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Abstract—We propose a multistage differentiable method to
select convolutional channels and construct light neural networks
from a heavy network for inference on a subset of a big data set.
The selection proceeds backward in layers and utilizes sparse
penalty to diversify channel scores. The resulting light network
gains sizable accuracy over the baseline heavy network.

Index Terms—differentiable channel selection, light network.

I. INTRODUCTION

A major task of deep learning in computer vision is to
identify objects and classify images as accurately as possible.
Though researchers can afford a staggering amount of training
time and an abundance of GPUs to search a high end deep
neural network on large scale data sets, it is a challenge for
industry to realize such a network in their products of limited
energy budget. Moreover, the classes of objects most often
encountered are on the order of dozens, far less than those
in the big data sets for training heavy duty deep networks.
In this paper, we initiate the study of constructing a light
weight network by performing structure selection from a high
end (heavy) deep network. Specifically, we study the removal
of non-important channels in the convolution layers when the
inference is on a subset with fewer classes of objects selected
from the big data set. This is different from standard channel
pruning [1] where the inference of the pruned network remains
on the big data set associated with the heavy network.

Our approach is along the line of Neural Architecture Search
(NAS) [2] that succeeded in automatically designing neural
network models by machines. Among the NAS style training
algorithms, Differentiable Architecture Search (DARTS) [3] is
the most efficient. Let us consider the problem of extracting
a light weight network to classify a dozen or so categories
(classes) of images from a well-trained and heavy-duty base-
line model which is designed to distinguish 1,000 classes.
As the number of classes is reduced, it should be enough
to use less channels to extract features since too detailed
descriptions are redundant when there are not many candidates
for classification. Hence channel selection is meaningful for
model size reduction without degrading accuracy. We mention
that compared to selecting layers of the network, channel
selection is more stable and accuracy preserving. Instead of
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relying on the magnitude of weights in each channel, we opt
to optimize on channel importance parameters (scores) as in
[2], [3]. This makes the selection easy to interpret provided
the scores are sufficiently distinct (away from being uniform to
cause ambiguities). To this end, our contribution is to employ
a sparsity promoting penalty on channel scores, the difference
of U1 and {5 norm [4] denoted by {1 _o, which is differentiable
and sharper than /7.

The rest of the paper is organized as follows. In section II,
we introduce the mathematical formulation of our approach
and the training algorithm. In section III, we show experimen-
tal results where our method out-performs the state-of-the-art
method (squeeze and excitation [5]) while gaining accuracy
and reducing network complexity.

II. CHANNEL SELECTION ALGORITHM

As in [3], we introduce a list of channel scoring parameters.
That is to multiply the feature map F; ; by a parameter o j,
where (4, j) are the layer and channel indices (see Fig. 1):

F’i,j = O[@j FZ]
Here F} ; is the new feature map, with the rest of the network
unchanged. Our task is to learn the value of those parameters,
and remove the channels whose scores are low. That means we
can drop all the filters connected to those channels as well,
which helps to reduce the model size, and saves time and
power for computation.

The benefit of differentiable methods is that they can
learn parameters continuously by gradient descent. One may
directly adopt the DARTS algorithm [3]: ot! = ot —
7724 v(vaa,l (wta at)7 wt+1 = wt - 7773) vu}ftrain(wt7 Oét+1)’
where 7 is the learning rate, w is the weight, fi.qin(w, @)
and f,q;(w, ) are the training and validation loss functions.
However, this may cause some problems.

First, the values of the learned «’s are likely to be very close
since the initialization is random. As a result, it can be hard
to determine which channels to drop without external force.
To solve this problem, we impose penalty on the a’s to make
it sparse. In other words, a large proportion of the a’s we
obtain should be zero or very small. To this end, we consider
the ¢1_o penalty (a better differentiable approximation to £
than /1) [4], and so the new penalized validation loss function
becomes:

Lval(wv Oé) = fval(wv Oé) +A Hanll—z’
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Fig. 1. Channel scoring parameters act on feature maps in the i-th layer.

where ||al¢,_, = |la|li — ||a|l2, while the training loss
function is still the same.

Another problem is that, if we select the channels in all the
layers simultaneously, the accuracy will be affected adversely.
This is because the penalty forces the «’s to converge too
quickly before the weights are trained well. Our strategy is to
fix all but one layer, select the channels in the fixed layer, and
then repeat for the subsequent layers. As the first few layers
are more sensitive, there is not much room to select channels
in those layers. Hence we start from the last layer and go
backward, then terminate at some optimal intermediate layer.
In each stage, we select channels in one layer at a time. Let [NV
and m (in our experiments m = 10) be the indices of the last
layer and the intermediate layer we choose to end selection,
we summarize the above discussion in the following:

Algorithm 1: Multistage Backward Differentiable Method
(MBDM)

Input N, m. Initialize w°® and Y.
fori =N, N-1, ..., m do
while not converged do
t+1
a%il +—al :ﬁémevﬁ(lwt, at)
a; o)/ llo(ai )1y
wt+1 < wt - nqtuvatrain('wtv at+1)
end
end

In Algorithm 1, we apply ReLU function o(-) to zero out
all the negative a’s and take ¢; norm so that all these scoring
parameters are non-zero and sum to 1 in each layer.

III. EXPERIMENTS

Given the 1,000-class ImageNet data [6] and ResNet-18 [7]
as the baseline model, we extract a light model on a subset
of 10 or 20 classes of data via channel selection. Depending
on the number of sub-classes (10 or 20), the training data
set contains 13,000 or 26,000 images, respectively. To test
the capability of the algorithm, the 10 classes we select are
more random and distinguishable, while the 20 classes are
divided into 5 categories and the classes within each category
are similar (Table I).

The whole training procedure consists of two steps. First,
we run the MBDM algorithm to learn the values of the a’s and
select a slim model. Second, we train the full model for ease
of programming with the «’s fixed (a slim model in essence
as many «’s are zero), so that the weights in each channel can
be fine-tuned. As seen in Table II, our algorithm out-performs
considerably the baseline ResNet-18 model in distinguishing
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TABLE I
THE 10 & 20 CLASSES.

10 Shark, Ant, Panda, Train, Castle, Piano,
Classes Umbrella, Broccoli, Lemon, Volcano
Cats Dogs Vehicles | Architectures | Landscapes
20 Egyptian | Sheepdog Bike Bridge Valley
Classes Pe.rsian Bulldog Sports car Dam Sandt;gr
Tiger Mountain | Scooter Castle Cliff
Siamese | Maltese Cab Fence Volcano
TABLE II

COMPARISON OF RESNET, SE-RESNET, MBDM (AVERAGE TEST
ACCURACY OF 5 RUNS), ALL TRAINED FROM SCRATCH.

Number of classes | ResNet | SE-ResNet | MBDM
20 83.8 86.8 87.9
10 87.0 914 93.7
TABLE III

SPARSITY (PENCENTAGE OF ZERO CHANNELS AMONG ALL CHANNELS) IN
THE LAST 8 CONV LAYERS FOR THE EXPERIMENT OF 20 CLASSES.

Layer 10 11 12 13 14 15 16 17
Zero chs | 210 | 60 | 221 | 58 | 246 | 261 | 427 | 206
All chs | 256 | 256 | 256 | 256 | 512 | 512 | 512 | 512
Sparsity | 82.0 | 23.4 | 86.3 | 22.7 | 48.0 | 51.0 | 83.4 | 40.2

10 or 20 classes. Though the gap is closer, our algorithm also
beats the SE-ResNet [5], a recent model that handles channel-
wise information flow by enhancing their relations. What is
more, our model is much lighter than the baseline model as
many of the channels are not activated, which is supported by
Table III.

IV. CONCLUSIONS AND DISCUSSIONS

We developed a novel differentiable method on channel
selection for a subset inference problem based on a heavy
network on a big data set. We showed that the ResNet-18
model with channel selection performs far better than the
full model on a 10-class or 20-class data set (a subset of
ImageNet). Our method generalizes to other components of
network architecture on similar tasks. In future work, we plan
to study other models such as MobileNet and on a variety of
sub-classes.
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