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ABSTRACT

ShuffleNet is a state-of-the-art light weight convolutional neural
network architecture. Its basic operations include group, channel-
wise convolution and channel shuffling. However, channel shuffling
is manually designed on empirical grounds. Mathematically, shuf-
fling is a multiplication by a permutation matrix. In this paper, we
propose to automate channel shuffling by learning permutation
matrices in network training. We introduce an exact Lipschitz con-
tinuous non-convex penalty so that it can be incorporated in the
stochastic gradient descent to approximate permutation at high
precision. Exact permutations are obtained by simple rounding at
the end of training and are used in inference. The resulting network,
referred to as AutoShuffleNet, achieved improved classification ac-
curacies on data from CIFAR-10, CIFAR-100 and ImageNet while
preserving the inference costs of ShuffleNet. In addition, we found
experimentally that the standard convex relaxation of permutation
matrices into stochastic matrices leads to poor performance. We
prove theoretically the exactness (error bounds) in recovering per-
mutation matrices when our penalty function is zero (very small).
We present examples of permutation optimization through graph
matching and two-layer neural network models where the loss
functions are calculated in closed analytical form. In the exam-
ples, convex relaxation failed to capture permutations whereas our
penalty succeeded.
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1 INTRODUCTION

Light convolutional deep neural networks (LCNN) are attractive
in resource limited conditions for delivering high performance at
low costs. Some of the state-of-the-art LCNNs in computer vision
are ShuffleNet [14, 23], IGC (Interleaved Group Convolutions, [22])
and IGCV3 (Interleaved Low-Rank Group Convolutions,[17]). A
noticeable feature in the design is the presence of permutations for
channel shuffling in between separable convolutions. The permu-
tations are hand-crafted by designers outside of network training
however. A natural question is whether the permutations can be
learned like network weights so that they are optimized based on
training data. An immediate difficulty is that unlike weights, per-
mutations are highly discrete and incompatible with the stochastic
gradient descent (SGD) methodology that is continuous in nature.
To overcome this challenge, we introduce an exact Lipschitz con-
tinuous non-convex penalty so that it can be incorporated in SGD
to approximate permutation at high precision and low overhead.
Consequently, exact permutations are obtained by simple rounding
at the end of network training with negligible drop of classification
accuracy. To be specific, we shall work with ShuffleNet architecture
[14, 23]. Our approach extends readily to other LCNNSs.

Related Work. Permutation optimization is a long standing
problem arising in operations research, graph matching among
other applications [3, 8]. Well-known examples are linear and qua-
dratic assignment problems [18]. Graph matching is a special case
of quadratic assignment problem, and can be formulated over Nx N
permutation matrices PV as:

: T2
min ||A - nBx" |5,
rePN £

where A and B are the adjacency matrices of graphs with N vertices,
and | - || is the Frobenius norm. A popular way to handle PV is
to relax it to the Birkhoff polytope DN, the convex hull of PN,
leading to a convex relaxation. The explicit realization of DV is
the set of doubly stochastic matrices

ON =(MeRVN . M1=1,MT1=1,M > 0},

where 1= (1,1,,---,1)T € RN, An approximate yet simpler way
to treat DN is through the classical first order matrix scaling algo-
rithm, e.g. the Sinkhorn method, see [16] and its recent applications
[7, 15]. Though in principle such algorithm converges, the cost
can be quite high when iterating many times, which causes a bot-
tleneck effect [12]. A non-convex and more compact relaxation
of PN is by a sorting network [12] which maps the box [0, 1]V
into a manifold that sits inside D and contains PV . Yet another
method is path following algorithm [21] which seeks solutions un-
der concave relaxations of PN by solving a linear interpolation



of convex-concave problems (starting from the convex relaxation).
Permutation learning via continuous approximation has been stud-
ied in visual data recovery [4]. None of the existing relaxations are
exact. In the context of improving ShuffleNet, HadaNet [24] uses
Hadamard matrices (H) to define a class of structured convolution
as the product HT x group convolution xH and generalize shuffled
group convolution of ShuffleNet. However, the inference cost of
HadaNet is much higher than that of ShuffleNet, and relies on spe-
cial hardware for speedup. Hadamard matrices are constructed to
date for certain special orders such as powers of 2, and conjectured
to exist for multiples of 4. In particular, they are not applicable to
odd channel/group numbers.

Contribution. Our non-convex relaxation is a combination of
matrix £ penalty function and DN The #;_, (the difference of £;
and £ norms) has been proposed and found effective in selecting
sparse vectors under nearly degenerate linear constraints [6, 20].
The matrix version is simply a sum of ¢, over all row and column
vectors. We prove that the penalty is zero when applied to a matrix
in DN if and only if the matrix is a permutation matrix. Thanks to
the DN constraint, the penalty function is Lipschitz continuous
(almost everywhere differentiable). This allows the penalty to be
integrated directly into SGD for learning permutation in LCNNs.
As shown in our experiments on CIFAR-10, CIFAR-100 and Ima-
geNet data sets, the closeness to PV turns out to be remarkably
small at the end of network training so that a simple rounding has
negligible effect on the validation accuracy. We also found that
convex relaxation by DN fails to capture good permutations for
LCNNs. We observed experimentally that a random shuffle could
perform better than manual shuffle, but the learned shuffle con-
sistently achieved the best results. To our best knowledge, this is
the first time permutations have been successfully learned for the
architecture selection of deep CNNs to improve hand-crafted permu-
tations. Moreover, our AutoShuffleNet preserves the inference cost of
ShuffleNet for any channel/group numbers.

Outline. In section 2, we introduce exact permutation penalty,
and prove its closeness to permutation matrices when the penalty
values are small, as observed in the experiments. We also present
the training algorithm combining thresholding and matrix scaling
to approximate projection onto PN for SGD. In section 3, we an-
alyze two permutation optimization problems to show the utility
of our penalty. In a 2-layer neural network regression model with
short cut (identity map), convex relaxation does not give the opti-
mal permutation even with additional rounding while our penalty
can. In section 4, we show experimental results on consistent im-
provement of auto-shuffle over hand-crafted shuffle on data from
CIFAR-10, CIFAR-100 and ImageNet. Conclusion is in section 5.

2 PERMUTATION, MATRIX ¢;_, PENALTY
AND EXACT RELAXATION

The channel shuffle operation in ShuffleNet [14, 23] can be repre-
sented as multiplying the feature map in the channel dimension
by a permutation matrix M. The permutation matrix M is a square
binary matrix with exactly one entry of one in each row and each
column and zeros elsewhere. In the ShuffleNet architecture [14, 23],
M is preset by the designers and will be called “manual”. In this
work, we propose to learn an automated permutation matrix M

through network training, hence removing the human factor in
its selection towards a more optimized shuffle. Since permutation
is discrete in nature and too costly to enumerate, we propose to
approach it by adding a matrix generalization of the #;_y penalty
[6, 20] to the network loss function in the stochastic gradient de-
scent based training.
Specifically for M = (m;j)
matrix penalty function is

€ RVXN | the proposed continuous
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in conjunction with the doubly stochastic constraint:

N N
mij 20, V(i j); > my=1Vj Y my=1VYi ()
i=1 =

N N
REMARK 1. When the constraints in (2) hold, Z |mij| andz |m,~j|
j=1 i=1

in P (M) can be removed. However, in actual computation, the two
equality constraints of (2) only hold approximately, so the full ex-
pression in (1) is necessary.

REMARK 2. Thanks to (2), we see that the penalty function P(M) is

N N
actually Lipschitz continuous in M asz m?j # 0, Vi, andz m?j *
j=1 i=1

0, V). Although there are alternative penalties, we choose P(M) be-
cause it is simple, effective, and integrated well with SGD.

THEOREM 1. A square matrix M is a permutation matrix if and
only if P(M) = 0, and the doubly stochastic constraint (2) holds.

PROOF. (=) Since a permutation matrix consists of columns
(rows) with exactly one entry of 1 and the rest being zeros, each
term inside the outer sum of P(M) equals zero, and clearly (2) holds.

(&) By the elementary inequality,

N N
Z |mij ||~ Z m?j
J=1 j=1
with equality if and only if the row-wise cardinalty is 1:
|Gimy %0} = 1, Vi )

This is because the mixed product terms like 2 |m;; m;jr| (j # j’)
N N

in ( Z | mij |)2 must be all zero to match Z mlzj It only happens
j=1 Jj=1

when equation (3) is true. Likewise,

N N 1/2
Z|mij|—(2mfj) >0, Vj,
i=1 i

iz1

1/2

>0, Vi,

with equality if and only if
[{i:m; #0}| =1, Vj.

In view of (2), M is a permutation matrix. O



The non-negative constraint in (2) is maintained throughout
SGD by thresholding m;; — max(m;j,0). The normalization condi-
tions in (2) are implemented sequentially once in one SGD iteration.
Hence they are not strictly enforced. In theory, if the column/row
normalization (divide each column/row by its sum) repeats suffi-
ciently many times, the resulting matrices converge to (2), known
as the Sinkhorn process [16]. We did not find much benefit to iterate
more than once in terms of enhancing validation accuracy since
the error in matrix scaling can be compensated in network weight
adjustment during SGD.

The multiplication by M can be embedded in the network as a
1 X 1 convolution layer with M initialized as absolute value of a
random Gaussian matrix. After each weight update, we threshold
the weights to [0, o), normalize rows to unit lengths, then repeat on
columns. Let L be the network loss function. The training minimizes
the objective function:

J
f=Fw, M) =L(w)+ 1 Y P(M)), (4)
j=1

where J is the total number of “channel shuffle”, M ;s abbreviated
as M, w is the network weight, A a positive parameter. The training
algorithm is summarized in Alg. 1. Introducing those 1 X 1 convo-
lutions and the penalty term results in little extra computation, so
the training time is similar to training ShuffleNet. The #; term in
the penalty function P has standard sub-gradient, and the ¢, term
is differentiable away from zero, which is maintained in the Alg. 1
by SGD and normalization in columns and rows. A is chosen to be
1073 or 2 x 1073 s0 as to balance the contributions of the two terms

J
in (4) and drive Z P(Mj) close to 0.
j=1
We shall see that the penalty P indeed gradually gets smaller
during training (Fig. 8). Here we show a theoretical bound on the
distance to PN when P is small and (2) holds approximately.

THEOREM 2. Let the dimension N of a non-negative square matrix
M be fixed. If P(M) = O(e), € < 1, and the doubly stochastic con-
straints are satisfied to O(€), then there exists a permutation matrix
P* such that || M — P* || = O(e).

Proor. It follows from P(M) = O(e) that

N N 1/2
Z | mi; | - m?j =0(e), Vi,
j=1 =1
implying that:
|mijmijy | =0(e), Vj#j', Vi (5)
On the other hand for Vi:
N
Z mij = 1+0(e). (6)
j=1

Let j* = argmax § |mij|, at any i. It follows from (6) that
| mij| > 1/N + O(e),
and from (5) that
mijr = 0(e), Vj' # j*.

Algorithm 1 AutoShuffle Learning.

Input:

mini-batch loss function f; (w, M), t being the iteration index;

learning rate 5’ for (w, M);

penalty parameter A for P;

total iteration number Tn.

Start:

w: sample from unit Gaussian distribution;

M: sample from unit Gaussian distribution then take absolute

value.

WHILE ¢t < Tn, DO:
(1) Evaluate the mini-batch gradient (V. f;, Varf;) at (w!, M?);
(2) wl = wh — pt vV, fi(wf,M"); // gradient update for
weights
(3) M*L = M? — yt Vi fr(wh, M?); ]/ gradient update for M
(4) M1 — max(M**1,0); // thresholding to enforce non-
negativity constraint
(5) normalize each column of M**! by dividing the sum of entries
in the column;
(6) normalize each row of M**1 by dividing the sum of entries in
the row.

END WHILE

Output: wI™ MT™; project each matrix MJ.T" inside MT™ to the
nearest permutation matrix.

Hence each row of M is O(e€) close to a unit coordinate vector, with
one entry near 1 and the rest near 0. Similarly from

N N 12
Z|mij|— (mej) =0(e), Vj,

i=1 i=1

N
and Z m;j = 1+ O(e), we deduce that each column of M is O(e)
i=1
close to a unit coordinate vector, with one entry near 1 and the
rest near 0. Combining the two pieces of information above, we
conclude that M is O(e) close to a permutation matrix. m]

The learned non-negative matrix M will be called a relaxed shuffle
and rounded to the nearest permutation matrix to produce a final
auto shuffle. Relaxed shuffle usually has better performance before
rounding but the auto shuffle is desirable since it preserves the
shuffle structure of the original ShuffleNet without incurring extra
computation. Strictly speaking, this “rounding” involves finding the
orthogonal projection to the set of permutation matrices, a problem
called the linear assignment problem (LAP), see [1] and references
therein. The LAP can be formulated as a linear program over the
doubly stochastic matrices or constraints (2), and is solvable in
polynomial time [1]. As we shall see later in Table 5, the relaxed
shuffle comes amazingly close to an exact permutation in network
learning. It is unnecessary to solve LAP exactly, indeed a simple
rounding will do. AutoShuffleNet units adapted from ShuffleNet v1
[23] and ShuffleNet v2 [14] are illustrated in Figs. 1-2.
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Figure 1: AutoShuffleNet units based on ShuffleNet v1.
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Figure 2: AutoShuffleNet units based on ShuffleNet v2.

3 PERMUTATION PROBLEMS UNSOLVABLE
BY CONVEX RELAXATION

The doubly stochastic matrix condition (2) is a popular convex
relaxation of permutation. However, it is not powerful enough to
enable auto-shuffle learning as we shall see later. In this section,
we present examples from permutation optimization to show the
limitation of convex relaxation (2), and how our proposed penalty
(1) can strengthen (2) to retrieve permutation matrices.

Let us recall the graph matching (GM) problem, see [1, 12, 13,
18, 21] and references therein. The goal is to align the vertices of
two graphs to minimize the number of edge disagreements. Given a
pair of n-vertex graphs G4 and Gg, with respective adjacency n X n
matrices A and B, the GM problem is to find a permutation matrix

to minimize ||JAQ — QB||%. Let II be the set of all permutation
F P
matrices, solve

Q" = argming ey [4Q — Q BII3. ™
By algebraic identity
lAQ - QBII}
= trace{(AQ - 0B)" (AQ - 0 B)}
= trace(AT A) + trace (BT B) — 2trace(AQ BT QT),
the GM problem (7) is same as
o = argminQGHtrace((—A) Q BT QT),

a quadratic assignment problem (QAP). The general QAP for two
real square matrices A and B is [12, 18]:

Q" = argmingpy trace(AQ BT oT).
The convex relaxed GM is:
Qs :=argmingpn [|AQ - QB||12c.

As an instance of general QAP, let us consider problem (7) in case
n = 2 for two real matrices:

a b a v
S
If O € D?, then:
1_
Q=[ 1 q], q € [0,1];

1-gq q
and
| a=-a")qg+(b-c")qg (b-b)g+(a-d)q
AQ-QB=] c_engr-a)g (d—d’)q+(c—b’)q’J

whereq’ =1-gq.
Example 1: Let

[2-1 o0
AQ_QB_[ 1-q 1-g ]

IAQ ~ QBIf = (2q - )* +2(1 - ¢)* = 6¢° — 8q +3,
which is convex on [0, 1] and has minimum at g. = 2/3. The convex
relaxed matrix solution is:

23 13
Q*_[ /3 2/3 ]

however, the permutation matrix solution Q* is the 2 x 2 identity
matrix at g = 1.
In the spirit of objective function (4), let us minimize

14Q — QBIl;: + A P(Q),
or equivalently minimize (after skipping additive constants in P)
F=F(q) =6¢*—8q+2—4A(¢* + (1- @))%

An illustration of F is shown in Fig. 3. The minimal point moves
from the interior of the interval [0, 1] when A = 0.25 (dashed line,
top curve) to the end point 1 as A increases to 1 (line-star, middle
curve) and remains there as A further increases to 2 (line-circle,



bottom curve). So for A € [1, 2], Q* is recovered with our proposed
penalty. O

h=1

Figure 3: The function F(q) as penalty parameter 1 varies
from 0.25 (interior minimal point, dashed line, top) to 1 (line-
star, middle) and 2 (line-circle, bottom). Minimal point oc-
curs at ¢ = 1 in the latter two curves.

Example 2: Consider the adjacent matrix B (A) of an un-directed
graph of 2 nodes and 1 edge (with a loop at node 1). An edge adds
1 and a loop adds 2 to an adjacent matrix.

REHRATH

_| 29 2(1-9
AQ—QB—[0 . ]

Then:

|AQ - @B} = 4[¢* + (1 - 9)*].
So
Qs =0Q(1/2) # Q" = Q(0) = Q(1).

The P regularized objective function (modulo additive constants)
is:
F=4[g" + (1- )] - 4M(¢* + (1- D)%,
with F(0) = F(1) = 4 — 4A. In view of
Fla=(2q-D[2-2/(¢*+ (1 - 9?2,
two possible interior critical points are:
g=1/2 or ¢*+(1-q)% = 1?/4. 8)
Since
qren[%ﬁ]{qz +(1-g?} =1,
the second equality in (8) is ruled out if A > 2. Comparing
F(1/2) =2 — 42272 = 2(1 - V22)

with F(0), we see that the global minimal point does not occur at
q=1/2if

1-V24>2-21 or 1> 1/(2—V2) ~ 1.7071

Hence if A > 2, minimizing F recovers Q*. O

31k
=138
32
g3t
a4l ”,.........,"
. .
=18 +* *s
w35 . .
0'. .’0
. .
BEteessrtt MARTVPRS
g7k
38F =2
390
4 i . . . , , . . i
§ 01 02 03 04 05 06 07 08 09

Figure 4: The function F(q) as penalty parameter A varies
from 1.8 (solid line, top) to 1.9 (dot, middle) and 2 (line-circle,
bottom) where minimal points occur at ¢ = 0, 1. Interior min-
imal points occur on [0,1] when A = 1.8,1.9.

In Fig. 4, we show that two minimal points of F occur in the
interior of (0,1) when A = 1.8, 1.9, and transition to ¢ = 0,1, at
A =2. When

2%/4 < min {¢*+(1-¢q)?}=1/2
qel0,1]

or A < V2, the second equality in (8) cannot hold, F becomes convex
with a unique minimal point at g = 1/2.

REMARK 3. We refer to [13] on certain correlated random Bernoulli
graphs where Q* # Q.. On the other hand, there is a class of friendly
graphs [1] where Q* = Q.. Existing techniques to improve convex
relaxation on GM and QAP include approximate quadratic program-
ming, sorting networks and path following based homotopy methods
[12, 18, 21]. Our proposed penalty (1)-(2) appears more direct and
generic. A detailed comparison will be left for a future study.

REMARK 4. In Example 1, if the convex relaxed q.. = 2/3 is rounded
up to 1, then Qx = Q*. In Example 2 (Fig. 4), the two interior minimal
points at A = 1.8, 1.9, after rounding down (up), become zero or one.
So convex relaxation with the help of rounding happens to recover
the exact permutation. We show in Example 3 below that convex
relaxation still fails after rounding (to 1 if the number is above 1/2, to
0 if the number is below 1/2).

Example 3: We consider the two-layer neural network model with
one hidden layer [11]. Given m > 0, the forward model is the
following function:

Jm . W) = | ((mI + W) x) Iy,

where ¢ (v) = max (v,0) is the ReLU activation function, x =
(x1,%2) € R? is the input random vector drawn from a probability
distribution, W € R?*? is the weight matrix, I is the identity matrix.
Consider a two-layer teacher network with 2 X 2 weight matrix

a b

W*=[ e d ], a,b,c,d > 0.



We train the student network with doubly stochastic constraint on
W using the #; loss:

L(W) =By [fn (x, W) = fin (x, W*)] 2.

Letp € [0,1],
W [ p 1-p ]
1-p p
We write the loss function as
Im (p) :=L(W)

=Ex [¢ ((m+p) x1 + (1 - p) x2)
+¢ ((1—p)x1+ (m+p) pxz)
—¢ (axy + bxz) — ¢ (cx1 +dxz)]?
=Ex¢ (m+p)x1 + (1 -p) x2)?
+Exg ((1-p) x1 + (m+p) x2)°
+2Ex [¢ (m+p)x1+(1-p)x2)
~ ¢ ((1=p)x1 + (m+p)x2)]
—2Gm (p,a,b) = 2Gm (p, ¢, d)
+Ex [¢ (ax1 +bx2) + ¢ (cx1 +dx2)]%, ©)
where for s,t > 0, G, (p, s, t) is defined as
Ex [¢ ((m+p)x1 + (1 - p)x2) ¢ (sx1 + tx2)
+¢ (1= p) x1+ (m+p) x2) ¢ (sx1 + tx2)] .

Define
I (q,r,st) =Ex [P (gx1 +7x2) § (sx1 +tx2)],
then
I(qrst)=1(stqr)),
and

Gm (p,s,t) =1 (m+p,1-p,s,t) + I (1-p, m+p,s,t).
For simplicity, let x obey uniform distribution on [~1, 1]2. For
qgt>r, q+r>0, s+t>0,
I (q,r,s,t) equals
¢ (gt —=3rs) % (3qt —rs)
24r? 2412

2
3 (gs+rt) +

5

1 1
3 (gs+rt) + n (gt +rs)

1 r2 g2 (10)
+ﬂ(q—2+t—2)(3qt—r3), g>randt>s
2 2 (3gt —rs)  t2 (gt —3rs)
g(qs+rt)+ L ;iqz =y ?2432 = JE<s
We have
Ex¢ ((m+p)x1 + (1 - p) x2)*
= Ex¢ ((1 - p)x1 + (m+p) x2)°
=2 [om+pP+ (- p)?], a
Ex [¢ ((m+p)x1+(1-p)x2) ¢ ((1-p)x1+(m+p)xz)]
_(m+1)*  (m+p)t
T 30m (p) 120, (p)? (12)

where 0y, (p) := max (m+ p,1 — p). The last term in (9) is a con-
stant:

Ex [¢ (ax1 + bx2) + ¢ (cx1 +dxp)]?
=§(a2+b2+c2+d2)+2](a,b,c,d). (13)

Consider a special case whena =1/3,b =2/3,c =1/4and d = 3/4.
By (11)-(13), the loss function [,;; (p) equals

2 2 27, 2(m+1)*  (m+1)*

2 +p) +(1- +

3 Lme ) () g
Lo 13 8113

—ZGm(p’g’g)_ZGm(p’Z)Z)+ﬁ’

Let

Fm (p) = b (p) — 444/p? + ((1 - p)*.

When m = 0, A = 0, Fig. 5 (top) shows [y (p) has minimal points
in the interior of (0,1). A permutation matrix W that minimizes
L (W) can be achieved by rounding the minimal points. However,
when m = 1, A = 0, (Fig. 5, bottom), rounding the interior minimal
point of 1 (p) gives the wrong permutation matrix at p = 1. At
A = 0.4, the P regularization selects the correct permutation matrix.

0.4 0.4
0.2 : 0.2
0.0 0.0
-0.2 -0.2
S -0a] A=02 0.4
=
Y 06 -0.6
-0.8 -0.8
-10{ A=0.4 -1.0
—-1.2 i -1.2
!
00 02 04 06 08 1.0
p
0.50 0.50
A=0
0.25 0.25
0.00 0.00
S 025 A=02 -0.25
Iy
-0.50 -0.50
-0.75 -0.75
A=0.4
-1.00 /ﬁ\, -1.00
-1.25 -1.25
0. 0.2 0.4 0.6 0.8 1.0

Figure 5: Fy,(p) (m = 0 top, m = 1 bottom) as penalty pa-
rameter A varies for the uniformly distributed input data on
[-1,1]2

REMARK 5. If x obeys the unit Gaussian distribution as in [11],
the Fy(p) functions are more complicated analytically, however their
plots resemble those for uniformly distributed x, see Fig. 6.
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Figure 6: F,,,(p) (m = 0 top, m = 1 bottom) as penalty parame-
ter A varies for unit Gaussian input data on R

4 EXPERIMENTS

We relax the shuffle units in ShuffleNet v1 [23] and ShuffleNet v2
[14] and perform experiments on CIFAR-10, CIFAR-100 [9] and a
subset of 20 classes (Tab. 3) from ImageNet [5, 10] classification
datasets. The 20-class data set consists of most common objects
from ImageNet, and forms a typical setting for LCNN application.
The accuracy results of auto shuffles are evaluated after the relaxed
shuffles are rounded. There is no finetuning of weights after the
rounding.

On CIFAR-10 and CIFAR-100 datasets, we set the #;_ penalty
parameter A = 1073, All experiments are randomly initialized with
learning rate linearly decaying from 0.2. We train each network
for 200 epochs on CIFAR-10 and 300 epochs on CIFAR-100. We
set weight-decay 10~4, momentum 0.95 and batch size 128. With
w and M initialized from unit Gaussian distribution in Alg. 1, we
never run into zero rows and columns in M. An explanation is that
those degenerate cases are not generic to cause problems for SGD
based training. In Tab. 1-2, we see that auto shuffle consistently
improves on manual shuffle in v1 and v2 models of ShuffleNet, by
as much as 1.73 % on v1 (g=3). Here g is the number of groups in
group convolution. The number of channels is scaled to generate
networks of different complexities, marked as 1x, 1.5x, etc.

Next we evaluate auto shuffle in light versions of ShuffleNets (v1
0.25%, v2 0.5x) on a 20-class subset of ImageNet. The subset can be
divided into 5 categories, each of which consists of 4 similar classes,
see Tab. 3. For each experiment, we set the £;_3 penalty parameter
A = 2x 1073, The training process includes two training cycles: the

Table 1: CIFAR-10 validation accuracies.

Network v1(g=8) v1(g=3) v21x v21.5x

Manual  90.06 90.55 91.90 92.56
Auto 91.26 91.76 92.81 93.22

Table 2: CIFAR-100 validation accuracies.

Network v1(g=8) v1(g=3) v21x v21.5x

Manual  69.65 70.16 72.75 73.51
Auto 70.89 71.89 7340 74.26

first cycle is randomly initialized with learning rate starting at 0.2
and the second one is resumed from the first one with learning rate
starting at 0.1. Each cycle consists of 200 epochs and the learning
rate decays linearly. We set weight-decay 4 x 107>, momentum
0.9 and batch size 128. In Tab. 4, auto shuffle again consistently
improves on manual shuffle for both v1 and v2 models, by as much
as 2% on v1(g=3). In ShuffleNet v2, r is the fraction of channels that
are fed into the right branch of the shuffle unit at Channel Split
(Fig. 2). The smaller the r, the lighter the model, the more the auto
shuffle improvement.

Table 3: 20-class subset (A=Architectures, L=Landscapes).

Cats Dogs Vehicles A L
Egyptian  Sheepdog Bike Bridge  Valley
Persian ~ Bulldog  Sportscar Dam  Sandbar

Tiger Mountain  Scooter  Castle Cliff
Siamese  Maltese Cab Fence Volcano

Table 4: Validation accuracies on 20-class in Table 3.

Network v1(g=8) v1(g=3) v2(r=0.3) v2(r=0.5)

Manual 82.84 82.00 84.63 86.11
Auto 83.68 84.00 85.58 86.84

The permutation matrix of the first shuffle unit in ShuffleNet v1
(g=3) is a matrix of size 60 X 60, which can be visualized in Fig. 7
(manual, left) along with an auto shuffle (right). The dots (blanks)
denote locations of 1’s (0’s). The auto shuffle looks disordered while
the manual shuffle is ordered. However, the inference cost of auto
shuffle is same as manual shuffle since the shuffle is fixed and stored
after training.

The accuracy drop due to rounding to produce auto shuffle from
relaxed shuffle is indicated by relative change in Tab. 5. On CIFAR-10
dataset, negligible drop is observed for ShuffleNet v1. Interestingly,
rounding even gained accuracy for on the 20-class dataset.

The 17 penalty of ShuffleNet v1 (g=3) is plotted in Fig. 8. As
the penalty decays, the validation accuracy of auto shuffle (after



L] .. ..
104 . .
" L ]
- L]
.
204 % . .
- " -
- L]
.
30 . '. '_
- -
.
.
- L]
40 '_ -_ .
L] - -
.
50 1 " " .
L] - -

0 TR "
. .
.
- -
104 " . . .,
.
.
-
01 - . "
.l
- -
.
30 . " .
.
.
.
404" - . .
.
] - "
.
- -
.
50 = . .

Figure 7: Permutation matrices of the first shuffle unit in
ShuffleNet v1 (g=3) of manual shuffle (top) and auto shuffle

(bottom). The auto shuffle is trained on CIFAR-10 dataset.

The dots (blanks) indicate locations of 1’s (0’s). The auto
shuffle looks disordered while the manual shuffle is or-

dered. The inference cost of auto shuffle is comparable to
manual shuffle in inference.

Table 5: Relative change (Rel. Ch) of accuracy of rounding
relaxed shuffle. The -/+ refer to accuracy drop/gain after
rounding to produce auto shuffle from relaxed shuffle.

Dataset Network Rel. Ch. (%)
v1 1x (g=8) 0
v1 1x (g=3) 0
CIFAR-10 v2 1x -0.02
v2 1.5x -0.11
v10.25x (g=8) +0.25
v10.25x (g=3) +0.76
20-class ) 0 5x (r203) 037
v2 0.5x (r=0.5) 0

rounding) becomes closer to relaxed shuffle (before rounding),

see Fig. 9.

103 4

—— training loss (min 0.013)
(min 0.051)

—— penalty

102 4

101 4

100 -

10—1 4

10*2 4

0 25 50 75 100 125 150 175 200
epoch

Figure 8: Training loss L and penalty P of ShuffleNet v1 (g=3)
with relaxed shuffle on CIFAR-10.
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Figure 9: Validation accuracy of ShuffleNet v1 (g=3) with
relaxed shuffle (before rounding) and auto shuffle (af-

ter rounding) on CIFAR-10. The rounding error becomes
smaller during training,.

To demonstrate the significance of the #;_; regularization, we
also tested auto shuffle with various A on ShuffleNet v1 (g=3). Tab.
6 shows that the accuracy drops much after the relaxed shuffle is
rounded. We plot the stochastic matrix of the first shuffle unit of the
network at A = 0 and A = 107 respectively in Fig. 10. The penalty
is large when A is relatively small, indicating that the stochastic
matrices learned are not close to optimal permutation matrices.

5 CONCLUSION

We introduced a novel, exact and Lipschitz continuous relaxation
for permutation and learning channel shuffling in ShuffleNet. The
learned shuffle consistently out-performs manual shuffle on CIFAR-
10, CIFAR-100, and 20 sub-class of ImageNet data sets across various



Table 6: CIFAR-10 validation accuracies of ShuffleNet v1
(g=3) with relaxed (R) shuffle (before rounding) and auto (A)
shuffle (after rounding), and penalty (P) values of relaxed
shuffle at various A’s. The penalty and rounding error tends
to zero as A increases.

A0 1E-5 1E-4 5E-4 1E-3
R 90.00 90.18 90.48 91.45 91.76
A 10.00 38.18 11.37 71.50 91.76
P 337E3 1.59E3 4.95E2 3.13E-1 5.07E-2
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Figure 10: Stochastic matrices of the first shuffle unit in
ShuffleNet v1 (g=3) with relaxed shuffle before rounding at
A = 0 (top) and 1 = 107° (bottom). The relaxed shuffle is
trained on CIFAR-10 dataset. The matrices are quite diffu-
sive, and not close to optimal permutation matrices when A
is relatively small.

light channel designs while preserving the inference costs of Shuf-
fleNet. We give solvable graph matching examples to show the
effectiveness of our permutation penalty. We show analytically
through a regression problem of a 2-layer neural network with
short cut that convex relaxation of permutation fails even with
additional rounding while our relaxation is successful.

The idea of auto-shuffle applies broadly to permutation learning
problems in science and engineering such as neuron identification
from the worm C. elegans [2], image reconstruction from scrambled
pieces [4], object tracking [19], to name a few. We plan to extend
our work to auto-shuffling in other LCNNs and a wide range of
permutation optimization problems of data science in the future.
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