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Abstract—A relaxed groupwise splitting method (RGSM) is
developed and evaluated for channel pruning of deep neural net-
works. Experiments with VGG-16 and ResNet-18 architectures
on CIFAR-10/100 image data show that RGSM can achieve much
higher channel sparsity than group Lasso method, while keeping
comparable accuracy.

Index Terms—deep neural networks, relaxed groupwise split-
ting, channel pruning.

I. INTRODUCTION

Deep convolutional neural networks (CNNs) have made

significant advances in computer vision tasks such as image

classification, semantic segmentation and object detection. In

resource limited situations however, light weight networks

are desirable for which pruning methods have been actively

studied [3].

In this paper, we propose a Relaxed Group-wise Split-

ting Method (RGSM) extending the Relaxed Variable Split-

ting Method (RVSM) [1] to group sparsification of net-

work weights, especially channel pruning. The RGSM utilizes

the thresholding formulas of group-Lasso (GLasso) [6], and

group-�0. We also found that blending RGSM with the direct

GLasso [5] can help zero out small weights more effectively

than each individual method. Our main contributions are:

• Formulation of RGSM for structured network pruning.

• General applicability of RGSM for discontinuous penalty

�0 and others with closed form proximal operators.

• Blending RGSM and direct GLasso [5] into an efficient

group sparsity method.

The rest of the paper is organized as follows. In Section

2, we discuss some related works. In Section 3, we show our

algorithms. The experimental results are in Section 4.

II. RELATED WORK

In network pruning [3], a major line of work is on structured

pruning [5] via group sparsity penalties, most notably Glasso

[6]. Besides direct implementation in gradient descent [5],

primal-dual like approaches can bring additional efficiency in

pruning. In [7], the alternating direction method of multipliers

(ADMM) is applied for unstructured weight pruning. In [1],

a relaxed variable splitting method (RVSM) is proposed for
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unstructured sparsity and its convergence is analyzed in a re-

gression problem. In RVSM, thresholding and gradient descent

are efficiently integrated to handle non-smooth (discontinuous)

penalties for network training. The RVSM is much simpler

than ADMM, and so is more computationally appealing for

deep network training.

III. ALGORITHM

Let w = {w1, ..., wg, ..., wG} be the grouped weights of

convolutional layers of a deep network, where G is the total

number of groups. Let Ig be the indices of w in group g. The

GLasso penalty [6] is: ‖w‖GL :=
∑G

g=1
‖wg‖2. Similarly,

the group-�0 penalty (G-�0) is: ‖w‖G�0 :=
∑G

g=1
1‖wg‖2 �=0.

We obtain the GLasso proximal operator by solving:

y∗g = argminyg
λ ‖yg‖2 +

∑

i∈Ig

1

2
‖yg,i − wg,i‖

2
2, (1)

and G-�0 proximal (projection) operator by solving:

y∗g = argminyg
λ 1‖yg‖2 �=0 +

1

2

∑

i∈Ig

‖yg,i − wg,i‖
2
2. (2)

The solution of (1) is a soft-thresholding operation:

y∗g = ProxGL,λ(wg) := wg max(‖wg‖2 − λ, 0)/‖wg‖2 (3)

and the solution of (2) is the hard-thresholding operation:

y∗g = ProxG�0,λ(wg) := wg 1‖wg‖2>
√
2λ
. (4)

We turn gradient descent update: wt+1 = wt − η∇f(wt) via

a relaxed group splitting into:

ut
g = Proxλ(w

t
g), g = 1, · · · , G, (5)

wt+1 = wt − η∇f(wt)− η β (wt − ut), (6)

where the last term with β in (6) is due to relaxation of u into

w to facilitate gradient descent as in [1]. Let η be the learning

rate, λ1 = λ and λ2 be the GLasso blending parameter. The

general RGSM is summarized in Alg. 1. If λ2 = 0 ( �= 0), Alg.

1 is called RGSM (RGSM+GL) for short. The RGSM can

be RGSM(GL) or RGSM(G-�0) depending on using GLasso

or G-�0 penalty. The output ut (t = max−epoch) gives the

pruned weights. The {wt}’s are auxiliary weights to help

compute {ut}’s.
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Algorithm 1: Relaxed Group-wise Splitting Method

Set hyper-parameters: β, λ1, λ2.

Define objective function: f(w) = loss (w) + λ2 ‖w‖GL.

Randomly initialize w0, define u0, and iterate as:

for g=1,2,...,G do

u0
g = Proxλ1

(w0
g)

end

for t =0,1,2,...,max epoch do

for batch = 0,1,2,...,max batch do

wt+1 = wt − η∇f(wt)− η β (wt − ut);
for g=1,2,...,G do

ut+1
g = Proxλ1

(wt
g).

end

end

end

TABLE I
ACCURACY (%) AND SPARSITY (%) OF VGG-16 ON CIFAR-10.

Model β λ1 λ2 Accuracy Sparsity

Original 0 0 0 93.94 0

GL 0 0 1e-4 93.62 65.9

RGSM(GL) 1 1e-3 0 93.68 69.0

RGSM(GL)+GL 1 1e-3 1e-6 93.61 70.1

RGSM(G-�0) 1 4e-2 0 93.77 67.8

RGSM(G-�0)+GL 1 4e-2 1e-6 93.64 70.1

IV. EXPERIMENTS AND RESULTS

We compare Alg. 1 with GLasso [5] on CIFAR-10 dataset

through VGG-16 [4] and ResNet-18 [2], and on CIFAR-100

through ResNet-18. In training, λ1 controls the threshold, and

is found to be larger for RGSM(G-�0) to be effective.

A. VGG-16 on CIFAR-10

We train VGG-16 model in 200 epochs, and use SGD as

optimizer with momentum 0.9, weight decay 5e-4 and initial

learning rate 0.1. The learning rate decays by a factor of 0.1

at the 100th and 160th epochs. We apply Alg. 1 to pruning

convolutional layers of the model. The sparsity is measured as

the percentage of all channels with �2-norm less than 1e-15.

Table I shows that both RGSM(GL) and blended RGSM(GL)

with Glasso (GL) achieved higher channel sparsity than GL

while maintaining the original network accuracy.

B. ResNet-18 on CIFAR-10 & CIFAR-100

We implemented Alg. 1 on CIFAR-10 and CIFAR-100 with

ResNet-18 under the same training condition as VGG-16. In

Table II, the blended RGSM(G-�0) and GL garnered the high-

est sparsity under 1% loss of the original accuracy. This can

be explained by the observation: while the splitting procedure

zeros out channels with �2-norm under certain threshold, the

blended GLasso helps promote channel differences so more

channels with small �2-norm appear. Fig. 1 shows the number

of channels of each layer in ResNet-18 trained on CIFAR-10.

TABLE II
ACCURACY (%) AND SPARSITY (%) OF RESNET-18 ON CIFAR-10/100.

Dataset Model β λ1 λ2 Accuracy Sparsity

CIFAR-10

Original 0 0 0 94.97 0
GL 0 0 1e-4 95.13 29.7

RGSM(GL) 1 1e-3 0 94.74 45.8
RGSM(GL)+GL 1 1e-3 5e-6 94.74 46.1

RGSM(G-�0) 1 1e-2 0 95.19 35.9
RGSM(G-�0)+GL 1 1e-3 5e-6 94.87 49.7

CIFAR-100

Original 0 0 0 77.76 0
GL 0 0 1e-4 77.52 11.2

RGSM(GL) 1 1e-3 0 77.03 11.1
RGSM(GL)+GL 1 1e-3 5e-6 77.47 12.7

RGSM(G-�0) 0.1 5e-2 0 76.93 19.7
RGSM(G-�0)+GL 0.1 5e-2 1e-6 76.88 20.3

Fig. 1. Layer-wise channel numbers in ResNet-18 before and after RGSM(G-
�0)+GL pruning on CIFAR-10.

V. CONCLUSION

RGSM is developed for structured channel pruning. It out-

performed GLasso [5] in the number of pruned channels while

maintaining network accuracy. The blended �0-version, viz.

RGSM(G-�0)+GL, achieved most channel sparsity while keep-

ing loss of accuracy under one percent for pruning ResNet-18

on both CIFAR-10 and CIFAR-100. The blending of group-

wise splitting and GLasso is found to be effective. In future

work, we plan to apply RGSM to object detection neural

networks in combination with quantization.
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