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As emerging organic contaminants, siloxanes have severe impacts on the environment and human health.
Simple linear and derivates, trimethylsilanol (TMS), dimethylsilanediol (DMSD),
monomethylsilanetriol (MMST), and dimethylsulfone (DMSO,), are four persistent and common

siloxanes

problematic compounds (PCs) from the hydroxylation and sulfuration of polydimethylsiloxanes. Herein,
through a two-step computational process, namely Grand Canonical Monte Carlo (GCMC) simulations
and machine learning (ML), we systematically screened 50 959 hypothetical pure-silica zeolites and
identified 230 preeminent zeolites with excellent adsorption performances with all these four linear
siloxanes and derivates. This work vividly demonstrates that the collocation of data-driven science and
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Introduction

Siloxanes refer to a class of silicone derivatives containing Si-O
bonding" and are classified into linear and cyclic compounds.
Among others, siloxanes are widely used in medicine,
cosmetics, personal care products, and industrial applications
such as lubricants, paints, biomedical products and anti-
foaming agents.”* In 2018, the world sale volume of siloxanes
reached ca. 2.8 million tonnes. However, siloxanes are also
emerging organic contaminants.>** Due to their high vapor
pressure ranging from 124.5 Pa (octamethylcyclotetrasiloxane)
to 2.26 Pa (dodecamethylcyclohexasiloxane),”” siloxanes are
persistent and prone to bioaccumulation,'*™*® thus it remains
a grand challenge to remove them from various environmental
media.’** Meanwhile, the release of siloxanes has severe
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T Electronic supplementary information (ESI) available: The number, average
adsorption loading, and adsorption energy of 500 zeolites for DMSO,, TMS,
DMSD, and MMST; the scatter matrix of five features for adsorption of TMS,
DMSD, and MMST; the adsorption energy, number, pore diameters (p), surface
area (s), crystal parameters (a, b, and ¢) of top 10 adsorption performance
zeolites for DMSO,, TMS, DMSD, and MMST screened by GCMC simulations;
the structures of 230 four-class-1 zeolites; the adsorption energies and loading
of the second set of randomly chosen 10 zeolites from the predicted 230
four-class-1 zeolites; Github website link for the training data, prediction data
and the well-trained models. See DOI: 10.1039/c9ta11909d
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separation problems in environmental science.

impacts, for instance, potential toxic effects, namely oestrogen
mimicking, connective tissue disorder, adverse immunologic
effects, and eventually fatal liver or lung damage in exposed
animals.**** Even worse, siloxanes could mask the presence of
other contaminants in the detection systems, which hinders the
effective removal of other pollutants.

Developing suitable sorbents is a cost-effective solution®**”
to the notorious siloxane removal problem.”® Along this line,
various adsorbents, such as ion exchange resin*»** and activated
carbon,**** have been explored, but their adsorption abilities
are far from satisfactory due to the low affinity.** Therefore, it is
of paramount importance to search for high-performance
sorbents to remove siloxanes effectively.?***3¢

Pure-silica zeolites (PSZs) exhibit outstanding structural
advantages as adsorbent materials.?”*® As a type of microporous
material consisting of merely silicon and oxygen atoms, PSZs
are hydrophobic and without any acid site. Thus, the competi-
tive adsorption of water, which contains high concentrations of
cations, can be significantly reduced.*® Moreover, PSZs are
thermally stable and can be easily regenerated when their pores
are blocked."** These unique features make PSZs potential
sorbents for siloxane removal; however, to the best of our
knowledge, no systematic investigation has been performed so
far. Note that there are millions of possible PSZs,*** screening
these PSZs one by one as promising candidates for siloxane
removal is not practical, if not impossible.

A paradigm shift is now underway, and machine learning (ML)
offers us a powerful tool to solve such complex problems. Machine
learning has been a kind of flourishing statistical methodology
that has been widely used in interdisciplinary studies
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recently.**% Different from rule-based systems that require
much experience, time, and efforts, ML generates mathematical
models*** from experimental®*** and computational data®>>"" at
speeds and scales that far exceed human capabilities. Moreover,
those ML models can help recognize the neglected and potential
connections and accelerate the ability to predict reactions and
materials performances of unknown systems. Recently, ML tech-
niques have been applied in materials discovery in environmental
science and technology.”®* Among others, Lu et al. combined
machine learning techniques and density functional theory
calculations to predict undiscovered hybrid organic-inorganic
perovskites for photovoltaics.®* Chan et al. introduced a set of
machine-learned coarse-grained (CG) models that successfully
described the structure and thermodynamic anomalies of both
water and ice at mesoscopic scales, all at two orders of magnitude
cheaper computational cost than existing atomistic models.*

Here, we designed a two-step computational framework
(Scheme 1) combining Grand Canonical Monte Carlo (GCMC)
simulations and the machine learning method to investigate the
adsorption performances of pure-silica zeolites. Four represen-
tative linear siloxanes and derivatives®*” namely trimethylsilanol
(TMS), dimethylsilanediol (DMSD),*** monomethylsilanetriol
(MMST), and dimethylsulfone (DMSO,)*”"*"* were considered.
We obtained essential features and screened out 230 preeminent
zeolites from 50 959 hypothetical PSZs (picking ratio = 0.0045)
with excellent adsorption performance towards all these four
PCs. Our best models achieved a test score of 0.91 for perfor-
mance classification, and our further GCMC simulations verified
that all 20 randomly chosen ML-recommended PSZs have excel-
lent adsorption performance towards four problematic
compounds. This work highlights the promise of combining
data-driven modelling with traditional computations to predict
the performance of complex zeolite systems.

Methods

Grand Canonical Monte Carlo (GCMC) simulations

Grand Canonical Monte Carlo (GCMC) simulations in the
sorption module of Materials Studio 8.0 were conducted to
evaluate the absorption performance of 500 randomly selected
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zeolites towards each of the four PCs. GCMC is a statistical-
mechanical approach, in which the adsorption process is
investigated relying on random sampling and probabilistic
interpretation in the sorbent framework. We calculated the
average adsorption loading (mol ') and adsorption energy (kcal
mol ') and identified 10 lowest-energy adsorption geometries
of each adsorption system, where more substantial adsorption
loading and higher adsorption energy indicate better adsorp-
tion performances. The GCMC simulations were carried out in
a zeolite cell containing a section of the model pore, and each
cell had a length of around 4.0 nm, which was sufficiently large
to make the effect of finite system size negligible. The systems
were equilibrated for 100 000 GCMC steps, and data were
collected for another 1000 000 production steps to get the
average amount adsorbed. All the GCMC simulations were
carried out at a temperature of 298 K and a fixed pressure of
101.33 kPa with the Metropolis Monte Carlo method” and
COMPASS forcefield.””*

Feature selection

Five key features were used to train the models, which are three
crystal parameters (a, b and c/A), pore diameter (p/A), and probe-
accessible surface area (s, A? per unit cell). Crystal parameters of
50 959 zeolites were obtained through the Atomic Simulation
Environment (ASE) package,” and the pore diameters and
probe-accessible surface areas were obtained using the Zeo™"
package.” In Zeo'', the number of sample points specified in
the input is randomly displaced in the unit cells. Herein, the
pore diameters are the largest inscribed spheres, which were
obtained by setting the radius of the spherical probe to 0.”” The
probe-accessible surface area (per unit cell) was obtained by the
Monte Carlo (MC) sampling approach, in which the radius of
a probe (1.2 A) was used.”

Machine learning models

Random Forest,”®” an integrated algorithm of decision trees® as
implemented in scikit-learn software,® was used to train four
models. Different super-parameters have been studied for
optimal ML models, such as numbers of trees, max depth of
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Scheme 1 The flow chart of two-step computational screening to achieve prominent zeolites for adsorbing four linear siloxanes and derivates.
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branch and max feature for each branch. The parameters which
help model achieve high training and test scores were retained.
According to the test computations, the maximum depth for
DMSO, was set as 9, while that for TMS, DMSD, and MMST was
set as 10. The number of trees modeled was fixed as 250 for
MMST, while for DMSO,, TMS, and DMSD, the numbers of trees
were all set as 200. Additionally, the number of maximum
features for MMST was set as 4, while that for the other PCs was 3.

Results and discussion

GCMC simulations of 500 randomly selected pure-silica
zeolites (PSZs)

As a big zeolite database, the hypothetical zeolite database has
more than several hundred thousand zeolite structures with
reasonable energy and framework density.*>** The family we
chose (ABC-6 16-layered structures) has 50 959 pure-silica
zeolites (PSZs), which have the same numbers of silicon and
oxygen atoms, the same symmetry, and similar unit volume.
Subsequently, the differences between these PSZs are defined in
the atom positions, pore diameters, surface area, and crystal
shape, so that the fundamental rules between zeolite structures
and adsorption performances could be simplified, and the
predictions of this family would be more reliable.

We first randomly chose 500 zeolites from 50 959 PSZs and
computed the average adsorption loading (mol ') and
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adsorption energy (kcal mol ') by Grand Canonical Monte
Carlo (GCMC) simulations (Table S1f). Correlating average
adsorption loading (mol ") and adsorption energy (kcal mol ™)
of these 500 zeolites (Fig. 1), we found that the relationship
between adsorption energy and adsorption loading for TMS is
roughly linear, and that for MMST is most dispersive, while that
for DMSO, and DMSD is in between (Fig. 1).

Noting that common sorbents suffer from low adsorption
energies towards linear siloxanes, we decided to use the
adsorption energy as the standard to classify PSZs in this
work. Based on this standard, zeolites with adsorption energy
in the top 20% are classified as class-1 (great zeolites, triangle
points in Fig. 1), while the rest are classified as class-0 (bad
zeolite, square points in Fig. 1). The borderlines of classifi-
cation are 22.00, 19.20, 18.23, and 17.45 kcal mol ' for
DMSO,, TMS, DMSD, and MMST, respectively. Such high
adsorption energies also lead to high adsorption loading of
these class-1 PSZs: more than 90% class-1 zeolites are in top
39%, 24%, 51%, and 66% loadings for DMSO,, TMS, DMSD,
and MMST, respectively. These results make our following
screening approach valid for finding zeolites with not only
high adsorption energies but also rather high adsorption
loadings.

Furthermore, scrutinizing the lowest-energy adsorption
geometries of each adsorption system (Fig. 2), we found that the
PCs prefer different pores depending on their molecular sizes.
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Fig.1 The average adsorption energy and loading values of 500 PSZs towards four PCs, where triangles represent the top 20% zeolites (class-1)
ranked by adsorption energy, while the square points are the other 80% zeolites (class-0), and the light yellow sections denote the top 90% class-

1 zeolites ranked by adsorption loading.
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Fig.2 The structures and the lowest-energy adsorption geometries of the best zeolite for each PC (left); the structures of the four PCs, DMSO,,
TMS, DMSD, and MMST (right). The yellow, red, light yellow and white balls represent silicon, oxygen, sulfur and hydrogen atoms, respectively. For
clarity, in the adsorption geometries, the PCs are presented as stick-ball models, while silicon and oxygen atoms in zeolite frameworks are

presented as yellow and red points.

The average diameters of DMSO,, TMS, DMSD, and MMST are
4.00, 4.55, 4.34, and 4.30 A, respectively. For example, the best
zeolite for TMS, zeolite no. 26443 (the order of zeolites is
indexed following the database), has larger pores than the best
zeolites for other three zeolites, which is consistent with the fact
that TMS possesses the most significant size among the four
PCs under investigation.

For the top 10 zeolites (ranked by adsorption energies) (ESI,
Table S2-S57), the adsorption energies towards DMSO, are the
largest with the best adsorption energy of 22.51-22.24 kcal
mol ™, followed by TMS (20.61-20.03 kcal mol '), DMSD
(19.08-18.78 keal mol ), and MMST (21.98-18.05 kcal mol ).

This journal is © The Royal Society of Chemistry 2020

Thus, DMSO,, can be adsorbed more strongly than the other
three PCs on these PSZs. Two main factors are responsible for
the stronger interaction between DMSO, and these zeolites.
The first is its relatively smaller size: the central S-C bonds in
DMSO, are shorter than the corresponding bonds in the other
PCs, and DMSO, has two methyl groups instead of three as in
TMS. The smaller size makes DMSO, better fit the PSZ pores;
the second is the more significant charge differences in
DMSO,: the electronegativity difference between S and C atoms
is much pronounced than that between Si and C atoms in the
other PCs, which enhances the electrostatic interaction
between DMSO, and PSZs.

J. Mater. Chem. A, 2020, 8, 3228-3237 | 3231
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On the other hand, the adsorption energies of these 500 PSZs
towards each PC cover a relatively big range. In detail, the
differences between the highest and the lowest adsorption
energies for TMS (7.72 kcal mol ') and MMST (6.90 kecal mol ™)
are around two times larger than those for DMSO, (4.21 kcal
mol ') and DMSD (3.03 kcal mol ™). Such adsorption energy
differences strongly suggest that the structures of zeolite
frameworks can significantly influence their adsorption
performances, especially for TMS and MMST, and demonstrate
the importance of finding suitable zeolite frameworks for the
effective adsorption and the of problematic
compounds.

removal

Feature selection

The GCMC simulation results of 500 PSZs make it possible for
us to select appropriate features to build the ML models, in
which intrinsic features can adequately characterize the differ-
ences among PSZs without time-consuming computations. In
this study, five features were selected, namely three crystal
parameters (a, b and c¢/A), pore diameter (p/A), and probe-
accessible surface area (s, A> per unit cell). Pore diameters and
probe-accessible surface areas can depict the size and the area
of common adsorption locations, and crystal parameters (a,
b and ¢) can provide additional information on the overall shape
of zeolites.

We carefully checked the numerical values of these five
features for the top 10 zeolites for each PC (see the ESI, Table
S1-S47) and found that each PC has its own optimal feature
range. For the pore diameters, the ideal values are 5.80-6.00,
6.10-6.40, 5.95-6.25, and 5.90-6.10 A, for DMSO,, TMS, DMSD,
and MMST, respectively. For the probe-accessible surface area,
most of the top 10 zeolites for TMS and DMSD have surface
areas over 800 A” per unit cell, which are consistent with the
general expectation that larger surface area leads to more
pronounced adsorption loading and energy. However, for
adsorption of DMSO, and MMST, some of the top 10 zeolites
have very small accessible surface areas, which are as low as 0 A2
per unit cell (detected by Zeo™ package). This unexpected
observation might be rationalized by the relative easiness for
the “small” MMST and DMSO, molecules to insert into the
narrow gaps of those zeolites, where are not considered as
accessible surface areas according to the Zeo™ package. When
the crystal parameters (a, b and ¢/A) of zeolites are concerned,
they can also influence the population and the shapes of pores,
but the relationships between zeolite crystal parameters and the
adsorption energies are not obvious; thus it is necessary to
employ more complex machine learning models to describe
such relationships.

Training Random Forest models

The GCMC simulations and feature selection for the 500
randomly selected PSZs as summarized above provided us
with deep insights into the relationships between adsorption
energies and intrinsic characteristics of PSZs, which serve as
the basis for us to train ML models using the Random Forest
(RF) algorithm.””® As a widely used algorithm in real-world
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Paper

classification analysis, RF first randomly selects different
features and training samples, generates many decision
trees, and then averages the results of these decision trees to
obtain the final classification. The Random Forest (RF)
algorithm is a collection of decision trees (DT). Compared
with DT, RF is more general, greatly improves the accuracy of
models, and avoids the instability of DT. Moreover, RF can
not only depict the underlying pattern of a complicated
problem, but also provide feature importance for different
features after training, which cannot be obtained by many
other algorithms. Therefore, we employed the RF algorithm
to train the models.

First, we examined the scatter matrix of the five features
(Fig. S1-S471) of the 500 PSZs investigated above and found that
all these five features play significant roles in classifying PSZs,
and thus it will be used for ML models.

As pretreatment of data, the balance of data size, division of
training sets and test sets, and the data normalization of all
features were all carried out. The data normalization of five
features was performed for both training and test sets due to the
large region of feature values. In order to avoid the influence of
the big difference of the data size between class-1 and class-
0 (1 : 4), we reproduced the minor class (class-1) two more times
to obtain a relatively balanced ratio (3 : 4) of class-1 : class-0.
Five-fold cross-validations have been employed to train and
optimize the models, where the training set was used to build
the model, and the degree of fitting for the test set would also
feed back to the model. The input data were randomly split into
an 80% training set (605 data) and a 20% test set (145 data).
Only when a model achieves both a high test score and a high
training score, we settle down the parameters and achieve the
final optimal model.

During the training process of classification models, if the
predicted labels for a sample match with the true set of labels,
the accuracy is 1.0, or otherwise it is 0.0. Therefore, the quality
of a model can be evaluated using the training score and test
score, which is defined as the following equation:

1 Nsamples — 1

Accurac(y,y) =

PR3 1 =)
where y; is the predicted value of the i-th sample, and y; is the
real value; 7gampies is the number of samples.®

Based on the Random Forest algorithm, the ML models of
the adsorption performance of PSZs towards DMSO,, TMS,
DMSD, and MMST gained excellent scores for both training and
test sets. All the models gained high scores of 0.99 for the
training sets, and in the meantime, relatively high scores of
0.91, 0.90, 0.91, and 0.89 were obtained for DMSO,, TMS,
DMSD, and MMST in the test sets, respectively (Table 1). The
high training and test scores demonstrate that these Random
Forest models with five selected features can well describe the
effects of structural parameters of PSZs on the adsorption
performances, and these models are expected to have
outstanding predictive power to classify the adsorption perfor-
mances of much more PSZs towards the four PCs under
consideration.

This journal is © The Royal Society of Chemistry 2020
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Table1 The training and test scores of four models of the adsorption
performance of the 500 pure-silica zeolites with DMSO,, TMS, DMSD,
and MMST

PCs DMSO, T™MS DMSD MMST
Training score 0.99 0.99 0.99 0.99
Test score 0.91 0.90 0.91 0.89

To further check the performance of the above-obtained
classification model, we examined the confusion matrices,
which can allow clear visualization of the performance of the
ML model (Fig. 3). In the matrix table, the data on the upper-left
and downright diagonal represent the numbers of accurate
predictions, while others are the wrong predictions. Among 145
test PSZs towards adsorbing DMSO,, all the 63 class-1 PSZs were
successfully predicted (class-1 error: 0.00); among the 75 class-
0 PSZs, 61 were correctly classified, while 13 were wrongly

Class-zero

Class-one

Real Label

Class-zero

Class-one

Journal of Materials Chemistry A

assigned to class-1 (class-0 error: 0.18). A similar phenomenon
occurs for the other PCs: the class-1 errors for TMS, DMSD, and
MMST are 0.05, 0.09, and 0.09, respectively; and their corre-
sponding class-0 errors are 0.15, 0.09, and 0.12, respectively.
Encouragingly, the predictive accuracy for class-1 is higher than
that for class-0, which guarantees that our ML models would
not miss promising zeolites.

According to our above confusion matrix analyses, our ML
model can well classify the PSZs; especially the prediction
accuracy for class-1 PSZs (higher than 91%, and that for DMSO,
even reached 100%) is even better than that for class-0. The
main errors come from the prediction of class-0, which suggests
that the possibility of missing class-1 is even smaller than what
we expect from training and test scores.

Unlike a linear regression model, an ML model is hard to
interpret directly. Fortunately, RF has the advantage of being able
to provide feature importance of each feature and thus provide
insights into how the parameters/features affect the properties of

80
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— 40
— 20

e MMST -0

055

Fig. 3 Confusion matrices of the classification results of the test PSZs adsorbing DMSO,, TMS, DMSD, and MMST.

c0.19 c0.19

Descriptors

50.20(4)

c0.19 Vc0.26

b0.20(2)

00 01 02 03 00 01 02 03

Importance of DMSO, Importance of TMS

T T T T T T T T
00 0.1 02 03 0.0 0.1 02 03

Importance of DMSD Importance of MMST

Fig. 4 The feature importance of five features (crystal parameters: a, b, and c; pore diameters: p, and surface areas: s) in the trained ML models

towards adsorption of the four PCs (DMSO,, TMS, DMSD, and MMST).
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materials. The sum of feature importance for all features is 1.0;
different values indicate different contributions of feature
importance, and the feature with larger feature importance
affects the output performance more. Thus, we analyzed the
feature importance of these five features in the ML models.
Differences in feature importance do exist, as illustrated in
Fig. 4. For DMSO, and MMST, the most critical feature of the 500
PSZs is the available surface area (s), with a feature importance
of 0.26 and 0.24, respectively. For TMS, which has the largest size
among the four PCs, the horizontal structural parameters, a and
b, show more distinguished importance than others (0.30 and
0.27, respectively, Fig. 4). However, all five features of PSZs play
nearly equal roles in DMSD adsorption, as indicated by their
nearly equivalent values (around 0.2, Fig. 4). These feature
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Fig. 5 The structures of the first set of the randomly selected 10 PSZs
from the 230 four-class-1 zeolites.
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importance analyses showed that for a PC with larger size (TMS
in this case), the pores and the accessible surface area of zeolites
are less important, while the crystal properties (a and b), which
control the shape of zeolites, become more critical. The change
of feature importance along with the size of the molecules is
consistent with a previous study on the adsorption of polycyclic
aromatic hydrocarbons on silica nanopores.**

Classifying 50459 PSZs by a trained ML model

The strongest motivation for developing ML models is to
accelerate the materials discovery process. With the well-trained
ML models for each PC based on GCMC simulations of 500
PSZs, we can quickly classify the adsorption performance of
a much larger number of unexplored PSZs. Note that the
remaining 50459 PSZs in the database (totally 50 959 PSZs) have
similar compositions to the 500 training structures, which
makes our ML models well suited to classify these PSZs.

The values of the five features (254795 in total) for these
50459 PSZs were also abstracted by ASE” and the Zeo™
package.” The classification of the adsorption performance
towards each PC can be easily performed at super high effi-
ciency, costing only several seconds in a desktop machine. Due
to the differences in geometries and functional groups of the
four PCs under consideration, the requirements of optimal
zeolites for them are also different. Our ML model classified
10 347 (20.49%), 19 219 (38.06%), 15 437 (30.57%), and 12 550
(24.63%) as class-1 zeolites towards DMSO,, TMS, DMSD, and
MMST, respectively.

For practical applications, “omnipotent zeolites”, which can
strongly adsorb all four PCs studied in this work, are highly
desired. Thus, we searched for PSZs with high adsorption energy
and loading (class-1, ranked top 20%) towards all four PCs
(named four-class-1 zeolites) and identified 230 four-class-1
zeolites (Fig. S5-S117). These 230 “omnipotent zeolites” are
merely 0.45% of the 50 959 PSZs examined in this study, and
these powerful adsorbents make it possible to cost-effectively and
collectively remove all four PCs. Note that the screening process
was tremendously accelerated by ML methodology, and the
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(a) The adsorption energies and (b) adsorption loading of the first set of the randomly chosen 10 zeolites from the predicted 230 four-

class-1 zeolites, where the upper lines correspond to the top 20% adsorption energies (a) and top 30% adsorption loading in the training data of

500.
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candidate list of PSZs was dramatically reduced, which provides
good guidance for future experimental and theoretical investi-
gations on developing potent materials for siloxane removal.

To reconfirm the accuracy of ML models and the superior
adsorption performance of the selected 230 PSZs, we randomly
chose two sets (10 each, List 2 in the ESI}) of zeolites from these
230 four-class-1 zeolites and computed their average adsorption
energies and adsorption loading towards four PCs by GCMC
simulations. Fig. 5 and 6 present the structures and adsorption
performance for the first set of 10 PSZs (the corresponding data
for the second set are given in List S2 and Fig. S12 in the ESIY).
Encouragingly, these 20 zeolites all have class-1 adsorption
energies, which are comparable to or better than the corre-
sponding value of the top 20% in the training data of 500
(Fig. 6a and S12at). Moreover, all these 20 zeolites have average
loading values higher than or close to the top 30% zeolites in
the training data of 500 (Fig. 6b and S12bt).

Conclusion

Removal of siloxanes is a critical challenge due to their wide-
spread, persistent, and toxic nature. Considering the weak
interactions between siloxanes with typical sorbents, it is highly
desirable to enhance the capacity of sorbents significantly.
Pure-silica zeolites (PSZs) are promising sorbents for siloxane
removal due to their unique characteristics, such as high
thermal stability and hydrophobicity. In this work, by means of
GCMC simulations and machine learning (ML) techniques, we
captured essential structural features of PSZs and unveiled
structure-property relationships by identifying the relative
importance of pore diameters, surface areas, and crystal
frameworks for different PCs. By screening the database of
50 959 PSZs using ML models, we discovered 230 promising
zeolites with enhanced adsorption performance towards four
important and representative linear siloxanes and derivates
(DMSO,, TMS, DMSD, and MMST). Our best models achieved
9.0% test error for classification of PSZs, and all selected PSZs
(20/20) were verified to be excellent for all four problematic
compounds by GCMC simulations.

Note that our process of screening sorbents by ML meth-
odology can be extended to other sorbents such as Al-contain-
ing zeolites, metal-doped zeolites, and metal-organic
frameworks; in addition, the contaminants can also be other
organic/inorganic compounds which are difficult to be removed
in nature. Therefore, once again, we vividly demonstrate the
power of ML methodologies to accelerate materials discovery,
which can greatly help conquer grand challenges facing the
world today.
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