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Abstract—We propose a multistage differentiable method to
select convolutional channels and construct light neural networks
from a heavy network for inference on a subset of a big data set.
The selection proceeds backward in layers and utilizes sparse
penalty to diversify channel scores. The resulting light network
gains sizable accuracy over the baseline heavy network.

Index Terms—differentiable channel selection, light network.

I. INTRODUCTION

A major task of deep learning in computer vision is to

identify objects and classify images as accurately as possible.

Though researchers can afford a staggering amount of training

time and an abundance of GPUs to search a high end deep

neural network on large scale data sets, it is a challenge for

industry to realize such a network in their products of limited

energy budget. Moreover, the classes of objects most often

encountered are on the order of dozens, far less than those

in the big data sets for training heavy duty deep networks.

In this paper, we initiate the study of constructing a light

weight network by performing structure selection from a high

end (heavy) deep network. Specifically, we study the removal

of non-important channels in the convolution layers when the

inference is on a subset with fewer classes of objects selected

from the big data set. This is different from standard channel

pruning [1] where the inference of the pruned network remains

on the big data set associated with the heavy network.

Our approach is along the line of Neural Architecture Search

(NAS) [2] that succeeded in automatically designing neural

network models by machines. Among the NAS style training

algorithms, Differentiable Architecture Search (DARTS) [3] is

the most efficient. Let us consider the problem of extracting

a light weight network to classify a dozen or so categories

(classes) of images from a well-trained and heavy-duty base-

line model which is designed to distinguish 1,000 classes.

As the number of classes is reduced, it should be enough

to use less channels to extract features since too detailed

descriptions are redundant when there are not many candidates

for classification. Hence channel selection is meaningful for

model size reduction without degrading accuracy. We mention

that compared to selecting layers of the network, channel

selection is more stable and accuracy preserving. Instead of
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relying on the magnitude of weights in each channel, we opt

to optimize on channel importance parameters (scores) as in

[2], [3]. This makes the selection easy to interpret provided

the scores are sufficiently distinct (away from being uniform to

cause ambiguities). To this end, our contribution is to employ

a sparsity promoting penalty on channel scores, the difference

of �1 and �2 norm [4] denoted by �1−2, which is differentiable

and sharper than �1.

The rest of the paper is organized as follows. In section II,

we introduce the mathematical formulation of our approach

and the training algorithm. In section III, we show experimen-

tal results where our method out-performs the state-of-the-art

method (squeeze and excitation [5]) while gaining accuracy

and reducing network complexity.

II. CHANNEL SELECTION ALGORITHM

As in [3], we introduce a list of channel scoring parameters.

That is to multiply the feature map Fi,j by a parameter αi,j ,

where (i, j) are the layer and channel indices (see Fig. 1):
F̃i,j = αi,j Fi,j .

Here F̃i,j is the new feature map, with the rest of the network
unchanged. Our task is to learn the value of those parameters,

and remove the channels whose scores are low. That means we

can drop all the filters connected to those channels as well,

which helps to reduce the model size, and saves time and

power for computation.

The benefit of differentiable methods is that they can

learn parameters continuously by gradient descent. One may

directly adopt the DARTS algorithm [3]: αt+1 = αt −
ηtα ∇αfval(w

t, αt), wt+1 = wt − ηtw ∇wftrain(w
t, αt+1),

where η is the learning rate, w is the weight, ftrain(w,α)
and fval(w,α) are the training and validation loss functions.

However, this may cause some problems.

First, the values of the learned α’s are likely to be very close

since the initialization is random. As a result, it can be hard

to determine which channels to drop without external force.

To solve this problem, we impose penalty on the α’s to make

it sparse. In other words, a large proportion of the α’s we

obtain should be zero or very small. To this end, we consider

the �1−2 penalty (a better differentiable approximation to �0
than �1) [4], and so the new penalized validation loss function

becomes:

Lval(w,α) = fval(w,α) + λ ‖α‖�1−2
,
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Fig. 1. Channel scoring parameters act on feature maps in the i-th layer.

where ‖α‖�1−2
= ‖α‖1 − ‖α‖2, while the training loss

function is still the same.

Another problem is that, if we select the channels in all the

layers simultaneously, the accuracy will be affected adversely.

This is because the penalty forces the α’s to converge too

quickly before the weights are trained well. Our strategy is to

fix all but one layer, select the channels in the fixed layer, and

then repeat for the subsequent layers. As the first few layers

are more sensitive, there is not much room to select channels

in those layers. Hence we start from the last layer and go

backward, then terminate at some optimal intermediate layer.

In each stage, we select channels in one layer at a time. Let N
and m (in our experiments m = 10) be the indices of the last

layer and the intermediate layer we choose to end selection,

we summarize the above discussion in the following:

Algorithm 1: Multistage Backward Differentiable Method

(MBDM)

Input N,m. Initialize w0 and α0.

for i = N, N-1, ..., m do

while not converged do

αt+1

i ← αt
i − ηtα∇αi

Lval(w
t, αt)

αt+1

i ← σ(αt+1

i )/‖σ(αt+1

i )‖1
wt+1 ← wt − ηtw∇wLtrain(w

t, αt+1)
end

end

In Algorithm 1, we apply ReLU function σ(·) to zero out

all the negative α’s and take �1 norm so that all these scoring

parameters are non-zero and sum to 1 in each layer.

III. EXPERIMENTS

Given the 1,000-class ImageNet data [6] and ResNet-18 [7]

as the baseline model, we extract a light model on a subset

of 10 or 20 classes of data via channel selection. Depending

on the number of sub-classes (10 or 20), the training data

set contains 13,000 or 26,000 images, respectively. To test

the capability of the algorithm, the 10 classes we select are

more random and distinguishable, while the 20 classes are

divided into 5 categories and the classes within each category

are similar (Table I).

The whole training procedure consists of two steps. First,

we run the MBDM algorithm to learn the values of the α’s and

select a slim model. Second, we train the full model for ease

of programming with the α’s fixed (a slim model in essence

as many α’s are zero), so that the weights in each channel can

be fine-tuned. As seen in Table II, our algorithm out-performs

considerably the baseline ResNet-18 model in distinguishing

TABLE I
THE 10 & 20 CLASSES.

10
Classes

Shark, Ant, Panda, Train, Castle, Piano,
Umbrella, Broccoli, Lemon, Volcano

20
Classes

Cats Dogs Vehicles Architectures Landscapes

Egyptian Sheepdog Bike Bridge Valley
Persian Bulldog Sports car Dam Sandbar
Tiger Mountain Scooter Castle Cliff

Siamese Maltese Cab Fence Volcano

TABLE II
COMPARISON OF RESNET, SE-RESNET, MBDM (AVERAGE TEST

ACCURACY OF 5 RUNS), ALL TRAINED FROM SCRATCH.

Number of classes ResNet SE-ResNet MBDM

20 83.8 86.8 87.9

10 87.0 91.4 93.7

TABLE III
SPARSITY (PENCENTAGE OF ZERO CHANNELS AMONG ALL CHANNELS) IN

THE LAST 8 CONV LAYERS FOR THE EXPERIMENT OF 20 CLASSES.

Layer 10 11 12 13 14 15 16 17

Zero chs 210 60 221 58 246 261 427 206
All chs 256 256 256 256 512 512 512 512

Sparsity 82.0 23.4 86.3 22.7 48.0 51.0 83.4 40.2

10 or 20 classes. Though the gap is closer, our algorithm also

beats the SE-ResNet [5], a recent model that handles channel-

wise information flow by enhancing their relations. What is

more, our model is much lighter than the baseline model as

many of the channels are not activated, which is supported by

Table III.

IV. CONCLUSIONS AND DISCUSSIONS

We developed a novel differentiable method on channel

selection for a subset inference problem based on a heavy

network on a big data set. We showed that the ResNet-18

model with channel selection performs far better than the

full model on a 10-class or 20-class data set (a subset of

ImageNet). Our method generalizes to other components of

network architecture on similar tasks. In future work, we plan

to study other models such as MobileNet and on a variety of

sub-classes.
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