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Constrained EV Charging Scheduling Based on
Safe Deep Reinforcement Learning

Hepeng Li, Student Member, IEEE, Zhigiang Wan

Abstract—Electric vehicles (EVs) have been popularly adopted
and deployed over the past few years because they are
environment-friendly. When integrated into smart grids, EVs can
operate as flexible loads or energy storage devices to participate
in demand response (DR). By taking advantage of time-varying
electricity prices in DR, the charging cost can be reduced by
optimizing the charging/discharging schedules. However, since
there exists randomness in the arrival and departure time of
an EV and the electricity price, it is difficult to determine the
optimal charging/discharging schedules to guarantee that the EV
is fully charged upon departure. To address this issue, we for-
mulate the EV charging/discharging scheduling problem as a
constrained Markov Decision Process (CMDP). The aim is to
find a constrained charging/discharging scheduling strategy to
minimize the charging cost as well as guarantee the EV can
be fully charged. To solve the CMDP, a model-free approach
based on safe deep reinforcement learning (SDRL) is proposed.
The proposed approach does not require any domain knowl-
edge about the randomness. It directly learns to generate the
constrained optimal charging/discharging schedules with a deep
neural network (DNN). Unlike existing reinforcement learning
(RL) or deep RL (DRL) paradigms, the proposed approach does
not need to manually design a penalty term or tune a penalty coef-
ficient. Numerical experiments with real-world electricity prices
demonstrate the effectiveness of the proposed approach.

Index Terms—Constrained Markov decision process, safe deep
reinforcement learning, model-free, EV charging scheduling.

I. INTRODUCTION

S AN environment-friendly alternative to traditional fos-

sil fuel-powered vehicles, EVs have been popularly
adopted and deployed over the past few years [1]-[3].
According to the report of International Energy Agency (IEA),
the number of EVs over the world reached about 3.1 million
in 2017 [4]. It is expected that the number of EVs will grow to
125 million by 2030 [4]. Large-scale integration of EVs into
the power grid can significantly stress the supply side, which
will raise concerns about the potential impacts of frequency
excursion, voltage fluctuation, and peak regulation. In order
to alleviate these impacts, it is encouraged to shift the EV
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charging schedules to off-peak hours through DR [5]. In a DR
program, EV charging schedules can be optimized in response
to time-varying prices [6] to reduce the charging costs, or even
make revenues by discharging energy to the grid [7].
However, it is challenging to efficiently manage EV charg-
ing schedules in real-time due to the existence of randomness.
Specifically, influenced by traffic conditions and user’s com-
muting behavior, the remaining energy, arrival time and depar-
ture time of an EV are unknown in advance. To guarantee the
EV can be fully-charged before departure, a straightforward
strategy is to finish the charging process as early as possible.
However, in order to take advantage of the time-varying elec-
tricity prices, we hope the EV could be charged when the price
is low and discharged when the price is high. The conflicts in
these two objectives make it difficult to determine the optimal
charging/discharging timing and energy quantity to satisfy the
EV charging demand as well as minimize the charging cost.
Recently, RL has been widely used to make decisions
under uncertain scenarios [8]-[10] because it can directly
learn an optimal strategy from experience data, and there is
no need to model the distribution of the randomness. The
great success of RL inspires many researchers [11]-[13], [16]
to develop RL based approaches for EV charging manage-
ment. In [11], a Q-Table was implemented to approximate an
action-value function that assessed the quality of the charg-
ing schedule. In order to implement Q-Table, the charging
action and the electricity price was discretized. However, this
discretization is not suitable for real-world application with
a large number of actions and states since the Q-Table will
become extremely large. In order to avoid the discretization
step, Vandael ef al. [12] proposed to approximate the action-
value function with a set of linear basis functions. However,
the linear approximator has limited capacity to handle the non-
linear action-value function in real-world scenarios. Unlike this
linear approximator, a non-linear kernel averaging regression
operator was proposed in [13] to approximate the action-value
function. The drawback is that the kernel function should be
manually selected, and its parameters are also required to be
properly designed. Inspired by the great success of deep neural
network [14], [15], Wan ef al. [16] used a deep neural network
to approximate the action-value function and developed a
real-time EV charging controller based on a DRL approach.
Although the aforementioned methods achieve promising
results, they need to properly design a penalty term and
choose the penalty coefficient to make sure the EV can be
fully charged upon departure. The process of designing the
coefficient is tedious. In addition, the performance of these
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methods may deteriorate due to unsuitable penalty coefficient.
To avoid the burden of manually choosing this coefficient, we
formulate the real-time EV charging scheduling problem as a
CMDP with a major concern about the constraint. With the
CMDP formulation, we can guarantee to fully charge the EV
upon departure and minimize the charging cost. To solve the
CMDP, a completely model-free approach is proposed to find
the constrained optimal EV charging/discharging scheduling
strategy based on a SDRL paradigm, i.e., constrained policy
optimization (CPO) [17]. Different from existing DRL meth-
ods, the proposed approach can directly handle the constraint
and does not need to design a penalty term and choose a
penalty coefficient for the constraint. The effectiveness of the
proposed approach is validated through experimental studies.

Compared to our previous work [16], the main contribution
of this paper is that we formulate the EV charging shedul-
ing as a CMDP and propose a SDRL solution based on CPO
to handle the charging constraint. The proposed approach
can directly solve for the constrained optimal charging policy
and does not need to design a penalty term for the charg-
ing constraint. Specifically, the contributions of this paper are
threefold.

(i) A CMDP model is formulated for the constrained EV
charging/discharging scheduling problem. The formu-
lation considers the randomness of the EV’s arrival
time, departure time and remaining energy, as well as
the real-time electricity price. The aim is to find the
constrained charging/discharging scheduling strategy so
that the charging cost can be minimized and the user’s
charging demand is satisfied.

A SDRL-based solution that does not require any
knowledge about the randomness and the constraint is
proposed to determine the constrained optimal charg-
ing and discharging schedules. Unlike existing RL or
DRL paradigms, the proposed approach does not need
to manually design the penalty term and tune the penalty
coefficient for the constraint.

A DNN is designed to learn to generate constrained
optimal charging/discharging schedules directly from
raw state information of the EV and the electricity price
in a completely end-to-end manner.

The rest of the paper is organized as follows. Section II
presents the CMDP formulation of the EV charg-
ing/discharging scheduling problem. Section III proposed
the SDRL-based approach to solve the CMDP. Then, in
Section IV, numerical experiments are carried out to validate
the effectiveness of the proposed approach. Finally, Section V
draws the conclusions.

(ii)

(iii)

II. PROBLEM FORMULATION

In this section, the constrained EV charging/discharging
scheduling problem is formulated as a CMDP. The aim is
to minimize the user’s electricity cost as well as satisfy the
EV charging demand. In the formulation, the randomness in
the arrival time, departure time and remaining energy of the
EV is considered. The uncertainty of the real-time electricity
price is also taken into account. In the following subsections,
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we first define the problem as an MDP without considering
the charging demand constraint. Then, the CMDP formulation
for the problem is proposed by augmenting the MDP with the
constraint.

A. MDP Formulation

The real-time EV charging/discharging scheduling problem
can be defined as an MDP with a 5-tuple (S,A,P,R,y),
where § is the set of states; A is the set of actions;
P:S8xA xS — [0,1] is the transition probability function;
R:S5xA xS — R is the reward function; y is a discounted
factor, which balances the importance between the immediate
reward and future rewards.

1) State: The state is defined as s; = (E;, Pi_23, ..., P),
Vi, which contains two types of information: the EV battery
energy E; at time step f, and the past 24 hours’ electricity
prices P;_»3,..., P In this study, we assume that the EV
user is a price-taker [18], [19] and the charging action does
not affect the electricity price. The EV battery energy can be
viewed as the physical state of our system, which is the phys-
ical resource we are managing. The electricity price can be
viewed as the information state, which we need to make a
decision and compute the objective function. Since the future
electricity price is unknown, we use the past 24-hours elec-
tricity price to infer future price trends so that we can make
the most cost-effective charging decisions.

2) Action: The action is the quantity of the charging or
discharging energy at time step f. It is defined as a continuous
variable a; € [—egjzx, ef,flax], where ef&x and efn‘zx represent the
allowed maximum charging and discharging energy, respec-
tively. When the EV is charged, the action a; is positive. When
the EV is discharged, the action a; is negative.

3) Transition Probability: The transition probability
P(s'|s, a) is influenced by the charging action, dynamics of
the EV battery and randomness of the electricity price. To
formulate the real-world scenario, we consider the transition
probability is unknown. For the purpose of simulation, we
model the dynamics of the EV battery as E;1 = E;+a;—€joss,
where ej,s; is the energy loss during the charging and dis-
charging process. The energy loss is model by ej,5s = a - ek
if a; = 0 or elss = a;/ngis otherwise, where n, and ngs
represent the energy conversion efficiency during charging
and discharging, respectively.

4) Reward: From the users’ perspective, the reward is for-
mulated as r; = R(S, ar, St+1) = —a; * P, Vi. During the
charging process, the reward denotes the negative of charging
cost. During the discharging process, the reward represents the
revenue from selling electricity to the grid. Here we assume
that the selling price of the electricity is the same as the
purchasing price as suggested by [16].

The aim is to select a policy = which maximizes the total
discounted return,

T

J() = Ecnn [Z y‘rf], M
=0

where y € [0, 1) is the discount factor, ¢ denotes a trajec-

tory (r = (so, do, S1,...)), and  denotes the probability of

selecting action a in state s.
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B. CMDP Formulation

To consider the EV charging constraint, we define an
auxiliary cost function C: S x A x S — R by

|E: — Erarger|, if t =T,
¢t =\ Et — Epax, if Bt > Epgy, t < T, 2)
Erm'n - Ef-, If E; =< Em;'n, t<T

where the first line computes how much the EV battery energy
deviates from its charging target E¢,.g., at the departure time T,
the second line measures the amount of energy that exceeds its
allowable maximum value E,,,,, and the third line calculates
the amount of energy that is below its allowable minimum
value Ein.

Let Jc(ir) denote the expected discounted return of the
policy = with respect to the auxiliary cost C : Je(wr) =
Er\,,,[zf]r=0 ylc;] (referred to as C-return in the following
content). Then, the MDP formulation can be augmented to
handle the constraint by confining its policies to the following
feasible set

e ={m : Jc(r) <=dj 3

where d is a small tolerance for the charging constraint vio-
lation. Therefore, we have the following CMDP formulation
for the EV charging/discharging scheduling problem,

T
max J(7) = Ecr [Z r‘R,]
t=0

s.t. Je(w) <d. )
and the optimal policy 7* for the CMDP can be defined by
n* = arg max J(w). 5)
TrEnC

In conventional MDP framework, the constraint is generally
formulated as a penalty term in the objective via a Lagrange
multiplier as follows

max J() —¢-f{d,Jc(r)), (6)

where ¢ > 0 is the Lagrange multiplier; f(d, Jc(m)) is the
penalty function, which satisfies

f@,Je(@)) =0, if Je(r) < d,
fd,Jc(m)) > 0, else if Jo(m) > d. (7

During the optimization, we want to minimize the penalty
term f(d, Jc(m)) and maximize the return J(;r). To reach this
aim, we need an appropriate value for Lagrange multiplier o
to keep a balance between the penalty f(d, Jc(mr)) and the
return J(;r). A small value for the Lagrange multiplier could
cause inadequate penalization of the constraint violation. In
this case, the EV would not be fully charged when it departed.
On the contrary, a large value for the Lagrange multiplier could
cause an excessive punishment over the constraint, resulting
in less cost-effective charging schedules. In practice, tuning
the Lagrange multiplier o usually requires a tedious process
of trial-and-error. Nevertheless, the proposed CMDP does not
need to manually tune the Lagrange multiplier p. In the next
section, we propose a SDRL algorithm to solve the CMDP in
a completely model-free manner.
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III. PROPOSED APPROACH

In traditional RL or DRL paradigms, unconstrained MDPs
are generally approached by policy search algorithms, which
search for the optimal policy within a set Ilp of parameter-
ized policies mg. A typical policy search algorithm is policy
gradient (PG), which searches for a local maximum in J(mp)
by ascending the gradient of the logarithm of the policy mp
with respect to the parameters 6,

6" = 67 1 a v J (o), ®)
Vel(mg) =) d(s) ) mo(als) Vo log o (als)¥:
sel acA
= Exy[ve log m (als) W], ©)

where vpJ(7g) is the policy gradient, d(s) = lim;_, o Pr{s; =
s|sp, } is the stationary distribution of states under , and «
is a step-size parameter; and W; can be discounted returns
= > y;‘_]R,H (REINFORCE algorithm) or action-
values Q7 (s,a) (Actor-Critic algorithm) or other formulas
(resulting in different variants of the PG algorithm).

However, for the formulated CMDP, the policy my is con-
strained. Therefore, instead of searching in Ilp, we need to
optimize over I1¢ N Ilg:

Tgnew = arg max J(mg)
g

s.t. Je(mg) < d. (10)
This update is difficult to implement for conventional DRL
approaches because it requires evaluation of the constraint
function to determine whether a proposed policy mgnew is
feasible.

A. Constrained Policy Update Rule

To solve the CMDP, we introduce Theorem 1 and
Corollary 1 and 2 from [17] in the following contents, which
provide guidance for the safe update of the policy to maximize
the expected return and satisfy the charging constraint.

Theorem 1: For any function f : § — R and any policies
n' and 7, define &¢(s, a. s') = R(s, a, 5") +yf (s') —f(s), e}"’ =
max; |Eg~ s~pL8f (s, a, 5')]|

7'(als) B

L;;‘f(JT!) = ESNd” ,a’vrz,s’NP[(
L-”\f(rr;) + \/5}}6}:[
l—y 1-y)

m(als)

l)é‘f(s, a, s’):|, (11)

EIJES,\,JH [Dgr(x'||7)[s]],
(12)

D:J(JT!) =

where Dy (7'||7)[s] is the total KL-divergence between the
policies 7’ and 7 at state s

' _ ' ' (als)
Dk (r'||m)[s] = fa 7' (als) log( @) )da. (13)
Then, the following bounds hold:
D} (') = J(x') —J(x) = D 4(="). (14)
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Corollary 1: For any two policies n’, m, given €* =
max; |Eg~n'AT (5, a)|, the following bound holds:

J(#@") —J(7)

1 2ye™
> 1= e [A”(s, o Y2re \/Dmnfn:r)[s]] (15)

a~m' 1—y

where A” (s, a) represents advantage function, which is calcu-
lated by A" (s,a) = R(s, a,s") + yV™(s') — V™ (s), and V™ (s)
is the value function.

Corollary 2: For any two policies 7/, 7, and any cost func-
tion C, given eg( = max; |E, A7 (s, a)|, the following bound
holds:

Je(n') = Jc(r)

1
=7 yEswd”Ii o, a) +

- a~m'

‘/f}"'}f \mmnfnzr)[s]] (16)

where AF-(s, @) denotes the advantage function with respect
to the constraint. It is calculated by AZ(s, a) = R(s,a,s") +
yVE (s — VE&(s), and VZ(s) is the constraint value function.

We refer the readers to the reference in [17] for the proof
of Theorem 1. The proof of Corollary 1 and 2 is given in
Appendix A. To connect the theoretical results to our problem,
let us substitute 7 and 7’ in Corollary 1 and 2 with mg
and mge+1, respectively, where mge denotes the charging pol-
icy at the kth iteration and mg+1 denotes the charging policy
at the k + 1th iteration. Then, based on the results in (15)
and (16), it follows that the following update rule (explained

in Appendix B)
ot [ATE (s, @)] — et/ D (e[ 9) [s]

Wj41 = arg max E
wellg o

an~I l—}/

+ B/ Dir(||m)ls] < d a7

is guaranteed to generate a monotonically nondecreasing
sequence of policies that satisfy the safety constraint. Here oy
and By are proper coefficients to penalize the KL-Divergence
BKL(JI’H::’;J = Eswdrk [Dgz (o ||J-rk)[s] of the current policy my
and the updated one ='. However, penalizing the policy diver-
gence between i and its update w in the objective and the
constraint could result in small step sizes and slow conver-
gence. Instead, we can restrict the KL divergence Dxr (7' ||7x)
by a trust region d to enable larger step sizes, as suggested
by [20]. Therefore, we derive the following safe policy update
rule

AT (s, a)
s.t. Je(mk) + Egogmk [ ¢

Egaqmc [A™ (s, )]

T4l = arg r:nemng ~d”
1
s, Jo(m) + mﬁsﬁﬂ [AZ(s.@)] < d.

a~m
Dgp(rr||my) < 8. (18)

B. DNN-Based Policy

In the proposed approach, we optimize the policy w with a
Gaussian distribution g ~ N (ug, 692), where the expectation
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pp and logarithmic standard deviation log oy of the Gaussian
distribution A (ug, 0’3’) is approximated by an multi-layer per-
ceptron (MLP). The parameter 8 is the set of the network
weights of the MLP. The MLP model is expressed by

po =W, -f +by,
logog = WT, (19)

where W,, W;, b, € @ are the output layer’s weights and
bias of the MLP, respectively, and f are the latent features
extracted by the hidden layers of the MLP. The latent features
[ are calculated by

f=ReLU (W!'.v, +by,),
viy1 =ReLU (W] -vi+ b)), 1=1,2,...,n—1,

Vi =5, (20)

where Wi, by € 6,1 = 1,2, ...,n are the weighs and biases
in the /th hidden layers, respectively; ReLU(-) is the Rectified
Linear Units activation function, and s is the input of the MLP,
i.e., the system state. We refer to the MLP as policy network
in the following content.

During the training process, the mp generates action by
drawing a sample from the Gaussian distribution N (ug, 092)
to explore the action space. In test cases, the policy mp takes
the expectation value pg, which is approximated by the well-
trained MLP, as its action. It is noted that the proposed policy
mg can handle continuous charging actions.

Since we need to calculate the advantages A" (s,a) and
AE(S, a) for the policy update, we use another MLP that shares
the same architecture as (20) to extract latent features ' and
approximate the value functions V™ (s) and VZ(s) by a linear
combination of f’,

[V* (516, VEGs16)]" = WE - + by, @1)

where 6, are the parameters of the value function approxima-
tor, which is referred to as value network. The value network
is optimized by

05! = 0% 4+ B gk Epurr

a~m

00 2
(V" (s16) = 3 v'Res, a))
1=0
. 2
+ (Vg(sw,,) =Yyl a)) ,

1=0
(22)

where B is a step size parameter.

C. Constrained Policy Optimization Algorithm

The policy network could have tens of thousands of parame-
ters, so directly optimizing the parameterized policy mg by the
update rule (18) can be impractical due to serious nonlinear-
ity and computational cost of the neural network. Nevertheless,
the update (18) is well-approximated around 6 by lineariza-
tion of the objective and the safety constraint and by second
order expansion of the KL divergence. Specifically, by tak-
ing Taylor series expansion, the update rule (18) can be
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information and outputs the state-values V™ (s|6y) and VE (516y)-

approximated by (see Appendix C),

ok = arg max gT® -6y
st. c+bl @ —6) <0,
%(9 —o)HO -6 <8,  (23)
where g = VoK o [ATék (s, a)] is the first derivative

an~mg

of the objective in (18), b = VpE, sy [2-S2), H =

1—y
a~mg
VDL (] |ge), and ¢ = Je(mge) — d.

The primary motivation for the update (23) is that it is easier
to solve in practice than (18). Since the hessian matrix H of
the KL-divergence is always positive semi-definite, the update
rule (23) is a convex quadratic optimization and can be solved
analytically with a guarantee of global optimum. By solving
the optimization problem (23), we obtain the following safe
policy update

okl = gk + o = ok + %H" (g — bv¥) (24)
where 6* is the optimal solution of the primal problem (23),
and A*,v* are the optimal solution of the dual problem
of (23). Due to approximation error, the update rule (24) may
result in an update that does not satisfy the true constraint
Jc(:fr;‘“) < d. For this issue, we use the following update in
practice
i+l = gk + a%H‘l (g —bvY) (25)
where the step size « is determined by a backtracking line
search method to ensure the satisfaction of the constraint. In
addition, the update rule (25) may sometimes be infeasible

due to sampling error or bad update. For that case, we use the
following update rule as suggested by [17]

gk+1 — gk _ aJLH_]b
bTH-1p

to purely decrease the C-return JC(JT;‘) value.

To implement the update rule given in (23), we need to
know the value of g, b, H and c. In practice, we can estimate
these values at the kth iteration by (see Appendix D),

N M
z — Z Z VoroAGnm P) (an’mlsn)ﬂ”‘?k (Sns @n,m)

(26)

— (27a)
NM = = gk (anmlsn)
N M
- 1 Veang (an,mlsn) Tk
h=—— B AT (Sp, Anm) (27D
NM(1 —y) g; ok (@nmlsn) € (sn, @n.m) 270)
ﬁ _ L ZN: i Veang (an,mlsn) Vg L] (an,mlsn) 27¢c)
NM = —~ 7ok (@n,m|Sn)
LA
T= EZZ};‘Q —d, T ~ (27d)
d=1 =0
where s, ~ d™*,n = 1,...,N are N sampled states at the

kth iteration; @y m,m = 1,..., M are the M sampled actions
from state s, following the policy myk; D is the total number
of trajectories gy = (80,dp,81,...)d.d = 1,...,D that are
sampled at the kth iteration.

The CPO algorithm is summarized in Algorithm 1. At the
beginning, the algorithm initializes the policy network param-
eters to 6°, the value network parameters to 9,9 , the maximum
iterations to K, the trust region of the KL-divergence to &
and the trajectory buffer D size to D. Then, the algorithm
goes into its main loop. In each loop, the algorithm sam-
ples a set of trajectories D = {rd}dD=] following the policy
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Algorithm 1 Safe Policy Update by CPO
Inputs: Initialized 6°, 60, K, 8, D.

I:

2: fork =1, K do

3 ford=1, D do

4 Set time step counter t — 0;

5: Reset the arrival time and the state s5; of the EV;
6 while 7 is not the departure time do

7 Sample an action ar according to ;ré‘ (alst):

8 Observe the next state s;41;

9: Calculate reward r; and auxiliary cost ¢y;
10: Sett—t+1;
11: end while
12: Store trajectory t; = (8g, ag. o, €o, S1» - -- ) in D;

13:  end for -
14:  calculate the sample estimates @, b, H,
15:  if the optimization problem (23) is feasible then

16: Sovle (23) by 6* = 1 H (g — bv*);

17: Update ok by (25) via backtracking line search;
18:  else

19: Update ok by (26) via backtracking line search;
20:  end if

21:  Update value network parameters Bff by (22);
22: end for
23: Output: Optimal parameterized policy mgx.

mgk_as shown in lines 3-13. After that, the sample estimates
2.b, H,T are calculated by using the sampled trajectories in
D. Starting from line 15, the algorithm checks whether the
optimization problem (23) is feasible. If it is feasible, solv-
ing (23) by 6* = l—l*H—](g — bv*), and updating the policy
by (25) via backtracking line search. Otherwise, update the
policy by (26). Then, the value network parameters Gf is
updated by (22). When the loop ends, the algorithm outputs
the optimal parameterized policy myx.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

To validate the proposed approach, we use real-world elec-
tricity price data from [21]. The electricity price data are
hourly time-varying retail prices that reflect the hourly whole-
sale market price for the Midcontinent Independent System
Operator (MISO) delivery point. We use one-year data of 2017
as the training dataset and one-year data of 2018 as the test
dataset. In addition, we assume that the EV user’s driving
behavior follows a certain pattern, which is widely used by
researchers [22]-[25]. The assumption is reasonable because
regular EV users have predictable habits and relatively fixed
arrival and departure time, such as going to work in the morn-
ing and going back home in the evening. In our study, we
model EV’s arrival and departure time as truncated normal
distributions as suggested by [25]. Table I presents the param-
eters of the distributions in details. For the arrival time, the
mean and standard deviation are 18 and 1, respectively. It is
bounded by [15, 21]. For the departure time, the mean and
standard deviation are 8 and 1, respectively; and it is bounded
by [6, 11]. For the remaining battery energy when the EV
arrives home, we assume its mean and standard deviation are
50% and 10% of the capacity of the battery, respectively. In our
experiments, we consider a Nissan Leaf EV with a maximum
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TABLE I
DISTRIBUTIONS RELATED TO USER’S COMMUTING BEHAVIOR

Distribution Boundaries
Arrival Time N(18,12) (15,21]
Departure Time N(8,12) [6,11]
Remaining Energy! || A(0.5C, (0.1C)?) | [0.2C,0.8C]

1 C: Capacity=24kWh.

TABLE II

HYPERPARAMETERS USED IN OUR EXPERIMENTS
Notion  Value Description

K 6000 maximum iterations

D 500 trajectory buffer size

o 0.995 reward discount factor

d 0.1 constraint tolerance

) 0.01 trust region of the KL-divergence

Ies 0.8% line search stepsize, 1 =0,1,2,...

B8 0.001  learning stepsize of value network

battery capacity of Capacity = 24 kWh. The allowable mini-
mum and maximum energy of the battery are E,;, = 2.4 kWh
and Ez = 24 kWh, respectively. The maximum allowable
charging and discharging energy at each hour are both 6 kwh.
This means the action a; can be chosen in the range [—6, 6],
and a negative value denotes discharging while a positive
value represents charging. The coefficients of the energy con-
version efficiency during charging and discharging are set to
Neh = Ndis = 0.98.

The charging energy target Etgpge is set to 24 kWh in order
to fully charge the EV upon departure. The constraint tol-
erance d is set to 0.1 kWh. To learn a constrained optimal
policy, the DNN-based policy my modeled in Section III has
3 layers and each layer consists of 64 neuron units. The value
network has the same architecture as the policy network. All
network parameters are orthogonally initialized. The policy
network parameters are updated by the proposed CPO algo-
rithm and the value network parameters are updated by Adam
gradient descent during the training process. We update the
policy and the value network for K = 6000 iterations. At
each iteration, we sampled D = 500 trajectories (or episodes)
to prepare data to update the networks. Other parameter set-
tings used in our experiments are presented in Table II. The
experiments are conducted on a workstation with an NVIDIA
TITAN Xp GPU and one i7-6800K CPU. The code is written
in Python3.6 using the deep learning package TensorFlow1.12.

B. Baseline Methods

Before going into the evaluation of the proposed approach,
we define several baseline methods for the purpose of com-
parison. First, we consider two well-known DRL methods,
i.e., Deep Q-Network (DQN) and Deep Deterministic Policy
Gradient (DDPG). Both methods can solve complex MDPs
with high-dimensional state inputs, but they cannot be directly
used to solve CMDPs. To make these methods able to han-
dle the constraint, we add a penalty term in the objective.
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Fig. 2. Constraint values and returns of the proposed approach during the
training process.

Specifically, we re-model the reward r; as

ri=rto-c=—aP;

E; — Euarger|, if t=T.

E; — Epmax, if Et > Epax, t<T, (28)
Enin — Ei, {f Ei < Epin, t<T

_Q.

where p is the penalty coefficient, or the so-called Lagrange
multiplier. It is worth mentioning that the main difficulty of
using DQN or DDPG is the determination of the penalty coef-
ficient po. In our study, we use two different values for the
penalty coefficient, i.e., p = 0.1 and 1.0, to conduct exper-
iments, respectively. Then, we compare their performances
with that of the proposed approach. In order for a fair com-
parison, we use the same architectures of the actor network
and critic network for DDPG as those of the policy network
7p (als) and value network V7 (s|6,) for the proposed approach.
Since DQN cannot handle continuous actions, we discretize
the action of the formulated model into 7 separate values
(—6kW, —4kW, —2kW, 0kW, 2kW, 4kW, 6kW). We use the
same architecture of the Q-network for DQN as that of the
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Fig. 3. Comparison of the cumulative curves of the daily electricity costs

and the daily constraint values on the testset between the proposed approach
and the baselines.

policy network mg(als) except that the dimensionality of the
Q-network’s output is 7.

Additionally, we deign another two baseline methods. The
first baseline applies a “Safety-Prissy” (SP) strategy that
charges the EV immediately with the maximum charging rate
as soon as it arrives home and never discharges it. The second
baseline assumes that all the uncertainties, including the arrival
time, the departure time, the remaining energy of the EV, and
the real-time electricity prices, are all known in advance. In
this baseline, the EV charging/discharging scheduling problem
is modeled as a deterministic optimization problem, and solved
by SCIP [26]. We refer to this baseline as “Theoretical-
Optimum” (TO). The TO baseline provides an upper limit for
the performance but it cannot be reached in practice due to the
existence of randomness. Both of the baselines can guarantee
the satisfaction of the constraint.

Finally, we consider an optimization-based baseline method
using model predictive control (MPC). At each time step, the
MPC method forecasts the EV departure time and the future
electricity price. Based on the forecasts, an optimization model
is solved to derive the EV charging schedules, and only the

Authorized licensed use limited to: University of Rhode Island. Downloaded on May 16,2020 at 02:04:38 UTC from IEEE Xplore. Restrictions apply.



2434

IEEE TRANSACTIONS ON SMART GRID, VOL. 11, NO. 3, MAY 2020

Arrival Departure

= 0.07 c
= 2
¥ 0.06 4% ~
o 5 £

. £
9005 /\ N 20 i
o H—— =
-.0.04 / \ o D
= 25 d
W] { 2 c
T 0.03 48 W
g J g
5 0.02 — 65

0 20 40 60 80 100 120 140

Time (Hour)

(a) Hourly electricity price (orange line) and the EV charging/discharging schedules (blue bar).

l(:harging Target

L 4

=
=
=
==
o
(4}
=
w
Py
Q
b
m
[xa]
0 20 40 60 80 100 120 140
Time (Hour)

(b) Battery energy of the EV

Fig. 4. Scheduling results obtained by the proposed approach over 7 consecutive days (Jul 7th, 2018 - Jul 16th, 2018) in the test dataset. The areas covered
by green in the subfigures represent the periods of time when the EV is absent from home.

schedule at the first step is executed. Then, the charging pro-
ceeds to the next step. The procedure is repeated until the EV
departs. We assume that the distribution of the departure time
is known by the MPC. The MPC predicts the departure time
by drawing a sample from the distribution. For the electricity
price, we assume that the forecasting error is 10 percent of the
real electricity price. To generate the forecast data of the elec-
tricity price, we use the real electricity prices plus forecasting
errors. The forecasting errors are sampled from the distribu-
tions A'(0,0.1P;),t = 1,2, ..., where P; is the real electricity
price at time step f.

C. Numerical Results

Fig. 2 presents the constraint values and returns of the
proposed approach during the training process. The constraint
value 7 y’c, and return Y7 y'r, in each episode are
depicted by light orange curve in Figure 2a and light blue
curve in Figure 2b, respectively. The corresponding moving
average of the episode constraint value and return are depicted
by dark orange curve in Figure 2a and dark blue curve in
Figure 2b, respectively. As shown in Figure 2a, the episode
constraint value decreases to a small region around the con-
straint tolerance shortly after the start of training. In addition,
as shown in Figure 2b, the episode return gradually increases
during the training process. When the training finishes, the
moving average of the returns stabilizes at a point of con-
vergence around —O0.14. These results demonstrate that the

proposed CPO approach is successful at learning to maximize
the return and approximately enforcing the constraint for the
formulated CMDP.

The proposed approach is then evaluated on the test dataset
and compared with the baseline methods. Fig. 3 presents
the comparison results. In the comparison, we calculate the
daily constraint value Z:T=0 ¢; and electricity cost Z:T:o aPy
over the test days. Then, their cumulative curves are com-
pared. Fig. 3a presents the cumulative curves of the daily
constraint values of the proposed approach and the baseline
methods. In this figure, small constraint values represent better
performance. Since the TO and SP baselines can completely
satisfy the constraint, their constraint values are 0 kWh. The
percentage terms on the right illustrate the constraint viola-
tion ratio of the corresponding solution with respect to the
constraint tolerance, which is calculated by

T
% > [max(o, > a- d){d] x 100%,
N t=0

where Z;‘r:{, ¢; is the constraint value of the corresponding
solution, d = 0.1 kWh is the constraint tolerance; N = 365 is
the total number of the test days. As it can be seen in the figure,
for the proposed CPO approach, the constraint violation ratio
is only 55.27%, which means that on average the unsatisfied
charging energy is only 55.27% xd = 0.05527 kWh. However,
for the DDPG and DQN baselines with the penalty coeffi-
cient p equal to 0.1 and 1.0, the constraint violation ratios can
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Fig. 5. Scheduling results obtained by the proposed approach over 7 consecutive days (Dec 2nd, 2018 - Dec 9th, 2018) in the test dataset. The areas covered
by green in the subfigures represent the periods of time when the EV is absent from home.

be high up to 9317.41%, 4408.72%, 1282.10% and 627.61%
respectively. For the MPC baseline method, the constraint vio-
lation ratio is 2332.93%, which is also much higher than the
CPO approach. It should be noted that because the departure
time is random, it is impossible to completely satisfy the con-
straint. However, the proposed approach can effectively restrict
the constraint violation so that the user’s charging demand is
adequately satisfied.

Fig. 3b presents the cumulative curves of the daily charg-
ing costs resulted from the proposed approach and the baseline
methods. The percentage terms on the right represent the ratio
of the cost reduction obtained by the corresponding solutions
compared to the charging cost of the SP baseline method.
As shown in the figure, the proposed CPO approach reduces
the total charging cost by 63.14% in comparison with the SP
baseline. The cost reduction is only 9.31% less than that of
the TO baseline. It is worth noting that the result of the TO
is 72.45% and cannot be reached. In addition, the proposed
CPO approach is better than the baselines, i.e., the DDPG
with o = 1.0 and the DQN with o = 0.1 and 1.0. These three
baselines only reduce the charging cost by 56.82%, 59.75%
and 26.16%, respectively. It should be noted that although the
baseline of the DDPG with o = 0.1 reduces the electricity
cost by 83.54%, it significantly violates the constraint by a
ratio of 9417.41% as shown in Fig. 3a. Considering the com-
parison results in Fig. 3a and Fig. 3b together, we can see
that the performance of DQN and DDPG is greatly affected

by the coefficient o. The process of choosing this coefficient
requires trial and error. However, the proposed CPO approach
does not need to determine this coefficient and is effective for
reducing the charging cost as well as satisfying the charging
constraint. In addition, the MPC method reduces the charg-
ing cost by 81.13%. However, it significantly violates the
charging constraint by a ratio of 2332.93%. Compared to the
MPC method, the CPO method is more effective in handling
the charging constraint to meet the user’s charging demand.
Moreover, the CPO method is model-free and does not needs
models to predict the EV departure time and the electricity
price.

To further demonstrate the effectiveness of the proposed
CPO approach, the charging and discharging schedules of
the proposed CPO over 7 consecutive test days (i.e., Jul 7th,
2018 - Jul 16th, 2018) are presented in Fig. 4. Specifically,
Fig. 4a shows the hourly electricity prices and EV charg-
ing/discharging schedules. Fig. 4b shows the corresponding
battery energy of the EV. The areas covered by green in Fig. 4a
and Fig. 4b represent the periods of time when the EV is out
of home. It can be observed from Fig. 4a that the EV is dis-
charged when the electricity price is high. When the price
becomes low, the EV will be charged. When the EV departs
home, the battery energy of the EV reaches the charging tar-
get. These results validate the effectiveness of the proposed
approach in optimizing the real-time EV charging/discharging
schedules with the charging demand constraint. Fig. 5 presents
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the charging and discharging schedules over another 7 test
days (i.e., Dec 2nd, 2018 - Dec 9th, 2018). These test days
have different electricity price patterns than those demon-
strated in Fig. 4. It can be observed from Fig. 5 that the
CPO learns a good policy to charge the EV when the price
is low and discharge the EV when the price is high. When
the EV departs home, the EV is adequately charged to meet
the charging target. The experiment results illustrate that
the proposed CPO is adaptive to different electricity price
patterns.

V. CONCLUSION AND DISCUSSIONS

To develop a constrained optimal EV charging/discharging
strategy, we formulated the real-time EV charging scheduling
problem as a CMDP. In the formulation, we have considered
the randomness of the EV’s arrival time, departure time and
remaining energy, as well as the real-time electricity price.
A model-free solution based on SDRL has been proposed.
The proposed solution does not require any knowledge about
the randomness and the constraint. More importantly, it does
not need to manually design a penalty term or tune a penalty
coefficient for the constraint. It uses a DNN to directly learn
the constrained optimal charging/discharging policy in an end-
to-end manner. Experimental results demonstrated that the
proposed approach can adequately satisfy the charging con-
straint and reduce the charging cost compared to the baseline
solutions.

In this paper, we take the perspective of EV users and
assume they are price-takers. Therefore, we do not consider
the impact of EV charging on the price signal. However,
when a large fraction of EV users apply the proposed learn-
ing algorithm and selfishly shift their charging actions to
low price periods, there will be a new peak in the demand
side during that periods. This will propel the utility to adjust
the electricity price. In this case, the charging action of an
EV will result in changes of the future electricity price and
in turn affect all EVs’ learning. This is a more compli-
cated and significant issue worth discussion from a more
systemic perspective. We will leave this problem for future
research.

APPENDIX A
PROOF OF COROLLARY 1 AND 2

Proof: Let V™ (s) = EFNK[Z?:D y'R;|so = s] denote the
value function of the formulated CMDP at the state s following
the policy m. Given V7 (s), we define A™ (s, a) = R(s,a,s’) +
yV™(s') — V7 (s) as the advantange function of the CMDP
at state s taking the action a. Then, we rewrite Eq. (11) by
substituting d¢(s, a, s’) with A™ (s, a)

Lef(n') = Eswd”,a'vn,s’NPl:(JT @) _ l)ﬁf(S, a, f):l

(als)
7' (als)

= Egvd™ arn [ A" (s, a) — A" (s, a)]

7 (als)
'(als)

A" (s, a):|

= Eg~dm g~
* ”[:r(am
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_ f " f 2(als) =42 A% (5. aydads
s a w(als)

= f d” f 7' (a|$)A™ (s, a)dads
5 a
= s~d",a~rz’[An (S, ﬂ)]

where Esg7 g~z [AT (5, a)] = 0 according to the definition of
the advantage function. Substituting (29) into (12), we can
derive

(29)

1
Di:‘f(ﬂ’) i~ s~d™

a~m'’

" [A,, (s,a) + Ve \/DKL(N’III)[S]]' (30)

1—y
Since
J(7") = J(@) = D £('), (31)
we have
J(7") = J(x) = = EZ:‘:;
x [A”(s, a) — ‘/life: \/m].
(32)

Also, let Vg (5) = E;nrl Z?:o y'cs|so = 5] denote the value
function with respect to the constraint at the state s following
the policy . Define A7 (s, a) = C(s,a,s") +yVE(s') — VE(5)
as the advantage function with respect to the constraint at
state s taking the action a. Then, Eq. (11) can be similarly
rewritten as

Lnxf(n’;) = Es'vd”,a'vn’[AE(S, {I)]

Substituting (33) into (12), we can derive

(33)

1 V2yeZ
Dry(n') = 1= Es~d’t[A§(s, a)+ lfe}f \XDKL(n’un}[s]}
(34)
Since
D} (7') = Je(n') — Je(), (35)
we have

1
Je@@') —Je(m) < T, B

a~m'

2yer
x [ Z(s,0) + {EEC \/DKL(n’n:r)[s]].
(36)
|
APPENDIX B

EXPLANATION OF COROLLARY 1 AND 2

!

Let us substitute 7 and 7" in Corollary 1 and 2 with
gk and mgk+1, respectively, where mge denotes the charging
policy at the kth iteration and mp+1 denotes the charging
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policy at the k + Ilth iteration. Then, we can rewrite

Eq. (15) as

1
J(mpq1) = J(my) + mE

srd
k!
oL
x [A"* s,a) — %‘/Dﬂ(nﬂ' )i |.

(37

It is noted that the right part of the above inequality is the
lower bound of the return J(m;41) when we update the policy
from my to myq. If we maximize the lower bound to generate
the policy my,; when at the kth iteration,

1
Mgy = arg;téal_ﬁ J(J'l'k} + mESNa‘""k

am~m

x |:A‘T“(s, a) — \]/i_yi ‘.?DKL(NHJT“)[S]]
2 b g
= arg ,—?éarﬁ Eswdﬁk [A‘Tk (s,a) — {fj ‘.?Dg,r_(yr”nk)[s]]

a~m 38)

we are guaranteed that an improving policy can be obtained
according to Wan ef al. [16], ie.,

J(7heg1) = J (i) (39

Now, we can use the update rule in (38) to improve the
policy m; to maximize the return J(m;). However, we still
require the policy mj to satisfy the charging constraint. To
achieve this aim, we use the theoretical result in Corollary 2.
Specifically, we rewrite Eq. (16) as

Je(mryr) < Je(me) + E s
l—y avmy
ﬁyeﬂk+l
x [Agk (s,a) + ﬁ Dz (g1 |170) 81 |-

(40)

The right part of the above inequality is the upper bound of the
C-return J(mi41) (i.e., the constraint value) when we update
the policy from my to miyq. If we constrain the upper bound
to be less than or equal to d

A (s,a) A 2yerH!
E g [ C + Yec

\/— —_— :l
s | T T gy VPR knlimolsl | < d

(41)

we can guarantee that J(smiy1) is less than or equal to d,

J(pp) < d. (42)
Combining (38) and (41), we can guarantee that the safe
policy update rule in (17) is able to generate a monotonically
nondecreasing sequence of policies, J(mg) < --- < J(mg), that
satisfy the safety constraint, Jo(m) <d k=1,2,...,K.
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APPENDIX C
DERIVATION OF THE APPROXIMATE UPDATE RULE

Since 7 depends on 8, we use mg« to overload the notation
7k in Eq. (18) to denote the policy at the kth iteration. By
taking the first order Taylor series expansion, the objective of
the update rule (18) can be approximated around ok by

E_ ot [AT6 (s, a)]

a~mg

S E, [ 6,00] + VEE, w47 . @) (0 - %),

a~Tgk a~mg

43)

The first term in the expansion E__ [ATek (s, @)] van-
arI g

ishes according to the definition of the advantage function

ATék (s, a), so Eq. (43) can be simplified by

E, ot [A™ (5, @)] = VIE, i [A7 s, 0] (0 — 6F).  44)
a~ag a~amg

Similarly, we can approximate the constraint in (18) by
taking the first order Taylor series expansion around ok

1

11—, [‘G‘?k (s, a)]

a~mg
Mok Tk
A (s, a) AL (s,a)
" c 5 T c 5 k
NEsmduﬂk T +V5'Es~d"9* T (9—9 )
a’“‘ﬂek }/ am~img }/
Tk
A (s, a)
= VIE, g |2 (9 - 9“), (45)
a~mg 1- Y

Also, by taking the second order Taylor series expan-
sion around 9“‘, the KL divergence Dgp (mg||mgk) is approx-
imated by

D (o 74t) ~ D (gt |79t ) + v Dt (o | |n9k)(9 _ 9“)

+ %(9 - ek)r Ve ﬁn(ﬂellﬂek)(ﬁ' - 9;‘)-
(46)

The first term in the expansion vanishes because the KL dis-
tance between two identical distributions is 0. The second term
also vanishes because the KL distance achieves a minimum at
6 = 6. Thus e Dgy (mg||mgk)lo=g, = 0.

Substitute (44), (45) and (46) into the update rule (18), we
can derive an approximation to (18)

moen = argmax V3 E, i [AT (5, @] (6 — %)

anmg

s.1. Jc(ﬂ’gk) + V;—Eswduﬂk

a~mg
Tk
A (s, a

« [ D (6-6") <a,
-y

1 —
70~ 00" v Dir(m||7g4) (0 — 6k) < 8.
(47)
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APPENDIX D
ESTIMATION OF g, b, H AND ¢

In practice, it is difficult to calculate the precise val-
ues of g, b, H and c. We need to estimate these val-
ues by sampling. For g = voE__ 7 [ATek (s, a)], we can

. . a™~Iig
rewrite it as

B o0
8 = VeE, /o f mpA”6k (s, a)da]

LS —00

B o0
f ”—Bngm’fek (s, a)da]

oo Mgk

= V&Eswdﬂgk

-
= VoE,_ ek ”—manngkAnek (s, a)]

I:A"ek(s,a)]
~dok | —— | Vo
sma::;k Tgk

(48)

where the expectation term E (s “)] only depends

sd 8k [

a™Ir
on mgk, which is known at the ktgﬁ 1terat10n; the derivative
term gmg is just the gradient of the policy network with
respect to the network parameters 6. Therefore, g can be
estimated by taking its sample mean when N and M are
large,

by
ATk (S, Gn,m)

Tk (a,, m|Sn)

_ Ly o onn)

n=1m=1

Ve g (an,m |5n.) 49)

where s, ~ d™*,n =1,
iteration; ap m. m =1,
following the policy mp«.

, N are N state samples at the kth
, M are M action samples at state s,

Similarly, we can estimate b = VoE__ o [AC (‘ a)

a~mg

1 by

n ;(
E
Sm ap, m)

. (50
ot anmlsn) Ve nﬂ(an,mlsn) (50)

b= NMa—y)ZE

For H, we have

H = V3D (wallmgt) = E,._ gt | V3D (ol lmg1) 1] (S1)

where
ENEL) 3Dk (e ||7gr)

a6\ a6

32:.'19 9Dk (71’9 | |R’9k)
362 a6

| (aﬂ) 82D (o || ge) (aﬂ)T (52)

30 am a6

V2 Dr (ol |mgr) o7

At the point 8 = 6%, we have

3Dk (7o ||7gk ) |

) (53)

g=gk = 0
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and
r 2
Tk [Ty . 0
3*Dir (ol |7gi) v
T — — i— —_ - - .
a2 0=0 : ’ .
] 2
L 0 If’f”‘”& lo=pk
[1/mge ... 0
=/ : - (54)
[0

where L is the dimensionality of the action. In our problem,
since L = 1, we can simplify (52) by

T
dmg\ 1 [ 0mp
2
D g =—]—1—1 . 55
Vo KL(JT9||979!<)|9_9R (39 )nak(ae) (55)

Using (51) and (55), we can estimate H by

Aoyt

n=1 m=1

Verg an. mlsn) VQ o (an mlsn)

gk (an,m|Sn)

(56)

For ¢ = Jc(mgi) —d, since d is a known value and Jo(mgr)
is estimated by the sample mean of C-returns

ZZ}’C} s T ™ Mgk,

thus we can estimate ¢ by

1 D T
=p 2 v

d=1 t=0

Jc (J'J.'gk
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