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Abstract—Home energy management system (HEMS) enables
residents to actively participate in demand response (DR) pro-
grams. It can autonomously optimize the electricity usage of home
appliances to reduce the electricity cost based on time-varying
electricity prices. However, due to the existence of randomness
in the pricing process of the utility and resident’s activities,
developing an efficient HEMS is challenging. To address this
issue, we propose a novel home energy management method for
optimal scheduling of different kinds of home appliances based on
deep reinforcement learning (DRL). Specifically, we formulate the
home energy management problem as an MDP considering the
randomness of real-time electricity prices and resident’s activities.
A DRL approach based on proximal policy optimization (PPO)
is developed to determine the optimal DR scheduling strategy.
The proposed approach does not need any information on the
appliances’ models and distribution knowledge of the random-
ness. Simulation results verify the effectiveness of our proposed
approach.

Index Terms—demand response; deep reinforcement learning;
energy management; proximal policy optimization

I. INTRODUCTION

THE availability of bidirectional communication, advanced
metering infrastructure, and real-time electricity price in

smart grid makes it possible for smart appliances to participate
in demand response (DR) programs [1]. By scheduling the
electricity usage of smart appliances from on-peak hours
to off-peak hours, HEMS contributes to peak shaving and
valley filling and helps to reduce the electricity cost of smart
home residents. However, due to the existence of randomness
in the real-time electricity prices and resident’s activities,
efficiently managing the electricity usage of home appliances
is challenging.

To solve this problem, numerous approaches in the literature
have been developed over the past few years. For instance,
Huang et al. [2] proposed a chance constrained programming
model to optimize the operational schedules of shiftable and
thermal appliances to minimize the electricity cost considering
the uncertainty of electricity prices and demand. Chen et al. [3]
developed a scenario-based stochastic optimization approach
to deal with the uncertainty in the real-time electricity prices
via Monte-Carlo simulation. Du et al. [4] proposed a robust
optimization approach to minimize the worst-case daily bill
payment by considering the randomness of the resident’s
activity.

In addition to the aforementioned model-based solutions,
learning-based approaches have attracted much attention in
recent years. For instance, Keerthisinghe et al [5] proposed

an approximate dynamic programming (ADP) method for
DR scheduling of appliances considering the uncertainty of
home demand and PV generation. Bahrami et al. [6] proposed
an online learning algorithm for optimal scheduling of DR
appliances based on the actor-critic approach. In [7], Ruelens
et al. developed a batch RL approach for optimal control of
an electric water heater (EWH). Wen et al. [8] formulated
the optimal DR scheduling of appliances as a device-based
MDP model and a Q-learning algorithm was employed to
solve the problem. Lu et al. [9] developed a multi-agent RL
approach to make optimal DR schedules for different home
appliances in a decentralized manner. These learning-based
approaches facilitate the design of a HEMS since they do not
need an explicit system model and an optimizer to solve for
the optimal DR schedules. However, the aforementioned ap-
proaches use simple approximators, such as look-up tables or
linear functions, to learn the optimal DR strategies. The limited
approximation capability makes these approaches difficult to
handle complicated nonlinearity in the time-varying electricity
prices and resident’s activities in real-world. Therefore, the
performance of these approaches may deteriorate.

In this paper, a DRL-based approach for optimal HEMS
is proposed to overcome the disadvantage. DRL approaches
can utilize deep neural networks (DNN) to learn complicated
nonlinear mapping from high-dimensional observations of a
system for decision-making. DRL approaches have achieved
great success in many applications, such as games, [10] robots
[11] and smart grids [12]. In this paper, we formulate the
optimal energy management of home appliances as an MDP.
The aim is to minimize the electricity cost of a household
considering the uncertainty of the real-time electricity prices
and resident’s activities. A DRL algorithm based on PPO
[13] is adopted to solve the MDP to obtain the optimal DR
scheduling strategy.

The contributions of this paper include two aspects. First,
we formulate the optimal home energy management of dif-
ferent kinds of appliances as an MDP where the randomness
of the real-time electricity prices and resident’s activities are
taken into account. Second, a DRL approach that does not
need the appliance models and distribution knowledge of the
randomness is adopted to learn the optimal DR strategy.

II. PROBLEM FORMULATION

We consider a smart home with three types of appliances,
including the critical, shiftable and controllable appliances.
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The operation of these appliances is managed by a HEMS,
which receives hour-ahead electricity price from the utility.
Next, we model the electricity usage of these appliances and
formulate the DR scheduling of the appliances as an MDP.

A. Modeling of the Appliances

1) Critical Appliances: Critical appliances cannot be
scheduled for DR. If a critical appliance c = 1, ..., C is
required to operate in the period [tαc , t

β
c ], it should operate

immediately and its power consumption should be equivalent
to the demand

PCc (t) = PCc,R, t ∈ [tαc , t
β
c ], (1)

where PCc,R is rated power of the appliance c.
2) Shiftable Appliances: Shiftable appliances can defer

their demand to off-peak hours. For the shiftable appliance
s = 1, ..., S, its power consumption at time step t should
equal to

PSs (t) = bSs (t)PSs,R, t ∈ [tαs , t
β
s ], (2)

where bSs (t) is a binary control variable determining whether
to operate the appliance or not; PSs,R denotes the rated power;
[tαs , t

β
s ] represents the scheduling window.

The control variable bSd (t) should be constrained by

bSs (t) = 1, if
t∑

τ=tαs

bSs (τ) = 0, tβs − t = KS
s , (3a)

bSs (t) = 1, if bSs (t− 1) = 1 and
t∑

τ=tαs

bSs (τ) < Ks. (3b)

where Ks is the required time slots to meet the energy demand
of the appliance s. Eq. (3a) makes sure that the energy demand
s is satisfied in the scheduling window; Eq. (3b) ensures that
the operation of the shiftable appliance s is not interrupted.

3) Controllable Appliances: The power consumption of a
controllable appliance can be flexibly controlled or regulated.
A typical controllable appliance is EV. Consider that an EV
arrives home at time step tαev and departs at tβev . Then, the EV
can be formulated by

E(t+ 1) = E(t) + P ev(t)∆t, t ∈ [tαev, t
β
ev − 1], (4a)

Emin ≤ E(t) ≤ Emax, t ∈ [tαev, t
β
ev − 1], (4b)

where E(t) is the remaining energy of the EV battery at time
step t, which is bounded in (4b) by its minimum energy
Emin and maximum energy Emax, respectively; P ev(t) is
the charging/discharging power, which is positive when the
EV is charging or negative when the EV is discharging. The
charging/discharging power P ev(t) is constrained by

P ev(t) ∈ [−P evdis,max, P evch,max], (5)

where P evch,max and P evdis,max are the maximum charging and
discharging power of the EV battery, respectively.

To ensure the EV is fully charged when its departs home,
the remaining energy of the EV battery should satisfy

E(t) = Emax, t = tβev. (6)

B. MDP Formualtion of the HEMS

1) States: The states of the smart home is defined as

s(t) = (R(t− 23), . . . , R(t), E(t),

BS1 (t), ..., BSS (t), TS1 (t), ..., TSS (t)),
(7)

where R(t − 23), . . . , R(t) denote the past 24-hour’s elec-
tricity prices; E(t) is the remaining energy of the EV bet-
tery; BS1 (t), ..., BSS (t) represents the operational states of the
shiftable appliances and TS1 (t), ..., TSS (t) denote the remaining
time slots to the corresponding deadline. Here BSs (t) =∑
t b
S
s (t−1)/KS

s represents how many percents of the energy
demand of the appliance s have been fulfilled and TS1 (t) =
tβs − t, s = 1, . . . , S.

2) Actions: The actions are defined by

a(t) = (bS1 (t), ..., bSS(t), P ev(t)), (8)

which include the binary control variables bs1(t), . . . , bSS(t) of
the shiftable appliances and the charging/discharging power
P ev(t) of the EV battery.

3) State Transition Probability: The transition probability
of the states is assumed to be unknown by the HEMS.

4) Rewards: The reward is formulated as

r(t) =−R(t)

[
C∑
c=1

PCc (t) +
D∑
d=1

PSd (t) + P ev(t)

]
·∆t,

− w(E(tβev)− Emax)2,

(9)

where the first term is the electricity cost at time step t; the
second term is the EV range anxiety, which is the square of
the unfulfilled energy to fully charge the EV at the departure
time [12]. The coefficient w is a weighting parameter.

5) Objective: The HEMS aims to find an optimal control
policy π∗ to maximize the discounted cumulative rewards over
one day,

max
π∈Π

Jπ = Eπ

[
T∑
t=1

γt−1r(t)

]
, (10)

where the policy π(a|s) ∈ [0, 1] : s→ P (a) is a probability of
choosing the action a when the system state is s, Π is the set
of all feasible policies, and 0 < γ ≤ 1 is the discount factor.

III. DEEP REINFORCEMENT LEARNING SOLUTION

It is intractable to exactly solve the MDP (10) due to the
unknown transition probability and the curse of the dimension-
ality. However, we can approximately search for the optimum
in a set Πθ of parameterized policies πθ by ascending the
objective J(πθ) with respect to the parameters θ,

θi+1 = θi + α5θ J(πθ), i→ 1, 2, . . . . (11)

For the formulated DR scheduling problem, we propose a
DNN to approximate the policy π and optimize the DNN
parameters based on the PPO algorithm.
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Fig. 1. Overall architecture of the designed DNN-based stochastic policy. The input of the DNN-based policy is the system state s(t) of the smart home,
including the past 24-hour’s electricity prices R(t−23), . . . , R(t), the EV battery energy E(t), and the operational states BS1 (t), ..., BSS (t), T

S
1 (t), ..., TSS (t)

of the shiftable appliances. The output is the distribution parameters pθ , µθ and log σθ of the policy πθ . The DNN consists of a representation network and
a policy network. The representation network uses an LSTM to extract temporal features from the past 24-hour’s electricity prices. The policy network is a
MLP, which approximates the optimal distribution parameters pθ , µθ and log σθ of the policy πθ based on the features of the past 24-hour’s electricity prices
and the operational states of the DR appliances.

A. DNN-based Stochastic Policy

We search for the optimal policy π within a mixed proba-
bility distribution πθ parameterized by θ as follows

πθ(a|s) =

{
B(pθ), if a ∈ pθ(bSS(t) = 1), . . . , bSS(t)],

N (µθ, σθ), if a = P ev(t),
(12)

where πθ is a Bernoulli distribution B(pθ) if the action a is a
binary control variable; or π is a normal distributionN (µθ, σθ)
if the action a is a continuous vairble, i.e. P ev(t). A DNN is
proposed to learn the optimal distribution parameters pθ, µθ
and log σθ of the policy πθ.

Fig. 2 shows the architecture of the proposed DNN. The
input of the DNN is the system state s(t) of the smart
home, including the operational state of all DR appliances
and the past 24-hour’s electricity prices. The output is the
distribution parameters pθ, µθ and log σθ of the policy πθ.
The DNN consists of a representation network and a policy
network. The representation network uses an LSTM to extract
temporal features from the past 24-hour’s electricity prices.
Specifically, the electricity price xτ = R(τ) at each time step
τ ∈ {t− 23, ..., t} are processed by a LSTM cell

fτ = σ(Wf · [hτ−1, xτ ] + bf ), (13a)
iτ = σ(Wi · [hτ−1, xτ ] + bi), (13b)
oτ = σ(Wo · [hτ−1, xτ ] + bo), (13c)

C̃τ = σ(WC · [hτ−1, xτ ] + bC), (13d)

Cτ = fτ ∗ Cτ−1 + iτ ∗ C̃τ , (13e)

hτ = oτ ∗ tanh(C̃τ ), (13f)

where xτ and hτ are the input and output of the LSTM cell,
respectively; Cτ is the state of the cell; fτ , iτ and oτ are
the forget gate, input gate and output gate, respectively; σ
and tanh denote the sigmoid and hyperbolic tangent function,
respectively. Each LSTM cell fuses its input xτ with the
output hτ−1 of its predecessor and selectively passes the fused
information to its successor. The last LSTM cell outputs the
feature ht extracted by the LSTM.

Then, the feature ht is concatenated with the states of
the shiftable appliances and the EV and fed into the policy
network. The policy network is a multilayer perceptron (MLP):

~v0 = [ht; s(t)], (14a)
~vj = max(0,Wj · ~vj−1 + bj), j = 1, . . . , J − 1 (14b)
pθ = σ(Wp · ~vJ + bp), (14c)
µθ = Wµ · ~vJ + bµ, log σθ = Wσ. (14d)

which outputs the distribution parameters pθ, µθ and log σθ of
the policy πθ.

B. Proximal Policy Optimization
To train the designed DNN-based policy, the policy gradient

method (11) is adopted. Motivated by the PPO algorithm, we
use a surrogate objective LCLIP (θ) ≈ J(πθ) to calculate
the policy gradient. The surrogate objective LCLIP (θ) is
calculated by

LCLIP (θ) = Et
[
min(δt(θ)Ât, clip(δt(θ), 1− ε, 1 + ε)Ât)

]
(15)

where δt(θ) denotes the probability ratio δt(θ) = πθ(a(t)|s(t))
πθi (a(t)|s(t)) ;

Ât is the sample estimate of the advantage function Aπθi =
Vπθi (s(t + 1)) + r(t) − Vπθi (s(t)); ε is a hyperparameter.
Vπθ (s(t)) = Ea(t+1),s(t+1),...[

∑∞
l=0 γ

lr(t + l)] denotes the
value function, which is approximated by a DNN. The DNN
shares the same archtecture and parameters as the policy
network. Therefore, the value function is approximated by
Vπθ (s(t)) = WV ·~vJ+bV , and (WV , bV ) are network weights.
The loss function for the value function approximation is

LV F (θ) = Et[Vπθ (s(t))−
∞∑
l=0

γlr(t)]2.

Overall, the parameters θ of the proposed DNN is updated by
maximizing the surrogate objective LCLIP (πθ) and minimiz-
ing the loss function LV F (θ) as follows,

LCLIP V F (θ) = LCLIP (θ)− c · LV F (θ),

θi+1 = θi+α5θ LCLIP V F (θ)
(16)
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where c is a coefficient. Alg. 1 presents the training algorithm
of the proposed DNN-based policy.

Algorithm 1 Training process of the proposed DNN-based policy
1: Initialize: Number of iterations I; sample buffer FN ;
2: for i = 1, I do
3: for n = 1, N do
4: Initialize the state s(0) of the smart home;
5: for t = 0, T-1 do
6: Sample a(t) according to πθi ;
7: Calculate reward r(t) and observe s(t+ 1);
8: end for
9: Calculate the sample estimates Â0, Â1, . . . , ÂT ;

10: Store An = (Â0, Â1, . . . , ÂT ) in FN ;
11: end for
12: Optimize LCLIP V F (θ) with respecte to θ with K

epochs and minibatch size M by gradient descent;
13: Update θi ←− θ;
14: end for

IV. CASE STUDIES

In this section, we evaluate the performance of the pro-
posed DRL-based approach on a smart home. We consider
four shiftable appliances, i.e., dishwasher, washing machine,
cloth dryer, and stove and one controllable appliance, i.e. the
EV. The refrigerator, TV, and lights are modeled as critical
appliances. We divide one day into T = 96 time slots and
each time slot represents ∆t = 15 minutes. For each appli-
ance, we assume that the scheduling window [tα, tβ ] changes
in different days due to the randomness of the resident’s
activities. Specifically, the starting time tα and end time tβ
are selected uniformly from the bounds presented in Table
I [4], [6]. For the EV, we consider a Nissan Leaf with the
maximum battery capacity Emax = 24 kWh and minimum
battery energy Emin = 2.4 kW. The battery SoC of the EV
when it arrives home is randomly chosen from the normal
distribution N (0.5, 0.1) bounded by [0.4, 0.6] [12].

The real-world hourly electricity price from [14] is used to
train and test the proposed approach. The one-year data in
2017 are used for training and the one-year data in 2018 are
used for performance evaluation. The representation network
outputs a 16-dimension feature vector. The policy network has
three hidden layers and each layer has 64 ReLU neurons. In
the output layer, there are six units. Four of them output the
probability pθ for the shiftable appliances and two of them
output µθ and log δθ for the EV scheduling. All network
weights are randomly initialized. The weight in the reward
(9) is w = 0.01. The discounted factor γ is set to 0.995. The
minibatch size, training epochs and the size of the samples
buffer FN in each iteration of training is M = 2400, K = 4,
N = 100, respectively. The stepsize parameters α and c are
set to 3e−4 and 0.5, respectively. The hyperparameter ε is set
to 0.05. The number of iterations is I = 500. The experiment
is conducted on a personal computer with four i5-6300U CPU.
The code is written in Python and run with TensorFlow1.12.

Fig. 2 shows the episode cumulative rewards of the proposed
approach during the training process. As shown in the figure,
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Fig. 2. Episode returns during the training process.
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Fig. 4. DR scheduling results of the proposed approach on a test day.
The green region in each subfigure indicates the scheduling window of the
corresponding appliance.

the cumulative rewards increase quickly after the start of
the training. From episode 20,000, the cumulative rewards
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TABLE I
OEPRATIONAL SPECIFICATIONS OF THE HOME APPLIANCES

Critical Shiftable Controllable
Device Refrigerator TV Lights Dish Washer Washing Machine Clothes Dryer Stove EV

Power Rating (kW) 0.2 0.1 0.2 0.6 0.38 1.2 1.9 -6∼6
Task Demand (time slots) 24 hr - - 2 4 4 3 -
Scheduling Time tα - [40, 43] [36, 39] [0, 4] [0, 4] [20, 23] [24, 27] [32, 43]

(time slots) tβ - [56, 59] [56, 59] [32, 35] [16, 19] [40, 47] [36, 37] [92, 95]

gradually stabilize and converge around −0.4 at the end of the
training. This result demonstrates that the proposed approach
succeeds in learning to increase the cumulative rewards.

To assess the performance of the proposed approach on the
test dataset, we compare the proposed DRL-based approach
with two benchmarks including the without DR policy and the
theoretical optimal policy. For the without DR policy, all the
shiftable and controllable appliances are scheduled to operate
as soon as they are “switched on” to carry out a task. For the
theoretical optimal policy, it is assumed that the future 24-
hour’s electricity prices and the scheduling windows of each
shiftable appliance and the EV are known in advance. The DR
scheduling problem is solved as a deterministic optimization
problem via the optimization toolbox SCIP [15]. It should
be noted that theoretical optimal policy provides a theoretical
bound of the performance and it cannot be achieved in practice
due to the randomness. Fig. 3 compares the cumulative elec-
tricity cost curves over the 365 test days. It can be seen that the
proposed approach reduces the accumulative electricity cost by
40.48% when compared to the without DR policy. Moreover,
the performance of the proposed model is close to that of
the theoretical optimal policy. This comparison verifies the
effectiveness of the proposed approach.

To further demonstrate the effectiveness of the proposed
approach, we present the DR scheduling results on a test day
in Fig. 4. The green regions in the subfigures indicate the
scheduling windows of the shiftable appliances and the EV,
respectively. As shown in Fig. 4, the shiftable appliances are
scheduled to operate in the periods when the prices are low in
their scheduling windows. In addition, the EV is discharged
when the electricity price is high at 18:00-22:00 and charged
when the price is low at 0:00-4:00. When the EV departs, the
EV battery is adequately charged. These results demonstrate
that the proposed approach can learn to optimize the operation
of the DR appliances to save electricity cost.

V. CONCLUSION

In this paper, the home energy management problem is
formulated as an MDP. The aim is to optimize the operational
schedules of different kinds of appliances to minimize the
electricity cost. The randomness of real-time electricity prices
and resident’s activities are taken into consideration. A DRL
approach based on PPO is developed to solve the problem.
The proposed approach does not need any information about
the appliance models and distribution knowledge of the ran-
domness. A DNN is designed to learn the optimal DR policy.
The DNN-based policy can directly learn from raw sensory

data of the system and output the DR controls of the shiftable
appliances and the EV. Experimental results demonstrate that
the proposed approach outperforms the benchmark methods.
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