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-assisted screening of pure-silica
zeolites for effective removal of linear siloxanes
and derivatives†

Shiru Lin,a Yekun Wang,b Yinghe Zhao,a Luis R. Pericchi, b Arturo J. Hernández-
Maldonado *c and Zhongfang Chen *a

As emerging organic contaminants, siloxanes have severe impacts on the environment and human health.

Simple linear siloxanes and derivates, trimethylsilanol (TMS), dimethylsilanediol (DMSD),

monomethylsilanetriol (MMST), and dimethylsulfone (DMSO2), are four persistent and common

problematic compounds (PCs) from the hydroxylation and sulfuration of polydimethylsiloxanes. Herein,

through a two-step computational process, namely Grand Canonical Monte Carlo (GCMC) simulations

and machine learning (ML), we systematically screened 50 959 hypothetical pure-silica zeolites and

identified 230 preeminent zeolites with excellent adsorption performances with all these four linear

siloxanes and derivates. This work vividly demonstrates that the collocation of data-driven science and

computational chemistry can greatly accelerate materials discovery and help solve the most challenging

separation problems in environmental science.
Introduction

Siloxanes refer to a class of silicone derivatives containing Si–O
bonding1 and are classied into linear and cyclic compounds.
Among others, siloxanes are widely used in medicine,
cosmetics, personal care products, and industrial applications
such as lubricants, paints, biomedical products and anti-
foaming agents.2–4 In 2018, the world sale volume of siloxanes
reached ca. 2.8 million tonnes. However, siloxanes are also
emerging organic contaminants.5–11 Due to their high vapor
pressure ranging from 124.5 Pa (octamethylcyclotetrasiloxane)
to 2.26 Pa (dodecamethylcyclohexasiloxane),12 siloxanes are
persistent and prone to bioaccumulation,13–18 thus it remains
a grand challenge to remove them from various environmental
media.19–23 Meanwhile, the release of siloxanes has severe
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impacts, for instance, potential toxic effects, namely oestrogen
mimicking, connective tissue disorder, adverse immunologic
effects, and eventually fatal liver or lung damage in exposed
animals.24,25 Even worse, siloxanes could mask the presence of
other contaminants in the detection systems, which hinders the
effective removal of other pollutants.

Developing suitable sorbents is a cost-effective solution26,27

to the notorious siloxane removal problem.28 Along this line,
various adsorbents, such as ion exchange resin29,30 and activated
carbon,3,31,32 have been explored, but their adsorption abilities
are far from satisfactory due to the low affinity.33 Therefore, it is
of paramount importance to search for high-performance
sorbents to remove siloxanes effectively.29,34–36

Pure-silica zeolites (PSZs) exhibit outstanding structural
advantages as adsorbent materials.37,38 As a type of microporous
material consisting of merely silicon and oxygen atoms, PSZs
are hydrophobic and without any acid site. Thus, the competi-
tive adsorption of water, which contains high concentrations of
cations, can be signicantly reduced.39 Moreover, PSZs are
thermally stable and can be easily regenerated when their pores
are blocked.40–42 These unique features make PSZs potential
sorbents for siloxane removal; however, to the best of our
knowledge, no systematic investigation has been performed so
far. Note that there are millions of possible PSZs,43–45 screening
these PSZs one by one as promising candidates for siloxane
removal is not practical, if not impossible.

A paradigm shi is now underway, and machine learning (ML)
offers us a powerful tool to solve such complex problems.Machine
learning has been a kind of ourishing statistical methodology
that has been widely used in interdisciplinary studies
This journal is © The Royal Society of Chemistry 2020
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recently.46–50,68 Different from rule-based systems that require
much experience, time, and efforts, ML generates mathematical
models51,52 from experimental53,54 and computational data55–57 at
speeds and scales that far exceed human capabilities. Moreover,
those ML models can help recognize the neglected and potential
connections and accelerate the ability to predict reactions and
materials performances of unknown systems. Recently, ML tech-
niques have been applied in materials discovery in environmental
science and technology.58–62 Among others, Lu et al. combined
machine learning techniques and density functional theory
calculations to predict undiscovered hybrid organic–inorganic
perovskites for photovoltaics.63 Chan et al. introduced a set of
machine-learned coarse-grained (CG) models that successfully
described the structure and thermodynamic anomalies of both
water and ice at mesoscopic scales, all at two orders of magnitude
cheaper computational cost than existing atomistic models.64

Here, we designed a two-step computational framework
(Scheme 1) combining Grand Canonical Monte Carlo (GCMC)
simulations and the machine learning method to investigate the
adsorption performances of pure-silica zeolites. Four represen-
tative linear siloxanes and derivatives65–67 namely trimethylsilanol
(TMS), dimethylsilanediol (DMSD),68,69 monomethylsilanetriol
(MMST), and dimethylsulfone (DMSO2)67,70,71 were considered.
We obtained essential features and screened out 230 preeminent
zeolites from 50 959 hypothetical PSZs (picking ratio z 0.0045)
with excellent adsorption performance towards all these four
PCs. Our best models achieved a test score of 0.91 for perfor-
mance classication, and our further GCMC simulations veried
that all 20 randomly chosen ML-recommended PSZs have excel-
lent adsorption performance towards four problematic
compounds. This work highlights the promise of combining
data-driven modelling with traditional computations to predict
the performance of complex zeolite systems.
Methods
Grand Canonical Monte Carlo (GCMC) simulations

Grand Canonical Monte Carlo (GCMC) simulations in the
sorption module of Materials Studio 8.0 were conducted to
evaluate the absorption performance of 500 randomly selected
Scheme 1 The flow chart of two-step computational screening to achie

This journal is © The Royal Society of Chemistry 2020
zeolites towards each of the four PCs. GCMC is a statistical-
mechanical approach, in which the adsorption process is
investigated relying on random sampling and probabilistic
interpretation in the sorbent framework. We calculated the
average adsorption loading (mol�1) and adsorption energy (kcal
mol�1) and identied 10 lowest-energy adsorption geometries
of each adsorption system, where more substantial adsorption
loading and higher adsorption energy indicate better adsorp-
tion performances. The GCMC simulations were carried out in
a zeolite cell containing a section of the model pore, and each
cell had a length of around 4.0 nm, which was sufficiently large
to make the effect of nite system size negligible. The systems
were equilibrated for 100 000 GCMC steps, and data were
collected for another 1000 000 production steps to get the
average amount adsorbed. All the GCMC simulations were
carried out at a temperature of 298 K and a xed pressure of
101.33 kPa with the Metropolis Monte Carlo method72 and
COMPASS forceeld.73,74
Feature selection

Five key features were used to train the models, which are three
crystal parameters (a, b and c/Å), pore diameter (p/Å), and probe-
accessible surface area (s, Å2 per unit cell). Crystal parameters of
50 959 zeolites were obtained through the Atomic Simulation
Environment (ASE) package,75 and the pore diameters and
probe-accessible surface areas were obtained using the Zeo++

package.76 In Zeo++, the number of sample points specied in
the input is randomly displaced in the unit cells. Herein, the
pore diameters are the largest inscribed spheres, which were
obtained by setting the radius of the spherical probe to 0.77 The
probe-accessible surface area (per unit cell) was obtained by the
Monte Carlo (MC) sampling approach, in which the radius of
a probe (1.2 Å) was used.77
Machine learning models

Random Forest,78,79 an integrated algorithm of decision trees80 as
implemented in scikit-learn soware,81 was used to train four
models. Different super-parameters have been studied for
optimal ML models, such as numbers of trees, max depth of
ve prominent zeolites for adsorbing four linear siloxanes and derivates.
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branch and max feature for each branch. The parameters which
help model achieve high training and test scores were retained.
According to the test computations, the maximum depth for
DMSO2 was set as 9, while that for TMS, DMSD, and MMST was
set as 10. The number of trees modeled was xed as 250 for
MMST, while for DMSO2, TMS, and DMSD, the numbers of trees
were all set as 200. Additionally, the number of maximum
features forMMST was set as 4, while that for the other PCs was 3.
Results and discussion
GCMC simulations of 500 randomly selected pure-silica
zeolites (PSZs)

As a big zeolite database, the hypothetical zeolite database has
more than several hundred thousand zeolite structures with
reasonable energy and framework density.82,83 The family we
chose (ABC-6 16-layered structures) has 50 959 pure-silica
zeolites (PSZs), which have the same numbers of silicon and
oxygen atoms, the same symmetry, and similar unit volume.
Subsequently, the differences between these PSZs are dened in
the atom positions, pore diameters, surface area, and crystal
shape, so that the fundamental rules between zeolite structures
and adsorption performances could be simplied, and the
predictions of this family would be more reliable.

We rst randomly chose 500 zeolites from 50 959 PSZs and
computed the average adsorption loading (mol�1) and
Fig. 1 The average adsorption energy and loading values of 500 PSZs tow
ranked by adsorption energy, while the square points are the other 80% ze
1 zeolites ranked by adsorption loading.
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adsorption energy (kcal mol�1) by Grand Canonical Monte
Carlo (GCMC) simulations (Table S1†). Correlating average
adsorption loading (mol�1) and adsorption energy (kcal mol�1)
of these 500 zeolites (Fig. 1), we found that the relationship
between adsorption energy and adsorption loading for TMS is
roughly linear, and that for MMST is most dispersive, while that
for DMSO2 and DMSD is in between (Fig. 1).

Noting that common sorbents suffer from low adsorption
energies towards linear siloxanes, we decided to use the
adsorption energy as the standard to classify PSZs in this
work. Based on this standard, zeolites with adsorption energy
in the top 20% are classied as class-1 (great zeolites, triangle
points in Fig. 1), while the rest are classied as class-0 (bad
zeolite, square points in Fig. 1). The borderlines of classi-
cation are 22.00, 19.20, 18.23, and 17.45 kcal mol�1 for
DMSO2, TMS, DMSD, and MMST, respectively. Such high
adsorption energies also lead to high adsorption loading of
these class-1 PSZs: more than 90% class-1 zeolites are in top
39%, 24%, 51%, and 66% loadings for DMSO2, TMS, DMSD,
and MMST, respectively. These results make our following
screening approach valid for nding zeolites with not only
high adsorption energies but also rather high adsorption
loadings.

Furthermore, scrutinizing the lowest-energy adsorption
geometries of each adsorption system (Fig. 2), we found that the
PCs prefer different pores depending on their molecular sizes.
ards four PCs, where triangles represent the top 20% zeolites (class-1)
olites (class-0), and the light yellow sections denote the top 90% class-

This journal is © The Royal Society of Chemistry 2020



Fig. 2 The structures and the lowest-energy adsorption geometries of the best zeolite for each PC (left); the structures of the four PCs, DMSO2,
TMS, DMSD, andMMST (right). The yellow, red, light yellow andwhite balls represent silicon, oxygen, sulfur and hydrogen atoms, respectively. For
clarity, in the adsorption geometries, the PCs are presented as stick-ball models, while silicon and oxygen atoms in zeolite frameworks are
presented as yellow and red points.

Paper Journal of Materials Chemistry A
The average diameters of DMSO2, TMS, DMSD, and MMST are
4.00, 4.55, 4.34, and 4.30 Å, respectively. For example, the best
zeolite for TMS, zeolite no. 26443 (the order of zeolites is
indexed following the database), has larger pores than the best
zeolites for other three zeolites, which is consistent with the fact
that TMS possesses the most signicant size among the four
PCs under investigation.

For the top 10 zeolites (ranked by adsorption energies) (ESI,
Table S2–S5†), the adsorption energies towards DMSO2 are the
largest with the best adsorption energy of 22.51–22.24 kcal
mol�1, followed by TMS (20.61–20.03 kcal mol�1), DMSD
(19.08–18.78 kcal mol�1), and MMST (21.98–18.05 kcal mol�1).
This journal is © The Royal Society of Chemistry 2020
Thus, DMSO2 can be adsorbed more strongly than the other
three PCs on these PSZs. Two main factors are responsible for
the stronger interaction between DMSO2 and these zeolites.
The rst is its relatively smaller size: the central S–C bonds in
DMSO2 are shorter than the corresponding bonds in the other
PCs, and DMSO2 has two methyl groups instead of three as in
TMS. The smaller size makes DMSO2 better t the PSZ pores;
the second is the more signicant charge differences in
DMSO2: the electronegativity difference between S and C atoms
is much pronounced than that between Si and C atoms in the
other PCs, which enhances the electrostatic interaction
between DMSO2 and PSZs.
J. Mater. Chem. A, 2020, 8, 3228–3237 | 3231
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On the other hand, the adsorption energies of these 500 PSZs
towards each PC cover a relatively big range. In detail, the
differences between the highest and the lowest adsorption
energies for TMS (7.72 kcal mol�1) and MMST (6.90 kcal mol�1)
are around two times larger than those for DMSO2 (4.21 kcal
mol�1) and DMSD (3.03 kcal mol�1). Such adsorption energy
differences strongly suggest that the structures of zeolite
frameworks can signicantly inuence their adsorption
performances, especially for TMS and MMST, and demonstrate
the importance of nding suitable zeolite frameworks for the
effective adsorption and the removal of problematic
compounds.

Feature selection

The GCMC simulation results of 500 PSZs make it possible for
us to select appropriate features to build the ML models, in
which intrinsic features can adequately characterize the differ-
ences among PSZs without time-consuming computations. In
this study, ve features were selected, namely three crystal
parameters (a, b and c/Å), pore diameter (p/Å), and probe-
accessible surface area (s, Å2 per unit cell). Pore diameters and
probe-accessible surface areas can depict the size and the area
of common adsorption locations, and crystal parameters (a,
b and c) can provide additional information on the overall shape
of zeolites.

We carefully checked the numerical values of these ve
features for the top 10 zeolites for each PC (see the ESI, Table
S1–S4†) and found that each PC has its own optimal feature
range. For the pore diameters, the ideal values are 5.80–6.00,
6.10–6.40, 5.95–6.25, and 5.90–6.10 Å, for DMSO2, TMS, DMSD,
and MMST, respectively. For the probe-accessible surface area,
most of the top 10 zeolites for TMS and DMSD have surface
areas over 800 Å2 per unit cell, which are consistent with the
general expectation that larger surface area leads to more
pronounced adsorption loading and energy. However, for
adsorption of DMSO2 and MMST, some of the top 10 zeolites
have very small accessible surface areas, which are as low as 0 Å2

per unit cell (detected by Zeo++ package). This unexpected
observation might be rationalized by the relative easiness for
the “small” MMST and DMSO2 molecules to insert into the
narrow gaps of those zeolites, where are not considered as
accessible surface areas according to the Zeo++ package. When
the crystal parameters (a, b and c/Å) of zeolites are concerned,
they can also inuence the population and the shapes of pores,
but the relationships between zeolite crystal parameters and the
adsorption energies are not obvious; thus it is necessary to
employ more complex machine learning models to describe
such relationships.

Training Random Forest models

The GCMC simulations and feature selection for the 500
randomly selected PSZs as summarized above provided us
with deep insights into the relationships between adsorption
energies and intrinsic characteristics of PSZs, which serve as
the basis for us to train ML models using the Random Forest
(RF) algorithm.78,79 As a widely used algorithm in real-world
3232 | J. Mater. Chem. A, 2020, 8, 3228–3237
classication analysis, RF rst randomly selects different
features and training samples, generates many decision
trees, and then averages the results of these decision trees to
obtain the nal classication. The Random Forest (RF)
algorithm is a collection of decision trees (DT). Compared
with DT, RF is more general, greatly improves the accuracy of
models, and avoids the instability of DT. Moreover, RF can
not only depict the underlying pattern of a complicated
problem, but also provide feature importance for different
features aer training, which cannot be obtained by many
other algorithms. Therefore, we employed the RF algorithm
to train the models.

First, we examined the scatter matrix of the ve features
(Fig. S1–S4†) of the 500 PSZs investigated above and found that
all these ve features play signicant roles in classifying PSZs,
and thus it will be used for ML models.

As pretreatment of data, the balance of data size, division of
training sets and test sets, and the data normalization of all
features were all carried out. The data normalization of ve
features was performed for both training and test sets due to the
large region of feature values. In order to avoid the inuence of
the big difference of the data size between class-1 and class-
0 (1 : 4), we reproduced the minor class (class-1) two more times
to obtain a relatively balanced ratio (3 : 4) of class-1 : class-0.
Five-fold cross-validations have been employed to train and
optimize the models, where the training set was used to build
the model, and the degree of tting for the test set would also
feed back to the model. The input data were randomly split into
an 80% training set (605 data) and a 20% test set (145 data).
Only when a model achieves both a high test score and a high
training score, we settle down the parameters and achieve the
nal optimal model.

During the training process of classication models, if the
predicted labels for a sample match with the true set of labels,
the accuracy is 1.0, or otherwise it is 0.0. Therefore, the quality
of a model can be evaluated using the training score and test
score, which is dened as the following equation:

Accuracðy; ŷÞ ¼ 1

nsamples

Xnsamples�1

i¼0

1ðŷi ¼ yiÞ

where ŷi is the predicted value of the i-th sample, and yi is the
real value; nsamples is the number of samples.81

Based on the Random Forest algorithm, the ML models of
the adsorption performance of PSZs towards DMSO2, TMS,
DMSD, and MMST gained excellent scores for both training and
test sets. All the models gained high scores of 0.99 for the
training sets, and in the meantime, relatively high scores of
0.91, 0.90, 0.91, and 0.89 were obtained for DMSO2, TMS,
DMSD, and MMST in the test sets, respectively (Table 1). The
high training and test scores demonstrate that these Random
Forest models with ve selected features can well describe the
effects of structural parameters of PSZs on the adsorption
performances, and these models are expected to have
outstanding predictive power to classify the adsorption perfor-
mances of much more PSZs towards the four PCs under
consideration.
This journal is © The Royal Society of Chemistry 2020



Table 1 The training and test scores of four models of the adsorption
performance of the 500 pure-silica zeolites with DMSO2, TMS, DMSD,
and MMST

PCs DMSO2 TMS DMSD MMST

Training score 0.99 0.99 0.99 0.99
Test score 0.91 0.90 0.91 0.89

Paper Journal of Materials Chemistry A
To further check the performance of the above-obtained
classication model, we examined the confusion matrices,
which can allow clear visualization of the performance of the
MLmodel (Fig. 3). In the matrix table, the data on the upper-le
and downright diagonal represent the numbers of accurate
predictions, while others are the wrong predictions. Among 145
test PSZs towards adsorbing DMSO2, all the 63 class-1 PSZs were
successfully predicted (class-1 error: 0.00); among the 75 class-
0 PSZs, 61 were correctly classied, while 13 were wrongly
Fig. 3 Confusion matrices of the classification results of the test PSZs a

Fig. 4 The feature importance of five features (crystal parameters: a, b, a
towards adsorption of the four PCs (DMSO2, TMS, DMSD, and MMST).

This journal is © The Royal Society of Chemistry 2020
assigned to class-1 (class-0 error: 0.18). A similar phenomenon
occurs for the other PCs: the class-1 errors for TMS, DMSD, and
MMST are 0.05, 0.09, and 0.09, respectively; and their corre-
sponding class-0 errors are 0.15, 0.09, and 0.12, respectively.
Encouragingly, the predictive accuracy for class-1 is higher than
that for class-0, which guarantees that our ML models would
not miss promising zeolites.

According to our above confusion matrix analyses, our ML
model can well classify the PSZs; especially the prediction
accuracy for class-1 PSZs (higher than 91%, and that for DMSO2

even reached 100%) is even better than that for class-0. The
main errors come from the prediction of class-0, which suggests
that the possibility of missing class-1 is even smaller than what
we expect from training and test scores.

Unlike a linear regression model, an ML model is hard to
interpret directly. Fortunately, RF has the advantage of being able
to provide feature importance of each feature and thus provide
insights into how the parameters/features affect the properties of
dsorbing DMSO2, TMS, DMSD, and MMST.

nd c; pore diameters: p, and surface areas: s) in the trained ML models

J. Mater. Chem. A, 2020, 8, 3228–3237 | 3233
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materials. The sum of feature importance for all features is 1.0;
different values indicate different contributions of feature
importance, and the feature with larger feature importance
affects the output performance more. Thus, we analyzed the
feature importance of these ve features in the ML models.

Differences in feature importance do exist, as illustrated in
Fig. 4. For DMSO2 andMMST, themost critical feature of the 500
PSZs is the available surface area (s), with a feature importance
of 0.26 and 0.24, respectively. For TMS, which has the largest size
among the four PCs, the horizontal structural parameters, a and
b, show more distinguished importance than others (0.30 and
0.27, respectively, Fig. 4). However, all ve features of PSZs play
nearly equal roles in DMSD adsorption, as indicated by their
nearly equivalent values (around 0.2, Fig. 4). These feature
Fig. 5 The structures of the first set of the randomly selected 10 PSZs
from the 230 four-class-1 zeolites.

Fig. 6 (a) The adsorption energies and (b) adsorption loading of the firs
class-1 zeolites, where the upper lines correspond to the top 20% adsorp
500.

3234 | J. Mater. Chem. A, 2020, 8, 3228–3237
importance analyses showed that for a PC with larger size (TMS
in this case), the pores and the accessible surface area of zeolites
are less important, while the crystal properties (a and b), which
control the shape of zeolites, become more critical. The change
of feature importance along with the size of the molecules is
consistent with a previous study on the adsorption of polycyclic
aromatic hydrocarbons on silica nanopores.84
Classifying 50459 PSZs by a trained ML model

The strongest motivation for developing ML models is to
accelerate thematerials discovery process. With the well-trained
ML models for each PC based on GCMC simulations of 500
PSZs, we can quickly classify the adsorption performance of
a much larger number of unexplored PSZs. Note that the
remaining 50459 PSZs in the database (totally 50 959 PSZs) have
similar compositions to the 500 training structures, which
makes our ML models well suited to classify these PSZs.

The values of the ve features (254795 in total) for these
50459 PSZs were also abstracted by ASE75 and the Zeo++

package.76 The classication of the adsorption performance
towards each PC can be easily performed at super high effi-
ciency, costing only several seconds in a desktop machine. Due
to the differences in geometries and functional groups of the
four PCs under consideration, the requirements of optimal
zeolites for them are also different. Our ML model classied
10 347 (20.49%), 19 219 (38.06%), 15 437 (30.57%), and 12 550
(24.63%) as class-1 zeolites towards DMSO2, TMS, DMSD, and
MMST, respectively.

For practical applications, “omnipotent zeolites”, which can
strongly adsorb all four PCs studied in this work, are highly
desired. Thus, we searched for PSZs with high adsorption energy
and loading (class-1, ranked top 20%) towards all four PCs
(named four-class-1 zeolites) and identied 230 four-class-1
zeolites (Fig. S5–S11†). These 230 “omnipotent zeolites” are
merely 0.45% of the 50 959 PSZs examined in this study, and
these powerful adsorbentsmake it possible to cost-effectively and
collectively remove all four PCs. Note that the screening process
was tremendously accelerated by ML methodology, and the
t set of the randomly chosen 10 zeolites from the predicted 230 four-
tion energies (a) and top 30% adsorption loading in the training data of

This journal is © The Royal Society of Chemistry 2020
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candidate list of PSZs was dramatically reduced, which provides
good guidance for future experimental and theoretical investi-
gations on developing potent materials for siloxane removal.

To reconrm the accuracy of ML models and the superior
adsorption performance of the selected 230 PSZs, we randomly
chose two sets (10 each, List 2 in the ESI†) of zeolites from these
230 four-class-1 zeolites and computed their average adsorption
energies and adsorption loading towards four PCs by GCMC
simulations. Fig. 5 and 6 present the structures and adsorption
performance for the rst set of 10 PSZs (the corresponding data
for the second set are given in List S2 and Fig. S12 in the ESI†).
Encouragingly, these 20 zeolites all have class-1 adsorption
energies, which are comparable to or better than the corre-
sponding value of the top 20% in the training data of 500
(Fig. 6a and S12a†). Moreover, all these 20 zeolites have average
loading values higher than or close to the top 30% zeolites in
the training data of 500 (Fig. 6b and S12b†).

Conclusion

Removal of siloxanes is a critical challenge due to their wide-
spread, persistent, and toxic nature. Considering the weak
interactions between siloxanes with typical sorbents, it is highly
desirable to enhance the capacity of sorbents signicantly.
Pure-silica zeolites (PSZs) are promising sorbents for siloxane
removal due to their unique characteristics, such as high
thermal stability and hydrophobicity. In this work, by means of
GCMC simulations and machine learning (ML) techniques, we
captured essential structural features of PSZs and unveiled
structure–property relationships by identifying the relative
importance of pore diameters, surface areas, and crystal
frameworks for different PCs. By screening the database of
50 959 PSZs using ML models, we discovered 230 promising
zeolites with enhanced adsorption performance towards four
important and representative linear siloxanes and derivates
(DMSO2, TMS, DMSD, and MMST). Our best models achieved
9.0% test error for classication of PSZs, and all selected PSZs
(20/20) were veried to be excellent for all four problematic
compounds by GCMC simulations.

Note that our process of screening sorbents by ML meth-
odology can be extended to other sorbents such as Al-contain-
ing zeolites, metal-doped zeolites, and metal–organic
frameworks; in addition, the contaminants can also be other
organic/inorganic compounds which are difficult to be removed
in nature. Therefore, once again, we vividly demonstrate the
power of ML methodologies to accelerate materials discovery,
which can greatly help conquer grand challenges facing the
world today.
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