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ABSTRACT
Functional principal component scores are commonly used to
reduce mathematically infinitely dimensional functional data to
finite dimensional vectors. In certain applications, most notably
in finance, these scores exhibit tail behaviour consistent with the
assumption of regular variation. Knowledge of the index of the regu-
lar variation, α, is needed to apply methods of extreme value theory.
The most commonly used method of the estimation of α is the Hill
estimator. We derive conditions under which the Hill estimator com-
puted from the sample scores is consistent for the tail index of the
unobservable population scores.
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1. Introduction

A fundamental technique of functional data analysis is to replace infinite dimensional
curves by coefficients of their projections onto suitable, fixed or data-driven systems, e.g.
Bosq [1], Ramsay and Silverman [2], Horváth and Kokoszka [3], Hsing and Eubank [4].
A finite number of these coefficients encode the shape of the curves and are amenable
to various statistical procedures. The best systems are those that lead to low dimensional
representations, and so provide themost efficient dimension reduction. Of these, the func-
tional principal components (FPCs) have been most extensively used, with hundreds of
papers dedicated to various aspects of their theory and applications.

We assume that the random functions Xi are iid random elements of the Hilbert space
L2 = L2([0, 1]) with the inner product

〈
x, y
〉 = ∫ x(t)y(t) dt, which generates the norm

‖x‖ = √〈x, x〉. If E‖X1‖2 <∞, then

Xi(t) =
∞∑
j=1

ξijvj(t), Eξ 2ij = λj, (1)

where vj are the FPCs, the eigenfunctions of the covariance operator C defined by

x � L2 �→ C(x) = E[〈X1, x〉X1] ∈ L2. (2)
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The covariance operator C is a positive integral Hilbert–Schmidt operator with the kernel
c(t, s) = E[X1(t)X1(s)], so vj are defined explicitly by∫

c(t, s)vj(s) ds = λjvj(t), t ∈ [0, 1], j = 1, 2, . . .

The random variables ξij =
〈
Xi, vj

〉
in (1) are called the scores of Xi with respect to vj. They

satisfy Eξij = 0, E[ξijξij′] = 0 if j′ �= j and Eξ2ij = λj.
The functions vj and the variances λj are unknown parameters, which must be esti-

mated. The sample covariance operator Ĉ is defined as a kernel operator with the kernel
ĉ(t, s) = N−1

∑N
n=1 Xn(t)Xn(s). The FPCs vj and the eigenvalues λj are estimated by v̂j and

λ̂j which satisfy ∫
ĉ(t, s)v̂j(s) ds = λ̂jv̂j(t). (3)

The scores ξij are then approximated by their sample counterparts ξ̂ij =
〈
Xi, v̂j

〉
.

In most inferential scenarios, replacing vj by v̂j, and λj by λ̂j is asymptotically negligible,
see Yao et al. [5], Gabrys and Kokoszka [6], Berkes et al. [7], Horváth et al. [8,9], among
dozens of recent papers by other authors. Even though many different inferential prob-
lems have been considered, they are all related to some form of inference for mean and
covariance structures. In this paper, we study a totally different problem, the consistency
of the Hill estimator, which is one of the most widely used tools of extreme value theory,
see, e.g. Embrechts et al. [10], Beirlant et al. [11] and Resnick [12]. Its definition is given in
Section 2. It is designed to estimate the tail index α > 0 of a positive random variable, say
Y, which satisfies P(Y > x) ∼ x−α (up to a slowly varying function). As argued above, in
the context of functional dataXi, one often works with the projections,

〈
Xi, vj

〉
, vj ∈ L2. The

question is whether the Hill estimator based on the estimated projections
〈
Xi, v̂j

〉
, the only

feasible estimator, can be used to estimate the tail index of the projections
〈
Xi, vj

〉
, assum-

ing the latter have regular varying tail probabilities. A priori, there could be a systematic
bias due to the effect of the estimation of the vj by the v̂j. A problem of this type has not
been studied. Consistency of the Hill estimator has been established in several settings,
but always assuming that the observations (the

〈
Xi, v̂j

〉
in our case) have regularly varying

tail probabilities. The projections onto the v̂j can be expected to be only approximately
regularly varying (because v̂j is close to vj), so none of the existing results can be used. A
self-contained background on regular variation is presented in Appendix 1.

Even for samples of iid positive random variables, the consistency of the Hill estimator
is far from trivial. The first proof in the iid setting was developed by Mason [13]. Hsing
[14] introduced a general approach to establishing the consistency in case of dependent
data, including both stationary times series and triangular arrays. The sample scores do
form a triangular array, but we were unable to adapt Hsing’s method to accommodate the
transition from the sample scores to the unobservable population scores. We developed an
approach based on the vague convergence of radon measures [12,15]. The Hill estimator
for various stochastic models was studied by Resnick and Stărică [16,17] and Wang and
Resnick [18].

The paper is organized as follows. In Section 2, we introduce the framework and state
our main result, Theorem 2.1, which is proven in Section 4, after some preparation in
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Section 3. To make the paper self-contained, Appendix 1 contains a minimal background
on regular variation. Appendix 2 presents a motivating data example.

2. Assumptions and themain result

Themost elegant, but in fact unnecessarily strong, assumption is that the functionX whose
copiesXi, 1 ≤ i ≤ n, we observe is regularly varying in L2. The space L2 is infinitely dimen-
sional and not locally compact, so we cannot define regular variation using the framework
of Resnick [12,15], but we can use a similar andmore general framework of Hult and Lind-
skog [19]whouseM0 convergence in place of the vague convergence in the Euclidean space
with zero removed and compactified at infinity. Since we work with projections onto the
real line, any definition of regular variation in L2 which implies regular variation of these
projections would work. According to Hult and Lindskog [19], a function X in L2 (or any
Banach space) is regularly varying with index α > 0 if

P(‖X‖ > u) = u−αL(u) (4)

and
P(u−1X ∈ ·)
P(‖X‖ > u)

M0−→ μ(·), u→∞, (5)

where μ is a non-null measure (exponent measure) and L is a slowly varying func-
tion. There are several equivalent definitions, see Appendix 1, Chapter 2 of Meiguet [20]
contains more details.

Set

U(u) = P(| 〈X, v〉 | > u), Û(u) = P(| 〈X, v̂〉 | > u),

where v is one of the FPCs vj in (1) and v̂ its estimated defined by (3). The function U is
regularly varyingwith indexα, in the notation of Resnick [15],U ∈ RV−α . To see this, con-
sider the setAv = {x : | 〈x, v〉 | > 1} , and observe that | 〈X, v〉 | > u iff u−1X ∈ Av . By (4)
and (5),

U(tu)
U(u)

= P((tu)−1X ∈ Av)

P(‖X‖ > tu)
P(‖X‖ > tu)
P(‖X‖ > u)

P(‖X‖ > u)
P(u−1X ∈ Av)

→ t−α ,

provided μ(Av) > 0. It cannot be expected that Û ∈ RV−α ; for a fixed n, v̂ is a random
function whose distribution will, in general, influence the distribution of

〈
X, v̂

〉
. Only some

form of asymptotic regular variation can be expected because Û approaches U, in several
ways, as n→∞.

The same argument shows that if μ({x : 〈x, v〉 > 1}) > 0, then the function U+(u) =
P(〈X, v〉 > u) is in RV−α , and if μ({x : 〈x, v〉 < −1}) > 0, thenU−(u) = P(〈X, v〉 < −u)
is in RV−α . To avoid repetitions of almost identical statements, we focus in the following
on the estimation of the tail index of the function U. We will work under the following
assumption.

Assumption 2.1: The functions X1,X2, . . .Xn are independent and have the same distri-
bution as X. The function v is such that the function U(u) = P(| 〈X, v〉 | > u) is regularly
varying with index α > 2, α �= 4.
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The assumption α > 2 is needed because if X ∈ RV−α with 0 < α < 2, then, by (4),
E‖X‖2 = ∞, so the FPCs are not defined. Ifα = 2, then eitherE‖X‖2 = ∞ orE‖X‖2 <∞
are possible, and complex assumptions on the slowly varying functions L are needed
to derive various rather technical results. We therefore assume α > 2. Another phase
transition occurs at α = 4 separating, in a similar way, the cases with E‖X‖4 = ∞ and
E‖X‖4 <∞.

In our theory, the index α can depend on the direction v, but we do not emphasize
it in our notation. We also note that even though the observed functions X1,X2, . . .Xn
are iid, the sample scores

〈
Xi, v̂

〉
are no longer independent because v̂ depends on all

X1,X2, . . . ,Xn. They form a triangular array of dependent random variables, which are
identically distributed for each fixed n. TheHill estimatormust be based on the projections〈
Xi, v̂

〉
. Before recalling its definition, we introduce the following random variables:

Y = | 〈X, v〉 |, Ŷ = | 〈X, v̂〉 |,
Yi = | 〈Xi, v〉 |, Ŷi = |

〈
Xi, v̂

〉 |.
This allows us to define

Hk,n = 1
k

k−1∑
i=1

lnY(i) − lnY(k), Ĥk,n = 1
k

k−1∑
i=1

ln Ŷ(i) − ln Ŷ(k),

with the convention that Y(1) is the largest order statistic. In the functional data context,
Hk,n is an infeasibleHill estimator because the FPC v is not observed; Ĥk,n is theHill estima-
tor that can be actually computed.Wewant to establish condition under which it converges
in probability to α−1, where α is the index of regular variation of Y .

We further define

1− F(u) = P(Y > u) = U(u), b(t) = F←
(
1− 1

t

)
.

We will use the representation

b(t) = t1/αLb(t), (6)

where Lb is a slowly varying function.
The approach inChapter 4 of Resnick [12] is based on vague convergence to themeasure

on the positive half-line, which is defined by

να(x,∞] = x−α , x > 0.

Our approach involves a sequence of ‘increasingly empirical’ measures, with only the last
one being observable. We set

νn = 1
k

n∑
i=1

IYi/b(n/k), ν�
n =

1
k

n∑
i=1

IYi/Y(k) , ν
†
n = 1

k

n∑
i=1

IŶi/b(n/k), ν̂n = 1
k

n∑
i=1

IŶi/Ŷ(k)
.

Any argument must involve some bounds on a suitable distance between Ŷi and Yi. These
will involve the covariance operator C and the sample covariance operator Ĉ. If v is the jth
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eigenfunction of C and v̂ is the jth eigenfunction of Ĉ, then (see, e.g. Lemma 2.3 in [3]),

‖v̂ − v‖ ≤ Av‖Ĉ − C‖L, (7)

where ‖ · ‖L is the usual operator norm, Av = 2d−1j
√
2 with

d1 = λ1 − λ2, dj = min
{
λj−1 − λj, λj − λj+1

}
,

assuming that the eigenvalue λj of C is such that dj > 0. Since

|Ŷi − Yi| ≤ |
〈
Xi, v̂j − vj

〉 | ≤ ‖Xi‖‖v̂j − vj‖,

we conclude from (7) that

|Ŷi − Yi| ≤ Av‖Xi‖‖Ĉ − C‖L. (8)

If α > 4, then, see e.g. Theorem 2.5 in Horváth and Kokoszka [3],

E‖Ĉ − C‖2L = O(n−1). (9)

The case of regularly varying X with tail index α ∈ (2, 4) is studied in Kokoszka et al. [21].
Under weak conditions, Relation (9) must be replaced by

E‖Ĉ − C‖βL ≤ Lβ(n)n−β(1−2/α), ∀ β ∈ (0,α/2), (10)

where Lβ is a slowly varying function. For a fixed α, the strongest bound is obtained as
β ↗ α/2, in which case β(1− 2/α)↗ α/2− 1. As α ↗ 4 and β ↗ α/2, relation (10)
thus approaches, in a heuristic sense, relation (9). It is enough to impose a slightly weaker,
but more convenient, condition:

E‖Ĉ − C‖βL = O
(
n−κ

)
, ∀ β ∈

(
1,

α

2

)
, ∀ κ ∈

(
0, β

(
1− 2

α

))
. (11)

The above discussion shows that the following Assumption 2.2 basically always holds as
long as dj > 0 in (7). We formulated it for ease of reference and to emphasize that only
certain properties of the sample covariance operator Ĉ are used; Ĉ could, in principle, be
a different estimator of C, which has those properties.

Assumption 2.2: Relation (7) holds. The estimator Ĉ satisfies (9) if α > 4 and (11) if α ∈
(2, 4).

Since Yi are iid and in RV−α , the only conditions needed to ensure thatHk,n
P−→ α−1 are

k = k(n)→∞ and k/n→ 0, as n→∞. In our setting, we want to estimate the index α

of unobservable random variables Yi based on their observed approximations Ŷi. It can be
expected that the rate of the approximation will impose additional conditions on the rate
at which k tends to infinity with n. A sufficient condition is formulated in Assumption 2.3
below.
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Define the function

γ (α) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α − 2
2α − 2

, α ∈ (4,∞),

1
α − 1

, α ∈ (3, 4],

2− α

2
, α ∈ (2, 3].

(12)

Observe that γ (·) is continuous at α = 4 with γ (4) = 1/3, and at α = 3 with γ (3) =
1/2. It is increasing on (4,∞) with limα↗∞ γ (α) = 1

2 and decreasing on (2, 4) with
limα↘2 γ (α) = 1.

We will write k >> nγ , for some γ ∈ (0, 1), if k/nγ →∞.

Assumption 2.3: We assume that k >> nγ for some γ ∈ (γ (α), 1), with γ (α) defined
in (12).

According to Assumption 2.3, as α ↘ 2, the order of k approaches n. One can say that
as the value of α approaches the smallest possible value for which the functional principal
components exit, almost all observations must be used to ensure the consistency of the
Hill estimator. The theory thus begins to break down because this intuitively contradicts
the assumption k/n→ 0.

Theorem 2.1: Suppose Assumptions 2.1, 2.2 and 2.3 hold. Then Ĥk,n
P−→ α−1.

While Theorem 2.1 is formulated in the specific setting of projections of functional data
onto population and estimated FPCs, it is hoped that the approach we develop will be, in
general outlines, applicable to other contexts where the tail indexed must be inferred from
approximations to unobserved data. For example, only Yi + εi with correlated errors εi
may be observed. It is also hoped that the theory developed for the most commonly used
Hill estimator may be used to guide similar developments for other estimators of the tail
index.

3. Preliminary results

We collect in this section several results, none of which is particularly profound or difficult
to prove, but put together they play an important role in the proof of Theorem 2.1. By
placing them in a preparatory section, we will also avoid repeatedly distracting from the
main flow of the argument in Section 4.

Following Resnick [12], denote by M+ = M+(0,∞] the space of Radon measures on
(0,∞] with the topology of vague convergence.

Lemma 3.1: The function h on M+ defined by h(μ) = μ(z,∞] is continuous at να .

Proof: Supposeμn→ να . This implies that for any relatively compact Bwith να(∂B) = 0,
μn(B)→ να(B). Taking B = (z,∞], we obtain h(μn) = μn(B)→ να(B) = h(να). �
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Lemma 3.2: The function h on M+ defined by

h(μ) =
∫ M

z
μ(x,∞]x−1 dx

is continuous at να .

Proof: Suppose μn→ να . By Lemma 3.1, for every x>0, μn(x,∞]x−1→ να(x,∞]x−1.
The convergence

∫ M

z
μn(x,∞]x−1 dx→

∫ M

z
να(x,∞]x−1 dx

follows from the dominated convergence theorem because for x> z and sufficiently
large n,

μn(x,∞] ≤ μn(z,∞] ≤ 2να(z,∞] = 2z−α . �

The measure νn is a random element of M+, να its deterministic (constant) element.
The following lemma follows from Theorem 4.1 and relation (4.21) in Resnick [12].

Lemma 3.3: In the space M+(0,∞], νn
P−→ να and ν�

n
P−→ να .

The next lemma follows from relation (4.17) in the proof of Theorem 4.2 in Resnick
[12].

Lemma 3.4: If Yi are iid and in RV−α , then

Y(k)

b
(n
k
) P−→ 1.

Lemma 3.5: For any a, b ≥ 0,

|[a ∧ 1]− [b ∧ 1]| ≤ |a− b|.

Proof: There are four cases:

(1) a>1, b>1, |1− 1| = 0 ≤ |a− b|;
(2) a > 1, b ≤ 1, |1− b| = 1− b < a− b = |a− b|;
(3) a ≤ 1, b > 1, |a− 1| = 1− a < b− a = |a− b|;
(4) a ≤ 1, b ≤ 1, |a− b| ≤ |a− b|.

�
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The following statements are proven is Section 3.4 of Resnick [15]. The metric ρ which
compactifies (0,∞] at∞ is

ρ(u, v) =
∣∣∣∣1u − 1

v

∣∣∣∣ .
The distance between measures μ1,μ2 ∈ M+(0,∞] is defined by

d(μ1,μ2) =
∞∑

m=1
2−m

{|μ1(fm)− μ2(fm)| ∧ 1
}
. (13)

The functions fm ∈ CK(0,∞] are of the form

f (x) = 1− [cρ(x,B) ∧ 1], (14)

for some c>0, relatively compact B ⊂ (0,∞], and the metric ρ defined above.

Lemma 3.6: For any metric ρ and any set B,

|ρ(a1,B)− ρ(a2,B)| ≤ ρ(a1, a2).

Proof: Recall that ρ(a,B) = infb∈B ρ(a, b). For any b ∈ B,

ρ(a1, b) ≤ ρ(a1, a2)+ ρ(a2, b).

Taking the infimum of the left-hand side, we obtain

ρ(a1,B) ≤ ρ(a1, a2)+ ρ(a2, b).

Taking the infimum of the right-hand side, we obtain

ρ(a1,B) ≤ ρ(a1, a2)+ ρ(a2,B).

Consequently,

ρ(a1,B)− ρ(a2,B) ≤ ρ(a1, a2).

Switching a1 and a2, we obtain the claim. �

Lemma 3.7: Suppose random variables Hm(n),m, n ≥ 1, satisfy 0 ≤ Hm(n) ≤ 1 and

∀m ≥ 1, Hm(n) P−→ 0, as n→∞.

Then,
∞∑

m=1
2−mHm(n) P−→ 0, as n→∞.
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Proof: Define

S(n) =
∞∑

m=1
2−mHm(n)

=
∑
m≤M

2−mHm(n)+
∑
m>M

2−mHm(n)

=: SM(n)+ S�
M(n).

Fix ε > 0 and observe that

P(S(n) > ε) ≤ P
(
SM(n) >

ε

2

)
+ P

(
S�
M(n) >

ε

2

)
.

Since S�
M(n) ≤ 2−M , we can choose M so large that P

(
S�
M(n) > ε/2

) = 0. For such a
(fixed)M,

P(S(n) > ε) ≤ P
(
SM(n) >

ε

2

)
→ 0. �

4. Proof of Theorem 2.1

The proof of Theorem 2.1 is constructed from a series of results, of which Proposition 4.1
is the most prominent. To facilitate the understanding of the proofs of Proposition 4.1 and
Theorem 2.1, we note that

If α ∈ (3, 4), then 1/(α − 1) > 2− α/2,
If α ∈ (2, 3), then 1/(α − 1) < 2− α/2.

We may thus write

γ (α) = max
{

1
α − 1

, 2− α

2

}
, α ∈ (2, 4]. (15)

Proposition 4.1: Under the assumptions of Theorem 2.1, d(ν†n , νn)
P−→ 0.

Proof: Since each function fm in (13) has compact support in (0,∞],

sm := inf
{
supp(fm)

}
> 0.

Therefore

|ν†n(fm)− νn(fm)| =
∣∣∣∣∫ fm dν†m −

∫
fm dνn

∣∣∣∣
≤ 1

k

n∑
i=1

∣∣∣∣fm ( Ŷi

b(n/k)

)
− fm

(
Yi

b(n/k)

)∣∣∣∣
= 1

k

∑
i∈Im

∣∣∣∣fm ( Ŷi

b(n/k)

)
− fm

(
Yi

b(n/k)

)∣∣∣∣ ,
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where

Im =
{
i ≥ 1 : Ŷi > smb(n/k) or Yi > smb(n/k)

}
.

Since each fm is of the form (14), by Lemmas 3.5 and 3.6,

|ν†n(fm)− νn(fm)| ≤ cm
k

∑
i∈Im

∣∣∣∣ρ ( Ŷi

b(n/k)
,Bm

)
− ρ

(
Yi

b(n/k)
,Bm

)∣∣∣∣
≤ cm

k

∑
i∈Im

∣∣∣∣ρ ( Ŷi

b(n/k)
,

Yi

b(n/k)

)∣∣∣∣ .
The claim will thus follow from the convergence

∞∑
m=1

2−m
⎧⎨⎩
⎡⎣cm

k

∑
i∈Im

∣∣∣∣b(n/k)Ŷi
− b(n/k)

Yi

∣∣∣∣
⎤⎦ ∧ 1

⎫⎬⎭ P−→ 0,

which, in turn, by Lemma 3.7, will follow from

1
k

∑
i∈I(n)

∣∣∣∣b(n/k)Ŷi
− b(n/k)

Yi

∣∣∣∣ P−→ 0, (16)

where, for some s� > 0,

I(n) = {i ≥ 1 : Ŷi > s�b(n/k) or Yi > s�b(n/k)
}
.

Set

I(1)(n) = {i ≥ 1 : Yi > s�b(n/k)
}
, I(2)(n) = {i ≥ 1 : Ŷi > s�b(n/k)

}
.

Relation (16) will follow once we have shown that for g=1 and g=2,

b(n/k)
k

∑
i∈I(g)(n)

|Ŷi − Yi|
ŶiYi

P−→ 0. (17)

We verify (17) for g=1. The argument for g=2 is basically the same; the roles of Ŷi and
Yi must be interchanged.

Fix ε > 0. First observe that

P

⎛⎝b(n/k)
k

∑
i∈I(1)(n)

|Ŷi − Yi|
ŶiYi

> ε

⎞⎠ ≤ P (G(n) > ε) ,

where

G(n) = 1
s�k

∑
i∈I(1)(n)

|Ŷi − Yi|
Ŷi

.

Next, use the decomposition

P (G(n) > ε) = P1(n)+ P2(n),
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with

P1(n) = P
(
G(n) > ε, ∃ i ∈ I(1)(n) : Ŷi ≤ 1

2 s
�b(n/k)

)
;

P2(n) = P
(
G(n) > ε, ∀ i ∈ I(1)(n) : Ŷi > 1

2 s
�b(n/k)

)
.

Observe that

P1(n) ≤ P
(
∃ i ∈ I(1)(n) : Ŷi ≤ 1

2
s�b(n/k)

)
≤ P

(
∃ i ≤ n : Yi > s�b(n/k) and Ŷi ≤ 1

2
s�b(n/k)

)
≤ P

(
∃ i ≤ n : |Ŷi − Yi| > 1

2
s�b(n/k)

)
= P

(
max
1≤i≤n

|Ŷi − Yi| > 1
2
s�b(n/k)

)
. (18)

By (8),

P1(n) ≤ P
(
Av‖Ĉ − C‖L max

1≤i≤n
‖Xi‖ >

1
2
s�b(n/k)

)
≤ 2Av

s�b(n/k)
E
[
‖Ĉ − C‖L max

1≤i≤n
‖Xi‖

]
. (19)

We first consider the case of α > 4. By (19) and (9),

P1(n) ≤ 2Av

s�b(n/k)
{
E‖Ĉ − C‖2L

}1/2 {E max
1≤i≤n

‖Xi‖2
}1/2

= O
(

1
b(n/k)

n−1/2n1/2
)
= O

(
1

b(n/k)

)
= o(1),

where we used

E max
1≤i≤n

‖Xi‖2 ≤ E
∑
1≤i≤n

‖Xi‖2 = O(n).

By Markov’s inequality,

P2(n) ≤ P

(
2

s�2kb(n/k)

n∑
i=1
|Ŷi − Yi| > ε

)

≤ 2
εs�2kb(n/k)

n∑
i=1

E|Ŷi − Yi|. (20)

By (8) and (9),

E|Ŷi − Yi| ≤ Av

{
E‖Xi‖2

}1/2 {E‖Ĉ − C‖2L
}1/2 = O(n−1/2).
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Therefore,

P2(n) = O
(

n1/2

kb(n/k)

)
= o(1).

The last equality follows from the assumption k >> nγ (α) and (6).
Now consider the case of α ∈ (2, 4). We first show that P1(n) = o(1). By (18), (8) and

Markov’s inequality

P1(n) = O

(
1√

b(n/k)

)
E
[
‖Ĉ − C‖1/2L max

1≤i≤n
‖Xi‖1/2

]
.

We apply Hölder’s inequality with p = 2β and q = 2β/(2β − 1) to get

P1(n) = O

(
1√

b(n/k)

){
E‖Ĉ − C‖βL

}1/2β {
E max
1≤i≤n

‖Xi‖β/(2β−1)
}(2β−1)/2β

.

For the above bound to be effective, we need E‖Xi‖β/(2β−1) <∞, which is implied by
β/(2β − 1) < α. Since 2β − 1 > 1 and β < α/2, this condition always holds. It therefore
follows from (11) that

P1(n) = O

(
1√

b(n/k)
n−κ/βn(2β−1)/2β

)
.

We can thus conclude that P1(n) = o(1), if there are β and κ such that−κ + 2β − 1 < 0.
This is possible if

2β − 1 < β

(
1− 2

α

)
.

The above condition can be equivalently stated as β (1− 2/α) < 1. Since β < α/2,
β (1− 2/α) < α/2− 1 < 1 because α < 4. This completes the verification of P1(n) =
o(1) for α ∈ (2, 4).

To show that P2(n) = o(1), observe that by (20), Markov’s inequality with 0 < r ≤ 1,
and (8),

P2(n) ≤ P

(
2

s�2kb(n/k)

n∑
i=1
|Ŷi − Yi| > ε

)

= O
(

1
krbr(n/k)

)
E

( n∑
i=1
|Ŷi − Yi|

)r

= O
(

nr

krbr(n/k)

)
E

[
‖Ĉ − C‖L 1

n

n∑
i=1
‖Xi‖

]r
.

Applying Hölder’s inequality with p = β/r and q = β/(β − r), we obtain

E

[
‖Ĉ − C‖rL

(
1
n

n∑
i=1
‖Xi‖

)r]
≤
{
E‖Ĉ − C‖βL

}r/β {
E

(
1
n

n∑
i=1
‖Xi‖

)rq}1/q

.
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For E‖Xi‖rq to be finite, we need

rq = rβ
β − r

< α. (21)

Choosing

r = β

β + 1
(22)

implies rq=1. We thus obtain, with r specified in (22),

P2(n) = O
(

nr

krbr(n/k)

)
{E‖X‖}1/q n−κr/β

= O
(

nr−rκ/β

krbr(n/k)

)
.

By (6), the claim P2(n) = o(1) will thus follow if k >> nγ , where

γ =
r − κr

β
− r

α

r − r
α

=
1− 1

α
− κ

β

1− 1
α

.

The exponent is smaller than 1 and attains its smallest value as κ/β approaches its largest
possible value, i.e. 1− 2/α. It remains to observe that

1− 1
α
− κ

β

1− 1
α

= 1
α − 1

, if
κ

β
= 1− 2

α
.

�

Remark 4.1: The proof of Proposition 4.1, in the case α ∈ (2, 4), is valid in (15) is replaced
by γ (α) = (α − 1)−1. Only the latter bound was used. The bound 2− α/2 is needed in
the proof of Theorem 2.1.

Using Lemma 3.3, we obtain the following corollary.

Corollary 4.1: Under the assumptions of Theorem 2.1, ν†n
P−→ να .

The arguments used in the proofs of Propositions 4.2 and 4.3 are similar to those
developed in Sections 4.3. and 4.4 of Resnick [12].

Proposition 4.2: Under the assumptions of Theorem 2.1,

Ŷ(k)

b(n/k)
P−→ 1.
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Proof: Fix ε > 0 and set

P+(n) = P
(

Ŷ(k)

b(n/k)
> 1+ ε

)
, P−(n) = P

(
Ŷ(k)

b(n/k)
< 1− ε

)
.

Observe that

P+(n) = P
(
IŶ(k)/b(n/k)(1+ ε,∞] = 1

)
≤ P

( n∑
i=1

IŶ(i)/b(n/k)(1+ ε,∞] ≥ k

)

= P

(
1
k

n∑
i=1

IŶ(i)/b(n/k)(1+ ε,∞] ≥ 1

)

= P
(
ν
†
n(1+ ε,∞] ≥ 1

)
.

A similar argument shows that

P−(n) ≤ P
(
ν
†
n(1− ε,∞] < 1

)
.

The claim follows because by Corollary 4.1 and Lemma 3.1,

ν
†
n(1+ ε,∞] P−→ να(1+ ε,∞] = (1+ ε)−α < 1;

ν
†
n(1− ε,∞] P−→ να(1− ε,∞] = (1− ε)−α > 1. �

Proposition 4.3: Under the assumptions of Theorem 2.1, ν̂n
P−→ να .

Proof: Consider the map T : M+ × (0,∞)→ M+ defined by

T(μ, x)(A) = μ(xA), for Borel A ⊂ (0,∞].

Resnick [12, pp. 83–84] shows that T is continuous. Observe that

T
(

ν
†
n ,

Ŷ(k)

b(n/k)

)
= ν̂n, T (να , 1) = να .

The claim thus follows because by Corollary 4.1 and Proposition 4.2,(
ν
†
n ,

Ŷ(k)

b(n/k)

)
P−→ (να , 1) inM+ × (0,∞). �

The following lemma may be of independent interest and more general utility.

Lemma 4.1: Suppose y �→ P(Y > y) ∈ RV−α for some α > 0. Then,

lim
z→∞ lim sup

t→∞

∫ ∞
z

tP(Y > xb(t))x−1 dx = 0.
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Proof: The function b(·) is defined by

P(Y > b(t)) = t−1.

We know that b(·) ∈ RV1/α and

lim
t→∞ tP(Y > xb(t)) = x−α , x > 0. (23)

Set ft(x) = tP(Y > xb(t))x−1. We want to show

lim
z→∞ lim sup

t→∞

∫ ∞
z

ft(x) dx = 0.

By (23),

∀ x > 0 ft(x)→ x−α−1, as t→∞.

To conclude that ∫ ∞
z

ft(x) dx→
∫ ∞
z

x−α−1 dx, as t→∞,

we must find a function g such that for t > t0,

ft(x) ≤ g(x) and
∫ ∞
z

g(x) dx <∞.

Set U(y) = P(Y > y). Potter bounds state that ∀ δ > 0, ∃ u0, ∀ u ≥ u0, ∀ y ≥ 1,

(1− δ)y−α−δ ≤ U(yu)
U(u)

≤ (1+ δ)y−α+δ .

Since b(t)→∞ as t→∞, ∃ t0, ∀ t > t0,

U(xb(t)) ≤ (1+ δ)x−α+δU(b(t)).

Since U(b(t)) = 1/t, we obtain, for t ≥ t0,

ft(x) = tU(xb(t))x−1 ≤ (1+ δ)x−α+δ−1 =: g(x).

The function g is integrable if δ < α. �
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Proof of Theorem 2.1: Since

Ĥk,n =
∫ ∞
1

ν̂n(x,∞]x−1 dx,

we must show that∫ ∞
1

ν̂n(x,∞]x−1 dx P−→
∫ ∞
1

να(x,∞]x−1 dx = α−1.

The verification is based on the commonly used truncation argument, Theorem 3.2 in
Billingsley [22], also stated as Theorem 3.5 in Resnick [12]. Set

Vn =
∫ ∞
1

ν̂n(x,∞]x−1 dx, V =
∫ ∞
1

να(x,∞]x−1 dx;

V(M)
n =

∫ M

1
ν̂n(x,∞]x−1 dx, V(M) =

∫ M

1
να(x,∞]x−1 dx.

To establish the desired convergence Vn
P−→ V , equivalently Vn

d−→ V , we must verify that

∀M > 1, V(M)
n

d−→ V(M)
n , as n→∞; (24)

V(M) d−→ V , asM→∞; (25)

∀ ε > 0, lim
M→∞ lim sup

n→∞
P
(
|V(M)

n − Vn| > ε
)
= 0. (26)

Convergence (24) follows from Proposition 4.3 and Lemma 3.2. Convergence (25) is trivial
because

∫∞
M να(x,∞]x−1 dx = α−1M−α . Since |V(M)

n − Vn| =
∫∞
M ν̂n(x,∞]x−1 dx, (26)

is equivalent to

∀ ε > 0, lim
M→∞ lim sup

n→∞
P
(∫ ∞

M
ν̂n(x,∞]x−1 dx > ε

)
= 0.

The steps of the verification of the above relation, up to (27), are pretty much the same as
those developed by Resnick [12, pp. 84–85]. We provide the details because we work with
the measure ν

†
n rather than with the measure νn, and the context for the remainder of the

proof is helpful. Following (27), we use a different argument.
Fix ε > 0 and η > 0. Observe that

P
(∫ ∞

M
ν̂n(x,∞]x−1 dx > ε

)
≤ Q1(n)+ Q2(n),

where

Q1(n) = P
(∫ ∞

M
ν̂n(x,∞]x−1 dx > ε,

∣∣∣∣ Ŷ(k)

b(n/k)
− 1
∣∣∣∣ < η

)
,

Q2(n) = P
(∣∣∣∣ Ŷ(k)

b(n/k)
− 1
∣∣∣∣ ≥ η

)
.
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By Proposition 4.2, lim supn→∞ Q2(n) = 0, so we focus onQ1(n).We start with the bound

Q1(n) ≤ P
(∫ ∞

M
ν̂n(x,∞]x−1 dx > ε,

Ŷ(k)

b(n/k)
> 1− η

)

= P

(∫ ∞
M

1
k

n∑
i=1

IŶi/Ŷ(k)
(x,∞]x−1 dx > ε,

Ŷ(k)

b(n/k)
> 1− η

)
.

Conditions Ŷi/Ŷ(k) > x and Ŷ(k)/b(n/k) > 1− η imply Ŷi/b(n/k) > x(1− η), so

Q1(n) ≤ P

(∫ ∞
M

1
k

n∑
i=1

IŶi/b(n/k)(x(1− η),∞]x−1 dx > ε

)

= P
(∫ ∞

M
ν
†
n(x(1− η),∞]x−1 dx > ε

)
= P

(∫ ∞
M(1−η)

ν
†
n(x,∞]x−1 dx > ε

)
.

Consequently, because Ŷi, 1 ≤ i ≤ n, have the same distribution,

Q1(n) ≤ 1
ε

∫ ∞
M(1−η)

E
[
ν
†
n(x,∞]

]
x−1 dx

= 1
ε

∫ ∞
M(1−η)

n
k
P
(

Ŷ
b(n/k)

> x
)
x−1 dx.

It thus remains to show that

lim
z→∞ lim sup

n→∞

∫ ∞
z

n
k
P
(
Ŷ > xb(n/k)

)
x−1 dx = 0. (27)

We use the decomposition

P
(
Ŷ > xb(n/k)

) = P
(
Ŷ > xb(n/k), Y > 1

2xb(n/k)
)

+ P
(
Ŷ > xb(n/k), Y ≤ 1

2xb(n/k)
)

≤ P
(
Y > 1

2xb(n/k)
)+ P

(|Ŷ − Y| > 1
2xb(n/k)

)
.

By Lemma 4.1,

lim
z→∞ lim sup

n→∞

∫ ∞
z

n
k
P
(
Y >

1
2
xb(n/k)

)
x−1 dx = 0.

If α > 4, by (8) and (9)∫ ∞
z

n
k
P
(
|Ŷ − Y| > 1

2
xb(n/k)

)
x−1 dx ≤ n

k

∫ ∞
z

2
xb(n/k)

E|Ŷ − Y|x−1 dx

= O
(

n1/2

kb(n/k)

)
1
z
.
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By Assumption 2.3, for a slowly varying function L and γ ∈ (γ (α), 1),

n1/2

kb(n/k)
=
{
nγ

k

}1−1/α {
nγ (α)−γ L

(n
k

)}1−1/α → 0, as n→∞.

If α ∈ (2, 4), we use the bound (r ∈ (0, 1]):∫ ∞
z

n
k
P
(
|Ŷ − Y| > 1

2
xb(n/k)

)
x−1 dx ≤ n

k

∫ ∞
z

(
2

xb(n/k)

)r
E|Ŷ − Y|rx−1 dx

= O
(
n
k
E|Ŷ − Y|r
br(n/k)

)
1
zr
.

The value of r will depend on α. Choosing it, and checking that it is available, requires
some work. As in the proof of Proposition 4.1,

E|Ŷ − Y|r = O
(
n−κr/β) ,

provided (21) holds. Set

γ ∗ =
1− r

α
− κr

β

1− r
α

.

Then, for some slowly varying L,

n
k
E|Ŷ − Y|r
br(n/k)

= O

(
nγ ∗

k
L
(n
k

))1−r/α
.

Clearly γ ∗ < 1. We must verify that there are β , κ and r, in permitted ranges, such that
γ ∗ can be arbitrarily close to γ (α) given by (15). With α and r fixed, γ ∗ will approach its
smallest possible value as κ/β approaches its largest possible value, i.e. 1− 2/α. In this
case, γ ∗ is greater than and approaches

γL(α, r) :=
1− r

α
− (1− 2

α

)
r

1− r
α

= α − αr + r
α − r

.

Condition (21) restricts the available values of r. A direct calculation shows that it is
equivalent to

r <
βα

β + α
.

For a fixed α, the right-hand side is an increasing function of β and attains its upper limit
if β = α/2. This means that r must be less than, but can be arbitrarily close to, α/3. Thus
γ ∗ can be arbitrarily close to

γL

(
α,

α

3

)
= 2− α

2
.

Combining it with Remark 4.1 concludes the proof. �
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Appendices

Appendix 1. Background in regular variation

Weutilize the concept of regular variation of measures in L2.We start by recalling some terminology
and fundamental facts about regularly varying functions.

A measurable function L : (0,∞)→ R is said to be slowly varying (at infinity) if, for all λ > 0,

L(λu)
L(u)

→ 1, as u→∞.

Functions of the form R(u) = uρL(u) are said to be regularly varying with exponent ρ ∈ R.
The notion of regular variation has been extended to Banach and even metric spaces using the

notion of M0 convergence [19]. Even though we will work only with Hilbert spaces, we review the
theory in a more general context.

Consider a separable Banach space B and let Bε := {z ∈ B : ‖z‖ < ε} be the open ball of radius
ε > 0, centred at the origin. A Borel measureμ defined onB0 := B\{0} is said to be boundedly finite
ifμ(A) <∞, for all Borel sets that are bounded away from 0, that is, such thatA ∩ Bε = ∅, for some
ε > 0. Let M0 be the collection of all such measures. For μn,μ ∈M0, we say that μn converge to
μ in the M0 topology, if μn(A)→ μ(A), for all bounded away from 0, μ-continuity Borel sets A,
i.e., such that μ(∂A) = 0, where ∂A := A \ A◦ denotes the boundary of A.M0 convergence can be
metrized such that M0 becomes a complete separable metric space (Theorem 2.3 in [19] and also
Section 2.2. of [20]). The following result is known, see e.g. Chapter 2 ofMeiguet [20] and references
therein.

PropositionA.1: Let X be a random element in a separable Banach spaceB and α > 0. The following
three statements are equivalent:

(i) For some slowly varying function L,

P(‖X‖ > u) = u−αL(u)

and
P(u−1X ∈ ·)
P(‖X‖ > u)

M0−→ μ(·), u→∞,

where μ is a non-null measure on the Borel σ -field B(B0) of B0 = B\ {0}.
(ii) There exists a probability measure � on the unit sphere S in B such that, for every t > 0,

P(‖X‖ > tu,X/ ‖X‖ ∈ ·)
P(‖X‖ > u)

w−→ t−α�(·), u→∞.

(iii) Relation (4) holds, and for the same spectral measure � in (ii),

P (X/ ‖X‖ ∈ ·| ‖X‖ > u) w−→ �(·), u→∞.

Definition A.1: If any one of the equivalent conditions in Proposition A.1 hold, we shall say that X
is regularly varying with index α. The measuresμ and � will be referred to as exponent and angular
measures of X, respectively.

Appendix 2. Amotivating data example

We present a motivating example based on financial data. Similar questions arise in the analysis of
annual precipitation or other climate related curves.

Denote by Pi(t) the price of an asset at time t of trading day i. For the assets we consider in our
example, t is time in minutes between 9:30 and 16:00 EST (NYSE opening times) rescaled to the
unit interval (0, 1). The intraday return curve on day i is defined by Xi(t) = log Pi(t)− log Pi(0).
In practice, Pi(0) is the price after the first minute of trading. The curves Xi show how the return
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Figure A1. Five consecutive intraday return curves, Walmart stock. The raw returns are noisy grey lines.
The smoother black lines are approximations X̂i(t) =

∑3
j=1 ξ̂ijv̂j .

Figure A2. The first three sample FPCs of intraday returns on Walmart stock.

accumulates over the trading day, see e.g. Figure 1 in Lucca and Moench [23]; examples of such
curves are shown in Figure A1.

The first three sample FPCs, v̂1, v̂2, v̂3, are shown in Figure A2. They are computed, using (3),
from minute-by-minute Walmart returns from 5 July 2006 to 30 December 2011, n= 1378 trading
days. (This period is used for the other assets we consider.) The curves X̂i(t) =

∑3
j=1 ξ̂ijv̂j, with the

scores ξ̂ij =
∫
Xi(t)v̂j(t) dt, approximate the curves Xi well, as shown in Figure A1. Figure A3 shows

the Hill plots of the sample scores ξ̂ij for two stocks and for j= 1,2,3. These plots show estimates,
α̂ = α̂(k), of the tail index α as a function of the minimal order statistic k used to compute α̂. The
formula for these estimates is given in Section 2. In an asymptotic setting, α̂ is obtained as the number
of upper order statistics, k, tends to infinity with the sample size n, in such a way that k/n→ 0. A
general practical approach to choosing k is to examine these plots and use the values of kwhich lead
to relatively stable estimates, keeping inmind that k cannot be too large to avoid bias, nor too small to
avoid variability. There are also several ways of selecting ‘optimal k’. Figure A3 shows the Hill plots
centred around the value of k selected by the method of Hall [24], implemented by the function
hall of the R package tea. These plots show that it is reasonable to assume that the scores have
Pareto tails, with the tail index between 2 and 4.

We emphasize that the Hill plots Figure A3 are computed using the samples score ξ̂ij =
〈
Xi, v̂j

〉
,

whereas the population parameter is the tail indexα of the unobservable scores ξij =
〈
Xi, vj

〉
.We also

note that the tails studied in this example are those of the scores of cumulative return functions, not
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Figure A3. Hill plots for absolute values of the sample FPC scores forWalmart (left) and IBM (right). From
top to bottom: levels j= 1,2,3. The vertical line shows the optimal k selected by the method of Hall [24].

of point-to-point returns, like daily or weekly returns. For the latter, the tail index can be in different
ranges, and in times of financial crises may be even smaller than 1. It is possible that, for different
assets or different time periods, even the tail index of the scores studied here is smaller than 2. Our
theory would not apply to such data.
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