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Energy-Storage-Based Intelligent Frequency Control
of Microgrid With Stochastic Model Uncertainties

Chaoxu Mu
and Haibo He

Abstract—With the increasing proportion of renewable power
generations, the frequency control of microgrid becomes more
challenging due to stochastic power generations and dynamic
uncertainties. The energy storage system (ESS) is usually used in
microgrid since it can provide flexible options to store or release
power energy. In this paper, an intelligent control strategy com-
pletely based on the adaptive dynamic programming (ADP) is
developed for the frequency stability, which is designed to adjust
the power outputs of micro-turbine and ESS when photovoltaic
(PV) power generation is connected into the microgrid. Further,
considering the changes of PV power and load demand in a
day, the full utilization of PV power and the recycling of energy
storage are realized through the proposed regulation strategy.
Numerical simulation results validate the energy-storage-based
intelligent frequency control strategy for the microgird with
stochastic model uncertainties, and comparative studies based
on PID, LQR and fuzzy logic control illustrate the superiority
of the proposed control strategy.

Index Terms—Frequency control, energy storage system (ESS),
photovoltaic (PV) power, stochastic model uncertainties, adaptive
dynamic programming (ADP), microgrid.

I. INTRODUCTION

ITH the increasing of energy demand, the renewable
Wenergies have attracted wide attention, such as wind
energy, water energy, solar energy, and so on. Among them, the
photovoltaic (PV) power generation is a more common way
to utilize the endless solar energy. However, it is unfortunate
that the PV power is sensitive and even has large fluctuation
in a cloudy day [1]-[3], which is hard to be predicted due to
the difficulty of getting known when there are clouds above
the PV arrays. Simultaneously, the power energy consumption
is becoming more and more various. Thus, for a microgrid,
when the renewable energy such as PV power generation is
integrated, it is obvious that there are power mismatch and
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stochastic uncertainties. Meanwhile, during the transmission
and measurement of mircogrid, the internal parameters such as
the time constant of governor may randomly fluctuate within
a small range of its nominal value [4], [5]. Therefore, these
stochastic power mismatch and uncertainties are possible to
cause the frequency instability, and bring unexpected trouble
to the safe operation of microgrid [6]—[8].

The microgrid is actually complex with various power mis-
match, which may lead to frequency fluctuation and bring
negative impacts on the energy-using equipment. There are
generally two approaches to deal with the problem. One is
to decrease the power generation uncertainties. To a cer-
tain extent, more accurate scheduling plan can be achieved
when the power generation prediction of renewable energy
is reasonable, then the frequency fluctuation can be deduced
by some power electronic techniques [8]-[12]. However,
it requires the real-time prediction of power generation in
frequency regulation, and is different from the prediction of
entire power generation capacity. The accurate prediction of
power generation is difficult due to the real-time varying
factors of renewable energy power generation. For exam-
ple, it is hard to predict when the clouds come above the
PV arrays in a day-ahead dispatch. The other is to stabi-
lize the frequency through control strategies. Many control
methods have been applied for frequency regulation, such as
proportion-integration-differentiation (PID) control [13], fuzzy
logic control [14], [15], sliding mode control [16], [17], and
SO on.

Intelligent control has been developed for complex systems
based on system data and learning-based methodologies.
Adaptive dynamic programming (ADP) is an effective method
with optimality by function approximation, especially for non-
linear systems and complex systems without system models.
It can obtain the approximately optimal solution when facing
the “curse of dimensionality” [18]-[20] by learning tech-
niques, which is usually implemented by neural networks.
Compared with PID, fuzzy logic control and so on, ADP is
originated from dynamic programming, and has been widely
investigated in many fields, such as the aspects of robotics, air-
crafts, aerospace and navigation [21]-[23]. Furthermore, some
improved ADP-based control strategies have been extended
to cope with uncertain nonlinear systems [24]-[27]. Research
results of ADP are relatively fruitful in power systems, which
have been reported in many literatures [17], [28]-[31]. For
example, an ADP-based control scheme was designed to assist
the load frequency control of power system with sliding mode
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control [17]. By using the adaptive critic design, a wide-area
measurement based dynamic stochastic optimal power flow
control algorithm was applied in a smart grid [28]. However,
ADP is often designed as the supplementary control in the
existing power system research, and it is rarely seen that the
direct ADP control for power systems.

In power systems, the micro-turbine is considered as the
controlled device to compensate the power mismatch and
smooth frequency fluctuation. However, for microgrid with
renewable energies, the micro-turbine should be assisted
by some energy storage devices for more effective opera-
tions [32]. Due to the great performance of energy storage
system (ESS), it has been widely used to improve the con-
trollability of microgrid and provide flexible energy man-
agement solutions. In recent years, various energy storage
systems have been investigated, such as battery energy stor-
age station [33]-[35], fiywheel storage system [36], and fuel
cell/electrolyzer hybrid system [37], [38]. In the actual appli-
cation of ESS, the state of charge (SOC) limits are important
and considered as constraints [39]-[42].

It is inevitable that the power mismatch occurs between
power generation and load demand. In this paper, both micro-
turbine and ESS are used to restrain the frequency fluctuation
in the design of intelligent frequency control, which provides
the theoretical store for the application of future microgrid.
Based on the large installed capacity of PV plants in a future
microgrid, the efficient utilization of PV power is significantly
concerned and an energy-storage-based scheduling strategy is
proposed to absorb the superfluous PV power and compensate
the insufficient power generation in the period of one day. This
regulation strategy is investigated based on the day-ahead dis-
patch which does not need high accuracy compared with the
intra-day dispatch. The main contributions of this paper are
shown as follows. First, the microgrid with ESS is established
by involving parameter uncertainties and generation rate con-
straint (GRC) of generator, stochastic PV power, SOC limits
and power constraints of ESS. Second, an intelligent frequency
control strategy is designed to adjust the power outputs of ESS
and micro-turbine by using the robust ADP control, where the
new cost function is defined with the bound of uncertainties.
Third, the ESS is used to restrain the frequency fluctuation and
dispatch the PV power to achieve full utilization. Through the
rational design of two SOC limits, the recycling of ESS can
be realized in the regulation strategy.

The rest of this paper is presented as follows. In Section II,
the investigated microgrid is established. Section III designs
the intelligent frequency control strategy based on ESS, which
is implemented by neural networks. Simulation analysis is
investigated to demonstrate the effectiveness of proposed
control strategy through comparative studies in Section IV.
Finally, some conclusions are summarized in Section V.

II. BENCHMARK MICROGRID DESCRIPTION
A. ESS-Based Microgrid With Uncertainties

Considering the high permeability of PV power genera-
tion, the uncertainties need to be treated with caution. In this
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Fig. 1.  Schematic diagram of benchmark microgrid with the intelligent
frequency control strategy.

paper, the microgrid with PV power generation is investi-
gated, which is composed of PV arrays, load demands, ESS
and micro-turbine including governor. The detailed schematic
diagram of microgrid is shown in Fig. 1. Similar to the descrip-
tion in [15] and [17], the transfer functions of equivalent
micro-turbine, governor, ESS and power system are expressed
as G, = 1/(Tis+1),Gy = 1/((Tg+0,))s+1),Ge =
1/(Tes + 1), Gp = kp/(Tps + 1), where Tg, Ty, T, and T, rep-
resent the time constants of governor, micro-turbine, ESS and
system inertia, respectively. k, is the gain coefficient of power
system. It is noteworthy that the parameter of governor may
change during the operation. Thus, the parameter uncertainty
is reflected in the time constant Ty with o, (f) in this paper.

Define x(f) = [Af(t),AP,(I),APS(I),APS(I)]T e R™ as
the state vector of microgrid with the initial state x(0), where
Af(t) is the frequency deviation, AP,(f) is the power out-
put of micro-turbine, APg(f) is the governor position valve,
and AP.(f) is the power output of ESS. Then the frequency
dynamics can be described by

. k
Af(r) = T—"[AP,(r) + AP (1) + AP, (1) — AP|(1)]
r

1
- EAf(r}, (eY)
. 1 1
AP(1) = —iAPr(f) + iAPg(f}, (2)
. 1 1 1
APg(f) = _R_TgAf{f) - T_gAPg(f} + Fgug{x)
og(1) [1 ]
————— | SAf(O) + AP () —ug(t)|, (3
To(T, +05(0) LR f £ & &
. 1 1 1
AP (t) = — T Af(1) — ?APe{r) + e(0), 4

where APj(f) and AP,(f) represent the uncertainties resulted
from load change and PV power generation, respectively. R
is the speed regulation coefficient. Meanwhile, ug(t) and u.(f)
are control signals of micro-turbine and ESS, respectively. To
simplify the description, the parameter uncertain term in (3)
is defined as A¢(f) = og(1)/[Tg(Tg + o4 ()]

Combined with the above formulas (1)—(4), the uncertain-
ties in the microgrid are divided into parameter uncertainties
related to Ag(f), power uncertainties related to AP;(f) and
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AP,(t). From another perspective, these uncertainties can
also be classified into matched and mismatched uncertain-
ties, which are used in this paper with A(f) for matched
uncertainties and I'1(f) for mismatched uncertainties. Then, the
frequency dynamics can be expressed in a compressed form as

X(t) = Ax(1) + G(u(t) + A1) + T1(1) ®)
with
1 kp kp 7
__ £ 0 il
T, T, T, 0 0
1 1 0 0
S 0 1
A= Tt Tt s G=|— 0 1
1 0 1 0 T,
" RT. T, 1
FERCY I O
- 0 0 —— Te
L RT, T,
where A is the system matrix, G is the control matrix,
and u(t) = [urg(r),me(t)]T € R" is the control input.

Correspondingly, the matched and mismatched uncertainties
are stated as

k
FP(APp(t) — AP(1))
’ 0

—Tehg(Dug(t)
1
0 lg(t)(EAf + APg(t))

A = [ ] () =

It should be noted that the nonlinear GRC is considered for
the governor of micro-turbine referring to [7]. Meanwhile, the
GRC is an important condition to constrain the rising and
falling slew rate of position valve APg(f) of governor.

B. State of Charge Limit of ESS

In the ESS-based regulation strategy, the SOC limit of ESS
is important when the energy storage equipment is connected
to the power grid. The equipment loss or the SOC condition
of ESS is often mentioned in some research works. Since the
equipment loss is always related to the SOC condition of ESS,
then in this paper, the SOC limit of ESS is considered in the
process of optimization, as shown in Fig. 1.

The ESS in the microgrid takes actions in two scenes. One is
to restrain the frequency fluctuation caused by parameter and
power uncertainties. The other is to dispatch the PV power
generation and fully utilize the solar energy. There are two
defined SOC limits for ESS corresponding to different scenes.

We first define the SOC limit for restraining the frequency
fluctuation. Let Soc(f) be the state of charge and Soc® be the
initial SOC of ESS. Then, we use Ess1(f) to express the energy
change at time ¢ of the energy storage equipment. Therefore,
the SOC limit is defined as follows:

Soc(t+ 1)
Soc(t) — fot Essl(z)dt, Soc™ < Soc(t) < SocM, or
Soc(t) = SocM &Ess1(t) > 0, or
Soc(t) = Soc™&Ess1(t) < 0,

Soc(1), else,
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Fig. 2. Day-ahead dispatch curves of load demand and PV power.

APY/B,  AP.(1) > APY,
AP.(H)/B, 0 < AP.(1) < AP,
BAP.(1), AP™ < AP.(1) <0,
BAP™,  AP.(t) < AP™,

Ess1(t) = (7

where SocM and Soc™ are the upper and lower limits of SOC.
Meanwhile, AP:I and AP} are the upper and lower limits
of ESS power constraints, respectively. B is the charging-
discharging coefficient of ESS.

C. Sustainable Development and Recycling of ESS

In this subsection, the SOC limit is developed for dispatch-
ing the PV power and realizing the recycling of ESS. This
SOC limit is defined based on the day-ahead dispatch curves
of a commercial office building, as shown in Fig. 2.

In Fig. 2, 2/, 4 and 6’ indicate the time of tomorrow. It
can be observed that the whole process can be divided into
two parts at a certain time instant. After that, the PV power is
always lower than the load demand, marked as the red shadow
area E3. Define the power deviation between load demand and
the PV power as Bias(f), which equals to the load demand
minus the generated PV power. In Part 1, the blue shadow area
E1 denotes the consumed ESS energy, and the green shadow
area E2 illustrates the remaining PV energy stored into ESS.
In Part 2, the stored energy by ESS is used to compensate
the power consumption and the micro-turbine also generates
the available power to supplement the remaining load demand.
Let Ess2(f) be the electric energy change of ESS in this scene.
The SOC limit is defined as follows:

Soc(t+ 1)

Soc(t) — ©(1) j; Ess2(t)dz, Soc™ < Soc(t) < SocM, or
Soc(t) = SocM &Ess2(t) > 0, or
Soc(t) = Socm&Ess2() < 0,
else,

Soc(t),
(t))
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Fig. 3. Frequency regulation process under SOC limits.
where
APM/B  Bias(t) > APM,
Ess2(t) — Bias(t)/p, 0 < Bias(t) < APM, ©
BBias(t), API < Bias(t) <0,
BAP™,  Bias(t) < AP™,
Part 1: ®(f) =1,
) __ | (E2—-E1)/E3, E3 > (E2 - El),
Part 2: ®(f) = 1, E3 < (E2 — E1). (10)

@(r) is designed as the regulating coefficient which is used to
release the stored energy in the daytime. As shown in (10),
we set @(f) = 1 in Part 1 and dynamically adjust its value in
Part 2. Under this definition of SOC limit, we can realize the
dispatch of PV power and the recycling of ESS. It should be
noticed that in (6) or (8), when we have Soc(f + 1) = Soc(%),
the power output of ESS is set as Ess1(f) = 0 or Ess2(f) = 0.

During the frequency regulation, the uncertainties of gov-
ernor parameter, load as well as PV power are considered,
and the ESS is used to restrain uncertainties and fully uti-
lize the PV power. The entire frequency regulation strategy is
described in Fig. 3.

III. ADP-BASED INTELLIGENT FREQUENCY REGULATION

In this section, an intelligent frequency strategy is designed
with the interior parameter uncertainties of governor and
the external power uncertainties caused by load changes and
stochastic PV power, which is regulated by the ADP method
and implemented by neural networks.

As shown in Fig. 1, the intelligent frequency controller
is designed to derive the effective control information from

2 a )

<z

[soc-+1) = Soc(t), Essi()) = Al

Y

Soc(t-+1) = Soc(r) - || Essl(z)d |

system data. The states of microgrid Af(f), AP(t), APg(t)
and AP,(f) are the inputs of frequency controller. Then, ﬁ;(t)
and & (f) are the approximately optimal control signals to
be designed for adjusting the power outputs of micro-turbine
and ESS. In the following, the design and implementation of
intelligent control strategy will be presented.

A. ADP-Based Control Design

According to previous analysis, the frequency dynamics
of studied benchmark microgrid is compressedly expressed
by (5). Assume that the matched and mismatched terms are
both upper bounded by |[GA(#)| < [a(f) and [[II(D)| <
I'ri(f), respectively. For the frequency control, a state feed-
back control law u(f) is designed to adjust the power outputs
of micro-turbine and ESS, as shown in Fig. 1. The robust
control for the uncertain frequency dynamic system (5) can
be obtained by perusing the optimal control of its nominal
system, which is formulated as

X(t) = Ax(t) + Gu(t). (11)
For the nominal system (11), we design the control law u(f)
by minimizing the cost function
oo
J(x)zf (U(x(), u(r)) + O(1))d(7), 12)
t

where U(x(f), u(f)) is the utility function, chosen as
Ux(t), u(t)) = xT ()Qx(t) + u(t)TRu(f). Q and R are positive
definite symmetric matrices with proper dimensions. ®(f) > 0
is the perturbed cost related to the uncertainties which is
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defined as

212 212 of +67 2
@) =0Ty + 6, T + W”VJ(I)" , (13)
192

with VJ(x) = d8J(x)/9x. 6; and 6, are the given con-
stants corresponding to matched and unmatched uncertainties,
respectively. The optimal cost function is defined as

o0

T (x) = min | (U(x(x), u(r)) + O(r))dr. (14)

c Jt

Based on the Bellman optimality principle, the Hamiltonian
function can be obtained as

Hx(1), u(t), VI (x))

= (V@)1 + Ux(t), u(t) + O(0), (15)

and the optimal control law u*(f) satisfies the Hamilton-Jacobi-
Bellman (HIB) equation

0 = min H(x(1), u(t), VJ*(x)),

uele

(16)

where €2, is an admissible control set. Thus, the optimal
frequency control law for system (11), i.e., the available robust
control law for regulating frequency of uncertain benchmark
system (5), can be derived as

ut () = a7
Bring the optimal control law (17) into (16), then the HIB
equation is further transformed into the following form

—%R_]GTVJ* ).

0 = (V@) x() + Ux(z), u(r)) + O(1)
= (VI@)TAx(t) — %(VJ(x))TGR_]GTVJ(x)

+ x0T 0x(1) + ©(1), (18)

where the optimal HJB equation conforms to 0 = H(x(f),
u*(f), VJ*(x)) with the optimal frequency control law u*(f).
Note that the optimal control ¥*(f) of nominal system (11) can
achieve the effective robust control for uncertain benchmark
system (5), which results from the new-defined cost func-
tion (12) including the perturbed cost and more explanation
can refer to [43].

B. Iteration Algorithm for Approximating Optimal Control

Generally speaking, (18) is almost impossible to be directly
solved due to partial differential terms. Hence, the iteration
algorithm is applied to get the approximate solution of u*(f)
and the optimal cost function J*(x) in (14). The algorithm flow
of approximating the optimal solution is shown as follows.

Based on this iteration procedure, the iteration control law
w1 () would approximately converge to the optimal con-
trol law u*(f), and the iteration cost function J(H'])(x) also
converges to the optimal value J*(x) as the iteration index i
goes to large enough [18]. In the following, based on the
function approximation technique, the iteration algorithm is
implemented by neural networks.

IEEE TRANSACTIONS ON SMART GRID, VOL. 11, NO. 2, MARCH 2020

Algorithm 1 Solving the Approximate Optimal Control of
Nominal System

a Initialization: Set the iteration index i = 0 and let
J®(x) = 0. Define a sufficiently small positive number g
as the prerequisite to stop the algorithm. Start the iteration
from an initial admissible control law u(o){t).

b Iterative process: Substitute the initial value u(ﬂ)(t} into
(19) with J©@ (x) = 0 in the first iteration. Then, J(+1 (x)
can be solved by

0 =D ap (Ax(t) + Gu 1)

+ U@, uD @) + 0@). (19)

c Update control law: Update the control law u(+D ()
based on the following formula
. 1 .
u D@y = — ER_IGTVJ(H'I)(x}. (20)
d Stopping Criterion: If ||J(£+1}f(x} — J(i)(x}|| < p is satis-
fied, stop the iteration and let (1) () be the approximately

optimal control law. Else, set i = i+ 1 and return step b to
the next iteration.

C. Neural Network Implementation of Intelligent Frequency
Control

For realizing the iteration algorithm in Section III-B, single-
hinder-layer neural networks are applied for approximating the
control law and the cost function. Therefore, the optimal cost
function in (14) is restructured with an ideal weight w, as

T*) = wl Y @) + ve ), @

where w. € R/ and j is the neuron number in the hidden
layer, x(f) is used as the neural network input, and J*(x) is the
output. ¥ (x) is the activation function and v.(x) is the recon-
struction error of neural network. For the cost function (21),
we can obtain the partial derivative of J*(x) along x(f), which
is expressed as

VI*(x) = VYT 0w + Ve(x), (22)

with Viyr(x) = 8¢ (x)/9x and Vv.(x) = 0dv.(x)/9x. Then,
substitute (22) into (15) to get the Hamiltonian function

H(x(1), u*(t), we)
= (VYT @we + Vo) i+ U@, u(0) + ©(0)

= (VYT @we + Vue() &+ U, u(®) + 6273 (1)

07 +67

+ 921’*2 (f) + 1 2

2 4912 922

where va(x))'c is the residual error which can be omitted in

the Hamiltonian function when the weight training process is
sufficiently enough.

In fact, the ideal weight w. is unknown in the neural network

approximation, thus an estimated weight W, (1) is applied, and

the approximate optimal cost function J*(x) can be obtained as

F@ =wl Oy ). (24)

VYT @we 4+ V)12,

(23)

Similarly, according to (22), VJ*(x) can also be approxi-
mated as

VI*(x) = VT 0w (1). (25)
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Therefore, by substituting (24) into (15), the estimated
Hamiltonian function can be obtained as

H(x(t), w* (), We(®))

= (VT @we(0) &+ U@, u* ) + 0273 (1)
+oiro + % oy T i

2 46262 ¢

= e.(1).

Based on (17) and (25), the approximately optimal
frequency controller for system (11) can be obtained by using
neural network approximation

(26)

- 1 R

@ (t) = =R~ GTVYT @e(0). 7
Take the estimated Hamiltonian function H(x(f), u*(1), w.(f))
as the critic network error €.(f), and define E.(f) with &.(f)
for regulating the critic network weight, which is

L7 .
Ec(t) = 527 (12c(0). (28)

By minimizing (28), the weight updating law can be
designed as

JE.(1) T
Yoz T YaVYGR™ G VUs(x)

awc()
= —yelc(OVY XAX(D) + vV (X)GR GT VI (x)

L 0 +65 Toon
= Vel ()~ VY )V ()w.(D)
20703

We(t) =

+ %ycéc(r)vw(x)GR—‘GvaT(x)fvc(r), (29)

where y, > 0 is the primary learning rate of critic network
and y, > 0 is the auxiliary learning rate. J;(x) = O.SxT(r)x(I)
is selected based on Lyapunov theorem.

Therefore, the estimated weight of critic network can be
obtained by using the weight updating law (29). It means
that (27) can provide the robust frequency control law for
benchmark system (5) which has been implemented and the
frequency can be stabilized under the stochastic uncertainties
of parameters, power generations and loads.

Remark 1: Some learning-based adaptive control has been
investigated in previous works, i.e., [17], [44], [45]. In [17]
and [44], together with the SMC and PID controller, the ADP
method was designed as the supplementary controller to give
the auxiliary control signal for load frequency control of power
system. In [45], based on the Hammerstein network identifi-
cation of hybrid energy storage, a PID-type neural network
controller was designed to adjust the frequency fluctuation
and the tie-line power. Compared with these previous adaptive
control scheme, the adaptive frequency control in this paper is
directly obtained from the ADP method, but not the supple-
mentary control. Moreover, by considering the renewable PV
power, the energy-storage-based regulation strategy can reduce
the waste of solar energy and achieve the sustainable utiliza-
tion of ESS. These is also the obvious difference between this
paper and previous works.

Remark 2: The two main work of this paper is regard to the
day-ahead operation scheduling and the inter-day frequency
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TABLE I
PARAMETERS IN THE MICROGRID SYSTEM

Parameters Ty T: Te Tp kp R
Values 0.3 0.3 05 10 1 0.08
TABLE 11

CONSTRAINT CONDITIONS

Name Variables Values
Initial SOC Soc? 0.5
Upper limit of SOC SocM 0.9
Lower limit of SOC Soc™ 0.15

Charging-discharging coefficient B 09
Upper limit power constraint of ESS AP\;w 0.15
Lower limit power constraint of ESS AP -0.15

control. The day-ahead operation curves of load demand and
PV power are shown in Fig. 2. ESS is designed to store
the remaining PV power during the day, thereby reducing
the waste of PV power, and compensating load demand at the
low stage of PV power. By using the regulation strategy of this
paper, the SOC can meet the set value and realize the recy-
cling of ESS. The real-time frequency regulation under various
uncertainties are shown in Figs. 68, where the proposed ADP-
based intelligent control strategy is used to adjust the power
output of micro-turbine and ESS and restrain the frequency
fluctuation.

IV. SIMULATION AND ANALYSIS

Based on the given day-ahead dispatch curves of commer-
cial office building in Fig. 2, simulation is executed on the
benchmark microgrid to restrain the frequency stability under
stochastic model uncertainties and realize energy scheduling
and sustainable utilization. For the micro-turbine, the nonlinear
GRC condition of governor is considered with rising/falling
slew rates [7], [46], [47], and it is specified as 10% per minute.
Meanwhile, the power constraints of ESS are also considered
during frequency regulation [40]. The parameters of microgrid
are shown in Table I. The commercial office building has the
rated capacity of 225 kW and the PV rated capacity is 250 kW.
The parameters of SOC limits and the power constraints of
ESS are shown in Table II.

In the intelligent frequency control strategy, the used
parameters are as follows, O = 2.5l4x4, R = 8.5y,
6 = 05,6 =05, y. = 1.0, and y, = 0.1, where I is
the identity matrix. Based on system data, the weights
of critic network can be obtained after training, which
is shown in Fig. 4. These weights converge to W, =
[0.0387, —0.0352, 0.0285, 0.0732, 0.1300, —0.2455, —0.4023,
0.3213,0.3968, 0.4944]7 and they are applied to get the
frequency controller according to (27). During the train-
ing, with randomly persistent disturbance excitation, the
frequency deviation Af(f), the micro-turbine power out-
put AP(f), the governor position valve APg(t), and
the ESS power output AP.(f) finally converge to zero,
as shown in Fig. 5.
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A. Under PV Power Uncertainties and Load Changes

Consider that the PV power is connected to the microgrid.
The actual load demand and PV power are always differ-
ent from the scheduled power in the day-ahead dispatch. The
load change disturbances are shown in Fig. 6, and the PV
power uncertainties affected by environmental conditions are
reflected in Fig. 7. Two main influence factors of PV power,
irradiance and temperature, are considered here. As the clouds
are time varying for PV arrays, the PV power is hard to pre-
dicted when there are cloudy above the PV arrays. Therefore,
in the day-ahead dispatch, the PV power is predicted without
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—— PV power uncertainties |

PV power uncertainties (p.u)

20 2 24 22 4 ¢

Time(h)
Fig. 7. PV power uncertainties.
3 0,015 T T T T T T : : :
= —Interior p L inties
2 001f 1
=
E
£ 0.005
@
Qo
c
= o | [
g
g -0.005 1
S o1 .
'g 1 1 1 1 1 1 1 1 1 1 1
E 6 8 10 12 14 16 18 20 22 24 2 4 ¢
Time (h)
Fig. 8. Parameter uncertainties of the governor.

-

E)
o
=}
=
o
Eost : —— Actual PV power generation
g | |~ — Actual load demand
8 M !
i
c |
k=] |
e |
@
go4f | 1
uy i+
@ " | a1
§ ;a‘:' Fow 't" :‘| | ":|I o, j
02 fi* p ll'l:,“""l:l e Ty .
e i I, * N ]
S AT ‘:.".,: ool
-] r { L
5] |
< | | | | | | | | | |

Time(h)

Fig. 9. Actual PV power generation and load demand in a day.

considering the clouds or the cloudy weather. When the clouds
come above the PV arrays, it reduces the irradiance and thus is
dealt as the negative PV power uncertainties. The temperature
change maybe cause positive or negative uncertainties. The
irradiance is a more important factor than the temperature for
PV power generation [48]-[51], therefore there are much more
negative uncertainties than positive uncertainties. The parame-
ter uncertainties of governor are considered as shown in Fig. 8.
Then, the actual PV power generation and load demand in a
day are shown in Fig. 9.

Under the stochastic model uncertainties shown in
Figs. 6-9, the designed intelligent frequency controller is
applied to keep the frequency stability of microgrid. For better
showing the control performance, fuzzy logic control, linear
quadratic regulator (LQR) and PID control are used as the
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comparative methods. The fuzzy rules used in this paper can be
found in reference [52], where the scaling factors are designed
as K, = 10, K. = 1 and K,, = 0.1 with one input and two out-
puts. The parameters of PID controllers are shown in Table III.
The LQR controller is designed as u(f) = —kx(t), where the
quadratic cost is consistent with (12), and the related matri-
ces are given the same values. Then, the gain matrix k can be
solved as

k- —0.8360 0.0754 0.2020 0.0102
| 05789  0.0267 0.0061 0.1627
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PARAMETERS OF PID CONTROLLERS
Control signals P 1 D
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In Fig. 10, the frequency regulation in a day is shown to
demonstrate the superiority of intelligent frequency control
strategy. It can be seen that the ADP-based intelligent control
method can better restrain the frequency deviations with fewer
oscillations, compared with fuzzy control and PID control. The
frequency deviations are also faster to be stabilized to zero
with this intelligent control strategy. The control performance
of LQR is similar with the ADP-based intelligent control when
the frequency deviations are small since it is a linear optimal
control method. However, in the case of large deviations, its
performance becomes weaker than the ADP-based control,
which is more obvious shown in Section IV-B. Meanwhile,
we provide the power outputs of micro-turbine and ESS from
12:00 to 12:03 in Fig. 11 corresponding to Fig. 10(a), which
are the control actions under ADP-based control, fuzzy con-
trol, LQR and PID control. It shows the required power outputs
for micro-turbine and ESS in the frequency regulation to real-
ize the control performance in Fig. 10(a). We take Fig. 10(a)
as an example here and provide its analysis, which is similar
to Figs. 10(b) and 10(c).

The ESS plays two roles in the regulation strategy: main-
taining the frequency stability and dispatching the PV power.
The ESS is applied during the whole frequency regulation
process. The ESS dispatches the PV power to achieve its
full utilization, as shown in Fig. 12, where the stored energy
in Part 1 is consumed in Part 2. Thus, we can achieve the
recycling and sustainable utilization of ESS where the final
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value of SOC is basically equal to the initial value. The peak
value of SOC reaches 0.82 p.u.h, thus the rated capacity of
ESS is 0.82/0.9 % 250 =~ 228 kWh. Considering the certain
redundancy, the rated capacity of ESS can be selected as
235 kWh.

B. Under Large Load Changes

The normal operation of microgrid under PV power
uncertainties and load changes has been investigated in
Section IV-A. However, there may be sudden load fluctua-
tions, such as the line faults and large load incorporation. As
shown in Fig. 13, we investigated the large load changes, even
more than 0.55 p.u. Then, from Fig. 14, it is obvious that the
ADP intelligent control scheme performs better than fuzzy
control, LQR control and PID control for dealing with large
load changes.

In this sudden scenario, it can be seen in Fig. 14 that the
PID control has poor performance for such large disturbances.
Fuzzy control can work, but its performance becomes worse
due to the fixed design of fuzzy rules. Since LQR control is
a linear optimal control method designed for linear systems,
the emergence of stochastic model uncertainties may lead to
bad presentation in both robustness and convergence speed
compared with the ADP-based control strategy. Large power
changes may lead to frequency fluctuation and cause security

IEEE TRANSACTIONS ON SMART GRID, VOL. 11, NO. 2, MARCH 2020

0.5 r
it I n —— ADP-based control
£ o1l ! 1. oo s Fuzzy control |
g - I I’ 1i l‘ | i’ "l -—-LQR control ,

| | _ \
%0005- S PID control A
5 IE : | JI \ :“y !n Y

i I
T 0 bl X'l, £ t\ Ao
< oo ity 8
7] [ A ll-fr A ‘p‘” VI
o 3 [ I I '
57008 RN EY vt
™ i [ | I' \ ‘f v \/
i F v 1 |
-g 0.1 y ¥ )
=] i v
0,15 ' :
g o 50 100 150

Time (s)

Fig. 14. Frequency regulation performance under large load changes.

risks. Therefore, the adaptability and robustness of controller is
important for the microgrid system. The ADP-based intelligent
control can be well adaptive when the microgrid is facing with
various disturbances.

V. CONCLUSION

In this paper, we investigate the frequency control of
microgrid with parameter, PV power and load uncertainties.
An ADP-based intelligent control strategy is designed to adjust
the power outputs of micro-turbine and ESS to restrain the
frequency fluctuation. Further, the energy-storage-based regu-
lation strategy is proposed to deal with the frequency control
problem and dispatch the PV power to realize the recycling
of ESS. In the regulation process, we can conclude that
the proposed intelligent frequency control strategy can better
adjust the frequency fluctuation compared with fuzzy control,
LQR control and PID control. At the same time, the SOC of
ESS can reach the desired state. This also reflects the rational-
ity of regulation strategy. In the future, the topological network
of microgrid can be considered, and more application scenarios
can be introduced to extend this work.
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