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A search is conducted for the electroweak pair production of a chargino and a neutralino
pp → χ̃�1 χ̃

0
2, where the chargino decays into the lightest neutralino and a W boson, χ̃�1 → χ̃01W

�,
while the neutralino decays into the lightest neutralino and a Standard Model-like 125 GeV Higgs
boson, χ̃02 → χ̃01h. Fully hadronic, semileptonic, diphoton, and multilepton (electrons, muons) final
states with missing transverse momentum are considered in this search. Higgs bosons in the final
state are identified by either two jets originating from bottom quarks (h → bb̄), two photons (h → γγ),
or leptons from the decay modes h → WW, h → ZZ or h → ττ. The analysis is based on 36.1 fb−1 offfiffiffi
s

p ¼ 13 TeV proton-proton collision data recorded by the ATLAS detector at the Large
Hadron Collider. Observations are consistent with the Standard Model expectations, and 95% con-
fidence-level limits of up to 680 GeV in χ̃�1 =χ̃

0
2 mass are set in the context of a simplified

supersymmetric model.
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I. INTRODUCTION

Theoretical and experimental arguments suggest that
the Standard Model (SM) is an effective theory valid up
to a certain energy scale. The observation by the ATLAS
and CMS collaborations of a particle consistent with the
SM Higgs boson [1–4] has brought renewed attention to
the mechanism of electroweak symmetry breaking and
the hierarchy problem [5–8]: the Higgs boson mass is
strongly sensitive to quantum corrections from physics at
very high energy scales and demands a high level of
fine-tuning. Supersymmetry (SUSY) [9–14] resolves the
hierarchy problem by introducing for each known boson
or fermion a new partner (superpartner) that shares the
same mass and internal quantum numbers if supersym-
metry is unbroken. However, these superpartners have
not been observed, so SUSY must be a broken symmetry
and the mass scale of the supersymmetric particles is as
yet undetermined. The possibility of a supersymmetric
dark matter (DM) candidate [15,16] is related closely to
the conservation of R-parity [17]. Under the R-parity

conservation hypothesis, the lightest supersymmetric
particle (LSP) is stable. If the LSP is weakly interacting,
it may provide a viable DM candidate. The nature of the
LSP is defined by the mechanism that spontaneously
breaks supersymmetry and the parameters of the chosen
theoretical framework.
In the SUSY scenarios considered as benchmarks in this

paper, the LSP is the lightest of the neutralinos (χ̃0) which,
together with the charginos (χ̃�), represent the mass
eigenstates formed from the mixture of the γ, W, Z and
Higgs bosons’ superpartners (the higgsinos, winos and
binos). The neutralinos and charginos are collectively
referred to as electroweakinos. Specifically, the electro-
weakino mass eigenstates are designated in order of
increasing mass as χ̃�i (i ¼ 1, 2) (charginos) and χ̃0j
(j ¼ 1, 2, 3, 4) (neutralinos). In the models considered
in this paper, the compositions of the lightest chargino (χ̃�1 )
and next-to-lightest neutralino (χ̃02) are wino-like and the
two particles are nearly mass degenerate, while the lightest
neutralino (χ̃01) is assumed to be bino-like.
Naturalness considerations [18,19] suggest that the

lightest of the charginos and neutralinos have masses near
the electroweak scale. Their direct production may be the
dominant mechanism at the Large Hadron Collider (LHC)
if the superpartners of the gluon and quarks are heavier than
a few TeV. In SUSY models where the masses of the
heaviest (pseudoscalar, charged) MSSM Higgs boson and
the superpartners of the leptons have masses larger than
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those of the lightest chargino and next-to-lightest neutra-
lino, the former might decay into the χ̃01 and a W boson
(χ̃�1 → Wχ̃01), while the latter could decay into the χ̃01 and
the lightest MSSM Higgs boson (h, SM-like), or Z boson
(χ̃02 → h=Zχ̃01) [17,20,21]. The decay via the Higgs boson is
dominant for many choices of the parameters as long as the
mass-splitting between the two lightest neutralinos is larger
than the Higgs boson mass and the higgsinos are heavier
than the winos. SUSY models of this kind, where sleptons
are not too heavy although with masses above that of χ̃�1
and χ̃02, could provide a possible explanation for the
discrepancy between measurements of the muon’s anoma-
lous magnetic moment g − 2 and SM predictions [22–25].
This paper presents a search in proton-proton collision

produced at the LHC at a center-of-mass energy
ffiffiffi
s

p ¼
13 TeV for the direct pair production of mass-degenerate
charginos and next-to-lightest neutralinos that promptly
decay as χ̃�1 → Wχ̃01 and χ̃02 → hχ̃01. The search targets
hadronic and leptonic decays of both the W and Higgs
bosons. Three Higgs decay modes are considered: decays
into a pair of b-quarks, a pair of photons, or a pair of W or
Z bosons or τ-leptons, where at least one of the W=Z=τ
decays leptonically. Four signatures are considered, illus-
trated in Fig. 1. All final states contain missing transverse
momentum (  pmiss

T , with magnitude Emiss
T ) from neutrali-

nos, and in some cases neutrinos. Events are characterized
by the various decay modes of the W and Higgs bosons.
The signatures considered have the following: jets, with
two of them originating from the fragmentation of
b-quarks, called b-jets, and either no leptons [0lbb̄,
Fig. 1(a)], or exactly one lepton (l ¼ e, μ) [1lbb̄,
Fig. 1(b)]; two photons and one lepton [1lγγ, Fig. 1(c)];
only leptons [Fig. 1(d)] such that the final state contains
either two leptons with the same electric charge, l�l�, or
three leptons, 3l.
A simplified SUSY model [26,27] is considered for the

optimization of the search and the interpretation of
results. The χ̃�1 → Wχ̃01 and χ̃02 → hχ̃01 decays are assumed
to have 100% branching ratio. The Higgs boson mass is

set to 125 GeV and its branching ratios are assumed to be
the same as in the SM. The Higgs boson candidate can be
fully reconstructed with 0lbb̄, 1lbb̄ and 1lγγ signatures,
while l�l� and 3l final states are sensitive to decays
h → WW, h → ZZ and h → ττ. Previous searches for
charginos and neutralinos at the LHC targeting decays via
the Higgs boson into leptonic final states have been
reported by the ATLAS [28] and CMS [29] collabora-
tions; a search in the hadronic channel is also reported in
this paper.

II. ATLAS DETECTOR

The ATLAS detector [30] is a multipurpose particle
detector with a forward-backward symmetric cylindrical
geometry and nearly 4π coverage in solid angle.1 The inner
tracking detector consists of pixel and microstrip silicon
detectors covering the pseudorapidity region jηj < 2.5,
surrounded by a transition radiation tracker which enhances
electron identification in the region jηj < 2.0. A new inner
pixel layer, the insertable B-layer [31,32], was added at a
mean radius of 3.3 cm during the period between Run 1 and
Run 2 of the LHC. The inner detector is surrounded by a
thin superconducting solenoid providing an axial 2 T
magnetic field and by a fine-granularity lead/liquid-argon
(LAr) electromagnetic calorimeter covering jηj < 3.2.
A steel/scintillator-tile calorimeter provides hadronic cov-
erage in the central pseudorapidity range (jηj < 1.7). The
end cap and forward regions (1.5 < jηj < 4.9) of the

FIG. 1. Diagrams illustrating the signal scenarios considered for the pair production of chargino and next-to-lightest neutralino
targeted by the (a) hadronic (0lbb̄) and (b) 1lbb̄, (c) 1lγγ, (d) l�l�, 3l leptonic channel selections. In (a) and (b) the Higgs boson
decays into two b-quarks. In (c), the diphoton channel is shown with h → γγ. In (d), the visible multilepton final state of the Higgs boson
is shown. Leptons are either electrons or muons.

1ATLAS uses a right-handed coordinate system with its origin
at the nominal interaction point in the center of the detector. The
positive x axis is defined by the direction from the interaction
point to the center of the LHC ring, with the positive y axis
pointing upwards, while the beam direction defines the z axis.
Cylindrical coordinates ðr;ϕÞ are used in the transverse plane, ϕ
being the azimuthal angle around the z axis. The pseudorapidity η
is defined in terms of the polar angle θ by η ¼ − ln tanðθ=2Þ.
Rapidity is defined as y ¼ 0.5 ln½ðEþ pzÞ=ðE − pzÞ� where E
denotes the energy and pz is the component of the momentum
along the beam direction. The angular distance ΔR is defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔyÞ2 þ ðΔϕÞ2
p

.
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hadronic calorimeter are made of LAr active layers with
either copper or tungsten as the absorber material. A muon
spectrometer with an air-core toroid magnet system sur-
rounds the calorimeters. Three layers of high-precision
tracking chambers provide coverage in the range jηj < 2.7,
while dedicated fast chambers allow triggering in the
region jηj < 2.4. The ATLAS trigger system consists of a
hardware-based level-1 trigger followed by a software-
based high-level trigger [33].

III. DATA AND MONTE CARLO SIMULATION

The data used in this analysis were collected in pp
collisions at the LHC with a center-of-mass energy of
13 TeV and a 25 ns proton bunch crossing interval during
2015 and 2016. The full dataset corresponds to an
integrated luminosity of 36.1 fb−1 after requiring that all
detector subsystems were operational during data record-
ing. The uncertainty in the combined 2015þ 2016 inte-
grated luminosity is 2.1%. It is derived, following a
methodology similar to that detailed in Ref. [34], and
using the LUCID-2 detector for the baseline luminosity
measurements [35], from calibration of the luminosity scale
using x − y beam-separation scans. Each event includes on
average 13.7 and 24.9 inelastic pp collisions in the same
bunch crossing (pileup) in the 2015 and 2016 datasets,
respectively. In the 0lbb̄ and 1lbb̄ channels, events are
required to pass Emiss

T triggers with period-dependent
thresholds. These triggers are fully efficient for events
with Emiss

T > 200 GeV reconstructed offline. Data for the
1lγγ signature were collected with a diphoton trigger
which selects events with at least two photons, with
transverse momentum thresholds on the highest- and
second-highest pT photons of 35 GeV and 25 GeV,
respectively. A combined set of dilepton and single-lepton
triggers was used for event selection in the l�l� and 3l
channels.

Monte Carlo (MC) samples of simulated events are used
to model the signal and to aid in the estimation of SM
background processes, with the exception of multijet
processes, which are estimated from data. All simulated
samples were produced using the ATLAS simulation
infrastructure [36] and GEANT4 [37], or a faster simulation
based on a parameterization of the calorimeter response and
GEANT4 for the other detector systems. The simulated
events were reconstructed with the same algorithm as that
used for data.
SUSY signal samples were generated with

MADGRAPH5_aMC@NLO v2.2.3 [38] (v2.3.3 for 0lbb̄)
at leading order (LO) and interfaced to PYTHIA v8.186 [39]
(v8.212 for 0lbb̄) with the A14 [40] set of tuned param-
eters (tune) for the modeling of the parton showering (PS),
hadronization and underlying event. The matrix element
(ME) calculation was performed at tree level and includes
the emission of up to two additional partons. The ME-PS
matching was done using the CKKW-L [41] prescription,
with a matching scale set to one quarter of the chargino and
next-to-lightest neutralino mass. The NNPDF23LO [42]
parton distribution function (PDF) set was used. The
cross sections used to evaluate the signal yields are
calculated to next-to-leading-order (NLO) accuracy in
the strong coupling constant, adding the resummation of
soft gluon emission at next-to-leading-logarithm accuracy
(NLOþ NLL) [43–45]. The nominal cross section and its
uncertainty are taken as the midpoint and half-width of an
envelope of cross-section predictions using different PDF
sets and factorization and renormalization scales, as
described in Ref. [46].
Background samples were simulated using different MC

event generators depending on the process. All background
processes are normalized to the best available theoretical
calculation of their respective cross sections. The event
generators, the accuracy of theoretical cross sections, the

TABLE I. List of generators used for the different processes. Information is given about the underlying-event tunes, the PDF sets and
the perturbative QCD highest-order accuracy (LO, NLO, next-to-next-to-leading order, NNLO, and next-to-next-to-leading-log, NNLL)
used for the normalization of the different samples.

Process Generator þ fragmentation/hadronization Tune PDF set Cross-section

W=Z þ jets SHERPA-2.2.1 [47] Default NNPDF3.0NNLO [42] NNLO
tt̄ POWHEG-BOX v2 [49,50] PERUGIA2012 [51] CT10 [52] NNLO

þ PYTHIA-6.428 [53] þNNLL
Single top POWHEG-BOX v1 or v2 PERUGIA2012 CT10 NNLO

þ PYTHIA-6.428 þNNLL
Diboson
WW, WZ, ZZ SHERPA-2.2.1 Default NNPDF3.0NNLO NLO
tt̄þ X
tt̄W=Z MADGRAPH-2.2.2 [38] A14 [40] NNPDF2.3 NLO
4 top quarks þ PYTHIA-8.186 [39]
tt̄h MADGRAPH5_aMC@NLO-2.2.1 UEEE5 [54] CT10 NLO

þ HERWIG++-2.7.1
Wh, Zh PYTHIA-8.186 [48] A14 NNPDF2.3 NLO
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underlying-event parameter tunes, and the PDF sets used in
simulating the SM background processes are summarized
in Table I. For all samples, except those generated using
SHERPA [47], the EVTGEN v1.2.0 [48] program was used to
simulate the properties of the bottom- and charm-hadron
decays. Several samples produced without detector simu-
lation are employed to estimate systematic uncertainties
associated with the specific configuration of the MC
generators used for the nominal SM background samples.
They include variations of the renormalization and factori-
zation scales, the CKKW-L matching scale, as well as
different PDF sets and fragmentation/hadronization mod-
els. Details of the MC modeling uncertainties are discussed
in Sec. VII.

IV. EVENT RECONSTRUCTION AND
OBJECT DEFINITIONS

Common event-quality criteria and object reconstruction
definitions are applied for all analysis channels, including
standard data-quality requirements to select events taken
during optimal detector operation. In addition, each analy-
sis channel applies selection criteria that are specific to the
objects and kinematics of interest in those final states,
which are described in Sec. VI.
Events are required to have at least one primary vertex,

defined as the vertex associated with at least two tracks with
pT > 0.4 GeV and with the highest sum of squared trans-
verse momenta of associated tracks [55]. Quality criteria
are imposed to reject events that contain at least one jet
arising from noncollision sources or detector noise [56].
Electron candidates are reconstructed from energy clus-

ters in the electromagnetic calorimeter and inner-detector
tracks. They are required to satisfy the loose likelihood
identification criteria, have B-layer hits (the loose require-
ment), and be isolated [57,58]. These identification
criteria are based on several properties of the electron
candidates, including calorimeter-based shower shapes,
inner-detector track hits and impact parameters, and com-
parisons of calorimeter cluster energy to track momentum.
Corrections for energy contributions due to pileup are
included. For all but the 1lγγ channel, electrons are also
required to have pT > 20 GeV and jηj < 2.47; for the 1lγγ
channel they are required to have pT > 15 GeV and
jηj < 2.37. These electrons are used in the overlap removal
procedure that is described below, and to apply lepton
selections and vetoes in the various analysis channels, in
some cases with additional selections applied.
Photon candidates are reconstructed from energy

clusters in the electromagnetic calorimeter [59] in the
region jηj < 2.37, after removing the transition region
between barrel and end cap calorimeters, 1.37< jηj<1.52.
Photons are classified as unconverted photons if they do not
have tracks from a conversion vertex matched to the cluster,
and as converted if they do [60]. Identification criteria are
applied to separate photon candidates from π0 or other

neutral hadrons decaying into two photons [59]. Strict
identification requirements based on calorimeter shower
shapes are used to identify the so-called tight photons, which
are used in the 1lγγ analysis channel. In this case, photons
are required to satisfy an isolation criterion based on the sum
of the calorimeter energy in a cone ofΔR ¼ 0.4 centered on
the direction of the candidate photon, minus the energy of
the photon candidate itself and energy expected from pileup
interactions. The resulting isolation transverse energy is
required to be less than 2.45 GeVþ 0.022 × Eγ

T , where E
γ
T

is the candidate photon’s transverse energy. Photons are
calibrated using comparisons of data with MC simulation
[57] and required to have ET > 25 GeV. For both the
electrons and photons, additional criteria are applied to
remove poor quality or fake electromagnetic clusters result-
ing from instrumental problems.
Muon candidates are reconstructed from matching tracks

in the inner detector and muon spectrometer. They are
required to meet medium quality and identification criteria
and to be isolated, as described in Ref. [61], and to have
pT > 20 GeV (pT > 10 GeV for the 1lγγ analysis) and
jηj < 2.5. These muons are used in the overlap removal
procedure and to apply lepton selections and vetoes in the
various analysis channels, in some cases with additional
selections applied. Events containing muons from calo-
rimeter punch-through or poorly measured tracks are
rejected if any muon has a large relative q=p error, or
σðq=pÞ=jq=pj > 0.2, where q is the charge of the track and
p is the momentum. Cosmic-ray muons are rejected after
the muon-jet overlap removal by requiring the transverse
and longitudinal impact parameters to be jd0j < 0.25 mm
and jz0 sin θj < 0.5 mm, respectively.

Jets are reconstructed from three-dimensional topologi-
cal energy clusters [62] in the calorimeter using the anti-kt
jet algorithm [63] with a radius parameter of 0.4. Each
topological cluster is calibrated to the electromagnetic scale
prior to jet reconstruction. The reconstructed jets are then
calibrated to the energy scale of stable final state particles2

in the MC simulation by a jet energy scale (JES) correction
derived from

ffiffiffi
s

p ¼ 13 TeV data and simulations [64].
Further selections are applied to reject jets within jηj < 2.4
that originate from pileup interactions by means of a
multivariate algorithm using information about the tracks
matched to each jet [64,65]. Candidate jets are required to
have pT > 20 GeV and jηj < 2.8.
A jet is tagged as a b-jet by means of a multivariate

algorithm called MV2c10 using information about the
impact parameters of inner-detector tracks matched to
the jet, the presence of displaced secondary vertices, and
the reconstructed flight paths of b- and c-hadrons inside the
jet [66–68]. Jets tagged asb-jetsmust have jηj < 2.5. Several

2Stable particles in the MC simulation event record are those
that have a lifetime τ such that cτ > 10 mm. Jets of this kind are
referred to as particle jets.
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operating points are available, corresponding to various
efficiencies obtained in tt̄ simulated events. The 77%
efficiency point was found to be optimal for most SUSY
models considered in this paper and is used in the analysis.
This configuration corresponds to a background rejection of
6 for c-jets, 22 for τ-leptons and 134 for light-quark and
gluon jets [66–68], estimated using tt̄ simulated events.
The Emiss

T in the event is defined as the magnitude of the
negative vector sum of the pT of all selected and calibrated
physics objects in the event, with an extra term added to
account for soft energy in the event that is not associated
with any of the selected objects. This soft term is calculated
from inner-detector tracks matched to the primary vertex to
make it more resilient to pileup contamination [69].
Overlaps between reconstructed objects are accounted

for and removed in a prioritized sequence. If a recon-
structed muon shares an inner-detector track with an
electron, the electron is removed. Jets within ΔR ¼ 0.2
of an electron are removed. Electrons that are reconstructed
within ΔR ¼ 0.4 of any surviving jet are then removed,
except in the case of the 0lbb̄ channel, where ΔR ¼
minð0.4; 0.04þ 10 GeV=pe

TÞ, thereby allowing a high-pT
electron to be slightly closer to a jet than ΔR ¼ 0.4. If a jet
is reconstructed within ΔR ¼ 0.2 of a muon and the jet has
fewer than three associated tracks or the muon energy
constitutes a large fraction (>50%) of the jet energy, then
the jet is removed. Muons reconstructed within a cone of
size ΔR ¼ minð0.4; 0.04þ 10 GeV=pμ

TÞ around the axis
of any surviving jet are removed. If an electron (muon) and
a photon are found within ΔR ¼ 0.4, the object is inter-
preted as electron (muon) and the overlapping photon is
removed from the event. Finally, if a jet and a photon are
found within ΔR < 0.2, the object is interpreted as photon
and the overlapping jet is removed from the event; other-
wise, if ΔR < 0.4, the object is interpreted as a jet and the
overlapping photon is discarded.

V. KINEMATIC REQUIREMENTS AND EVENT
VARIABLES

Different analysis channels’ signal regions are optimized
to target different mass hierarchies of the particles involved.
The event selection criteria are defined on the basis of
kinematic requirements for the objects described in the
previous section and event variables are presented below. In
the following, jets are ordered according to decreasing pT,
and pT thresholds depend on the analysis channel.

(a) Njet is the number of jets with jηj < 2.8 and pT
above an analysis-dependent pT threshold.

(b) Nb-jet is the number of b-jets with jηj < 2.5 with pT
above an analysis-dependent pT threshold.

(c) Δηll is the pseudorapidity difference between the
two leading leptons in the case of multilepton
channels.

(d) The minimum azimuthal angle Δϕ4j
min between the

 pmiss
T and the  pT of each of the four leading jets in the

event is useful for rejecting events with mismeasured
jet energies leading to Emiss

T in the event, and is
defined as

Δϕ4j
min ¼ mini≤4Δϕð  pmiss

T ;  pjet
T;iÞ

where mini≤4 selects the jet the minimizes Δϕ.
(e) The effective mass meff is defined as the scalar sum

of the pT of jets, leptons and Emiss
T , which aids in

establishing the mass scale of the processes being
probed, and is defined as

meff ¼
XNjet

i

pjet
T;i þ

XNlepton

j

pl
T;j þ Emiss

T :

(f) mbb̄ is the invariant mass of the two leading b-jets in
the event, and serves as a selection criterion for jet
pairs to be considered as Higgs boson candidates.

(g) mqq̄ corresponds to the invariant mass of the two
highest-pT jets in the event not identified as b-jets.
This observable, used in the 0lbb̄ channel, serves as
a selection criterion for jet pairs to be considered as
W boson candidates.

(h) mγγ is the invariant mass of the two leading photons
in the event, and serves as a selection criterion for
photon pairs to be considered as Higgs boson
candidates.

(i) mljðjÞ is the invariant mass of the jet (when requiring
exactly one jet), or the two leading jets system (when
requiring two or more jets), and the closest lepton.
The angular distance ΔR is used as the distance
measure between the lepton and the jet.

(j) mlll is the invariant mass of the three selected
leptons.

(k) mT is the transverse mass formed by the Emiss
T and

the leading lepton in the event. It is defined as

mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl

TE
miss
T ð1 − cosΔϕðl;  pmiss

T ÞÞ
q

and is used to reduce the W þ jets and tt̄ back-
grounds.

(l) mb;min
T is the minimum transverse mass formed by

Emiss
T and up to two of the highest-pT b-jets in the

event, defined as

mb;min
T

¼mini≤2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pb-jeti

T Emiss
T ð1−cosΔϕð  pmiss

T ;  pb-jeti
T ÞÞ

q �
:

where mini≤2 selects the b-jet the minimizes the
transverse mass.

(m) The lepton-Emiss
T -γ transverse mass mWγi

T is calcu-
lated with respect to the ith photon γi, ordered in
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terms of decreasing ET, the Emiss
T , and the identified

lepton l. It is defined as

ðmWγi
T Þ2 ¼ 2Eγi

TE
miss
T ð1 − cosΔϕðγi;  pmiss

T ÞÞ
þ 2pl

TE
miss
T ð1 − cosΔϕðl;  pmiss

T ÞÞ
þ 2Eγi

Tp
l
Tð1 − cosΔϕðγi;lÞÞ:

(n) mCT is the contransverse mass variable [70,71] and
is defined for the bb̄ system as

mCT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pb1

T pb2
T ð1þ cosΔϕbbÞ

q
;

where pb1
T and pb2

T are transverse momenta of the two
leading b-jets and Δϕbb is the azimuthal angle
between them. It is one of the main discriminating
variables in selections targeting Higgs bosons
decaying intob-quarks and is effective in suppressing
the background from top-quark pair production.

(o) mT2 is referred to as the stransverse mass and is
closely related to mT. It is used to bound the masses
of particles produced in pairs and each decaying into
one particle that is detected and another particle that
contributes to the missing transverse momentum
[72,73]. In the case of a dilepton final state, it is
defined by

mT2¼min
qT

½maxðmTð  pl;1
T ;  qTÞ;mTð  pl;2

T ;  pmiss
T −  qTÞÞ�;

where  qT is the transverse vector that minimizes the
larger of the two transverse massesmT, and  pl;1

T and
 pl;2
T are the leading and subleading transverse

momenta of the two leptons in the pair.
(p) The 1lγγ variable ΔϕW;h is the azimuthal angle

between the W boson and Higgs boson candidates.
TheW boson is defined by the sum of the lepton  pl

T
and  pmiss

T vectors, and the Higgs boson by the sum of
the transversemomentumvectors of the two photons.

VI. ANALYSIS STRATEGY

The hadronic and leptonic decay modes of the W and
Higgs bosons are divided into four independent and
mutually exclusive analysis channels according to key
features of the visible final state: hadronic decays of both
the W and h (0lbb̄, Sec. VI A); hadronic h decays with
leptonic W decays (1lbb̄, Sec. VI B); diphoton h decays
with leptonic W decays (1lγγ, Sec. VI C); multilepton h
decays via W, Z, τ and leptonic W decays (l�l� and 3l,
Sec. VI D). Event selections and background estimation
methods specific to each analysis channel are described
here, as well as the signal, control, and validation region
definitions (SR, CR, and VR, respectively).
The expected SM backgrounds are determined sepa-

rately for each SR, and independently for each channel,

with a profile likelihood fit [74], referred to as a back-
ground-only fit. The background-only fit uses the observed
event yield in the associated CRs as a constraint to adjust
the normalization of the dominant background processes
assuming that no signal is present. The CRs are designed to
be enriched in specific background contributions relevant
to the analysis, while minimizing the signal contamination,
and they are orthogonal to the SRs. The inputs to the
background-only fit for each SR include the number of
events observed in the associated CR and the number of
events predicted by simulation in each region for all
background processes. They are both described by
Poisson statistics. The systematic uncertainties, described
in Sec. VII, are included in the fit as nuisance parameters.
They are constrained by Gaussian distributions with widths
corresponding to the sizes of the uncertainties and are
treated as correlated, when appropriate, between the various
regions. The product of the various probability density
functions forms the likelihood, which the fit maximizes by
adjusting the background normalization and the nuisance
parameters. Finally, the reliability of the MC extrapolation
of the SM background estimates outside of the control
regions is evaluated in validation regions orthogonal to CRs
and SRs.

A. Fully hadronic signature (0lbb̄)

1. Event selection

The fully hadronic analysis channel exploits the large
branching ratios for both W → qq̄ and h → bb̄. Missing
transverse momentum triggers are used for the trigger
selection for the analysis, with an offline requirement of
Emiss
T > 200 GeV. Stringent event selections based on the

masses of both the W and Higgs boson candidates, the
presence of exactly two b-jets, and the kinematic relation-
ships of the final-state jets and Emiss

T , are required in order to
reduce the significant backgrounds from tt̄, Z þ jets, W þ
jets and single-topWt production. Events are characterized
by having four or five jets with pT > 30 GeV, exactly two
of which are identified as b-jets, and large meff , mCT, and
mb;min

T . Two signal regions are defined, specifically target-
ing either high (HM) or low (LM) χ̃02 and χ̃�1 masses
(SRHad-High and SRHad-Low, respectively). The selec-
tions used are shown in Table II. The meff and mb;min

T
selections are particularly effective in reducing the tt̄
contributions, which is the dominant background for both
signal regions. The Z þ jets and single-top contributions
are also significant, whereas the contribution from multijet
production is found to be negligible and is not included.
Control regions are used to constrain the normalizations of
the tt̄, Z þ jets, and Wt backgrounds with the data, while
other processes are estimated using simulation. The bb̄
invariant mass is required to be consistent with the Higgs
boson mass, 105 < mbb̄ < 135 GeV, for all signal regions.
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All CRs and VRs select sidebands in the mbb̄ spectrum in
order to remain orthogonal to the two SRs. These are
further described in Sec. VI A 2.

2. Background estimation

The background contributions to SRHad-High and
SRHad-Low are estimated using fits to the data for tt̄,
Z þ jets, and single-top production in specially designed
control regions.
The three control regions used for estimating the tt̄

(CRHad-TT), Z þ jets (CRHad-Zj), and Wt (CRHad-ST)
contributions are further divided into high-mass (HM) and
low-mass (LM) categories in order to follow the design of
the SRs. These control regions are defined primarily by
inverting the selections on mbb̄, mCT, mb;min

T , and by
requiring the presence of a lepton in some cases. The tt̄
background is estimated usingmCT; m

b;min
T < 140 GeV and

mbb̄ > 135 GeV selections, while retaining the other SR
requirements. This approach isolates the tt̄ contribution
while suppressing single-top and Z þ jets events, yielding a
sample estimated to be 94% pure in tt̄ events with
negligible signal contamination. Background events from
Wt are estimated by requiring exactly one lepton and
mCT > 200 GeV, mb;min

T > 180GeV, and mbb̄ > 195 GeV,
and relaxing the meff requirement for HM to
meff > 700 GeV. The Z þ jets contribution is isolated
using an opposite-sign, same-flavor, high-pT 2l require-
ment with pl

T;1 > 140 GeV and 75 < mll < 105 GeV,
which reduces the tt̄ contribution to this control region.
These leptons are then treated as invisible when calculating
the Emiss

T . Figure 2 shows the distribution of two key
observables: the Emiss

T in the tt̄ high-mass control region
[Fig. 2(a)] and thembb̄ distribution in the Z þ jets low-mass
control region [Fig. 2(b)]. The yields estimated with the
background-only fit are reported in Table III. The normali-
zation factors are found to be 0.88� 0.10 (0.85� 0.04),
1.47� 0.32 (1.22� 0.35), and 0.54� 0.25 (0.57� 0.22)

for tt̄, Z þ jets, and Wt in the high-mass (low-mass)
signal region, respectively. The errors include statistical
and systematic uncertainties. No diboson MC simula-
tion events are found to contribute to the CRHad-ST
regions.
To validate the background prediction, three sets of

validation regions are defined so as to be similar, but
orthogonal, to the SRs. The tt̄ VRs for each SR (VRHad-
TT, for HM or LM) reverse the mCT selections, requiring
mCT < 140ð190Þ GeV for HM (LM), select the sideband
mbb̄ > 135 GeV (orthogonal to the SRs), but retain the SR
selection onmb;min

T . In order to validate theWt and Z þ jets

TABLE II. Signal region definitions for the fully hadronic 0lbb̄
analysis channel.

Variable SRHad-High SRHad-Low

Nlepton ¼ 0 ¼ 0

Njet (pT>30 GeV) ∈ ½4; 5� ∈ ½4; 5�
Nb-jet ¼ 2 ¼ 2

Δϕ4j
min

>0.4 >0.4

Emiss
T [GeV] >250 >200

meff [GeV] >900 >700

mbb̄ [GeV] ∈ ½105; 135� ∈ ½105; 135�
mqq̄ [GeV] ∈ ½75; 90� ∈ ½75; 90�
mCT [GeV] >140 >190

mb;min
T [GeV] >160 >180

FIG. 2. Comparisons of data with SM predictions in tt̄ and
Z þ jets control regions for representative kinematic distribu-
tions: (a) Emiss

T for the tt̄ high-mass control region and (b) mbb̄ for
the Z þ jets low-mass control region. Predictions from simulation
are shown after the background-only fit. The arrow indicates
the selection on that variable used to define the corresponding
CRs. The uncertainty bands include statistical and systematic
uncertainties.
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estimates, VRs are defined using sideband regions
in the mbb̄ and mqq̄ spectra, either by vetoing the SR range
in both of these variables, mbb̄ ∉ ½105; 135� GeV and
mqq̄ ∉ ½75; 90� GeV (VRHad-SB for HM and LM), or
by selecting the mbb̄ > 135 GeV sideband and imposing
a W mass requirement on the non-b-tagged dijet invariant
mass, 75 < mqq̄ < 90 GeV (VRHad-bbhigh, for HM
or LM).
The number of events predicted by the background-only

fit is compared with the data in the VRs in the upper panel
of Fig. 3. The pull, defined by the difference between the
observed number of events (nobs) and the predicted back-
ground yield (npred) divided by the total uncertainty (σtot), is
shown for each region in the lower panel. No evidence of
significant background mismodeling is observed in
the VRs.

B. Single-lepton plus di-b-jet signature (1lbb̄)

1. Event selection

The events considered in the one-lepton plus two-b-jets
channel are also recorded with the Emiss

T trigger, with an
offline requirement of Emiss

T > 200 GeV. Events with
exactly one electron or muon are selected if they also
contain two or three jets with pT > 25 GeV, two of which
must be b-tagged. Discriminating variables are used to
separate the signal from backgrounds, and include Emiss

T ,
mT, the invariant mass of the two b-jets and their contra-
nsverse mass. The dominant SM background contributions
in the 1lbb̄ channel are tt̄, W þ jets, and single-top (Wt
channel) production. Three sets of signal regions are
defined and optimized to target different LSP and next-
to-lightest neutralino or chargino mass hierarchies. The
three regions, labeled as SR1Lbb-Low, SR1Lbb-Medium,
and SR1Lbb-High, are summarized in Table IV. SR1Lbb-
Low provides sensitivity to signal models with a mass-
splitting between LSP and next-to-lightest neutralino
similar to the Higgs boson mass, while SR1Lbb-Medium
and -High target mass-splittings between 150 and 250 GeV
and above 250 GeV, respectively. The mCT distribution of

TABLE III. Fit results in the control regions for the 0lbb̄ channel. The results are obtained from the control regions using the
background-only fit. The errors shown are the statistical plus systematic uncertainties. Uncertainties in the fitted yields are symmetric by
construction, where the negative error is truncated when reaching zero event yield.

CR channels CRHad-TT(HM) CRHad-ST(HM) CRHad-Zj(HM) CRHad-TT(LM) CRHad-ST(LM) CRHad-Zj(LM)

Observed events 102 17 39 695 23 78
Fitted background events 102� 10 17� 4 39� 6 695� 26 23� 5 78� 9
tt̄ 97� 11 3.7� 2.0 2.9� 2.4 659� 34 4.7� 2.3 10þ12

−10
Single top 2.7þ3.5

−2.7 10� 5 0.8þ0.9
−0.8 19� 19 15� 6 1.0� 0.9

W þ jets 0.5þ0.6
−0.5 2.2� 1.1 0.0059� 0.0025 3.9� 3.1 2.8� 1.2 0.0059� 0.0026

Z þ jets 1.1� 0.6 0.08� 0.07 32� 7 9.5� 3.2 0.09� 0.04 63� 17
tt̄þ V 0.63� 0.14 0.62� 0.16 2.0� 0.4 3.1� 0.5 0.80� 0.17 3.7� 0.6
Diboson 0.08þ0.14

−0.08 < 0.07 0.8� 0.8 1.16� 0.34 < 0.07 0.8� 0.5

FIG. 3. Comparison of the predicted backgrounds with the
observed numbers of events in the VRs associated with the 0lbb̄
channel. The normalization of the backgrounds is obtained from
the fit to the CRs. The upper panel shows the observed number of
events and the predicted background yield. All uncertainties are
included in the uncertainty band. The lower panel shows the pulls
in each VR.

TABLE IV. Summary of the event selection for signal regions
of the 1lbb̄ channel.

Variable
SR1Lbb-
Low

SR1Lbb-
Medium

SR1Lbb-
High

Nlepton ¼ 1

pl
T [GeV] >27

Njet (pT>25 GeV) ¼ 2 or 3

Nb-jet ¼ 2

Emiss
T [GeV] >200

mCT [GeV] >160

mT [GeV] ∈ ½100; 140� ∈ ½140; 200� >200
mbb̄ [GeV] ∈ ½105; 135�
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the tt̄ background has an upper endpoint approximately
equal to the top-quark mass, and thus this background is
efficiently suppressed by requiring mCT > 160 GeV in all
regions. The W þ jets background is reduced by selecting
events with mT > 100 GeV. The three SRs require
100 < mT < 140 GeV, 140 < mT < 200 GeV, and mT >
200 GeV for SR1Lbb-Low, -Medium and -High, respec-
tively. Finally, the bb̄ invariant mass is required to be
105 < mbb̄ < 135 GeV, consistent with the Higgs boson
mass, for all regions.

2. Background estimation

The contributions from the tt̄, Wt, and W þ jets back-
ground sources are estimated fromMC simulation, but with
yields that are normalized to data in dedicated CRs. The
contribution from multijet production, where the lepton is
misidentified as a jet or originates from a heavy-flavor
hadron decay or photon conversion, is found to be
negligible and neglected in the following. The remaining
sources of background (single-top t- and s-channels,
Z þ jets, diboson, Zh, andWh production), including their
total yields, are estimated from simulation.
Three sets of CRs, CR1Lbb-TT, CR1Lbb-ST and

CR1Lbb-Wj, are designed to estimate the tt̄, Wt, and W þ
jets background processes, respectively. The acceptance for
tt̄ events is increased in CR1Lbb-TT by requiring mCT <
160 GeV and inverting the selection on mbb̄. Three tt̄ CRs
are defined as a function ofmT mirroring the Low, Medium
and High SR selections. Contributions from W þ jets
events are estimated using a common CR1Lbb-Wj for
all SRs, where events are required to have 40 < mT <
100 GeV and mbb̄ < 80 GeV. CR1Lbb-ST is designed to
be orthogonal to the three CR1Lbb-TTs and CR1Lbb-Wj
by requiring events to have mCT > 160 GeV, mbb̄ >
195 GeV and mT > 100 GeV.
The yields estimated with the background-only fit are

reported in Table V. The normalization factors are found to
be between 0.89þ0.21

−0.20 and 1.15� 0.13 for the three SRs’ tt̄
estimates, 1.1þ0.7

−1.1 forWt and 1.4� 0.5 forW þ jets, where

the errors include statistical and systematic uncertainties.
Figure 4 shows representative comparisons of data with
MC simulation for mbb̄, mT and Emiss

T distributions in tt̄,
W þ jets and single-top control regions. The data agree
well with the SM predictions in all distributions.
To validate the background predictions, two sets

of VRs are defined similarly but orthogonal to the SRs.
VR1Lbb-onpeak regions are defined similarly to the three
CR1Lbb-TT regions but requiring 105 < mbb̄ < 135 GeV.
VR1Lbb-offpeak requires mCT > 160 GeV, mbb̄ below
95 GeV or in the range 145–195 GeV and Emiss

T >
180 GeV. The yields and pulls in each VR are shown in
Fig. 5 after the background-only fit. The data event yields are
found to be consistent with background expectations.

C. Single-lepton plus diphoton signature (1lγγ)

1. Event selection

Events used in the single-lepton plus diphoton (1lγγ)
channel were recorded with a diphoton trigger using a
trigger-level requirement of ET > 35 GeV and ET >
25 GeV for the leading and subleading photons, respec-
tively. For these events, the selection requires exactly one
lepton (e or μ) with pT > 25 GeV and exactly two photons.
To achieve full trigger efficiency, the leading and sublead-
ing photons are required to have a minimum ET of 40 GeV
and 31 GeV, respectively. The diphoton invariant massmγγ ,
which is measured in the region of the Higgs boson mass
with a resolution of approximately 1.7 GeV, is required to
lie within the mass window 120 < mγγ < 130 GeV. This
effectively rejects SM backgrounds without a Higgs boson
in the final state, referred to as nonpeaking backgrounds.
These backgrounds, which include SM diphoton and Vγγ
(V ¼ W, Z) production, vary slowly across the selected
mass window and can be reliably estimated from sidebands
above and below the narrow mass window assuming a flat
distribution. Observables such as Emiss

T , mT, m
Wγ1
T , mWγ2

T ,
ΔϕW;h and the number of b-jets provide additional dis-
crimination between signal and both the peaking

TABLE V. Fit results in the control regions for the 1lbb̄ channel. The results are obtained from the control regions using the
background-only fit. The category “Others” includes contributions fromWh production and Z þ jets. The errors shown are the statistical
plus systematic uncertainties. Uncertainties in the fitted yields are symmetric by construction, where the negative error is truncated when
reaching zero event yield.

CR channels CR1Lbb-TT(LM) CR1Lbb-TT(MM) CR1Lbb-TT(HM) CR1Lbb-Wj CR1Lbb-ST

Observed events 192 359 1115 72 65
Fitted background events 192� 14 359� 19 1115� 34 72� 9 65� 8
tt̄ 147� 33 325� 32 1020� 90 15� 14 20þ23

−20
Single top 28� 25 22þ24

−22 60þ70
−60 4þ6

−4 33� 25

W þ jets 16� 7 7.3� 2.7 25� 11 51� 17 8� 4
tt̄þ V 1.16� 0.20 2.8� 0.4 6.9� 1.1 0.079� 0.022 3.2� 0.6
Diboson 0.57� 0.24 0.92� 0.29 1.3� 0.4 2.1� 1.1 0.84� 0.28
Others 0.125� 0.032 0.20� 0.06 1.9� 0.5 0.24� 0.17 0.10� 0.04
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backgrounds (containing a Higgs boson decaying into two
photons) and the nonpeaking backgrounds.
The dominant peaking background arises from

Wh production, which can be difficult to distinguish from
the signal, which itself includes both a W and a Higgs
boson. After applying a series of selection criteria opti-
mized to separate signal from both the peaking and non-
peaking backgrounds (see Table VI), the resulting inclusive
SR is subdivided into a region largely depleted of Wh
backgrounds (SR1Lγγ-a) and a SR with a significant
contribution from Wh production (SR1Lγγ-b).

2. Background estimation

Nonpeaking backgrounds are estimated separately
for SR1Lγγ-a and SR1Lγγ-b by measuring the event
yields, per 10 GeV inmγγ , in the lower and upper sidebands
within 105 < mγγ < 120 GeV and 130 < mγγ < 160 GeV,
respectively. The yields are determined by fitting a constant
function to the observed events in sidebands. Results

FIG. 5. Comparison of the predicted backgrounds with the
observed numbers of events in the validation regions associated
with the 1lbb̄ channel. The normalization of the backgrounds is
obtained from the fit to the CRs. The upper panel shows the
observed number of events and the predicted background yield.
All uncertainties are included in the uncertainty band. The lower
panel shows the pulls in each VR.

FIG. 4. Comparison of data with SM predictions in tt̄, W þ jets, and single-top control regions for representative kinematic
distributions: (a) mbb̄ for CR1Lbb-TT medium, (b) mT for CR1Lbb-TT high, (c) Emiss

T for CR1Lbb-Wj, and (d) mT for CR1Lbb-ST.
Predictions from MC simulation are shown after the background-only fit. The uncertainty bands include statistical and systematic
uncertainties.
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obtained by fitting a linear function are found to be
consistent. The observation of 1 (15) event(s) in the
sidebands around SR1Lγγ-a (SR1Lγγ-b) leads to an expect-
ation of 0.22� 0.22 (3.3� 0.9) nonpeaking background
events, with the uncertainty dominated by the number of
events in the sideband data sample.
Peaking backgrounds are estimated fromMC simulations

of the production of the Higgs boson through gluon-gluon
and vector-boson fusion, and of Higgs boson production in
association with a W or Z boson. Production of a Higgs
boson in association with a tt̄ pair is also taken into account,
although this contribution is suppressed by the requirement
that the events contain no b-jets. Avalue of ð2.28� 0.08Þ ×
10−3 is assumed for the h → γγ branching ratio [75].
Production of Wh events, with a subsequent decay of the
Higgs boson into two photons, is expected to account
for approximately 90% of the peaking background in the
two SRs. Altogether, a total of 0.14� 0.02 (2.01� 0.30)
events are expected to arise from peaking backgrounds in
SR1Lγγ-a (SR1Lγγ-b).

D. Same-sign dilepton and three-lepton signatures
(l�l�, 3l)

Two- or three-lepton (multilepton) signatures arise when
theW boson produced in conjunction with the Higgs boson
decays semileptonically and the Higgs boson itself decays
into one of WW, ZZ or ττ, and these in turn yield at least
one other lepton in the final state. Final-state neutrinos and
lightest neutralinos all contribute to sizable Emiss

T in multi-
leptonic signal events. Two sets of signal regions, kine-
matically orthogonal, are defined according to the presence
of either exactly two leptons with same-sign electric charge
(l�l� analysis), or exactly three leptons satisfying various
requirements on lepton-flavor and electric-charge combi-
nations (3l analysis). The l�l� and 3l analyses share the
same trigger. Events must pass a trigger selection that

combines single- and two-lepton triggers into a logical OR,
where trigger thresholds on lepton pT between 8 and
140 GeV are applied in conjunction with trigger-specific
lepton identification criteria. Selected leptons have offline
requirements of pT > 25 GeV to ensure that trigger effi-
ciencies are maximal and uniform in the relevant phase
space. For both analyses, events with additional leptons are
removed, and a b-jet veto is applied such that there are zero
b-jets with pT > 20 GeV. Non-b-tagged jets are not
vetoed, and are required in some signal regions to account
for hadronic decays of intermediate particles (e.g. W
bosons), or for the presence of initial-state radiation. Jets
in both the l�l� and 3l signal regions are required to have
pT > 20 GeV and pass the quality and kinematic selections
described in Sec. IV. The signal region optimization and
background estimations are developed independently for
l�l� and 3l events.
Two primary sources of background are distinguished in

these analyses. The first category is the reducible back-
ground,which includes events containing at least one fake or
nonprompt (FNP) lepton (referred to as fake background)
and, for the l�l� analysis only, events containing electrons
with misidentified charge (referred to as charge-flip back-
ground). This background primarily arises from the pro-
duction of top-quark pairs. The FNP lepton typically
originates from heavy-flavor hadron decays in events con-
taining top quarks, orW or Z bosons. Those are suppressed
for thel�l� and3l analyses by vetoingb-tagged jets, while
hadrons misidentified as leptons, electrons from photon
conversions, and leptons from pion or kaon decays in flight
remain as other possible sources. Data-driven methods are
used for the estimation of this reducible background in the
signal and validation regions. The second background
category is the irreducible background from events with
two same-sign prompt leptons or at least three prompt
leptons. It is estimated using simulation samples and is
dominated by diboson (WZ and ZZ) production. Dedicated
validation regions with enhanced contributions from these
processes, and small signal contamination, are defined to
verify the background predictions from the simulation.
Details of the estimates of both the reducible and

irreducible backgrounds for each analysis are given in
the following subsections.

1. l�l� event selection and background estimation

Two signal regions are defined for the l�l� analysis
channel, requiring either exactly one jet (SRSS-j1) or two
to three (SRSS-j23) jets. In both regions, events must
satisfy Emiss

T > 100 GeV, while region-specific require-
ments are applied on the transverse mass mT, the effective
mass meff , the stransverse mass mT2, and the kinematic
variable mljðjÞ, which in signal events provides an estimate
of the visible mass of the Higgs boson candidate. The l�l�

signal region selections are summarized in Table VII.

TABLE VI. Summary of the event selection for the two regions
of the 1lγγ channel, SR1Lγγ-a and SR1Lγγ-b.

Variable SR1Lγγ-a SR1Lγγ-b

Nγ ¼ 2

pγ
T [GeV] >ð40; 31Þ

Nlepton ¼ 1

pl
T [GeV] >25

Emiss
T [GeV] >40

ΔϕW;h >2.25

mγγ [GeV] ∈ ½120; 130�
Nb-jet (pT>30 GeV) ¼ 0

mT
Wγ1 [GeV] ≥ 150

mT
Wγ2 [GeV] >140 ∈ ½80; 140�

mT [GeV] >110 <110
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The reducible FNP background is estimated using the
matrix method [76,77]. The matrix method uses both
relaxed and more stringent lepton identification criteria
in order to isolate the contributions from FNP leptons in a
given data sample. The two sets of identification criteria
that are used are referred to as tight and loose. The matrix
method relates the number of events containing prompt
or FNP leptons to the number of observed events with
tight or loose-but-not-tight leptons using the probability,
Oð10−1 − 10−2Þ, for loose prompt or FNP leptons to satisfy
the tight criteria. Inputs to the method are the probability for
loose prompt leptons to satisfy the tight selection criteria,
estimated using Z → ll events, and the probability for
loose FNP leptons to satisfy the tight selection criteria,
determined from data in SS control regions enriched in
nonprompt leptons. Final yields for FNP backgrounds are
validated in VRs. Figure 6(a) shows the Emiss

T distribution in
the VR for the l�l� channel in the case of electrons
(VRSS-ee) and good agreement is found between data and
predictions.
Charge misidentification is only relevant for electrons

and the contribution of charge-flip events to the SRs and

VRs is estimated using the data. The electron charge-flip
probability is extracted in a Z → ee data sample using a
likelihood fit which takes as input the numbers of same-
sign and opposite-sign electron pairs observed in a 80–
100 GeV electron-pair mass window. It is treated as a free
parameter of the fit and it is found to be between 2 × 10−4

and 10−3 depending on the pT and η of the electron.
Sources of SM irreducible background arise from WZ and
ZZ events and are evaluated using simulation.
The background estimates are validated in dedicated

VRs defined for each signal region and referred to as
VRSS-j1 and VRSS-j23. In VRSS-j1, events are required to
pass all selections as in SRSS-j1 but for Emiss

T , required to
be between 70 GeV and 100 GeV, and mljðjÞ > 130 GeV.

FIG. 7. Results of the likelihood fit extrapolated to the VRs
associatedwith both thel�l� and 3l channels. The normalization
of the backgrounds is obtained from the fit to the CRs. The upper
panel shows the observed number of events and the predicted
background yield. All uncertainties are included in the uncertainty
band. The lower panel shows the pulls in each VR.

FIG. 6. (a) Emiss
T distribution in the electron-type VRSS-ee for l�l� channel (used to estimate FNP leptons background) and (b) Emiss

T
distribution in the on-shell Z-boson CR for 3l (used to estimate the WZ normalization).

TABLE VII. Summary of the event selections for the l�l�
signal regions.

Variable SRSS-j1 SRSS-j23

Δηll <1.5 � � �
Njet (pT>20 GeV) ¼ 1 ¼ 2 or 3

Nb-jet ¼ 0 ¼ 0

Emiss
T [GeV] >100 >100

mT [GeV] >140 >120

meff [GeV] >260 >240

mljðjÞ [GeV] <180 <130

mT2 [GeV] >80 >70
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No selections are applied on meff and mT2, while mT is
required to be above 140 GeV. VRSS-j23 is equivalent to
SRSS-j23, with mT required to be between 65 GeV and
120 GeV and mljðjÞ above 130 GeV. The total numbers of
events observed in data and predicted by the background
estimation for the l�l� VRs are shown in Fig. 7, together
with the pull estimates.

2. 3l event selection

Events in the 3l signal regions are categorized according
to flavor and charge-sign combinations of the leptons in the
event. Appropriate selection criteria tailored to each region
are applied in order to reject lepton-rich background
processes while at the same time maximizing signal
significance. The event selections applied in the 3l signal
regions are summarized in Tables VIII and IX. In different-
flavor opposite-sign (DFOS) signal regions, two of the
leptons are required to have the same flavor and same-sign
(SFSS) electric charge (the SFSS lepton pair), while the
third lepton (the DFOS lepton) must have different flavor
and opposite charge to the other two leptons. The DFOS
lepton and the SFSS lepton closest to it in Δϕ (the near
lepton) are taken to originate from the Higgs boson decay.
The ΔR between these two leptons is called ΔROS;near, and
their invariant mass, which in signal events gives an
estimate of the Higgs boson visible mass, is called
mlDFOSþlnear . The azimuthal angle between the two SFSS
leptons is called ΔϕSS. In same-flavor opposite-sign
(SFOS) signal regions, there must be at least one pair of
leptons of the same flavor and with opposite-sign charge
(the SFOS lepton pair). When only one SFOS lepton pair
exists, the invariant mass mmin

SFOS must be greater than
20 GeV and lie outside the 81.2–101.2 GeV interval, to

suppress low-mass resonances and Z-rich backgrounds. If
two SFOS pairs exist, the chosen SFOS pair has a lower
ml;min

T for the third highest pT lepton, and the invariant mass
requirement is applied to this pair. The variable ml;min

T ,
defined in analogy with mb;min

T , is also used to identify the
unique transversemass value obtained from the lepton not in
the SFOS pair in events for which only one such pair exists.
Both the DFOS and SFOS events are further separated into
orthogonal signal regions, depending onwhether at least one
light jet of pT > 20 GeV is present in the event or not.
Region-dependent requirements are placed on Emiss

T , as well
as on other kinematic variables.
The reducible FNP lepton background in the 3l channel is

dominated by tt̄ and Z þ jets processes, and it is estimated
using the same approach as for the l�l� analysis. The
irreducible background is dominated byWZ production and
is estimated using a dedicated control region. The normali-
zation of theWZ background is constrained in this region to
reduce systematic uncertainties due to theMCmodeling and
experimental sources. The WZ CR uses a three-lepton
selection in which a SFOS pair has an invariant mass in
the Z peak region, 81.2 < mll < 101.2 GeV, the Emiss

T is
above 80 GeV, and a b-tagging veto is applied. The estimate
from the background-only fit leads to a normalization factor
of 1.11� 0.13 for the WZ background and the Emiss

T
distribution in the CR is shown in Fig. 6(b). Its validity is
cross-checked by comparing the SM estimates with data
from a VR (referred to as VR3L-offZ-highMET) where
events are required to have Emiss

T above 120 GeVandmmin
SFOS

outside of the Z peak region.
The total number of events observed in data and

predicted by the background estimation for the 3lVR
are shown in Fig. 7, together with the pull estimates.

TABLE IX. Summary of the event selection for SFOS 3l signal regions.

Variable SR3L-SFOS-0Ja SR3L-SFOS-0Jb SR3L-SFOS-1J

Njet (pT > 20 GeV) ¼ 0 ¼ 0 >0

Nb-jet ¼ 0 ¼ 0 ¼ 0

Emiss
T [GeV] ∈ ½80; 120� >120 >110

mT
min [GeV] >110 >110 >110

mmin
SFOS >20 GeV;∉ ½81.2; 101.2� >20 GeV;∉ ½81.2; 101.2� >20 GeV;∉ ½81.2; 101.2�

TABLE VIII. Summary of the event selection for DFOS 3l signal regions.

Variable SR3L-DFOS-0J SR3L-DFOS-1Ja SR3L-DFOS-1Jb

N jet (pT > 20 GeV) ¼ 0 >0 >0

Nb-jet ¼ 0 ¼ 0 ¼ 0

Emiss
T [GeV] >60 ∈ ½30; 100� >100

mlDFOSþlnear [GeV] <90 <60 <70

ΔROS;near � � � <1.4 <1.4
ΔϕSS � � � � � � <2.8
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VII. SYSTEMATIC UNCERTAINTIES

Several sources of experimental and theoretical sys-
tematic uncertainties in the signal and background esti-
mates are considered in these analyses. Their impact is
reduced through the normalization of the dominant
backgrounds in the control regions defined with kin-
ematic selections resembling those of the corresponding
signal region. Experimental and theoretical uncertainties
are included as nuisance parameters with Gaussian
constraints in the likelihood fits, taking into account
correlations between different regions. Uncertainties due
to the numbers of events in the CRs are also included in
the fit for each region.
Theory uncertainties for tt̄ processes are dominant for

the 0lbb̄ and 1lbb̄ analysis channels, ranging from 15% to
20% for the 1lbb̄ channel to nearly 50% for the low-mass
signal region (SRHad-Low) of the 0lbb̄ analysis.
Generator uncertainties are assessed by comparing
POWHEGþPYTHIA6 with SHERPA 2.2.1, and the parton
shower models are tested by comparing POWHEGþ
PYTHIA6 with POWHEGþHERWIGþþ. Scale variations
are evaluated by varying the hdamp parameter between
mtop and 2 ×mtop, and the renormalization and factori-
zation scales up and down by a factor of two.
Systematic uncertainties in the contributions from
single-top production also account for the impact of
interference terms between single-resonant and double-
resonant top-quark production. Statistical uncertainties
are included via the control regions in the data by which
the processes are normalized and the size of the
simulation samples used for evaluating theoretical sys-
tematic uncertainties. Relaxed selections are used to
reduce the statistical uncertainty of theory estimates of
top-quark contributions. In particular, the mCT selection
is loosened for both 0lbb̄ and 1lbb̄, as are the mb;min

T
and meff selections for the 0lbb̄ channel. The Z þ jets
and W þ jets modeling uncertainties are estimated
using the nominal SHERPA 2.2.1 samples by considering
different merging (CKKW-L) and resummation scales,
PDF variations from the NNPDF30NNLO replicas, as
well as the envelope of changes resulting from seven-
point scale variations of the renormalization and fac-
torization scales. The various components are added in
quadrature.
Theory uncertainties in both the Wh production cross

section and the modeling of the Wh final state also
contribute to the uncertainty of the peaking backgrounds
in the 1lγγ analysis. They are estimated by varying the
nominal PDF error sets, the QCD factorization scale, the
parameters associated with the underlying event and
parton shower, and the NLO electroweak correction
factors associated with the simulation of the Wh process.
These variations lead to a fractional uncertainty of
�5.5% in the expected contribution of Wh production
to the 1lγγ SRs.

Theory uncertainties related to the estimation of the
WZ background are among the most significant for the
multilepton analysis channels (l�l� and 3l). The effects
of PDF choice and the scale of the strong coupling
constant, αS, on the WZ background are assessed using
the same procedure as described above for scale varia-
tions in top-quark production processes: by varying the
relevant parameters and measuring the impact on the
quantities of interest.
The dominant detector-related systematic effects differ

depending on the analysis channel. Experimental uncer-
tainties related to the jet energy resolution are significant
in the case of 1lbb̄, accounting for nearly 20% of the
total systematic uncertainty on the background estima-
tion in the SR1Lbb-Medium region. Uncertainties related
to the jet energy scale contribute to approximately a
30% systematic uncertainty in the SRHad-High region.
Uncertainties of the b-tagging efficiency and mistagging
rates are subdominant for 1lbb̄ and 0lbb̄ channels, and
are estimated by varying the η-, pT- and flavor-dependent
scale factors applied to each jet in the simulation within a
range that reflects the systematic uncertainty of the
measured tagging efficiency and mistagging rates. The
effects of experimental uncertainty in the 1lγγ channel
are dominated by uncertainties in the photon, lepton and
jet energy scale and resolution. The uncertainty on the
contribution from nonpeaking background is dominated
by the effect of the limited number of events in the mγγ

sidebands. An additional contribution from the uncer-
tainty in the shape of the nonpeaking background mγγ

distribution was found to be negligible. The l�l�=3l
channels are dominated in several signal regions by
experimental systematic uncertainties related to the
estimation of background contributions due to FNP
leptons. These systematic uncertainties are evaluated
with various studies including Z → ll efficiency com-
parisons, variations of kinematic selections, modifica-
tions to the definition of the control regions, and
alternative trigger selections. For the l�l� channel,
these are the dominant uncertainties and have similar
contributions from each source.
The dominant systematic uncertainties in the various

signal regions are summarized in Table X.

VIII. RESULTS

No significant differences between the observed and
expected yields are found in the search regions for each of
the analysis channels considered. The results are translated
into upper limits on contributions from physics processes
beyond the SM (BSM) for each signal region and are used
to set exclusion limits at the 95% confidence level (C.L.) on
the common mass of the charginos and next-to-lightest
neutralinos for various values of the LSP mass in the
simplified model considered in the analysis.
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TABLE X. Dominant systematic uncertainties in the background estimates in the various signal regions, expressed
in terms of number of events. Individual uncertainties can be correlated, and do not necessarily add up quadratically
to the total background uncertainty. For the 3l channel, numbers in parentheses indicate the results for the (b) signal
region in each case.

0lbb̄ channel

Uncertainty of region SRHad-High SRHad-Low
Total background expectation 2.5 8
Total background uncertainty �1.3 �4

Systematic, experimental �0.9 �1.2
Systematic, theoretical �0.7 �3

Statistical, MC samples �0.5 �0.8
Statistical, μTT;ST;Zj scale-factors �0.25 �0.5

1lbb̄ channel

Uncertainty of region SR1Lbb-Low SR1Lbb-Medium SR1Lbb-High
Total background expectation 5.7 2.8 4.6
Total background uncertainty �2.3 �1.0 �1.2
Systematic, experimental �1.3 �0.7 �0.6
Systematic, theoretical �2.2 �0.9 �0.7
Statistical, MC samples �1.1 �0.5 �0.6
Statistical, μTT;ST;Wj scale factors �0.8 �0.6 �1.3

1lγγ channel

Uncertainty of region SR1Lγγ-a SR1Lγγ-b
Total background expectation 0.36 5.3
Total background uncertainty �0.22 �1.0
Systematic, experimental �0.018 �0.27
Systematic, theoretical �0.008 �0.11
Statistical, MC samples �0.006 �0.024
Statistical, nonpeaking �0.22 �0.9

l�l� channel

Uncertainty of region SRSS-j1 SRSS-j23
Total background expectation 6.7 5.3
Total background uncertainty �2.2 �1.6
Systematic, experimental �2.1 �1.6.
Systematic, theoretical �0.21 �0.28
Statistical, MC samples �0.4 �0.34

3l channel

Uncertainty of region SR3L-DFOS-0J SR3L-DFOS-1Ja(b) SR3L-SFOS-0Ja(b) SR3L-SFOS-1J
Total background expectation 2.05 8(1.7) 3.8(2.37) 11.4
Total background uncertainty �0.98 �4 (�0.7) �1.7 (�0.96) �2.6
Systematic, experimental �0.8 �4 (�0.5) �1.7 (�0.8) �2.0
Systematic, theoretical �0.11 �0.25 (�0.16) �0.15 (�0.22) �1.5
Statistical, MC samples �0.6 �1.2 (�0.4) �0.6 (�0.4) �0.9
Statistical, μWZ scale factors �0.022 �0.12 (�0.06) �0.30 (�0.24) �0.9
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Table XI provides the event yields and SM expectation
for the 0lbb̄ analysis channel in the two signal regions
(SRHad-High, SRHad-Low) after the background-only fit.
The errors shown are the statistical plus systematic uncer-
tainties. Table XII reports the observed number of events in
the three SRs for the 1lbb̄ signature compared to the SM
expectations. Good agreement is found between data and
SM predictions for both 0lbb̄ signal regions and two of the
three 1lbb̄ signal regions; SR1Lbb-Medium exhibits a
mild excess. For the 1lγγ channel, the expected SM
backgrounds, broken down by source, are summarized
along with their estimated uncertainties in Table XIII.
A mild excess of observed events relative to expected
SM backgrounds is seen in each of the two signal
regions, corresponding to p0-values of 0.027 and 0.087

TABLE XI. Event yields and SM expectation for the 0lbb̄
channel after the background-only fit for the SRHad-High and
SRHad-Low regions. The errors shown are the statistical plus
systematic uncertainties. Uncertainties in the fitted yields are
symmetric by construction, where the negative error is truncated
when reaching zero event yield.

SR channels SRHad-High SRHad-Low

Observed events 1 7
Fitted background events 2.5� 1.3 8� 4

tt̄ 1.1� 0.9 4� 4

Single top (Wt) 0.15þ0.16
−0.15 0.44� 0.33

W þ jets 0.1þ0.3
−0.1 1.0� 0.7

Z þ jets 1.0� 0.7 1.7� 1.0
tt̄þ V 0.09� 0.03 0.40� 0.08
Diboson < 0.01 0.3þ0.4

−0.3

TABLE XII. Event yields and SM expectation after the back-
ground-only fit in the 1lbb̄ channel for the SR1Lbb-Low,
SR1Lbb-Medium, and SR1Lbb-High regions. The category
“Others” includes contributions from three- and four-top pro-
duction and SM Higgs processes. The errors shown are the
statistical plus systematic uncertainties. Uncertainties in the fitted
yields are symmetric by construction, where the negative error is
truncated when reaching zero event yield.

SR channels
SR1Lbb-
Low

SR1Lbb-
Medium

SR1Lbb-
High

Observed events 6 7 5
Fitted background
events

5.7� 2.3 2.8� 1.0 4.6� 1.2

tt̄ 3.4� 2.9 1.4� 1.0 1.1� 0.6
Single top (Wt) 1.4þ1.4

−1.4 0.8þ0.9
−0.8 1.2� 1.1

W þ jets 0.6� 0.4 0.20� 0.11 1.6� 0.6
tt̄þ V 0.10� 0.04 0.32� 0.09 0.54� 0.14
Diboson 0.12þ0.15

−0.12 0.05� 0.03 0.08� 0.02
Others 0.10� 0.05 0.03� 0.01 0.04� 0.02

TABLE XIII. Expected numbers of peaking and nonpeaking
SM background events in the 1lγγ channel for SR1Lγγ-a and
SR1Lγγ-b. Nonpeaking-background uncertainty is dominated by
the statistical uncertainty in the sideband fits. The peaking
background uncertainties include both theoretical (production
rate) and experimental (detector effect) contributions, as de-
scribed in the text. The uncertainties in theWh andOther peaking
backgrounds are taken to be fully correlated. Also shown are the
observed numbers of events in SR1Lγγ-a and SR1Lγγ-b.

SR channels SR1Lγγ-a SR1Lγγ-b

Observed events 2 9
Total background events 0.37� 0.22 5.3� 1.0
Wh background 0.09� 0.01 1.8� 0.3
Other peaking backgrounds 0.04� 0.01 0.19� 0.02
Nonpeaking background 0.22� 0.22 3.3� 0.9

TABLE XIV. Event yields and SM expectation for the l�l�
signal regions SRSS-j1 and SRSS-j23 after the background-only
fit. The category “Rare” includes contributions from triboson,
three- and four-top production and SM Higgs processes. The
errors shown are the statistical plus systematic uncertainties.

SR channels SRSS-j1 SRSS-j23

Observed events 2 8
Fitted background events 6.7� 2.2 5.3� 1.6
FNP events 3.3� 2.1 1.8� 1.5
WZ 2.2� 0.5 1.9� 0.6
Rare 0.44� 0.13 0.73� 0.17
tt̄þ V 0.12� 0.05 0.14� 0.05
WW 0.17� 0.03 0.51� 0.07
ZZ 0.06� 0.03 0.07� 0.04
Charge-flip events 0.47� 0.07 0.27� 0.03

TABLE XV. Event yields and SM expectation after the
background-only fit in the 3l channel for the SR3L-SFOS-
0Ja, SR3L-SFOS-0Jb and SR3L-SFOS-1J regions. The category
“Higgs” includes contributions from tt̄þ Higgs boson produc-
tion. The errors shown are the statistical plus systematic un-
certainties. Uncertainties in the fitted yields are symmetric by
construction, where the negative error is truncated when reaching
zero event yield.

SR channels
SR3L-

SFOS-0Ja
SR3L-

SFOS-0Jb
SR3L-
SFOS-1J

Observed events 0 3 11
Fitted background
events

3.8� 1.7 2.4� 1.0 11.5� 2.6

WZ 2.5� 1.2 2.0� 0.9 7.4� 2.3
ZZ 0.10� 0.04 0.07� 0.02 0.29� 0.09
tt̄þ V 0.09� 0.03 0.02� 0.01 1.9� 0.5
Tribosons 0.57� 0.29 0.16� 0.08 1.4� 0.4
Higgs SM 0.24þ0.25

−0.24 0.07� 0.07 0.07� 0.04
FNP events 0.27þ0.31

−0.27 0.11þ0.20
−0.11 0.4þ0.5

−0.4
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for SR1Lγγ-a and SR1Lγγ-b, respectively. Finally,
Tables XIV–XVI report the observed and predicted SM
backgrounds for the various multilepton signal regions.
Table XVII summarizes the observed (S95obs) and expected

(S95exp) 95% C.L. upper limits on the number of signal events
and on the observed visible cross section, σvis, for all
channels and signal regions. Upper limits on contributions
from new physics processes are estimated using the so-
called model-independent fit. The CLs method [78,79] is
used to derive the confidence level of the exclusion for a
particular signal model; signal models with a CLs value
below 0.05 are excluded at 95% C.L. When normalized to
the integrated luminosity of the data sample, results can be
interpreted as corresponding to observed upper limits on
σvis, defined as the product of the production cross section,

the acceptance and the selection efficiency of a BSM signal.
The p0-values, which represent the probability of the SM
background alone to fluctuate to the observed number of
events or higher, are also provided.
For the 0lbb̄ analysis channel, Fig. 8 shows the

distributions of Emiss
T and mbb̄ in the SRHad-High and

SRHad-Low SRs, respectively. Fig. 9 shows the data
distributions of mCT and Emiss

T for the 1lbb̄ analysis in
the SR1Lbb-High and SR1Lbb-Medium SRs compared to
the SM expectations. Fig. 10 shows the mγγ distribution,
separately for SR1Lγγ-a and SR1Lγγ-b, before the final

TABLE XVI. Event yields and SM expectation after the
background-only fit in the 3l channel for the SR3L-DFOS-0J,
SR3L-DFOS-1Ja and SR3L-DFOS-1Jb regions. The category
“Higgs” includes contributions from tt̄þ Higgs boson produc-
tion. The errors shown are the statistical plus systematic un-
certainties. Uncertainties in the fitted yields are symmetric by
construction, where the negative error is truncated when reaching
zero event yield.

SR channels
SR3L-

DFOS-0J
SR3L-

DFOS-1Ja
SR3L-

DFOS-1Jb

Observed events 0 7 1
Fitted background
events

2.1� 1.0 8.3� 3.8 1.7� 0.7

WZ 0.18� 0.13 1.01� 0.27 0.54� 0.16
ZZ 0.0017� 0.0012 0.06� 0.02 0.03� 0.01
tt̄þ V 0.0013� 0.0013 0.79� 0.29 0.43� 0.16
Tribosons 0.52� 0.28 0.66� 0.22 0.23� 0.08
Higgs SM 0.39� 0.15 0.1þ0.5

−0.1 0.05� 0.04
FNP 1.0� 0.9 5.6� 3.8 0.4þ0.6

−0.4

TABLE XVII. From left to right, the observed 95% C.L. upper
limits on the visible cross sections σvis, the observed (S95obs) and
expected (S95exp) 95% C.L. upper limits on the number of signal
events with �1σ excursions of the expectation, and the discovery
p-value (p0), truncated at 0.5.

σvis [fb] S95obs S95exp p0-value

SRHad-Low 0.26 9.4 9.5þ3.3
−1.9 0.50

SRHad-High 0.10 3.6 4.3þ1.6
−1.0 0.50

SR1Lbb-Low 0.23 8.3 8.0þ3.3
−2.2 0.46

SR1Lbb-Medium 0.28 10.0 5.6þ2.9
−1.7 0.04

SR1Lbb-High 0.18 6.4 6.1þ3.1
−1.9 0.44

SR1Lγγ-a 0.15 5.5 3.2þ0.9
−0.1 0.03

SR1Lγγ-b 0.28 10.1 6.4þ2.6
−1.6 0.09

SRSS-j1 0.12 4.2 6.1þ2.7
−1.5 0.50

SRSS-j23 0.27 9.9 6.6þ3.4
−1.1 0.17

SR3L-SFOS-0Ja 0.08 3.0 4.4þ1.9
−1.3 0.47

SR3L-SFOS-0Jb 0.16 5.9 5.0þ2.0
−1.2 0.35

SR3L-SFOS-1J 0.26 9.2 9.4þ3.8
−2.5 0.50

SR3L-DFOS-0J 0.08 3.0 3.8þ1.4
−0.9 0.43

SR3L-DFOS-1Ja 0.25 9.0 9.2þ3.3
−2.0 0.50

SR3L-DFOS-1Jb 0.10 3.7 4.0þ1.6
−0.5 0.50

FIG. 8. Data and SM predictions in SRs for the 0lbb̄ analysis for (a) Emiss
T in SRHad-High and (b) mbb̄ in SRHad-Low. All SRs

selections but the one on the quantity shown are applied. All uncertainties are included in the uncertainty band. Two example SUSY
models are superimposed for illustrative purposes.
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selection applied to mγγ. Observed and predicted distribu-
tions ofmljðjÞ (SRSS-j1) andmT2 (SRSS-j23) for the l�l�

signature are shown in Fig. 11. The data agree well with the
SM expectations in all distributions and for all channels,
and no significant deviations are observed.
Figure 12(a) shows the observed and expected exclusion

contours for the simplified models shown in Fig. 1(a) for
the 0lbb̄ analysis channel. The signal region (either
SRHad-High or SRHad-Low) used for each hypothesis
for the χ̃�1 =χ̃

0
2 − χ̃01 mass difference is chosen according to

which has better expected sensitivity. Experimental and
theoretical systematic uncertainties, as described in
Sec. VII, are applied to background and signal samples.
Figure 12(b) shows the observed and expected exclusion
contours obtained for the 1lbb̄ channel: in this case, a
statistical combination of the results from the three signal
regions is performed. Due to the large branching ratio of the
Higgs boson into b-quark pairs, the sensitivity of the 0lbb̄
and 1lbb̄ channels is best at high masses of the chargino
and next-to-lightest neutralinos, and exclusion limits up to
680 GeV are achieved for massless neutralinos.
Figure 12(c) shows the expected limits obtained for the

1lγγ channel. The excess of events observed in this signal
region precludes an exclusion limit, even when combining
the two SRs. Exclusion limits for the l�l� analysis,
obtained with a statistical combination of the two signal
regions, are shown in Fig. 12(d). This channel is primarily
sensitive at low χ̃�1 =χ̃

0
2 mass values and slightly extends the

observed exclusion for models with small mass difference
between χ̃�1 =χ̃

0
2 and χ̃01. Finally, the sensitivity of the 3l

channel is small compared to other analysis channels due in
large part to not considering hadronic τ decay modes. The
observed and expected cross-section exclusion contours,
based on the statistical combination of the 3l SRs, are

FIG. 9. Data and SM predictions in SRs for the 1lbb̄ analysis for (a)mCT in SR1Lbb-High and (b) Emiss
T in SR1Lbb-Medium. All SRs

selections but the one on the quantity shown are applied. All uncertainties are included in the uncertainty band. Example SUSY models
are superimposed for illustrative purposes.

FIG. 10. Distributions of mγγ before the final requirement on
mγγ in (a) SR1Lγγ-a and (b) SR1Lγγ-b. The expected contribu-
tions from both the peaking and nonpeaking backgrounds are
shown as stacked colored histograms. Two example SUSY
models are superimposed for illustrative purposes.
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FIG. 11. Observed and predicted distributions for (a)mljðjÞ in SRSS-j1 and (b)mT2 in SRSS-j23. All SRs selections but the one on the
quantity shown are applied. All uncertainties are included in the uncertainty band. An example SUSY model is superimposed for
illustrative purposes.

FIG. 12. The expected and observed exclusion for the 0lbb̄, 1lbb̄, 1lγγ, and l�l� channels. Experimental and theoretical systematic
uncertainties, as described in Sec. VII, are applied to background and signal samples and illustrated by the yellow band and the red
dotted contour lines, respectively. The red dotted lines indicate the �1 standard-deviation variation on the observed exclusion limit due
to theoretical uncertainties in the signal cross section.

SEARCH FOR CHARGINO AND NEUTRALINO PRODUCTION IN … PHYS. REV. D 100, 012006 (2019)

012006-19



compared with those of other channels in Fig. 13(a)
and Fig. 13(b) as a function of the χ̃�1 =χ̃

0
2 masses for

mðχ̃02Þ −mðχ̃01Þ ¼ 130 GeV, and for a fixed value of the χ̃01
mass, respectively.
A summary of the exclusion contours from the analyses

presented here is shown in Fig. 14. Observed and expected
contours as obtained from each channel are shown, with the
exception of the 3l analysis, which has no sensitivity. The
overall expected sensitivity varies from mðχ̃�1 =χ̃02Þ ¼
150 GeV to mðχ̃�1 =χ̃02Þ ¼ 635 GeV, including significant
improvements compared to previous results towards large
mðχ̃01Þ masses near the kinematic limit of the processes
considered. The gain in sensitivity is largely due to the
increased center-of-mass energy and dataset size relative to
Run 1, the improvements in the optimization of the signal
and control region definitions, as well as the addition of the
0lbb̄ analysis channel.

IX. CONCLUSION

Results of a comprehensive search for the electroweak
pair production of a chargino and a neutralino pp → χ̃�1 χ̃

0
2

are presented, based on 36.1 fb−1 of proton-proton colli-
sion data collected at

ffiffiffi
s

p ¼ 13 TeV by the ATLAS experi-
ment at the Large Hadron Collider. Final states are
considered where the chargino decays into the lightest
neutralino and a W boson, χ̃�1 → χ̃01W

�, while the next-to-
lightest neutralino decays into the lightest neutralino and a
SM-like 125 GeV Higgs boson, χ̃02 → χ̃01h. The search
includes 0lbb̄, 1lbb̄, 1lγγ and multilepton final states
with large missing transverse momentum in order to
maximize sensitivity to signals of new physics processes
involving Wh and SUSY DM candidates. The searches
based on final states containing b-jets (0lbb̄ and 1lbb̄)
provide unprecedented sensitivity to high-mass electro-
weak production for this benchmark scenario. The multi-
lepton and 1lγγ searches provide sensitivity in the region
of low masses, which is more difficult to access. Crucially,
exploiting the various branching ratios of the Higgs boson
into bottom quarks, photons, and multileptons, and design-
ing an overall strategy that benefits from the complemen-
tarity of the various search channels is essential for the wide
sensitivity of this analysis. No evidence of new physics
processes is observed and stringent limits are placed
on the existence of electroweak production of SUSY
particle pairs with significant improvements over previous
searches for high χ̃�1 χ̃

0
2 masses. In the context of the

considered SUSY model, masses of χ̃�1 and χ̃02 smaller
than 680 GeV are excluded at 95% confidence level for a
massless neutralino.
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