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ABSTRACT ARTICLE HISTORY

Functional principal component scores are commonly used to Received 14 June 2018
reduce mathematically infinitely dimensional functional data to  Accepted8 April 2019
finite dimensional vectors. In certain applications, most notably
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in finance, these scores exhibit tail behaviour consistent with the Functional data; Hill
assumption of regular variation. Knowledge of the index of the regu-  estimator: principal

lar variation, «, is needed to apply methods of extreme value theory. components
The most commonly used method of the estimation of « is the Hill
estimator. We derive conditions under which the Hill estimator com-
puted from the sample scores is consistent for the tail index of the
unobservable population scores.
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62G32; 62H25

1. Introduction

A fundamental technique of functional data analysis is to replace infinite dimensional
curves by coefficients of their projections onto suitable, fixed or data-driven systems, e.g.
Bosq [1], Ramsay and Silverman [2], Horvath and Kokoszka [3], Hsing and Eubank [4].
A finite number of these coefficients encode the shape of the curves and are amenable
to various statistical procedures. The best systems are those that lead to low dimensional
representations, and so provide the most efficient dimension reduction. Of these, the func-
tional principal components (FPCs) have been most extensively used, with hundreds of
papers dedicated to various aspects of their theory and applications.

We assume that the random functions X; are iid random elements of the Hilbert space
L? = L%([0, 1]) with the inner product (x, y) = f x(t)y(t) dt, which generates the norm
Il = +/Tx, x). IFE| X1 ||* < oo, then

X =) &u(t), E& =1, (1)

j=1
where v; are the FPCs, the eigenfunctions of the covariance operator C defined by

x3 L? > C(x) = E[(X1,x) X;] € L% ()
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The covariance operator C is a positive integral Hilbert-Schmidt operator with the kernel
c(t,s) = E[X1(H)X1(s)], so vj are defined explicitly by

/c(t, SHvj(s) ds = Ajvj(1), te[0,1], j=12,...

The random variables &;; = (X,-, vj) in (1) are called the scores of X; with respect to v;. They
satisfy E&j = 0, E[£;&;7] = 0ifj # jand Egz = Aj.

The functions vj and the variances )»1 are unknown parameters, which must be esti-
mated. The sample covariance operator C is defined as a kernel operator with the kernel

c(t,s) = N1 Zn: 1 Xu(£) Xy (s). The FPCs vj and the eigenvalues A; are estimated by v vjand
):j which satisfy
/ &(t, 9)0;(s) ds = A;0;(1). (3)

The scores &;; are then approximated by their sample counterparts S,J <X,, UJ>

In most inferential scenarios, replacing vj by vj, and A; by A is asymptotically negligible,
see Yao et al. [5], Gabrys and Kokoszka [6], Berkes et al. [7], Horvath et al. [8,9], among
dozens of recent papers by other authors. Even though many different inferential prob-
lems have been considered, they are all related to some form of inference for mean and
covariance structures. In this paper, we study a totally different problem, the consistency
of the Hill estimator, which is one of the most widely used tools of extreme value theory,
see, e.g. Embrechts et al. [10], Beirlant et al. [11] and Resnick [12]. Its definition is given in
Section 2. It is designed to estimate the tail index & > 0 of a positive random variable, say
Y, which satisfies P(Y > x) ~ x~“ (up to a slowly varying function). As argued above, in
the context of functional data X;, one often works with the projections, (X;, vj), v; € L2 The
question is whether the Hill estimator based on the estimated projections (X;, 9j), the only
feasible estimator, can be used to estimate the tail index of the projections (X;, vj), assum-
ing the latter have regular varying tail probabilities. A priori, there could be a systematic
bias due to the effect of the estimation of the v; by the 9;. A problem of this type has not
been studied. Consistency of the Hill estimator has been established in several settings,
but always assuming that the observations (the (X;, 9;) in our case) have regularly varying
tail probabilities. The projections onto the 0; can be expected to be only approximately
regularly varying (because v; is close to v;), so none of the existing results can be used. A
self-contained background on regular variation is presented in Appendix 1.

Even for samples of iid positive random variables, the consistency of the Hill estimator
is far from trivial. The first proof in the iid setting was developed by Mason [13]. Hsing
[14] introduced a general approach to establishing the consistency in case of dependent
data, including both stationary times series and triangular arrays. The sample scores do
form a triangular array, but we were unable to adapt Hsing’s method to accommodate the
transition from the sample scores to the unobservable population scores. We developed an
approach based on the vague convergence of radon measures [12,15]. The Hill estimator
for various stochastic models was studied by Resnick and Stirici [16,17] and Wang and
Resnick [18].

The paper is organized as follows. In Section 2, we introduce the framework and state
our main result, Theorem 2.1, which is proven in Section 4, after some preparation in
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Section 3. To make the paper self-contained, Appendix 1 contains a minimal background
on regular variation. Appendix 2 presents a motivating data example.

2, Assumptions and the main result

The most elegant, but in fact unnecessarily strong, assumption is that the function X whose
copies X;, 1 < i < n,we observe is regularly varying in L?. The space L? is infinitely dimen-
sional and not locally compact, so we cannot define regular variation using the framework
of Resnick [12,15], but we can use a similar and more general framework of Hult and Lind-
skog [19] who use M, convergence in place of the vague convergence in the Euclidean space
with zero removed and compactified at infinity. Since we work with projections onto the
real line, any definition of regular variation in L? which implies regular variation of these
projections would work. According to Hult and Lindskog [19], a function X in L? (or any
Banach space) is regularly varying with index & > 0 if

P(IXI > w) = u™*L(u) (4)

and

Pw'Xe) M
(Xl =w MO wmeo ®)

where p is a non-null measure (exponent measure) and L is a slowly varying func-
tion. There are several equivalent definitions, see Appendix 1, Chapter 2 of Meiguet [20]
contains more details.

Set

Uw) =P({X,0)| > w), Uw) =P((X,0)| > w),

where v is one of the FPCs v; in (1) and ¥ its estimated defined by (3). The function U is
regularly varying with index «, in the notation of Resnick [15], U € RV_. To see this, con-
sider the set A, = {x: | (x,v) | > 1}, and observe that | (X,v) | > uiffu"!X € A,. By (4)
and (5),

Utw)  P((tw~'X € Ay) PUIXI| > tw) P(IXI| > )
Uw — PUXI>m)  PUX[ >u) P X € Ay)

t—O(

>

provided wu(A,) > 0. It cannot be expected that Ue RV _,; for a fixed #, ¥ is a random
function whose distribution will, in general, influence the distriEution of (X , ﬁ). Only some
form of asymptotic regular variation can be expected because U approaches U, in several
ways, as 1 — 00.

The same argument shows that if p({x : (x,v) > 1}) > 0, then the function U, (u) =
P({X,v) > u)isin RV_g, and if u({x : {(x,v) < —1}) > 0,then U_(u) = P({X,v) < —u)
is in RV_,. To avoid repetitions of almost identical statements, we focus in the following
on the estimation of the tail index of the function U. We will work under the following
assumption.

Assumption 2.1: The functions X;, X, . .. X}, are independent and have the same distri-
bution as X. The function v is such that the function U(u) = P(] (X, v) | > u) is regularly
varying with index o > 2, o # 4.
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The assumption o > 2 is needed because if X € RV_, with 0 < o < 2, then, by (4),
E||X||? = 00, so the FPCs are not defined. If & = 2, then either E||X||*> = oo or E[| X]|? < oo
are possible, and complex assumptions on the slowly varying functions L are needed
to derive various rather technical results. We therefore assume « > 2. Another phase
transition occurs at o = 4 separating, in a similar way, the cases with E||X||* = oo and
E|IX||* < oco.

In our theory, the index @ can depend on the direction v, but we do not emphasize
it in our notation. We also note that even though the observed functions X;,X;,...X,
are iid, the sample scores (X, D) are no longer independent because 9 depends on all
X1,X3,...,Xy. They form a triangular array of dependent random variables, which are
identically distributed for each fixed n. The Hill estimator must be based on the projections
(X,-, f)). Before recalling its definition, we introduce the following random variables:

This allows us to define

b
|
—_
T
—_

Hy, = InY) —In Y, ﬁk,n =

1 i=1

In ?(i) —In ?(k):

o

1

with the convention that Y(;) is the largest order statistic. In the functional data context,
Hy, , is an infeasible Hill estimator because the FPC v is not observed; qu,,, is the Hill estima-
tor that can be actually computed. We want to establish condition under which it converges
in probability to @ !, where « is the index of regular variation of Y .

We further define

1—Fu) =P >u)=U(u), blt)=F" (1 - %) .

We will use the representation
b(t) = t'/“Ly (1), (6)

where L is a slowly varying function.
The approach in Chapter 4 of Resnick [12] is based on vague convergence to the measure
on the positive half-line, which is defined by

Ve(x, 00l =x7% x>0.

Our approach involves a sequence of ‘increasingly empirical’ measures, with only the last
one being observable. We set

1 o L 1L i 1 S
n = k ZIYi/b("/k)’ Vn = k ZIYi/Y(kV Vn = k Zl?i/b(n/k)’ Vn = k Zl?i/?ac)'
i=1 i=1 i=1 i=1

Any argument must involve some bounds on a suitable distance between Y; and Y;. These
will involve the covariance operator C and the sample covariance operator C. If v is the jth
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eigenfunction of C and 0 is the jth eigenfunction of C, then (see, e.g. Lemma 2.3 in [3]),
15 — vl < AIC = Cllz, )
where || - ||z is the usual operator norm, A, = Zdj_lﬁ with
di =i —X, dj=min{Ai_1 — A, — Aja ),
assuming that the eigenvalue A; of C is such that d; > 0. Since
1Y = Yil < (X5 0 — v} | < IX:l18; — vl
we conclude from (7) that
Yi = Yil < A IXllIC = Cllz. ®)
If « > 4, then, see e.g. Theorem 2.5 in Horvath and Kokoszka [3],
EIC - C||% = O(n™Y). (9)

The case of regularly varying X with tail index & € (2, 4) is studied in Kokoszka et al. [21].
Under weak conditions, Relation (9) must be replaced by

E|C - Cllf < Lg(mn P20 v g € (0,a/2), (10)

where Lg is a slowly varying function. For a fixed «, the strongest bound is obtained as
B 7 a/2, in which case 8(1 —2/a) /" a/2—1. Asa /" 4and B / «/2, relation (10)
thus approaches, in a heuristic sense, relation (9). It is enough to impose a slightly weaker,
but more convenient, condition:

= B _ —K @ _E
EIC - clf =0(n™), Vﬁe(l, 2>,V/<e(0,,3<1 a)) (11)

The above discussion shows that the following Assumption 2.2 basically always holds as
long as dj > 0 in (7). We formulated it for ease of reference and to emphasize that only
certain properties of the sample covariance operator C are used; C could, in principle, be
a different estimator of C, which has those properties.

Assumption 2.2: Relation (7) holds. The estimator C satisfies 9)ifa >4and (11)ifa €
(2,4).

. .. . - P _
Since Y; are iid and in RV _, the only conditions needed to ensure that Hy , — a~! are

k = k(n) - ocoand k/n — 0, as n — oo. In our setting, we want to estimate the index «
of unobservable random variables Y; based on their observed approximations Y;. It can be
expected that the rate of the approximation will impose additional conditions on the rate
at which k tends to infinity with #. A sufficient condition is formulated in Assumption 2.3
below.
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Define the function

a—2
, o € (4,00),
200 — 2
1
y(a) = , o€ (3,4], (12)
a_

P € (23]
-, « ,3].
2

Observe that y () is continuous at « = 4 with y(4) = 1/3, and at « = 3 with y(3) =
1/2. It is increasing on (4,00) with limy 00 y (@) = % and decreasing on (2,4) with
limg 2 ¥ (@) = 1.

We will write k >> n?, for some y € (0,1), if k/n¥ — oo.

Assumption 2.3: We assume that k >> n? for some y € (y(«), 1), with y(«) defined
in (12).

According to Assumption 2.3, as « \{ 2, the order of k approaches n. One can say that
as the value of o approaches the smallest possible value for which the functional principal
components exit, almost all observations must be used to ensure the consistency of the
Hill estimator. The theory thus begins to break down because this intuitively contradicts
the assumption k/n — 0.

Theorem 2.1: Suppose Assumptions 2.1, 2.2 and 2.3 hold. Then Hy., Lot

While Theorem 2.1 is formulated in the specific setting of projections of functional data
onto population and estimated FPCs, it is hoped that the approach we develop will be, in
general outlines, applicable to other contexts where the tail indexed must be inferred from
approximations to unobserved data. For example, only Y; + ¢; with correlated errors ¢;
may be observed. It is also hoped that the theory developed for the most commonly used
Hill estimator may be used to guide similar developments for other estimators of the tail
index.

3. Preliminary results

We collect in this section several results, none of which is particularly profound or difficult
to prove, but put together they play an important role in the proof of Theorem 2.1. By
placing them in a preparatory section, we will also avoid repeatedly distracting from the
main flow of the argument in Section 4.

Following Resnick [12], denote by M = M (0, 00] the space of Radon measures on
(0, oo] with the topology of vague convergence.

Lemma 3.1: The function h on My defined by h() = 11(z, 00] is continuous at vy.

Proof: Suppose (1, — Vq. This implies that for any relatively compact B with v (0B) = 0,
1n(B) = vy (B). Taking B = (z, 00], we obtain h(u,) = pn(B) = vu(B) = h(vy). [
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Lemma 3.2: The function h on M defined by

M
h(p) = / 1 (x, 00]x ! dx
z
is continuous at vg.

1 -1

Proof: Suppose p, — vy. By Lemma 3.1, for every x> 0, i, (x, 00]x™" — vy (x, 00]x

The convergence

M M
/ n(x, 00]x " dx — / Vg (x, 00]x ! dx
z z

follows from the dominated convergence theorem because for x>z and sufficiently
large n,

o (56, 00] < (2, 00] < 204(2, 00] = 2277, |

The measure v, is a random element of M, v, its deterministic (constant) element.
The following lemma follows from Theorem 4.1 and relation (4.21) in Resnick [12].

P P
Lemma 3.3: In the space M1 (0, 0], v, = vy and v, — vg.

The next lemma follows from relation (4.17) in the proof of Theorem 4.2 in Resnick
[12].

Lemma 3.4: IfY; are iid and in RV _, then

Y

b(%)

p
— 1.

Lemma 3.5: Foranya,b > 0,

[an1] —=[bAl]] <|a— b

Proof: There are four cases:

1) a>1,b>1, |[1—1|=0<|a—b|;

2) a>1,b<L|1—-bl=1—-b<a—b=l|a—bj;
3) a<lLb>1lla—1ll=1—a<b—a=|a—bj;
4) a<1,b<1l,la—bl <l|a-b|



8 (& M.KIMAND P.KOKOSZKA

The following statements are proven is Section 3.4 of Resnick [15]. The metric p which
compactifies (0, oo] at oo is
1 1

p(u,v)=‘——— :
u v

The distance between measures @1, w2 € My (0,00] is defined by

d(pr,pa) = D 27" {lma () — w2 (f)| A1} (13)

m=1

The functions f,,, € Ck (0, oo] are of the form
Jx)=1—[cp(x,B) A, (14)

for some ¢ > 0, relatively compact B C (0, 00], and the metric p defined above.
Lemma 3.6: For any metric p and any set B,

lp(a1, B) — p(az, B)| = p(a1,az).
Proof: Recall that p(a, B) = infyep p(a, b). For any b € B,

plai,b) < p(ar,a2) + p(az b).
Taking the infimum of the left-hand side, we obtain

p(a,B) < p(ai,az) + p(az, b).
Taking the infimum of the right-hand side, we obtain

p(ai, B) < p(ar,az) + p(az, B).

Consequently,

p(a1,B) — p(az, B) < p(ai,az).

Switching a; and a,, we obtain the claim. [ |
Lemma 3.7: Suppose random variables Hy,(n), m,n > 1, satisfy 0 < Hy,(n) < 1 and

Vm>1, Hm(n)io, asn — oQ.

Then,

o0
Z 27" H(n) LN 0, asn— oo.

m=1
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Proof: Define
o
S(n) =Y 2 "Hp(n)
m=1

=Y 2" Hu(m) + Y 27" Hp(n)

m<M m>M
= Su(n) + Sy (n).
Fix & > 0 and observe that
P(S(n) > &) < P (SM(n) > g) 4P (Sj*\/[(n) > g) .
Since S4;(n) <27, we can choose M so large that P (S}‘w(n) > 8/2) = 0. For such a
(fixed) M,

P(S(n) > ¢) < P (SM(n) > %) 0. m

4. Proof of Theorem 2.1

The proof of Theorem 2.1 is constructed from a series of results, of which Proposition 4.1
is the most prominent. To facilitate the understanding of the proofs of Proposition 4.1 and
Theorem 2.1, we note that

Ifae € (3,4),then1/(x¢ — 1) > 2 — /2,
Ifae € (2,3),then /(¢ — 1) <2 — /2.

We may thus write

y(a):max{ ,2—%}, o € (2,4]. (15)

a—1
Proposition 4.1: Under the assumptions of Theorem 2.1, d(v,;r ,Vn) EN 0.

Proof: Since each function f,, in (13) has compact support in (0, co],
sm := inf {supp(fn)} > 0.

Therefore

|VZ(fm) - Vn(fm)| = ‘/fm dUJn - /fm dvy,
1 < ?,' Y;

> P’” (b(n/k)) I (b(n/k))'
1 ?,' Y;

Tk ; L[’” (b(n/k)) I <b<n/k>)

>
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where
= {i >1 :?i > spb(n/k) or Y; > smb(n/k)}.
Since each f,, is of the form (14), by Lemmas 3.5 and 3.6,

P <b(n/k>’ ’”) (b( /K’ ’")

Cm Y; i
=% Z‘ <b<n/k) b(n/k))‘

The claim will thus follow from the convergence

|VZ(fm) - Vn(fm)| < ?

o0
EREIEDS b(n/k) b(n/k)\ aley
m=1 i€y Yi Yi
which, in turn, by Lemma 3.7, will follow from
1 b(n/k) P
— = — 0, 16
k Z Y; Y; - (16)

i€Z(n)
where, for some s* > 0,
I(n) = {i >1:Y; > s*b(n/k)or Y; > s*b(n/k)}.
Set
TW 1) = {i >1:Y; > s*b(n/k)}, I m) = {i >1:Y; > s*b(n/k)}.

Relation (16) will follow once we have shown that forg=1and g=2,

b(n/k) 3 IY:—Yi| p
— — 0

iY;

(17)
i€7® (n)

We verify (17) for g= 1. The argument for g =2 is basically the same; the roles of Y; and
Y; must be interchanged.
Fix ¢ > 0. First observe that

b (b(’;j“ s T, ) < PG = o),

Y;Y,
ieZM (n) P

where

1 Y; — Yl
G(n) = — — .
m=— > =
ieZM (n)

Next, use the decomposition

P (G(n) > €) = P1(n) + P2(n),
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with
Pi(n) =P (G(n) e 3icIOm: ¥V < %s*b(n/k));
Paw) =P (G > &, Vie TV : Ti > 15b(n/k))
Observe that
Pi(n) <P <a ieIWm):Y; < —s*b(n/k))
<P (3 i<n:Y>sb(n/k)and ¥; < -s*b(n/k))
<P (3 — Y| > —s b(n/k))
=P (113%1 - Vil > -s*b(n/k)>
By (8),

—~ 1
Pi(n) <P (AUIIC — Clic max |Xil| > Es*b(n/k))

24,
B *b( /k)

[II — Cllz max ||Xi||:|'
1<i<n

We first consider the case of & > 4. By (19) and (9),

P = 22 tmie— 2 e max xp]
= bk £ 1o, 1

_ L ipoap) 1 _
=0 (b(n/k)” " ) = O(b(n/k)) = o,

E max || < B ) 1Xi]* = On).

1<i<n

where we used

By Markov’s inequality,

2 Y
Pr(n) EP(W;Wi_ Yil > 8)

2 e
<— E|Y; — Y|
~ es*2kb(n/k) ; i d

By (8) and (9),

—~ 1/2 -~ 1/2 _
EY; - Yi| < A, {EIX:02) 2 {EIC - CI2}? = 0(n 172,

(18)

(19)

(20)
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Therefore,

nl/2
Py(n) =0 (kb(n/k)) = o(1).

The last equality follows from the assumption k >> »n”® and (6).
Now consider the case of « € (2,4). We first show that P;(n) = o(1). By (18), (8) and
Markov’s inequality

P =0 —— ) £ [HE— CIIY2 max ||Xl~||1/2} .
Jo/R) I<izn

We apply Hélder’s inequality with p = 28 and g = 28/(28 — 1) to get

2-1)/28
P1 (1’1) } .

E max || X;||#/@F~D
1<i<n

] e T A {
Jb(n/k) £

For the above bound to be effective, we need E|X;||#/?#=1 < oo, which is implied by
B/2B —1) < @.Since2f — 1 > 1 and B < «/2, this condition always holds. It therefore
follows from (11) that

Py(n) = n—K/ﬁn(Zﬂ—l)/Zﬂ> .

1
Ol —
(,/b(n/k)

We can thus conclude that P;(n) = o(1), if there are 8 and « such that —x +28 — 1 < 0.

This is possible if
2
2ﬁ—1<ﬂ<1——>.
o

The above condition can be equivalently stated as B (1 —2/a) < 1. Since 8 < «/2,
B(1—2/a) <a/2—1 <1 because & < 4. This completes the verification of P;(n) =
o(1) fora € (2,4).

To show that P,(n) = o(1), observe that by (20), Markov’s inequality with 0 < r < 1,
and (8),

2 .
P(n) SP(W;Wi_ Yil > 8)

:O<kfbr(n/k>) (Z'Y’ Y’)

n ~ 1 ’
=0 (W) E |:||C - C||£; ; ||Xi||i| .

Applying Holder’s inequality with p = §/rand g = 8/(B8 — r), we obtain

1 & ' [ (1 Y
E[IIC—CIIZ (;aninﬂs{EHC—cni} {E(;anin) } .
i=1 i=1
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For E||X;||" to be finite, we need

rq = rp < a. (21)
B—r
Choosing
r= L (22)
B+1
implies rg = 1. We thus obtain, with r specified in (22),
Pa) = O o ) (B} 4 w0
kb (n/k)
nr—rk/ﬂ
=0\———7).
(k’br(ﬂ/ k))

By (6), the claim P,(n) = o(1) will thus follow if k >> nY, where

The exponent is smaller than 1 and attains its smallest value as « /8 approaches its largest
possible value, i.e. 1 — 2 /. It remains to observe that

Remark 4.1: The proof of Proposition 4.1, in the case « € (2,4),is valid in (15) is replaced
by y (@) = (o — DL Only the latter bound was used. The bound 2 — «/2 is needed in
the proof of Theorem 2.1.

Using Lemma 3.3, we obtain the following corollary.

Corollary 4.1: Under the assumptions of Theorem 2.1, vZ £ Vg

The arguments used in the proofs of Propositions 4.2 and 4.3 are similar to those
developed in Sections 4.3. and 4.4 of Resnick [12].

Proposition 4.2: Under the assumptions of Theorem 2.1,

Yo 2
b(n/k)




14 M. KIM AND P. KOKOSZKA

Proof: Fix e > 0and set

_ Y _ Y _
P+(n)_P<b(n/k) > 1+6>, P_(n)—P<b( Iz <1 8).

Observe that

Pi(n) =P (I?(k)/b(n/k)(l +¢,00] = 1)

=P (ZIYo/b(n/k)(l +e&,00] = k)
1
Py Zly(l)/b(n/k)(l +&,00] > 1

=P (1—|—800]>1)

A similar argument shows that
P_(n)<P (vi(l —&,00] < l) .
The claim follows because by Corollary 4.1 and Lemma 3.1,
vZ(l + &,00] L ve(l+e,00]l=0+8)%<1;

v;r(l —&,00] L ve(l—g,00]=(1—¢)"% > 1.

. . A~ P
Proposition 4.3: Under the assumptions of Theorem 2.1, b, — V.

Proof: Consider the map T : M4 x (0,00) — M defined by
T(w,x)(A) = u(xA), forBorel A C (0, 00].

Resnick [12, pp. 83-84] shows that T is continuous. Observe that

) .
T 5 = Vn> T 01’1 = Va.
(” b(n /k)) e Tl =y

The claim thus follows because by Corollary 4.1 and Proposition 4.2,

;7 .
<v,,, b(ia(l;)lc)) £> (Ve» 1)  in M4 x (0,00).

The following lemma may be of independent interest and more general utility.

Lemma 4.1: Suppose y — P(Y > y) € RV_, for some o > 0. Then,

[e.¢]
lim lim sup/ tP(Y > xb(t))x ' dx = 0.

zZ—>00 t—00
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Proof: The function b(-) is defined by
P(Y > b)) =t"1
We know that b(:) € RV, and

tlim tP(Y > xb(t)) =x% x> 0. (23)
—00
Set fy(x) = tP(Y > xb(t))x~ 1. We want to show

o0
lim lim sup/ fi(x)dx = 0.

zZ—>00 t—>00

By (23),
Vx>0 filx) >x %1 ast— oo

To conclude that
o0 o0
/ fe(x) dx — / x % ldx, ast— oo,
z zZ

we must find a function g such that for t > f,

x
fi(x) < g(x) and / g(x) dx < oo.
z
Set U(y) = P(Y > y). Potter bounds state that V4§ > 0,3 up, Vu > up,Vy > 1,

_ —a—34 U(yu) —a+4
(I =28)y S—U(u) <@1+dy .

Since b(t) — ocoast — 00, ty, Vt > ty,
Uxb() < (14 8)x“ P Ub®).
Since U(b(t)) = 1/t, we obtain, for t > fo,
fi() = tUGxb())x™ < (1 +8)x7T 7! = g(x).

The function g is integrable if § < «. |
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Proof of Theorem 2.1: Since

e o

Hy, = / D (x, oo]x_l dx,

1
we must show that
o P o0
/ D, 00]x 1 dx — / Ve (x,00]x Tdx = a1,
1 1

The verification is based on the commonly used truncation argument, Theorem 3.2 in
Billingsley [22], also stated as Theorem 3.5 in Resnick [12]. Set

[e.¢] 0
V, = / Dp(x,00]x Vdx, V= / Ve (x, 00]x ! dx;
1 1

M M
V,SM) = / Da(x,00lx tdx, VM = / Ve (x, 00]x ! dx.
1 1

To establish the desired convergence V, L, equivalently V, 4 v, we must verify that

VM >1, V,gM) i> V,(lM), asn — 0o; (24)

v i V, asM — oc; (25)

Ve>0, lim limsupP (lV,(lM) — Vil > g) =0. (26)
M—00 p—oo

Convergence (24) follows from Proposition 4.3 and Lemma 3.2. Convergence (25) is trivial
because [ vy (x,00]x ! dx = a ' M. Since v _ vy | = far On(x, 00]x~! dx, (26)

is equivalent to
o
Ve>0, [ Dy, 00]x 1 dx > 8) =0.

im limsupP

|
M—00 5500 M

The steps of the verification of the above relation, up to (27), are pretty much the same as
those developed by Resnick [12, pp. 84-85]. We provide the details because we work with
the measure v]; rather than with the measure v,, and the context for the remainder of the
proof is helpful. Following (27), we use a different argument.

Fix & > 0 and n > 0. Observe that

P </oo Du(x, 00]x " dx > 8) < Qi(n) + Q2(n),

M

where

Qi(n) =P (/oo Du(x, 00]x Vdx > ¢,

M

Y
Q2<n>=P<‘&—1‘ Zn).

b(n/k)
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By Proposition 4.2, lim sup,,_, ., Q2(n) = 0, so we focus on Q; (n). We start with the bound

=P /OOEXH:I?? (x,00]x 1 dx > e, ?(k) >1—n].
u k&N b(n/k)

Conditions ?i/?(k) > xand /Y(k)/b(n/k) > 1 —nimply ?,'/b(n/k) > x(1 — n), so

Qin) <P (A:O Dy (x,00]x 1 dx > &, b(Yn(]/{)k) >1-— 77)

o0 1 n
Qi(n) <P (/M 2 Zl?i/h(n/k)(x(l —n),00]x~ " dx > 8)
i=1

=P (/OO vi(x(l —n),00]x tdx > 8)
M

oo
=P (/ vi(x,oo]x_1 dx > 8) .
M@1—-n)

Consequently, because 171-, 1 < i < n, have the same distribution,

Qi(n) < l/OO E[vZ(x,m]] x~1dx

€ JM(1-n)

1 [ n Y _1
= - —-P > x| x " dx.
e Jma-n k \b(n/k)

It thus remains to show that

o0
lim lim sup/ gP (? > xb(n/k)) x ldx =0. (27)
z

We use the decomposition
p (? > xb(n/k)) =P (? > xb(n/k), Y > %xb(n/k))
+P(Y > xb(n/k), Y < Lxb(n/k))
< P(Y > ixb(n/k)) + P(IY — Y| > xb(n/k)).

By Lemma 4.1,

. . ®n 1 1
lim hmsup/ %P Y > Exb(n/k) x  dx=0.

Z=>0 4 50

If ¢ > 4, by (8) and (9)

/oo ”p <|? Y| > Saxb( /k)) xldx < ”/oo 2 _EY—vixld
n vyl n N
.k PR *=% ) bk x

nl/2 1
=0 (kb<n/k>) z
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By Assumption 2.3, for a slowly varying function L and y € (y (), 1),

kb’z;//zw B {%}H/a [ (%)}H/a =0, asn— oo,

If o € (2,4), we use the bound (r € (0,1]):
®pn 1 n [ 2 N
—P(IY=Y|> =xb(n/k) ) xtdx < — ElY —Y|'x 'dx
/Z K (' =5 )>x Sk/Z <xb<n/k>> v

_of™ EY—YI"\ 1

- \k b(nk) )z
The value of r will depend on «. Choosing it, and checking that it is available, requires
some work. As in the proof of Proposition 4.1,

ElY - Y|" = O (n*"P),

provided (21) holds. Set

Then, for some slowly varying L,

~ % 1-r/a
n}E|Y—Y|’_O nY L(ﬂ)
k br(n/k) k\k '
Clearly y* < 1. We must verify that there are 8,k and r, in permitted ranges, such that
y* can be arbitrarily close to y («) given by (15). With « and r fixed, y* will approach its

smallest possible value as k /8 approaches its largest possible value, i.e. 1 — 2/c. In this
case, y* is greater than and approaches

l—-—(1—-2)r a—ar+r
yr(a,r) == (r ) = .
1—= o—r

Condition (21) restricts the available values of r. A direct calculation shows that it is
equivalent to

Ba
B+a
For a fixed «, the right-hand side is an increasing function of 8 and attains its upper limit
if B = /2. This means that r must be less than, but can be arbitrarily close to, «/3. Thus

y* can be arbitrarily close to
(+3)=2-3
o= )=2-—.
VL 3 5

Combining it with Remark 4.1 concludes the proof. |

r<
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Appendices

Appendix 1. Background in regular variation

We utilize the concept of regular variation of measures in L2. We start by recalling some terminology
and fundamental facts about regularly varying functions.
A measurable function L : (0,00) — R is said to be slowly varying (at infinity) if, for all A > 0,

L(Au)
L(u)

Functions of the form R(u) = u”L(u) are said to be regularly varying with exponent p € R.

The notion of regular variation has been extended to Banach and even metric spaces using the
notion of My convergence [19]. Even though we will work only with Hilbert spaces, we review the
theory in a more general context.

Consider a separable Banach space B and let B, := {z € B : ||z|| < €} be the open ball of radius
€ > 0, centred at the origin. A Borel measure x4 defined on By := B\{0} is said to be boundedly finite
if (A) < oo, for all Borel sets that are bounded away from 0, that is, such that A N B = ¢, for some
€ > 0. Let M be the collection of all such measures. For p,, it € My, we say that u, converge to
w in the My topology, if 1,(A) — w(A), for all bounded away from 0, pi-continuity Borel sets A,
i.e., such that £(dA) = 0, where dA := A \ A° denotes the boundary of A. My convergence can be
metrized such that My becomes a complete separable metric space (Theorem 2.3 in [19] and also
Section 2.2. of [20]). The following result is known, see e.g. Chapter 2 of Meiguet [20] and references
therein.

— 1, asu— oo.

Proposition A.1: Let X be a random element in a separable Banach space B and o > 0. The following
three statements are equivalent:

(i) For some slowly varying function L,
P(IXI > u) = u™*L(u)

and

Pw'Xe) m
——— —> u(), u— oo,
P(IX|| > w)

where ( is a non-null measure on the Borel o -field B(Bo) of By = B\ {0}.
(ii) There exists a probability measure I' on the unit sphere S in B such that, for every t > 0,

P(|X tu, X/ || X|| € -
X > X/ IX0 €D v cars u iy o
P(IXT > )

(iii) Relation (4) holds, and for the same spectral measure I" in (ii),

PX/IXI €| IXI > u) =5 T(), u—> oo

Definition A.1: If any one of the equivalent conditions in Proposition A.1 hold, we shall say that X
is regularly varying with index c. The measures p and I" will be referred to as exponent and angular
measures of X, respectively.

Appendix 2. A motivating data example

We present a motivating example based on financial data. Similar questions arise in the analysis of
annual precipitation or other climate related curves.

Denote by P;(t) the price of an asset at time ¢ of trading day i. For the assets we consider in our
example, ¢ is time in minutes between 9:30 and 16:00 EST (NYSE opening times) rescaled to the
unit interval (0, 1). The intraday return curve on day i is defined by X;(t) = log P;(t) — log P;(0).
In practice, P;(0) is the price after the first minute of trading. The curves X; show how the return
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Day 1 Day 2 Day 3 Day 4 Day 5
<+ <+ <+ <+ <
= = = = =
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i i i i i

Figure A1. Five consecutive intraday return curves, Walmart stock. The raw returns are noisy grey lines.
The smoother black lines are approximations X;(t) = Zf=1 &jvy.
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Figure A2. The first three sample FPCs of intraday returns on Walmart stock.

accumulates over the trading day, see e.g. Figure 1 in Lucca and Moench [23]; examples of such
curves are shown in Figure Al.

The first three sample FPCs, 01, U2, U3, are shown in Figure A2. They are computed, using (3),
from minute-by-minute Walmart returns from 5 July 2006 to 30 December 2011, n = 1378 trading

days. (This period is used for the other assets we consider.) The curves )?,-(t) = 2]3: 1 éijﬁj, with the
scores éij = f X;(t)v;(t) dt, approximate the curves X; well, as shown in Figure A1. Figure A3 shows

the Hill plots of the sample scores é,] for two stocks and for j=1,2,3. These plots show estimates,
& = a&(k), of the tail index « as a function of the minimal order statistic k used to compute &. The
formula for these estimates is given in Section 2. In an asymptotic setting, & is obtained as the number
of upper order statistics, k, tends to infinity with the sample size #n, in such a way that k/n — 0. A
general practical approach to choosing k is to examine these plots and use the values of k which lead
to relatively stable estimates, keeping in mind that k cannot be too large to avoid bias, nor too small to
avoid variability. There are also several ways of selecting ‘optimal k’. Figure A3 shows the Hill plots
centred around the value of k selected by the method of Hall [24], implemented by the function
hall of the R package tea. These plots show that it is reasonable to assume that the scores have
Pareto tails, with the tail index between 2 and 4. .

We empbhasize that the Hill plots Figure A3 are computed using the samples score &; = (X, I;),
whereas the population parameter is the tail index o of the unobservable scores &;; = (Xi, vj>. We also
note that the tails studied in this example are those of the scores of cumulative return functions, not
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Figure A3. Hill plots for absolute values of the sample FPC scores for Walmart (left) and IBM (right). From
top to bottom: levels j = 1,2,3. The vertical line shows the optimal k selected by the method of Hall [24].

of point-to-point returns, like daily or weekly returns. For the latter, the tail index can be in different
ranges, and in times of financial crises may be even smaller than 1. It is possible that, for different
assets or different time periods, even the tail index of the scores studied here is smaller than 2. Our
theory would not apply to such data.
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