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Abstract—A relaxed groupwise splitting method (RGSM) is
developed and evaluated for channel pruning of deep neural net-
works. Experiments with VGG-16 and ResNet-18 architectures
on CIFAR-10/100 image data show that RGSM can achieve much
higher channel sparsity than group Lasso method, while keeping
comparable accuracy.

Index Terms—deep neural networks, relaxed groupwise split-
ting, channel pruning.

I. INTRODUCTION

Deep convolutional neural networks (CNNs) have made
significant advances in computer vision tasks such as image
classification, semantic segmentation and object detection. In
resource limited situations however, light weight networks
are desirable for which pruning methods have been actively
studied [3].

In this paper, we propose a Relaxed Group-wise Split-
ting Method (RGSM) extending the Relaxed Variable Split-
ting Method (RVSM) [1] to group sparsification of net-
work weights, especially channel pruning. The RGSM utilizes
the thresholding formulas of group-Lasso (GLasso) [6], and
group-fy. We also found that blending RGSM with the direct
GLasso [5] can help zero out small weights more effectively
than each individual method. Our main contributions are:

o Formulation of RGSM for structured network pruning.

o General applicability of RGSM for discontinuous penalty
£y and others with closed form proximal operators.

« Blending RGSM and direct GLasso [5] into an efficient
group sparsity method.

The rest of the paper is organized as follows. In Section
2, we discuss some related works. In Section 3, we show our
algorithms. The experimental results are in Section 4.

II. RELATED WORK

In network pruning [3], a major line of work is on structured
pruning [5] via group sparsity penalties, most notably Glasso
[6]. Besides direct implementation in gradient descent [5],
primal-dual like approaches can bring additional efficiency in
pruning. In [7], the alternating direction method of multipliers
(ADMM) is applied for unstructured weight pruning. In [1],
a relaxed variable splitting method (RVSM) is proposed for
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unstructured sparsity and its convergence is analyzed in a re-
gression problem. In RVSM, thresholding and gradient descent
are efficiently integrated to handle non-smooth (discontinuous)
penalties for network training. The RVSM is much simpler
than ADMM, and so is more computationally appealing for
deep network training.

III. ALGORITHM

Let w = {ws,...,wy,...,wg} be the grouped weights of
convolutional layers of a deep network, where G is the total
number of groups. Let I, be the indices of w in group g. The
GLasso penalty [6] is: |w|gr = 25:1 [lwgll2. Similarly,
the group-fy penalty (G-fp) is: ||w||Ge, = Zle Ljjw, [|20-
We obtain the GLasso proximal operator by solving:

Yy = argmin, A lygll2 + Z 5”992 — wg,ill3, ey
i€l
and G-¢; proximal (projection) operator by solving:
Yy = argming ALy, 1,0 + 3 Z Yg,i — wga’”% @

iel,
The solution of (1) is a soft-thresholding operation:

y; = Proxgr,(wg) == wy max([lwg|2 — A, 0)/[lwgl2 (3)
and the solution of (2) is the hard-thresholding operation:
“)

We turn gradient descent update: w't! = w! — nV f(w') via
a relaxed group splitting into:

* ——
yg = PI‘OX(;[,O,)\(wg) = Wy 1ng”2> /oN*

u, = Prox\(w)), g=1,---,G, 5)

g
w' =V fw') —npw' —u), (6)

wit!
where the last term with 3 in (6) is due to relaxation of « into
w to facilitate gradient descent as in [1]. Let ) be the learning
rate, A\ = A and A be the GLasso blending parameter. The
general RGSM is summarized in Alg. 1. If Ao = 0 (£ 0), Alg.
1 is called RGSM (RGSM+GL) for short. The RGSM can
be RGSM(GL) or RGSM(G-¥¢j) depending on using GLasso
or G-fy penalty. The output u! (t = maz_epoch) gives the
pruned weights. The {w'}’s are auxiliary weights to help
compute {u'}’s.



Algorithm 1: Relaxed Group-wise Splitting Method

Set hyper-parameters: 3, A1, Aa.
Define objective function: f(w) = loss (w) + A2 ||w||cL-
Randomly initialize w9, define u°, and iterate as:
for g=1,2,...,.G do
| u) = Proxy, (wy)
end
for t =0,1,2,....max_epoch do
for batch = 0,1,2,...,max_batch do
Wt =w' = Vf(w') —nb(w" —u);
for g=1,2,..,G do
| ultt = Proxy, (w)).
end
end
end

TABLE I
ACCURACY (%) AND SPARSITY (%) OF VGG-16 ON CIFAR-10.

Model B A1 A2 |Accuracy | Sparsity
Original 0 0 0 93.94 0
GL 0 0 led| 93.62 65.9
RGSM(GL) 1 1e3 0 93.68 69.0
RGSM(GL)+GL |1 le-3 le-6| 93.61 70.1
RGSM(G-4p) 1 4e2 0 93.77 67.8
RGSM(G-£p)+GL | 1 4e-2 1le-6| 93.64 70.1

IV. EXPERIMENTS AND RESULTS

We compare Alg. 1 with GLasso [5] on CIFAR-10 dataset
through VGG-16 [4] and ResNet-18 [2], and on CIFAR-100
through ResNet-18. In training, A; controls the threshold, and
is found to be larger for RGSM(G-/j) to be effective.

A. VGG-16 on CIFAR-10

We train VGG-16 model in 200 epochs, and use SGD as
optimizer with momentum 0.9, weight decay 5e-4 and initial
learning rate 0.1. The learning rate decays by a factor of 0.1
at the 100th and 160th epochs. We apply Alg. 1 to pruning
convolutional layers of the model. The sparsity is measured as
the percentage of all channels with {5-norm less than le-15.
Table I shows that both RGSM(GL) and blended RGSM(GL)
with Glasso (GL) achieved higher channel sparsity than GL
while maintaining the original network accuracy.

B. ResNet-18 on CIFAR-10 & CIFAR-100

We implemented Alg. 1 on CIFAR-10 and CIFAR-100 with
ResNet-18 under the same training condition as VGG-16. In
Table II, the blended RGSM(G-{) and GL garnered the high-
est sparsity under 1% loss of the original accuracy. This can
be explained by the observation: while the splitting procedure
zeros out channels with ¢5-norm under certain threshold, the
blended GLasso helps promote channel differences so more
channels with small ¢5-norm appear. Fig. 1 shows the number
of channels of each layer in ResNet-18 trained on CIFAR-10.
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TABLE 11
ACCURACY (%) AND SPARSITY (%) OF RESNET-18 ON CIFAR-10/100.

Dataset Model B A1 A2 |Accuracy | Sparsity
Original 0 0 0 94.97 0
GL 0 0 led]| 9513 29.7
RGSM(GL) 1 1e3 O 94.74 45.8
CIFAR-10 | RGSM(GLI*GL [ T 1e-3 S5e-6] 9474 | 46.1
RGSM(G-4p) 1 le2 O 95.19 359
RGSM(G-¢p)+GL | 1 Te-3 3e-6| 94.87 49.7
Original 0o 0 0 77.76 0
GL 0 0 led| 7752 11.2
RGSM(GL) 1 1e3 0 77.03 11.1
CIFAR-100 RGSM(GL)+GL | 1 1e-3 5e-6| 7747 12.7
RGSM(G-¢p) [0.1 5e-2 0 76.93 19.7
RGSM(G-/o)+GL [ 0.1 5e-2 1e-6| 76.88 20.3
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Fig. 1. Layer-wise channel numbers in ResNet-18 before and after RGSM(G-
£0)+GL pruning on CIFAR-10.

V. CONCLUSION

RGSM is developed for structured channel pruning. It out-
performed GLasso [5] in the number of pruned channels while
maintaining network accuracy. The blended ¢y-version, viz.
RGSM(G-/£()+GL, achieved most channel sparsity while keep-
ing loss of accuracy under one percent for pruning ResNet-18
on both CIFAR-10 and CIFAR-100. The blending of group-
wise splitting and GLasso is found to be effective. In future
work, we plan to apply RGSM to object detection neural
networks in combination with quantization.
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