
AutoShuffleNet: Learning Permutation Matrices via
an Exact Lipschitz Continuous Penalty in
Deep Convolutional Neural Networks

Jiancheng Lyu, Shuai Zhang, Yingyong Qi
Qualcomm AI Research

jianlyu,shuazhan,yingyong@qti.qualcomm.com

Jack Xin
University of California, Irvine

jack.xin@uci.edu

ABSTRACT

ShuffleNet is a state-of-the-art light weight convolutional neural

network architecture. Its basic operations include group, channel-

wise convolution and channel shuffling. However, channel shuffling

is manually designed on empirical grounds. Mathematically, shuf-

fling is a multiplication by a permutation matrix. In this paper, we

propose to automate channel shuffling by learning permutation

matrices in network training. We introduce an exact Lipschitz con-

tinuous non-convex penalty so that it can be incorporated in the

stochastic gradient descent to approximate permutation at high

precision. Exact permutations are obtained by simple rounding at

the end of training and are used in inference. The resulting network,

referred to as AutoShuffleNet, achieved improved classification ac-

curacies on data from CIFAR-10, CIFAR-100 and ImageNet while

preserving the inference costs of ShuffleNet. In addition, we found

experimentally that the standard convex relaxation of permutation

matrices into stochastic matrices leads to poor performance. We

prove theoretically the exactness (error bounds) in recovering per-

mutation matrices when our penalty function is zero (very small).

We present examples of permutation optimization through graph

matching and two-layer neural network models where the loss

functions are calculated in closed analytical form. In the exam-

ples, convex relaxation failed to capture permutations whereas our

penalty succeeded.

KEYWORDS

ShuffleNet; Permutation; Lipschitz Continuous Penalty; Convolu-

tional Neural Network

ACM Reference Format:

Jiancheng Lyu, Shuai Zhang, Yingyong Qi and Jack Xin. 2020. AutoShuf-

fleNet: Learning Permutation Matrices via an Exact Lipschitz Continuous

Penalty in Deep Convolutional Neural Networks. In Proceedings of the 26th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD

’20), August 23ś27, 2020, Virtual Event, CA, USA. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3394486.3403103

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’20, August 23ś27, 2020, Virtual Event, CA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403103

1 INTRODUCTION

Light convolutional deep neural networks (LCNN) are attractive

in resource limited conditions for delivering high performance at

low costs. Some of the state-of-the-art LCNNs in computer vision

are ShuffleNet [14, 23], IGC (Interleaved Group Convolutions, [22])

and IGCV3 (Interleaved Low-Rank Group Convolutions,[17]). A

noticeable feature in the design is the presence of permutations for

channel shuffling in between separable convolutions. The permu-

tations are hand-crafted by designers outside of network training

however. A natural question is whether the permutations can be

learned like network weights so that they are optimized based on

training data. An immediate difficulty is that unlike weights, per-

mutations are highly discrete and incompatible with the stochastic

gradient descent (SGD) methodology that is continuous in nature.

To overcome this challenge, we introduce an exact Lipschitz con-

tinuous non-convex penalty so that it can be incorporated in SGD

to approximate permutation at high precision and low overhead.

Consequently, exact permutations are obtained by simple rounding

at the end of network training with negligible drop of classification

accuracy. To be specific, we shall work with ShuffleNet architecture

[14, 23]. Our approach extends readily to other LCNNs.

Related Work. Permutation optimization is a long standing

problem arising in operations research, graph matching among

other applications [3, 8]. Well-known examples are linear and qua-

dratic assignment problems [18]. Graph matching is a special case

of quadratic assignment problem, and can be formulated over𝑁 ×𝑁
permutation matrices P𝑁 as:

min
𝜋 ∈P𝑁

∥𝐴 − 𝜋𝐵𝜋𝑇 ∥2𝐹 ,

where𝐴 and 𝐵 are the adjacency matrices of graphs with 𝑁 vertices,

and ∥ · ∥𝐹 is the Frobenius norm. A popular way to handle P𝑁 is

to relax it to the Birkhoff polytope D𝑁 , the convex hull of P𝑁 ,

leading to a convex relaxation. The explicit realization of D𝑁 is

the set of doubly stochastic matrices

D𝑁
= {𝑀 ∈ R𝑁×𝑁 : 𝑀1 = 1, 𝑀𝑇

1 = 1, 𝑀 ≥ 0},

where 1 = (1, 1, , · · · , 1)𝑇 ∈ R𝑁 . An approximate yet simpler way

to treat D𝑁 is through the classical first order matrix scaling algo-

rithm, e.g. the Sinkhorn method, see [16] and its recent applications

[7, 15]. Though in principle such algorithm converges, the cost

can be quite high when iterating many times, which causes a bot-

tleneck effect [12]. A non-convex and more compact relaxation

of P𝑁 is by a sorting network [12] which maps the box [0, 1]𝑁
into a manifold that sits inside D𝑁 and contains P𝑁 . Yet another

method is path following algorithm [21] which seeks solutions un-

der concave relaxations of P𝑁 by solving a linear interpolation

of convex-concave problems (starting from the convex relaxation).

Permutation learning via continuous approximation has been stud-

ied in visual data recovery [4]. None of the existing relaxations are

exact. In the context of improving ShuffleNet, HadaNet [24] uses

Hadamard matrices (𝐻) to define a class of structured convolution

as the product 𝐻𝑇× group convolution ×𝐻 and generalize shuffled

group convolution of ShuffleNet. However, the inference cost of

HadaNet is much higher than that of ShuffleNet, and relies on spe-

cial hardware for speedup. Hadamard matrices are constructed to

date for certain special orders such as powers of 2, and conjectured

to exist for multiples of 4. In particular, they are not applicable to

odd channel/group numbers.

Contribution. Our non-convex relaxation is a combination of

matrix ℓ1−2 penalty function andD𝑁 . The ℓ1−2 (the difference of ℓ1
and ℓ2 norms) has been proposed and found effective in selecting

sparse vectors under nearly degenerate linear constraints [6, 20].

The matrix version is simply a sum of ℓ1−2 over all row and column

vectors. We prove that the penalty is zero when applied to a matrix

in D𝑁 if and only if the matrix is a permutation matrix. Thanks to

the D𝑁 constraint, the penalty function is Lipschitz continuous

(almost everywhere differentiable). This allows the penalty to be

integrated directly into SGD for learning permutation in LCNNs.

As shown in our experiments on CIFAR-10, CIFAR-100 and Ima-

geNet data sets, the closeness to P𝑁 turns out to be remarkably

small at the end of network training so that a simple rounding has

negligible effect on the validation accuracy. We also found that

convex relaxation by D𝑁 fails to capture good permutations for

LCNNs. We observed experimentally that a random shuffle could

perform better than manual shuffle, but the learned shuffle con-

sistently achieved the best results. To our best knowledge, this is

the first time permutations have been successfully learned for the

architecture selection of deep CNNs to improve hand-crafted permu-

tations. Moreover, our AutoShuffleNet preserves the inference cost of

ShuffleNet for any channel/group numbers.

Outline. In section 2, we introduce exact permutation penalty,

and prove its closeness to permutation matrices when the penalty

values are small, as observed in the experiments. We also present

the training algorithm combining thresholding and matrix scaling

to approximate projection onto P𝑁 for SGD. In section 3, we an-

alyze two permutation optimization problems to show the utility

of our penalty. In a 2-layer neural network regression model with

short cut (identity map), convex relaxation does not give the opti-

mal permutation even with additional rounding while our penalty

can. In section 4, we show experimental results on consistent im-

provement of auto-shuffle over hand-crafted shuffle on data from

CIFAR-10, CIFAR-100 and ImageNet. Conclusion is in section 5.

2 PERMUTATION, MATRIX ℓ1−2 PENALTY
AND EXACT RELAXATION

The channel shuffle operation in ShuffleNet [14, 23] can be repre-

sented as multiplying the feature map in the channel dimension

by a permutation matrix𝑀 . The permutation matrix𝑀 is a square

binary matrix with exactly one entry of one in each row and each

column and zeros elsewhere. In the ShuffleNet architecture [14, 23],

𝑀 is preset by the designers and will be called łmanualž. In this

work, we propose to learn an automated permutation matrix 𝑀

through network training, hence removing the human factor in

its selection towards a more optimized shuffle. Since permutation

is discrete in nature and too costly to enumerate, we propose to

approach it by adding a matrix generalization of the ℓ1−2 penalty
[6, 20] to the network loss function in the stochastic gradient de-

scent based training.

Specifically for 𝑀 =
(
𝑚𝑖 𝑗

)
∈ R

𝑁×𝑁 , the proposed continuous

matrix penalty function is

𝑃 (𝑀) :=
𝑁∑
𝑖=1


𝑁∑
𝑗=1

��𝑚𝑖 𝑗

�� − ©­«
𝑁∑
𝑗=1

𝑚2
𝑖 𝑗
ª®¬
1/2

+
𝑁∑
𝑗=1


𝑁∑
𝑖=1

��𝑚𝑖 𝑗

�� −
(
𝑁∑
𝑖=1

𝑚2
𝑖 𝑗

)1/2
, (1)

in conjunction with the doubly stochastic constraint:

𝑚𝑖 𝑗 ≥ 0, ∀(𝑖, 𝑗);
𝑁∑
𝑖=1

𝑚𝑖 𝑗 = 1, ∀ 𝑗 ;
𝑁∑
𝑗=1

𝑚𝑖 𝑗 = 1, ∀ 𝑖 . (2)

Remark 1. When the constraints in (2) hold,

𝑁∑
𝑗=1

��𝑚𝑖 𝑗

�� and 𝑁∑
𝑖=1

��𝑚𝑖 𝑗

��
in 𝑃 (𝑀) can be removed. However, in actual computation, the two

equality constraints of (2) only hold approximately, so the full ex-

pression in (1) is necessary.

Remark 2. Thanks to (2), we see that the penalty function 𝑃 (𝑀) is

actually Lipschitz continuous in𝑀 as

𝑁∑
𝑗=1

𝑚2
𝑖 𝑗 ≠ 0, ∀𝑖 , and

𝑁∑
𝑖=1

𝑚2
𝑖 𝑗 ≠

0, ∀𝑗 . Although there are alternative penalties, we choose 𝑃 (𝑀) be-
cause it is simple, effective, and integrated well with SGD.

Theorem 1. A square matrix 𝑀 is a permutation matrix if and

only if 𝑃 (𝑀) = 0, and the doubly stochastic constraint (2) holds.

Proof. (⇒) Since a permutation matrix consists of columns

(rows) with exactly one entry of 1 and the rest being zeros, each

term inside the outer sum of 𝑃 (𝑀) equals zero, and clearly (2) holds.
(⇐) By the elementary inequality,

©­«
𝑁∑
𝑗=1

��𝑚𝑖 𝑗

��ª®¬
− ©­«

𝑁∑
𝑗=1

𝑚2
𝑖 𝑗
ª®¬
1/2

≥ 0, ∀𝑖,

with equality if and only if the row-wise cardinalty is 1:

| { 𝑗 :𝑚𝑖 𝑗 ≠ 0} | = 1, ∀𝑖 . (3)

This is because the mixed product terms like 2 |𝑚𝑖 𝑗 𝑚𝑖 𝑗 ′ | (𝑗 ≠ 𝑗 ′)

in (
𝑁∑
𝑗=1

��𝑚𝑖 𝑗

��)2 must be all zero to match

𝑁∑
𝑗=1

𝑚2
𝑖 𝑗 . It only happens

when equation (3) is true. Likewise,

𝑁∑
𝑖=1

��𝑚𝑖 𝑗

�� −
(
𝑁∑
𝑖=1

𝑚2
𝑖 𝑗

)1/2
≥ 0, ∀𝑗,

with equality if and only if

| {𝑖 :𝑚𝑖 𝑗 ≠ 0} | = 1, ∀𝑗 .
In view of (2),𝑀 is a permutation matrix. □

The non-negative constraint in (2) is maintained throughout

SGD by thresholding𝑚𝑖 𝑗 → max(𝑚𝑖 𝑗 , 0). The normalization condi-

tions in (2) are implemented sequentially once in one SGD iteration.

Hence they are not strictly enforced. In theory, if the column/row

normalization (divide each column/row by its sum) repeats suffi-

ciently many times, the resulting matrices converge to (2), known

as the Sinkhorn process [16]. We did not find much benefit to iterate

more than once in terms of enhancing validation accuracy since

the error in matrix scaling can be compensated in network weight

adjustment during SGD.

The multiplication by𝑀 can be embedded in the network as a

1 × 1 convolution layer with 𝑀 initialized as absolute value of a

random Gaussian matrix. After each weight update, we threshold

the weights to [0,∞), normalize rows to unit lengths, then repeat on

columns. Let 𝐿 be the network loss function. The trainingminimizes

the objective function:

𝑓 = 𝑓 (𝑤,𝑀) := 𝐿(𝑤) + 𝜆
𝐽∑
𝑗=1

𝑃 (𝑀𝑗), (4)

where 𝐽 is the total number of łchannel shufflež,𝑀𝑗 ’s abbreviated

as𝑀 ,𝑤 is the network weight, 𝜆 a positive parameter. The training

algorithm is summarized in Alg. 1. Introducing those 1 × 1 convo-
lutions and the penalty term results in little extra computation, so

the training time is similar to training ShuffleNet. The ℓ1 term in

the penalty function 𝑃 has standard sub-gradient, and the ℓ2 term

is differentiable away from zero, which is maintained in the Alg. 1

by SGD and normalization in columns and rows. 𝜆 is chosen to be

10−3 or 2× 10−3 so as to balance the contributions of the two terms

in (4) and drive

𝐽∑
𝑗=1

𝑃 (𝑀𝑗) close to 0.

We shall see that the penalty 𝑃 indeed gradually gets smaller

during training (Fig. 8). Here we show a theoretical bound on the

distance to P𝑁 when 𝑃 is small and (2) holds approximately.

Theorem 2. Let the dimension 𝑁 of a non-negative square matrix

𝑀 be fixed. If 𝑃 (𝑀) = 𝑂 (𝜖), 𝜖 ≪ 1, and the doubly stochastic con-

straints are satisfied to 𝑂 (𝜖), then there exists a permutation matrix

𝑃∗ such that ∥𝑀 − 𝑃∗ ∥𝐹 = 𝑂 (𝜖).

Proof. It follows from 𝑃 (𝑀) = 𝑂 (𝜖) that

©­«
𝑁∑
𝑗=1

��𝑚𝑖 𝑗

��ª®¬
− ©­«

𝑁∑
𝑗=1

𝑚2
𝑖 𝑗
ª®¬
1/2

= 𝑂 (𝜖), ∀𝑖,

implying that:

|𝑚𝑖 𝑗 𝑚𝑖 𝑗 ′ | = 𝑂 (𝜖), ∀𝑗 ≠ 𝑗 ′, ∀𝑖 . (5)

On the other hand for ∀𝑖:
𝑁∑
𝑗=1

𝑚𝑖 𝑗 = 1 +𝑂 (𝜖) . (6)

Let 𝑗∗ = argmax𝑗 |𝑚𝑖 𝑗 |, at any 𝑖 . It follows from (6) that

|𝑚𝑖 𝑗∗ | ≥ 1/𝑁 +𝑂 (𝜖),
and from (5) that

𝑚𝑖 𝑗 ′ = 𝑂 (𝜖), ∀𝑗 ′ ≠ 𝑗∗ .

Algorithm 1 AutoShuffle Learning.

Input:

mini-batch loss function 𝑓𝑡 (𝑤,𝑀), 𝑡 being the iteration index;

learning rate 𝜂𝑡 for (𝑤,𝑀);
penalty parameter 𝜆 for 𝑃 ;

total iteration number 𝑇𝑛.

Start:

𝑤 : sample from unit Gaussian distribution;

𝑀 : sample from unit Gaussian distribution then take absolute

value.

WHILE 𝑡 < 𝑇𝑛, DO:

(1) Evaluate the mini-batch gradient (∇𝑤 𝑓𝑡 ,∇𝑀 𝑓𝑡) at (𝑤𝑡 , 𝑀𝑡);
(2) 𝑤𝑡+1

= 𝑤𝑡 − 𝜂𝑡 ∇𝑤 𝑓𝑡 (𝑤𝑡 , 𝑀𝑡); // gradient update for

weights

(3)𝑀𝑡+1
= 𝑀𝑡 − 𝜂𝑡 ∇𝑀 𝑓𝑡 (𝑤𝑡 , 𝑀𝑡); // gradient update for𝑀

(4) 𝑀𝑡+1 ← max(𝑀𝑡+1, 0); // thresholding to enforce non-

negativity constraint

(5) normalize each column of𝑀𝑡+1 by dividing the sum of entries

in the column;

(6) normalize each row of𝑀𝑡+1 by dividing the sum of entries in

the row.

END WHILE

Output:𝑤𝑇𝑛 ,𝑀𝑇𝑛 ; project each matrix𝑀𝑇𝑛
𝑗 inside𝑀𝑇𝑛 to the

nearest permutation matrix.

Hence each row of𝑀 is𝑂 (𝜖) close to a unit coordinate vector, with
one entry near 1 and the rest near 0. Similarly from

𝑁∑
𝑖=1

��𝑚𝑖 𝑗

�� −
(
𝑁∑
𝑖=1

𝑚2
𝑖 𝑗

)1/2
= 𝑂 (𝜖), ∀𝑗,

and

𝑁∑
𝑖=1

𝑚𝑖 𝑗 = 1 +𝑂 (𝜖), we deduce that each column of𝑀 is 𝑂 (𝜖)

close to a unit coordinate vector, with one entry near 1 and the

rest near 0. Combining the two pieces of information above, we

conclude that𝑀 is 𝑂 (𝜖) close to a permutation matrix. □

The learned non-negativematrix𝑀 will be called a relaxed shuffle

and rounded to the nearest permutation matrix to produce a final

auto shuffle. Relaxed shuffle usually has better performance before

rounding but the auto shuffle is desirable since it preserves the

shuffle structure of the original ShuffleNet without incurring extra

computation. Strictly speaking, this łroundingž involves finding the

orthogonal projection to the set of permutation matrices, a problem

called the linear assignment problem (LAP), see [1] and references

therein. The LAP can be formulated as a linear program over the

doubly stochastic matrices or constraints (2), and is solvable in

polynomial time [1]. As we shall see later in Table 5, the relaxed

shuffle comes amazingly close to an exact permutation in network

learning. It is unnecessary to solve LAP exactly, indeed a simple

rounding will do. AutoShuffleNet units adapted from ShuffleNet v1

[23] and ShuffleNet v2 [14] are illustrated in Figs. 1-2.

1 × 1 GConv

BN ReLU

Auto Shuffle

3 × 3 DWConv

BN

1 × 1 GConv

BN

Add

ReLU

3× 3 AVG Pool

(stride = 2)

1 × 1 GConv

BN ReLU

Auto Shuffle

3× 3 DWConv

(stride = 2)

BN

1 × 1 GConv

BN

Concat

ReLU

Figure 1: AutoShuffleNet units based on ShuffleNet v1.

Channel Split

1 × 1 Conv

BN ReLU

3× 3 DWConv

BN

1 × 1 Conv

BN ReLU

Concat

Auto Shuffle

3 × 3 DWConv

(stride = 2)

BN

1 × 1 Conv

BN ReLU

1 × 1 Conv

BN ReLU

3 × 3 DWConv

(stride = 2)

BN

1 × 1 Conv

BN ReLU

Concat

Auto Shuffle

Figure 2: AutoShuffleNet units based on ShuffleNet v2.

3 PERMUTATION PROBLEMS UNSOLVABLE
BY CONVEX RELAXATION

The doubly stochastic matrix condition (2) is a popular convex

relaxation of permutation. However, it is not powerful enough to

enable auto-shuffle learning as we shall see later. In this section,

we present examples from permutation optimization to show the

limitation of convex relaxation (2), and how our proposed penalty

(1) can strengthen (2) to retrieve permutation matrices.

Let us recall the graph matching (GM) problem, see [1, 12, 13,

18, 21] and references therein. The goal is to align the vertices of

two graphs to minimize the number of edge disagreements. Given a

pair of 𝑛-vertex graphs𝐺𝐴 and𝐺𝐵 , with respective adjacency 𝑛 ×𝑛
matrices 𝐴 and 𝐵, the GM problem is to find a permutation matrix

𝑄 to minimize ∥𝐴𝑄 − 𝑄𝐵∥2
𝐹
. Let Π be the set of all permutation

matrices, solve

𝑄∗ := argmin𝑄 ∈Π ∥𝐴𝑄 −𝑄 𝐵∥2𝐹 . (7)

By algebraic identity

∥𝐴𝑄 −𝑄 𝐵∥2𝐹
= trace{(𝐴𝑄 −𝑄 𝐵)𝑇 (𝐴𝑄 −𝑄 𝐵)}
= trace(𝐴𝑇 𝐴) + trace(𝐵𝑇 𝐵) − 2trace(𝐴𝑄 𝐵𝑇 𝑄𝑇),

the GM problem (7) is same as

𝑄∗ = argmin𝑄 ∈Πtrace((−𝐴)𝑄 𝐵𝑇 𝑄𝑇),
a quadratic assignment problem (QAP). The general QAP for two

real square matrices 𝐴 and 𝐵 is [12, 18]:

𝑄∗ = argmin𝑄 ∈Π trace(𝐴𝑄 𝐵𝑇 𝑄𝑇) .
The convex relaxed GM is:

𝑄∗ := argmin𝑄 ∈𝐷𝑁 ∥𝐴𝑄 −𝑄 𝐵∥2𝐹 .
As an instance of general QAP, let us consider problem (7) in case

𝑛 = 2 for two real matrices:

𝐴 =

[
𝑎 𝑏

𝑐 𝑑

]
, 𝐵 =

[
𝑎′ 𝑏 ′

𝑐 ′ 𝑑 ′

]
.

If 𝑄 ∈ D2, then:

𝑄 =

[
𝑞 1 − 𝑞

1 − 𝑞 𝑞

]
, 𝑞 ∈ [0, 1];

and

𝐴𝑄 −𝑄𝐵 =

[
(𝑎 − 𝑎′) 𝑞 + (𝑏 − 𝑐 ′) 𝑞′ (𝑏 − 𝑏 ′) 𝑞 + (𝑎 − 𝑑 ′) 𝑞′
(𝑐 − 𝑐 ′) 𝑞 + (𝑑 − 𝑎′) 𝑞′ (𝑑 − 𝑑 ′) 𝑞 + (𝑐 − 𝑏 ′) 𝑞′

]
.

where 𝑞′ = 1 − 𝑞.
Example 1: Let

𝐴 =

[
1 2

3 1

]
, 𝐵 =

[
0 2

3 1

]
.

𝐴𝑄 −𝑄𝐵 =

[
2𝑞 − 1 0

1 − 𝑞 1 − 𝑞

]
,

∥𝐴𝑄 −𝑄𝐵∥2𝐹 = (2𝑞 − 1)2 + 2(1 − 𝑞)2 = 6𝑞2 − 8𝑞 + 3,
which is convex on [0, 1] and has minimum at 𝑞∗ = 2/3. The convex
relaxed matrix solution is:

𝑄∗ =
[
2/3 1/3
1/3 2/3

]
,

however, the permutation matrix solution 𝑄∗ is the 2 × 2 identity
matrix at 𝑞 = 1.

In the spirit of objective function (4), let us minimize

∥𝐴𝑄 −𝑄𝐵∥2𝐹 + 𝜆 𝑃 (𝑄),
or equivalently minimize (after skipping additive constants in 𝑃)

𝐹 = 𝐹 (𝑞) := 6𝑞2 − 8𝑞 + 2 − 4𝜆(𝑞2 + (1 − 𝑞)2)1/2 .
An illustration of 𝐹 is shown in Fig. 3. The minimal point moves

from the interior of the interval [0, 1] when 𝜆 = 0.25 (dashed line,

top curve) to the end point 1 as 𝜆 increases to 1 (line-star, middle

curve) and remains there as 𝜆 further increases to 2 (line-circle,

bottom curve). So for 𝜆 ∈ [1, 2], 𝑄∗ is recovered with our proposed

penalty. □

Figure 3: The function 𝐹 (𝑞) as penalty parameter 𝜆 varies

from0.25 (interiorminimal point, dashed line, top) to 1 (line-

star, middle) and 2 (line-circle, bottom). Minimal point oc-

curs at 𝑞 = 1 in the latter two curves.

Example 2:Consider the adjacent matrix 𝐵 (𝐴) of an un-directed

graph of 2 nodes and 1 edge (with a loop at node 1). An edge adds

1 and a loop adds 2 to an adjacent matrix.

𝐴 =

[
2 1

1 0

]
, 𝐵 =

[
0 1

1 0

]
.

Then:

𝐴𝑄 −𝑄𝐵 =

[
2𝑞 2(1 − 𝑞)
0 0

]
,

∥𝐴𝑄 −𝑄 𝐵∥2𝐹 = 4[𝑞2 + (1 − 𝑞)2] .
So

𝑄∗ = 𝑄 (1/2) ≠ 𝑄∗ = 𝑄 (0) = 𝑄 (1) .
The 𝑃 regularized objective function (modulo additive constants)

is:

𝐹 = 4[𝑞2 + (1 − 𝑞)2] − 4𝜆(𝑞2 + (1 − 𝑞)2)1/2,
with 𝐹 (0) = 𝐹 (1) = 4 − 4𝜆. In view of

𝐹 ′/4 = (2𝑞 − 1) [2 − 𝜆/(𝑞2 + (1 − 𝑞)2)1/2],
two possible interior critical points are:

𝑞 = 1/2 or 𝑞2 + (1 − 𝑞)2 = 𝜆2/4. (8)

Since

max
𝑞∈[0,1]

{𝑞2 + (1 − 𝑞)2} = 1,

the second equality in (8) is ruled out if 𝜆 > 2. Comparing

𝐹 (1/2) = 2 − 4𝜆2−1/2 = 2(1 −
√
2𝜆)

with 𝐹 (0), we see that the global minimal point does not occur at

𝑞 = 1/2 if
1 −
√
2𝜆 > 2 − 2𝜆 or 𝜆 > 1/(2 −

√
2) ≈ 1.7071

Hence if 𝜆 > 2, minimizing 𝐹 recovers 𝑄∗. □

Figure 4: The function 𝐹 (𝑞) as penalty parameter 𝜆 varies

from 1.8 (solid line, top) to 1.9 (dot, middle) and 2 (line-circle,

bottom) whereminimal points occur at 𝑞 = 0, 1. Interiormin-

imal points occur on [0, 1] when 𝜆 = 1.8, 1.9.

In Fig. 4, we show that two minimal points of 𝐹 occur in the

interior of (0, 1) when 𝜆 = 1.8, 1.9, and transition to 𝑞 = 0, 1, at

𝜆 = 2. When

𝜆2/4 < min
𝑞∈[0,1]

{𝑞2 + (1 − 𝑞)2} = 1/2

or 𝜆 <

√
2, the second equality in (8) cannot hold, 𝐹 becomes convex

with a unique minimal point at 𝑞 = 1/2.

Remark 3. We refer to [13] on certain correlated random Bernoulli

graphs where 𝑄∗ ≠ 𝑄∗. On the other hand, there is a class of friendly

graphs [1] where 𝑄∗ = 𝑄∗. Existing techniques to improve convex

relaxation on GM and QAP include approximate quadratic program-

ming, sorting networks and path following based homotopy methods

[12, 18, 21]. Our proposed penalty (1)-(2) appears more direct and

generic. A detailed comparison will be left for a future study.

Remark 4. In Example 1, if the convex relaxed 𝑞∗ = 2/3 is rounded
up to 1, then𝑄∗ = 𝑄∗. In Example 2 (Fig. 4), the two interior minimal

points at 𝜆 = 1.8, 1.9, after rounding down (up), become zero or one.

So convex relaxation with the help of rounding happens to recover

the exact permutation. We show in Example 3 below that convex

relaxation still fails after rounding (to 1 if the number is above 1/2, to

0 if the number is below 1/2).

Example 3:We consider the two-layer neural network model with

one hidden layer [11]. Given 𝑚 ≥ 0, the forward model is the

following function:

𝑓𝑚 (𝑥,𝑊) = ∥ 𝜙 ((𝑚𝐼 +𝑊) 𝑥) ∥1 ,
where 𝜙 (𝑣) = max (𝑣, 0) is the ReLU activation function, 𝑥 =

(𝑥1, 𝑥2) ∈ R2 is the input random vector drawn from a probability

distribution,𝑊 ∈ R2×2 is the weight matrix, 𝐼 is the identity matrix.

Consider a two-layer teacher network with 2 × 2 weight matrix

𝑊 ∗ =
[
𝑎 𝑏

𝑐 𝑑

]
, 𝑎, 𝑏, 𝑐, 𝑑 ≥ 0.

	Abstract
	1 Introduction
	2 Permutation, Matrix 1-2 Penalty and Exact Relaxation
	3 Permutation Problems Unsolvable by Convex Relaxation
	4 Experiments
	5 Conclusion
	Acknowledgments
	References

