂η
+ ∂H−φ∗,φ

∂η

)
dφ′, (5.131)

Y4 =
∫ φ∗

φ∗

∂η′ S
(
η′(φ′), φ′

)

F
(
η′(φ′)

)
cos(φ′)

∂η′(φ′)
∂η

exp(−Hφ∗,φ′ − H−φ∗,φ) dφ′,

(5.132)

Y5 = − S(L ,−φ∗)
F(L) cos(−φ∗)

exp(−H−φ∗,φ)
∂φ∗

∂η
, (5.133)

Y6 = −
∫ −φ∗

φ

S
(
η′(φ′), φ′) 1

F2
(
η′(φ′)

)
cos(φ′)

∂F
(
η′(φ′)

)
∂η

exp(−Hφ′,φ) dφ′, (5.134)
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Y7 = −
∫ −φ∗

φ

S
(
η′(φ′), φ′

)

F
(
η′(φ′)

)
cos(φ′)

exp(−Hφ′,φ)
∂Hφ′,φ

∂η
dφ′, (5.135)

Y8 =
∫ −φ∗

φ

∂η′ S
(
η′(φ′), φ′

)

F
(
η′(φ′)

)
cos(φ′)

∂η′(φ′)
∂η

exp(−Hφ′,φ) dφ′. (5.136)

We need to estimate each term. The estimates are standard, so we only list the
results:

|Y1| � C

δ0
‖S‖L∞L∞ , |Y2| � C

δ0
‖S‖L∞L∞ , |Y3| � C

δ0
‖S‖L∞L∞ ,

|Y4| � C

δ0

∥∥∥∥∂S

∂η

∥∥∥∥
L∞L∞

, (5.137)

|Y5| � C

δ0
‖S‖L∞L∞ , |Y6| � C

δ0
‖S‖L∞L∞ , |Y7| � C

δ0
‖S‖L∞L∞ ,

|Y8| � C

δ0

∥∥∥∥∂S

∂η

∥∥∥∥
L∞L∞

. (5.138)

In total, we have ∣∣∣∣∂V2

∂η

∣∣∣∣ � C

δ0

(
‖S‖L∞L∞ +

∥∥∥∥∂S

∂η

∥∥∥∥
L∞L∞

)
. (5.139)

Combining (5.126) and (5.139), noting that ζ � sin φ � δ0, we have

|I I1| � C

δ20

(
‖p‖L∞− +

∥∥∥∥ζ
∂p

∂φ

∥∥∥∥
L∞−

+ ‖S‖L∞L∞

+
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)
. (5.140)

Step 2: Estimate of I I2 for −δ0 � sin φ � 0 and χ(φ∗) < 1.
This is similar to the estimate of I2 based on the integral

∫ L

η

1

sin φ′ exp(−Gη′,η) dη
′ � 1. (5.141)

Then we have

|I I2| �
(
1

δ
+ ε

δ2

)(
‖V ‖L∞L∞ + ‖S‖L∞L∞

)
. (5.142)

Step 3: Estimate of I I3 for −δ0 � sin φ � 0, χ(φ∗) = 1 and
√

εη′ � sin φ′.
This is similar to the estimate of I3, we have

|I I3| � Cδ‖A ‖L∞L∞ . (5.143)

Step 4: Estimate of I I4 for −δ0 � sin φ � 0, χ(φ∗) = 1 and
√

εη′ � sin φ′.
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This step is different. We do not need to further decompose the cases. Based on
(5.109), we have,

− Gη,η′ � −η′ − η

|sin φ| . (5.144)

Then following the same argument in estimating I5, we obtain

|I I4| � C‖A ‖L∞L∞
∫ L

η

(
1 + |ln(ε)| + ∣∣ln(η′)

∣∣ )

exp

(
−η′ − η

|sin φ|
)

dη′. (5.145)

If η � 2, we directly obtain

∣∣∣∣
∫ L

η

∣∣ln(η′)
∣∣ exp

(
−η′ − η

|sin φ|
)

dη′
∣∣∣∣ �

∣∣∣∣
∫ L

2
ln(η′) exp

(
−η′ − η

|sin φ|
)

dη′
∣∣∣∣

� ln(2)

∣∣∣∣
∫ L

2
exp

(
−η′ − η

|sin φ|
)

dη′
∣∣∣∣

� C
√|sin φ|. (5.146)

If η � 2, we decompose as

∣∣∣∣
∫ L

η

∣∣ln(η′)
∣∣ exp

(
−η′ − η

|sin φ|
)

dη′
∣∣∣∣

�
∣∣∣∣
∫ 2

η

∣∣ln(η′)
∣∣ exp

(
−η′ − η

|sin φ|
)

dη′
∣∣∣∣

+
∣∣∣∣
∫ L

2

∣∣ln(η′)
∣∣ exp

(
−η′ − η

|sin φ|
)

dη′
∣∣∣∣ . (5.147)

The second term is identical to the estimate in η � 2.We apply Cauchy’s inequality
to the first term∣∣∣∣

∫ 2

η

∣∣ln(η′)
∣∣ exp

(
−η′ − η

|sin φ|
)

dη′
∣∣∣∣

�
( ∫ 2

η

ln2(η′) dη′
) 1

2
( ∫ 2

η

exp

(
−2(η′ − η)

|sin φ|
)

dη′
) 1

2

�
( ∫ 2

0
ln2(η′) dη′

) 1
2
( ∫ 2

η

exp

(
−2(η′ − η)

|sin φ|
)

dη′
) 1

2

� C
√|sin φ|. (5.148)

Hence, we have

|I I4| � C(1 + |ln(ε)|)√δ0‖A ‖L∞L∞ . (5.149)



2150 Lei Wu

Step 5: Estimate of I I5 for |cosφ| < δ0.
This is similar to the estimate of I6, we have

|I I5| � C
(
1 + |ln(ε)|

)(
‖pA ‖L∞− + ‖SA ‖L∞L∞

)

+C
(
1 + |ln(ε)|

)(
1

δ
+ ε

δ2

)(
‖V ‖L∞L∞ + ‖S‖L∞L∞

)

+C
(
1 + |ln(ε)|

)(
δ +

(
1 + |ln(ε)|

)√
δ0

)
‖A ‖L∞L∞ . (5.150)

Step 6: Synthesis.
Collecting all the terms in previous steps, we have proved

|I I | � C
(
1 + |ln(ε)|

)(
‖pA ‖L∞− + ‖SA ‖L∞L∞

)

+C

δ20

(
‖p‖L∞− +

∥∥∥∥ζ
∂p

∂φ

∥∥∥∥
L∞−

+ ‖S‖L∞L∞ +
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)

+C
(
1 + |ln(ε)|

)(
1

δ
+ ε

δ2

)(
‖V ‖L∞L∞ + ‖S‖L∞L∞

)

+C
(
1 + |ln(ε)|

)(
δ +

(
1 + |ln(ε)|

)√
δ0

)
‖A ‖L∞L∞ . (5.151)

5.4. Region III: sin φ < 0 and |E(η, φ)| � e−V (L)

We consider

K[pA ] = pA
(
φ′(η, φ; 0)

)
exp(−Gη+,0 − Gη+,η) (5.152)

T [ ˜A + SA ] =
∫ η+

0

( ˜A + SA )
(
η′, φ′(η, φ; η′)

)

sin
(
φ′(η, φ; η′)

) exp(−Gη+,η′ − Gη+,η) dη
′

+
∫ η+

η

( ˜A + SA )
(
η′,R[φ′(η, φ; η′)]

)

sin
(
φ′(η, φ; η′)

) exp(−Gη′,η) dη
′.

(5.153)

Based on [24, Lemma 4.7, Lemma 4.8], we still have

|K[pA ]| � ‖pA ‖L∞− , (5.154)

|T [SA ]| � ‖SA ‖L∞L∞ . (5.155)

Hence, we only need to estimate
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I I I = T [ ˜A ] =
∫ η+

0

˜A
(
η′, φ′(η, φ; η′)

)

sin
(
φ′(η, φ; η′)

) exp(−Gη+,η′ − Gη+,η) dη
′

+
∫ η+

η

˜A
(
η′,R[φ′(η, φ; η′)]

)

sin
(
φ′(η, φ; η′)

) exp(−Gη′,η) dη
′. (5.156)

Note that |E(η, φ)| � e−V (L) implies

e−V (η) cosφ � e−V (L). (5.157)

Hence, we can further deduce that

cosφ � eV (η)−V (L) � eV (0)−V (L) �
(
1 − ε

1
2

Rκ

)
. (5.158)

Hence, we know

|sin φ| �

√
1 −

(
1 − ε

1
2

Rκ

)2

� ε
1
4 . (5.159)

Hence, when ε is sufficiently small, we always have

|sin φ| � ε
1
4 � δ0. (5.160)

This means we do not need to bother with the estimate of sin φ � −δ0 as Step 1 in
estimating I and I I . Also, it is not necessary to discuss the case |cosφ| < δ0.

Then the integral
∫ η

0
(· · · ) is similar to the argument inRegion I, and the integral

∫ η+

η

(· · · ) is similar to the argument in Region II. Hence, combining the methods

in Region I and Region II, we can show the desired result, that is

|I I I | � C
(
1 + |ln(ε)|

)(
‖pA ‖L∞− + ‖SA ‖L∞L∞

)

+C
(
1 + |ln(ε)|

)(
1

δ
+ ε

δ2

)(
‖V ‖L∞L∞ + ‖S‖L∞L∞

)

+C
(
1 + |ln(ε)|

)(
δ +

(
1 + |ln(ε)|

)√
δ0

)
‖A ‖L∞L∞ . (5.161)

5.5. Estimate of Normal Derivative

Theorem 5.1. The solution A to the equation (5.4) satisfies
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‖A ‖L∞L∞ � C |ln(ε)|
(

‖pA ‖L∞− + ‖SA ‖L∞L∞

)

+C |ln(ε)|8
(

‖p‖L∞− +
∥∥∥∥ζ

∂p

∂φ

∥∥∥∥
L∞−

+‖S‖L∞L∞ +
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)
. (5.162)

Proof. Combining the analysis in above three regions and taking supremum over
all (η, φ), we have

‖A ‖L∞L∞ � C
(
1 + |ln(ε)|

)(
‖pA ‖L∞− + ‖SA ‖L∞L∞

)

+C

δ20

(
‖p‖L∞− +

∥∥∥∥ζ
∂p

∂φ

∥∥∥∥
L∞−

+ ‖S‖L∞L∞

+
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)

+C
(
1 + |ln(ε)|

)(
1

δ
+ ε

δ2

)(
‖V ‖L∞L∞ + ‖S‖L∞L∞

)

+C
(
1 + |ln(ε)|

)(
δ +

(
1 + |ln(ε)|

)√
δ0

)
‖A ‖L∞L∞ . (5.163)

Then we choose quantities δ and δ0 to perform the absorbing argument. First we

choose δ = C0

(
1 + |ln(ε)|

)−1
for C0 > 0 sufficiently small such that

Cδ � 1

4
. (5.164)

Then we take δ0 = C0

(
1 + |ln(ε)|

)−4
such that

C
(
1 + |ln(ε)|

)2√
δ0 � 1

4
(5.165)

for ε sufficiently small. Note that this mild decay of δ0 with respect to ε also justifies
the assumption in Case III that

ε
1
4 � δ0

2
, (5.166)

for ε sufficiently small. Hence, we can absorb all the term related to ‖A ‖L∞L∞ on
the right-hand side of (5.163) to the left-hand side to obtain

‖A ‖L∞L∞ � C |ln(ε)|
(

‖pA ‖L∞− + ‖SA ‖L∞L∞

)

+C |ln(ε)|8
(

‖p‖L∞− +
∥∥∥∥ζ

∂p

∂φ

∥∥∥∥
L∞−

+‖S‖L∞L∞ +
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)
. (5.167)

�
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5.6. A Priori Estimate of Derivatives

In this subsection, we further estimate the normal and velocity derivatives.

Theorem 5.2. The solution V to the difference equation (5.3) satisfies
∥∥∥∥ζ

∂V

∂η

∥∥∥∥
L∞L∞

+
∥∥∥∥F(η) cosφ

∂V

∂φ

∥∥∥∥
L∞L∞

� C |ln(ε)|8
(

‖p‖L∞− +
∥∥∥∥(ε + ζ )

∂p

∂φ

∥∥∥∥
L∞−

+‖S‖L∞L∞ +
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)
. (5.168)

Proof. Based on Theorem 5.1, we have

‖A ‖L∞L∞ � C |ln(ε)|
(

‖pA ‖L∞− + ‖SA ‖L∞L∞

)

+C |ln(ε)|8
(

‖p‖L∞− +
∥∥∥∥ζ

∂p

∂φ

∥∥∥∥
L∞−

+‖S‖L∞L∞ +
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)
. (5.169)

Taking derivatives on both sides of (5.3) and multiplying ζ , we have

pA = −ε cosφ
∂p

∂φ
− p + V̄ (0) + S(0, φ), (5.170)

SA = ∂F

∂η
ζ cosφ

∂V

∂φ
+ ζ

∂S

∂η
. (5.171)

Since |F(η)| � Cε and

∣∣∣∣∂F∂η

∣∣∣∣ � CεF , we may directly estimate

‖pA ‖L∞ � C

(
‖p‖L∞− + ε

∥∥∥∥ ∂p

∂φ

∥∥∥∥
L∞−

+ ‖S‖L∞L∞ + ‖V ‖L∞L∞

)
, (5.172)

‖SA ‖L∞L∞ � C

(
ε

∥∥∥∥F(η) cosφ
∂V

∂φ

∥∥∥∥
L∞L∞

+
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

)
. (5.173)

Then inserting (5.172) and (5.173) into (5.169), we derive

‖A ‖L∞L∞ � Cε

∥∥∥∥F(η) cosφ
∂V

∂φ

∥∥∥∥
L∞L∞

+C |ln(ε)|8
(

‖p‖L∞− +
∥∥∥∥(ε + ζ )

∂p

∂φ

∥∥∥∥
L∞−

+‖S‖L∞L∞ +
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)
. (5.174)
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Since

‖A ‖L∞L∞ =
∥∥∥∥ζ

∂V

∂η

∥∥∥∥
L∞L∞

�
∥∥∥∥sin φ

∂V

∂η

∥∥∥∥
L∞L∞

, (5.175)

we know∥∥∥∥sin φ
∂V

∂η

∥∥∥∥
L∞L∞

� Cε

∥∥∥∥F(η) cosφ
∂V

∂φ

∥∥∥∥
L∞L∞

+C |ln(ε)|8
(

‖p‖L∞− +
∥∥∥∥(ε + ζ )

∂p

∂φ

∥∥∥∥
L∞−

+‖S‖L∞L∞ +
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)
. (5.176)

Considering the equation (5.3), since ζ(η, φ) � |sin φ|, we have
∥∥∥∥F(η) cosφ

∂V

∂φ

∥∥∥∥
L∞L∞

�
∥∥∥∥sin φ

∂V

∂η

∥∥∥∥
L∞L∞

+‖V ‖L∞L∞ + ∥∥V̄ ∥∥
L∞L∞ + ‖S‖L∞L∞

� Cε

∥∥∥∥F(η) cosφ
∂V

∂φ

∥∥∥∥
L∞L∞

+C |ln(ε)|8
(

‖p‖L∞− +
∥∥∥∥(ε + ζ )

∂p

∂φ

∥∥∥∥
L∞−

+‖S‖L∞L∞ +
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)
.

(5.177)

Absorbing

∥∥∥∥F(η) cosφ
∂V

∂φ

∥∥∥∥
L∞L∞

into the left-hand side, we obtain

∥∥∥∥F(η) cosφ
∂V

∂φ

∥∥∥∥
L∞L∞

� C |ln(ε)|8
(

‖p‖L∞− +
∥∥∥∥(ε + ζ )

∂p

∂φ

∥∥∥∥
L∞−

+‖S‖L∞L∞ +
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)
.

(5.178)

Therefore, we further derive
∥∥∥∥ζ

∂V

∂η

∥∥∥∥
L∞L∞

� C |ln(ε)|8
(

‖p‖L∞− +
∥∥∥∥(ε + ζ )

∂p

∂φ

∥∥∥∥
L∞−

+‖S‖L∞L∞ +
∥∥∥∥ζ

∂S

∂η

∥∥∥∥
L∞L∞

+ ‖V ‖L∞L∞

)
. (5.179)

�
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Theorem 5.3. For K0 > 0 sufficiently small, the solution V to the difference equa-
tion (5.3) satisfies

∥∥∥∥eK0ηζ
∂V

∂η

∥∥∥∥
L∞L∞

+
∥∥∥∥eK0ηF(η) cosφ

∂V

∂φ

∥∥∥∥
L∞L∞

� C |ln(ε)|8
(

‖p‖L∞− +
∥∥∥∥(ε + ζ )

∂p

∂φ

∥∥∥∥
L∞−

+
∥∥∥eK0ηS

∥∥∥
L∞L∞ +

∥∥∥∥eK0ηζ
∂S

∂η

∥∥∥∥
L∞L∞

+
∥∥∥eK0ηV

∥∥∥
L∞L∞

)
. (5.180)

Proof. This proof is almost identical to Theorem 5.2. The only difference is that
SA is added by K0A sin φ. When K0 is sufficiently small, we can also absorb them
into the left-hand side. Hence, this is obvious. �


6. Diffusive Limit

6.1. Analysis of Regular Boundary Layer

In this subsection, we will justify that the regular boundary layers are all well-
defined.
Step 1: Well-Posedness of U0.
U0 satisfies the ε-Milne problem with geometric correction

⎧⎪⎪⎨
⎪⎪⎩
sin φ

∂U0

∂η
+ F(η) cosφ

∂U0

∂φ
+ U0 − Ū0 = 0,

U0(0, τ, φ) = G (τ, φ) − F0(τ ) for sin φ > 0,
U0(L , τ, φ) = U0(L , τ,R[φ]),

(6.1)

Therefore, since ‖G ‖L∞ � C , by Theorem 4.9, we know

∥∥∥eK0ηU0

∥∥∥
L∞L∞ � C. (6.2)

Step 2: Tangential Derivatives of U0.

The τ derivative W = ∂U0

∂τ
satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin φ
∂W

∂η
+ F(η) cosφ

∂W

∂φ
+ W − W̄ = − R′

κ

Rκ − εη
F(η) cosφ

∂U0

∂φ
,

W (0, τ, φ) = ∂G

∂τ
(τ, φ) − ∂F0

∂τ
(τ ) for sin φ > 0,

W (L , τ, φ) = W (L , τ,R[φ]),
(6.3)

where R′
κ represents the θ derivative of Rκ . Here we need the regularity estimates

of U0.
Based on Theorem 5.3, we know
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∥∥∥∥eK0ηF(η) cosφ
∂U0

∂φ

∥∥∥∥
L∞L∞

� C |ln(ε)|8
(

‖G ‖L∞− +
∥∥∥∥(ε + ζ )

∂G

∂φ

∥∥∥∥
L∞−

+
∥∥∥eK0ηU0

∥∥∥
L∞L∞

)

� C |ln(ε)|8 . (6.4)

Note that here although

∥∥∥∥∂G

∂φ

∥∥∥∥
L∞

� Cε−α , with the help of ε + ζ , we can get rid

of this negative power. Therefore, by Theorem 4.9, we have
∥∥∥eK0ηW

∥∥∥
L∞L∞ � C |ln(ε)|8 . (6.5)

Step 3: Well-Posedness of U1.
U1 satisfies the ε-Milne problem with geometric correction

⎧⎪⎪⎨
⎪⎪⎩
sin φ

∂U1

∂η
+ F(η) cosφ

∂U1

∂φ
+ U1 − Ū1 = W

Rκ − εη
cosφ,

U1(0, τ, φ) = �w · ∇xU0(�x0, �w) − F1,L(τ ) for sin φ > 0,
U1(L , τ, φ) = U1(L , τ,R[φ]).

(6.6)

Therefore, by Theorem 4.9, we know
∥∥∥eK0ηU1

∥∥∥
L∞L∞ � C

∥∥∥eK0ηW
∥∥∥
L∞L∞ � C |ln(ε)|8 . (6.7)

Step 4: Tangential Derivatives of U1.

The τ derivative V = ∂U1

∂τ
satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin φ
∂V

∂η
+ F(η) cosφ

∂V

∂φ
+ V − V̄ = S1 + S2 + S3,

V (0, τ, φ) = ∂

∂τ

(
�w · ∇xU0(�x0, �w) − F1,L(τ )

)
for sin φ > 0,

V (L , τ, φ) = V (L , τ,R[φ]),

(6.8)

where

S1 = − R′
κ

Rκ − εη
F(η) cosφ

∂U1

∂φ
, (6.9)

S2 = − R′
κ

(Rκ − εη)2
W cosφ, (6.10)

S3 = 1

Rκ − εη
cosφ

∂W

∂τ
. (6.11)

Based on Theorem 5.3, we have

∥∥∥eK0ηS1
∥∥∥
L∞L∞ � C

∥∥∥∥eK0ηF(η) cosφ
∂U1

∂φ

∥∥∥∥
L∞L∞

(6.12)
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� C

(∥∥∥∥eK0η
W

Rκ − εη
cosφ

∥∥∥∥
L∞L∞

+
∥∥∥∥eK0ηζ

∂

∂η

(
W

Rκ − εη
cosφ

)∥∥∥∥
L∞L∞

)

� C

(∥∥∥eK0ηW
∥∥∥
L∞L∞ +

∥∥∥∥eK0ηζ
∂W

∂η

∥∥∥∥
L∞L∞

)
,

∥∥∥eK0ηS2
∥∥∥
L∞L∞ � C

∥∥∥∥eK0η
R′

κ

(Rκ − εη)2
W cosφ

∥∥∥∥
L∞L∞

� C
∥∥∥eK0ηW

∥∥∥
L∞L∞ , (6.13)

∥∥∥eK0ηS3
∥∥∥
L∞L∞ � C

∥∥∥∥eK0η
∂W

∂τ

∥∥∥∥
L∞L∞

. (6.14)

Step 5: Tangential Derivatives of W .

The τ derivative Z = ∂W

∂τ
satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin φ
∂Z

∂η
+ F(η) cosφ

∂Z

∂φ
+ Z − Z̄ = T1 + T2,

Z(0, τ, φ) = ∂2G

∂τ 2
(τ, φ) − ∂2F0

∂τ 2
(τ ) for sin φ > 0,

Z(L , τ, φ) = Z(L , τ,R[φ]),
(6.15)

where

T1 = − R′
κ

Rκ − εη
F(η) cosφ

∂W

∂φ
, (6.16)

T2 = − ∂

∂τ

(
R′

κ

Rκ − εη

)
F(η) cosφ

∂U0

∂φ
. (6.17)

Based on Theorem 5.3, we have

∥∥∥eK0ηT1
∥∥∥
L∞L∞ � C

∥∥∥∥eK0ηF(η) cosφ
∂W

∂φ

∥∥∥∥
L∞L∞

, (6.18)

∥∥∥eK0ηT2
∥∥∥
L∞L∞ � C

∥∥∥∥F(η) cosφ
∂U0

∂φ

∥∥∥∥
L∞L∞

� C |ln(ε)|8 . (6.19)

Therefore, we have

∥∥∥eK0ηS3
∥∥∥
L∞L∞ �

∥∥∥eK0ηZ
∥∥∥
L∞L∞ � C |ln(ε)|8

+C

∥∥∥∥eK0ηF(η) cosφ
∂W

∂φ

∥∥∥∥
L∞L∞

. (6.20)

In total, we have
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∥∥∥eK0ηS1
∥∥∥
L∞L∞ +

∥∥∥eK0ηS2
∥∥∥
L∞L∞ +

∥∥∥eK0ηS3
∥∥∥
L∞L∞

� C |ln(ε)|8 + C

(∥∥∥∥eK0ηζ
∂W

∂η

∥∥∥∥
L∞L∞

+
∥∥∥∥eK0ηF(η) cosφ

∂W

∂φ

∥∥∥∥
L∞L∞

)
. (6.21)

Hence, we need the regularity estimate ofW . However, this cannot be done directly.
We will first study the normal derivative of U0.
Step 6: Regularity of Normal Derivative.

The normal derivative A = ∂U0

∂η
satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin φ
∂A

∂η
+ F(η) cosφ

∂A

∂φ
+ A − Ā = ε

R − εη
F(η) cosφ

∂U0

∂φ
,

A(0, τ, φ) = 1

sin φ

(
F(η) cosφ

∂G

∂φ
(τ, φ) − G (0, τ, φ) + Ū0(0, τ, φ)

)
for sin φ > 0,

A(L , τ, φ) = A(L , τ,R[φ]),
(6.22)

This is where the cut-off in G plays a role. Based on the construction of G and using

|F(η)| � Cε, we know ‖A(0, φ, τ )‖L∞− � Cε−α and

∥∥∥∥(ε + ζ )
∂A

∂φ
(0, φ, τ )

∥∥∥∥
L∞−

�

Cε−α . Therefore, using Theorem 4.9, we have

∥∥∥eK0ηA
∥∥∥
L∞L∞ � C

(
‖A(0, φ, τ )‖L∞− +

∥∥∥∥eK0ηF(η) cosφ
∂U0

∂φ

∥∥∥∥
L∞L∞

)

� Cε−α. (6.23)

By Theorem 5.3, we know that

∥∥∥∥eK0ηζ
∂A

∂η

∥∥∥∥
L∞L∞

+
∥∥∥∥eK0ηF(η) cosφ

∂A

∂φ

∥∥∥∥
L∞L∞

� C |ln(ε)|8
(

ε−α +
∥∥∥∥eK0η

ε

R − εη
F(η) cosφ

∂U0

∂φ

∥∥∥∥
L∞L∞

+
∥∥∥∥eK0ηζ

∂

∂η

(
ε

R − εη
F(η) cosφ

∂U0

∂φ

)∥∥∥∥
L∞L∞

)

� C |ln(ε)|8
(

ε−α + ε

∥∥∥∥eK0ηF(η) cosφ
∂U0

∂φ

∥∥∥∥
L∞L∞

+ε

∥∥∥∥eK0ηF(η) cosφ
∂A

∂φ

∥∥∥∥
L∞L∞

)
(6.24)

Then we may absorb

∥∥∥∥eK0ηF(η) cosφ
∂A

∂φ

∥∥∥∥
L∞L∞

into the left-hand side to obtain
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∥∥∥∥eK0ηζ
∂A

∂η

∥∥∥∥
L∞L∞

+
∥∥∥∥eK0ηF(η) cosφ

∂A

∂φ

∥∥∥∥
L∞L∞

� Cε−α |ln(ε)|8 .

(6.25)

Step 7: Regularity of Tangential Derivative.
We turn to the regularity of W . Based on Theorem 5.3, we have∥∥∥∥eK0ηζ

∂W

∂η

∥∥∥∥
L∞L∞

+
∥∥∥∥eK0ηF(η) cosφ

∂W

∂φ

∥∥∥∥
L∞L∞

� C |ln(ε)|8
(
1 +

∥∥∥∥eK0η
R′

κ

Rκ − εη
F(η) cosφ

∂U0

∂φ

∥∥∥∥
L∞L∞

+
∥∥∥∥eK0ηζ

∂

∂η

(
R′

κ

Rκ − εη
F(η) cosφ

∂U0

∂φ

)∥∥∥∥
L∞L∞

)

� C |ln(ε)|8
(
1 +

∥∥∥∥eK0ηF(η) cosφ
∂U0

∂φ

∥∥∥∥
L∞L∞

+
∥∥∥∥eK0ηF(η) cosφ

∂A

∂φ

∥∥∥∥
L∞L∞

)

� Cε−α |ln(ε)|16 . (6.26)

Step 8: Synthesis.
Using above estimates, we actually have shown that∥∥∥eK0ηV

∥∥∥
L∞L∞ � Cε−α |ln(ε)|16 . (6.27)

Theorem 6.1. For K0 > 0 sufficiently small, the regular boundary layer satisfies∥∥eK0ηU0
∥∥
L∞L∞ � C,

∥∥eK0ηU1
∥∥
L∞L∞ � C |ln(ε)|8 ,∥∥∥∥eK0η

∂U0

∂τ

∥∥∥∥
L∞L∞

� C |ln(ε)|8 ,

∥∥∥∥eK0η
∂U1

∂τ

∥∥∥∥
L∞L∞

� Cε−α |ln(ε)|16 .
(6.28)

6.2. Analysis of Singular Boundary Layer

In this subsection, we will justify that the singular boundary layers are all well-
defined.
Step 1: Well-Posedness of U0.
U0 satisfies the ε-Milne problem with geometric correction⎧⎪⎪⎨

⎪⎪⎩
sin φ

∂U0

∂η
+ F(η) cosφ

∂U0

∂φ
+ U0 − Ū0 = 0,

U0(0, τ, φ) = G(τ, φ) − F0,L(τ ) for sin φ > 0,
U0(L , τ, φ) = U0(L , τ,R[φ]).

(6.29)

Therefore, by Theorem 4.9, we know∥∥∥eK0ηU0

∥∥∥
L∞L∞ � C. (6.30)

However, this is not sufficient for future use and we need more detailed analysis.
We will divide the domain (η, φ) ∈ [0, L] × [−π, π) into two regions:
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• Region I χ1: 0 � ζ < 2εα .
• Region II χ2: 2εα � ζ � 1.

Hereweuseχi to represent either the corresponding region or the indicator function.
It is easy to see that G = 0 in Region II. Similarly we decompose the solution
U0 = χ1U0 +χ2U0 = f1 + f2 in these two regions. In the following, the estimates
for fi will be restricted to the region χi for i = 1, 2. Using Theorem 4.3, we can
easily show that

∥∥∥eK0ηU0

∥∥∥
L2L2

� Cεα. (6.31)

The key to L∞ estimates in Theorem 4.10 is Lemma 4.6 and Lemma 4.7. Their
proofs are basically tracking along the characteristics. Hence, we know that

∥∥∥eK0ηŪ0

∥∥∥
L∞L∞ � C

(
εα

∥∥∥eK0η f1
∥∥∥
L∞L2

+
∥∥∥eK0η f2

∥∥∥
L∞L2

)

� C

(∥∥∥eK0ηU0

∥∥∥
L2L2

+ δεα
∥∥∥eK0η f1

∥∥∥
L∞L∞

+δ

∥∥∥eK0η f2
∥∥∥
L∞L∞

)
. (6.32)

Thus, considering χ1G = G and χ2G = 0, we may directly obtain

∥∥∥eK0η f1
∥∥∥
L∞L∞ � C

(
‖χ1G‖L∞ +

∥∥∥eK0ηŪ0

∥∥∥
L∞L∞

)

� C

(
‖χ1G‖L∞ +

∥∥∥eK0ηU0

∥∥∥
L2L2

+δεα
∥∥∥eK0η f1

∥∥∥
L∞L∞ + δ

∥∥∥eK0η f2
∥∥∥
L∞L∞

)

� C

(
1 + δεα

∥∥∥eK0η f1
∥∥∥
L∞L∞ + δ

∥∥∥eK0η f2
∥∥∥
L∞L∞

)
, (6.33)

∥∥∥eK0η f2
∥∥∥
L∞L∞ � C

(
‖χ2G‖L∞ +

∥∥∥eK0ηŪ0

∥∥∥
L∞L∞

)

� C

(
‖χ2G‖L∞ +

∥∥∥eK0ηU0

∥∥∥
L2L2

+ δεα
∥∥∥eK0η f1

∥∥∥
L∞L∞

+δ

∥∥∥eK0η f2
∥∥∥
L∞L∞

)

� C

(
εα + δεα

∥∥∥eK0η f1
∥∥∥
L∞L∞ + δ

∥∥∥eK0η f2
∥∥∥
L∞L∞

)
. (6.34)

Letting δ small, absorbing
∥∥eK0η f1

∥∥
L∞L∞ and

∥∥eK0η f2
∥∥
L∞L∞ , we know
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∥∥∥eK0η f1
∥∥∥
L∞L∞ � C

(
1 + δ

∥∥∥eK0η f2
∥∥∥
L∞L∞

)
, (6.35)

∥∥∥eK0η f2
∥∥∥
L∞L∞ � C

(
εα + δεα

∥∥∥eK0η f1
∥∥∥
L∞L∞

)
. (6.36)

Combining them together, we can easily see that
∥∥∥eK0η f1

∥∥∥
L∞L∞ � C, (6.37)∥∥∥eK0η f2

∥∥∥
L∞L∞ � Cεα. (6.38)

In total, we can derive
∥∥∥eK0ηŪ0

∥∥∥
L∞L∞ � Cεα. (6.39)

Step 2: Regularity of U0.
This is very similar to the well-posedness proof, we will also consider the regularity
of U0 in two regions. Note that in the proof of Theorem 5.3, the L∞ estimates relies
on two kinds of quantities:

•
∣∣∣∣ζ ∂U0

∂η

∣∣∣∣ on the same characteristics.

•
∫ π

−π

ζ
∂U0

∂η
dφ for some η > 0.

Correspondingly, we may handle them separately: for the first case, since ζ is
preserved along the characteristics, we can directly separate the estimate of f1 and
f2; for the second case, we may use the simple domain decomposition

∫ π

−π

ζ
∂U0

∂η
(η, φ) dφ =

∫
χ1

ζ
∂ f1
∂η

dφ +
∫

χ2

ζ
∂ f2
∂η

dφ

� C

(
εα

∥∥∥∥ζ
∂ f1
∂η

∥∥∥∥
L∞L2

+
∥∥∥∥ζ

∂ f2
∂η

∥∥∥∥
L∞L2

)
. (6.40)

Then following a similar absorbing argument as in above well-posedness proof, we
have∥∥∥∥eK0ηζ

∂ f1
∂η

∥∥∥∥
L∞L∞

+
∥∥∥∥eK0ηF(η) cosφ

∂ f1
∂φ

∥∥∥∥
L∞L∞

� C |ln(ε)|8
(

‖G‖L∞ +
∥∥∥∥(ε + ζ )

∂G

∂φ

∥∥∥∥
L∞

+
∥∥∥eK0ηU0

∥∥∥
L∞L∞

)

� C |ln(ε)|8 , (6.41)∥∥∥∥eK0ηζ
∂ f2
∂η

∥∥∥∥
L∞L∞

+
∥∥∥∥eK0ηF(η) cosφ

∂ f2
∂φ

∥∥∥∥
L∞L∞

� C |ln(ε)|8
(∥∥∥eK0η f2

∥∥∥
L∞L∞ + εα

∥∥∥eK0η f1
∥∥∥
L∞L∞

)
� Cεα |ln(ε)|8 . (6.42)
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Note that although

∥∥∥∥∂G

∂φ

∥∥∥∥
L∞

� Cε−α , with the help of ε + ζ , we can get rid of

this negative power.
Step 3: Tangential Derivatives of U0.

The τ derivative P = ∂U0

∂τ
satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin φ
∂P

∂η
+ F(η) cosφ

∂P

∂φ
+ P − P̄ = − R′

κ

Rκ − εη
F(η) cosφ

∂U0

∂φ
,

P(0, τ, φ) = ∂G

∂τ
(τ, φ) − ∂F0,L

∂τ
(τ ) for sin φ > 0,

P(L , τ, φ) = P(L , τ,R[φ]).
(6.43)

It is easy to check that∫ π

−π

cosφ
∂U0

∂φ
dφ =

∫ π

−π

U0 sin φ dφ = 0, (6.44)

due to the orthogonal property. Hence, using Theorem 4.3 with SQ = 0, we have∥∥∥eK0ηP
∥∥∥
L2L2

� Cεα |ln(ε)|8 , (6.45)

which further implies that
∥∥∥eK0ηP1

∥∥∥
L∞L∞ � C

(∥∥∥∥∂G

∂τ

∥∥∥∥
L∞L∞

+
∥∥∥eK0ηP

∥∥∥
L2L2

+
∥∥∥∥eK0ηF(η) cosφ

∂U0

∂φ

∥∥∥∥
L∞L∞

)

� C |ln(ε)|8 , (6.46)∥∥∥eK0ηP2
∥∥∥
L∞L∞ � C

(
eK0η‖P‖L2L2 + εα

∥∥∥∥eK0ηF(η) cosφ
∂ f1
∂φ

∥∥∥∥
L∞L∞

+
∥∥∥∥eK0ηF(η) cosφ

∂ f2
∂φ

∥∥∥∥
L∞L∞

)

� Cεα |ln(ε)|8 , (6.47)

where P1 = ∂ f1
∂τ

and P2 = ∂ f2
∂τ

.

Theorem 6.2. Let {
χ1 : 0 � ζ < 2εα,

χ2 : 2εα � ζ � 1.
(6.48)

For K0 > 0 sufficiently small, the singular boundary layer satisfies∥∥eK0η(χ1U0)
∥∥
L∞L∞ � C,

∥∥eK0η(χ2U0)
∥∥
L∞L∞ � Cεα,

∥∥∥∥eK0η
∂(χ1U0)

∂τ

∥∥∥∥
L∞L∞

� C |ln(ε)|8 ,

∥∥∥∥eK0η
∂(χ2U0)

∂τ

∥∥∥∥
L∞L∞

� Cεα |ln(ε)|8 .

(6.49)
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6.3. Analysis of Interior Solution

In this subsection, we will justify that the interior solutions are all well-defined.
Step 1: Well-Posedness of U0.
U0 satisfies an elliptic equation

⎧⎨
⎩
U0(�x, �w) = Ū0(�x),
�xŪ0(�x) = 0 in �,

Ū0(�x0) = F0,L(τ ) + F0,L(τ ) on ∂�.

(6.50)

Based on standard elliptic theory, we have

‖U0‖H3(�) � C

( ∥∥F0,L
∥∥
H

5
2 (∂�)

+ ∥∥F0,L
∥∥
H

5
2 (∂�)

)
� C. (6.51)

Step 2: Well-Posedness of U1.
U1 satisfies an elliptic equation

⎧⎪⎪⎨
⎪⎪⎩
U1(�x, �w) = Ū1(�x) − �w · ∇xU0(�x, �w),

�xŪ1(�x) = −
∫
S1

(
�w · ∇xU0(�x, �w)

)
d �w in �,

Ū1(�x0) = f1,L(τ ) on ∂�.

(6.52)

Based on standard elliptic theory, we have

‖U1‖H3(�) � C

( ∥∥F1,L
∥∥
H

5
2 (∂�)

+ ‖U0‖H2(�)

)
� C |ln(ε)|8 . (6.53)

Step 3: Well-Posedness of U2.
U2 satisfies an elliptic equation

⎧⎪⎪⎨
⎪⎪⎩
U2(�x, �w) = Ū2(�x) − �w · ∇xU1(�x, �w),

�xŪ2(�x) = −
∫
S1

(
�w · ∇xU1(�x, �w)

)
d �w in �,

Ū2(�x0) = 0 on ∂�.

(6.54)

Based on standard elliptic theory, we have

‖U2‖H3(�) � C

( ∥∥Ū0
∥∥
H3(�)

+ ∥∥Ū1
∥∥
H2(�)

)
� C |ln(ε)|8 . (6.55)

Theorem 6.3. The interior solution satisfies

‖U0‖H3(�) � C, ‖U1‖H3(�) � C |ln(ε)|8 , ‖U2‖H3(�) � C |ln(ε)|8 . (6.56)
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6.4. Proof of Main Theorem

Theorem 6.4. Assume g(�x0, �w) ∈ C4(	−). Then for the steady neutron transport
equation (1.1), there exists a unique solution uε(�x, �w) ∈ L∞(� × S

1). Moreover,
for any 0 < δ << 1, the solution obeys the estimate

∥∥uε −U − U
∥∥
L∞(�×S1)

� C(δ)ε
1
2−δ, (6.57)

where U (�x) satisfies the Laplace equation with Dirichlet boundary condition
{

�xU (�x) = 0 in �,

U (�x0) = D(�x0) on ∂�,
(6.58)

and U(η, τ, φ) satisfies the ε-Milne problem with geometric correction
⎧⎪⎪⎨
⎪⎪⎩
sin φ

∂U
∂η

− ε

Rκ(τ ) − εη
cosφ

∂U
∂φ

+ U − Ū = 0,

U(0, τ, φ) = g(τ, φ) − D(τ ) for sin φ > 0,
U(L , τ, φ) = U(L , τ,R[φ]),

(6.59)

for L = ε− 1
2 , R[φ] = −φ, η the rescaled normal variable, τ the tangential

variable, and φ the velocity variable.

Proof. Based on Theorem 3.5, we know there exists a unique uε(�x, �w) ∈ L∞(�×
S
1), so we focus on the diffusive limit. We divide the proof into several steps:

Step 1: Remainder definitions.
We define the remainder as

R = uε −
2∑

k=0

εkUk −
1∑

k=0

εkUk − U0 = uε − Q − Q − Q, (6.60)

where

Q = U0 + εU1 + ε2U2, (6.61)

Q = U0 + εU1, (6.62)

Q = U0. (6.63)

Noting the equation (2.32) is equivalent to the equation (1.1), we write L to denote
the neutron transport operator as follows:

L[u] = ε �w · ∇xu + u − ū

= sin φ
∂u

∂η
− ε

Rκ − εη
cosφ

(
∂u

∂φ
+ ∂u

∂τ

)
+ u − ū. (6.64)

Step 2: Estimates of L[Q].
The interior contribution can be estimated as

L[Q] = ε �w · ∇x Q + Q − Q̄ = ε3 �w · ∇xU2. (6.65)
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By Theorem 6.3, we have

‖L[Q]‖L∞(�×S1) �
∥∥∥ε3 �w · ∇xU2

∥∥∥
L∞(�×S1)

� Cε3 ‖∇xU2‖L∞(�×S1)

� Cε3 |ln(ε)|8 . (6.66)

This implies

‖L[Q]‖L2(�×S1) � Cε3 |ln(ε)|8 , (6.67)

‖L[Q]‖
L

2m
2m−1 (�×S1)

� Cε3 |ln(ε)|8 , (6.68)

‖L[Q]‖L∞(�×S1) � Cε3 |ln(ε)|8 . (6.69)

Step 3: Estimates of LQ.
We need to estimateU0 + εU1. The boundary layer contribution can be estimated
as

L[U0 + εU1] = sin φ
∂(U0 + εU1)

∂η

− ε

Rκ − εη
cosφ

(
∂(U0 + εU1)

∂φ
+ ∂(U0 + εU1)

∂τ

)

+(U0 + εU1) − (Ū0 + εŪ1)

= −ε2
1

Rκ − εη
cosφ

∂U1

∂τ
. (6.70)

By Theorem 6.1, we have
∥∥∥∥−ε2

1

Rκ − εη
cosφ

∂U1

∂τ

∥∥∥∥
L∞(�×S1)

� Cε2
∥∥∥∥∂U1

∂τ

∥∥∥∥
L∞(�×S1)

� Cε2−α |ln(ε)|8 . (6.71)

Also, the exponential decay of
∂U1

∂τ
and the rescaling of η = μ

ε
implies that

∥∥∥∥−ε2
1

Rκ − εη
cosφ

∂U1

∂τ

∥∥∥∥
L2(�×S1)

� ε2
∥∥∥∥∂U1

∂τ

∥∥∥∥
L2(�×S1)

� ε2
(∫ π

−π

∫ Rmin

0
(Rmin − μ)

∥∥∥∥∂U1

∂τ
(μ, τ)

∥∥∥∥
2

L∞
dμ dτ

) 1
2

� ε
5
2

(∫ π

−π

∫ Rmin
ε

0
(Rmin − εη)

∥∥∥∥∂U1

∂τ
(η, τ )

∥∥∥∥
2

L∞
dη dτ

) 1
2

� Cε
5
2−α |ln(ε)|8

(∫ π

−π

∫ Rmin
ε

0
e−2K0η dη dτ

) 1
2

� Cε
5
2−α |ln(ε)|8 . (6.72)
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Similarly, we have
∥∥∥∥−ε2

1

Rκ − εη
cosφ

∂U1

∂τ

∥∥∥∥
L

2m
2m−1 (�×S1)

� Cε3−
1
2m −α |ln(ε)|8 . (6.73)

In total, we have

‖L[Q]‖L2(�×S1) � Cε
5
2−α |ln(ε)|8 , (6.74)

‖L[Q]‖
L

2m
2m−1 (�×S1)

� Cε3−
1
2m −α |ln(ε)|8 , (6.75)

‖L[Q]‖L∞(�×S1) � Cε2−α |ln(ε)|8 . (6.76)

Step 4: Estimates of LQ.
We need to estimate U0. The boundary layer contribution can be estimated as

L[U0] = sin φ
∂U0

∂η
− ε

Rκ − εη
cosφ

(
∂U0

∂φ
+ ∂U0

∂τ

)
+ U0 − Ū0

= −ε
1

Rκ − εη
cosφ

∂U0

∂τ
. (6.77)

By Theorem 6.2, we have
∥∥∥∥−ε

1

Rκ − εη
cosφ

∂U0

∂τ

∥∥∥∥
L∞(�×S1)

� Cε

∥∥∥∥∂U0

∂τ

∥∥∥∥
L∞(�×S1)

� Cε |ln(ε)|8 . (6.78)

Also, the exponential decay of
∂U0

∂τ
and the rescaling η = μ

ε
implies

∥∥∥∥−ε
1

Rκ − εη
cosφ

∂U0

∂τ

∥∥∥∥
L2(�×S1)

� ε

∥∥∥∥∂U0
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∥∥∥∥
L2(�×S1)

� ε

(∫ π

−π

∫ Rmin

0

∫ π

−π
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2
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dφ dμ dτ

) 1
2

+ε
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−π

∫ Rmin

0

∫ π

−π

χ2(Rmin − μ)
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∂τ
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2

L∞
dφ dμ dτ

) 1
2

� ε
3
2

(∫ π

−π

∫ Rmin
ε

0

∫ π

−π

χ1(Rmin − εη)

∥∥∥∥∂P1
∂τ

(η, τ )
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2

L∞
dφ dη dτ

) 1
2

+ε
3
2

( ∫ π

−π

∫ Rmin
ε

0

∫ π

−π

χ2(Rmin − εη)

∥∥∥∥∂P2
∂τ

(η, τ )
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2

L∞
dφ dη dτ

) 1
2

� C
(
ε1+

3
2α + ε

3
2+α

)
|ln(ε)|8

( ∫ π

−π

∫ Rmin
ε

0
e−2K0η dη dτ

) 1
2

� Cε1+
3
2α |ln(ε)|8 . (6.79)
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Here the smallness of χ1 quantity comes from the small domain |φ| � εα and
|η| � ε2α−1. The smallness of χ2 quantity comes from the extra εα for 0 < α < 1.
Similarly, we have∥∥∥∥−ε

1

Rκ − εη
cosφ

∂U0

∂τ

∥∥∥∥
L

2m
2m−1 (�×S1)

� Cε2−
1
2m +α |ln(ε)|8 . (6.80)

In total, we have

‖L[Q]‖L2(�×S1) � Cε1+
3
2α |ln(ε)|8 , (6.81)

‖L[Q]‖
L

2m
2m−1 (�×S1)

� Cε2−
1
2m +α |ln(ε)|8 , (6.82)

‖L[Q]‖L∞(�×S1) � Cε |ln(ε)|8 . (6.83)

Step 5: Source Term and Boundary Condition.
In summary, since L[uε] = 0, collecting estimates in Step 2 to Step 4, we can
prove

‖L[R]‖L2(�×S1) � C

(
ε

5
2−α + ε1+

3
2α

)
|ln(ε)|8 , (6.84)

‖L[R]‖
L

2m
2m−1 (�×S1)

� C

(
ε3−

1
2m −α + ε2−

1
2m +α

)
|ln(ε)|8 , (6.85)

‖L[R]‖L∞(�×S1) � C

(
ε2−α + ε

)
|ln(ε)|8 . (6.86)

We can directly obtain that the boundary data is satisfied up to O(ε), so we know
that

‖R‖L2(	−) � Cε2, (6.87)

‖R‖Lm (	−) � Cε2, (6.88)

‖R‖L∞(	−) � Cε2 (6.89)

Step 6: Diffusive Limit.
Hence, the remainder R satisfies the equation{

ε �w · ∇x R + R − R̄ = L[R] in � × S
1,

R = R for �w · �ν < 0 and �x0 ∈ ∂�.
(6.90)

By Theorem 3.5, we have, for m sufficiently large, that

‖R‖L∞(�×S1) � C

(
1

ε1+ 1
m

‖L[R]‖L2(�×S1) + 1

ε2+ 1
m

‖L[R]‖
L

2m
2m−1 (�×S1)

+‖L[R]‖L∞(�×S1)

+ 1

ε
1
2+ 1

m

‖R‖L2(	−) + 1

ε
1
m

‖R‖Lm (	−) + ‖R‖L∞(	−)

)
,

� C

(
1

ε1+ 1
m

(
ε

5
2−α + ε1+

3
2α

)
|ln(ε)|8
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+ 1

ε2+ 1
m

(
ε3−

1
2m −α + ε2−

1
2m +α

)
|ln(ε)|8 + (ε) |ln(ε)|8

+ 1

ε
1
2+ 1

m

(ε2) + 1

ε
1
m

(ε2) + (ε2)

)

� C

(
ε1−

3
2m −α + εα− 3

2m

)
|ln(ε)|8 . (6.91)

Here, we need

1 − 3

2m
− α > 0, α − 3

2m
> 0, (6.92)

which means that

3

2m
< α < 1 − 3

2m
. (6.93)

For m > 3, this is always achievable. Also, we know that

min
α

{
ε1−

3
2m −α + εα− 3

2m

}
= 2ε

1
2 . (6.94)

Since it is easy to see that
∥∥∥∥∥

2∑
k=1

εkUk +
1∑

k=1

εkUk

∥∥∥∥∥
L∞(�×S1)

� Cε, (6.95)

our result naturally follows. We simply take U = U0 and U = U0 + U0. It is
obvious that U satisfies the ε-Milne problem with geometric correction with the
full boundary data g(φ, τ )−F0,L(τ )−F0,L(τ ). This completes the proof of main
theorem. �
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