
Patterns in Elementary-Age Student Responses to Personalized
& Generic Code Comprehension Questions

Jean Salac, Qi Jin, Zipporah Klain, Saranya Turimella, Max White, & Diana Franklin

University of Chicago

Chicago, Illinois

{salac,qijin,zklain,sturimella,mnwhite,dmfranklin}@uchicago.edu

ABSTRACT
The CS community has struggled to assess student learning at the

K-8 level, with techniques ranging from one-on-one interviews to

written assessments. While scalable, automated techniques exist

for analyzing student code, a scalable method for assessing student

comprehension of their own code has remained elusive. This study

is a first step in bridging the gap between the knowledge gained

from interviews and the time efficiency and scalability of written

assessments and automated analysis. The goal of this study is to

understand how student answers on various types of questions

differ depending on whether they are being asked about their own

code or generic code. We find that while there were no statistically-

significant differences in overall scores, questions about generic and

personalized code of comparable complexity are far from equivalent.

Our qualitative analyses revealed interesting patterns in student

responses, inviting further research into this assessment technique.

In particular, students answered differently from students with

generic code when presented with individual blocks from their

code taken out of context and placed into different code snippets,

and students answered in a way that demonstrates a functional,

instead of structural, understanding on Explain in Plain English

(EiPE) questions.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; Student assessment; Computational thinking;

KEYWORDS
K-8 education, assessment, code comprehension, computational 
thinking, Scratch

ACM Reference format:
Jean Salac, Qi Jin, Zipporah Klain, Saranya Turimella, Max White, & Diana 
Franklin. 2020. Patterns in Elementary-Age Student Responses to Personal-
ized & Generic Code Comprehension Questions. In Proceedings of The 51st 
ACM Technical Symposium on Computer Science Education, Portland, OR, 
USA, March 11–14, 2020 (SIGCSE ’20), ACM, New York, NY, USA. 7 pages.
https://doi.org/10.1145/3328778.3366833

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00

https://doi.org/10.1145/3328778.3366833

1 INTRODUCTION
The CS4All movement advocates computer science (CS) instruction

for all students, and several large, urban school districts (including

Chicago, New York, and San Francisco) have started district-wide

efforts to get CS into elementary schools. Moving from the after-

school, informal domain into the formal school classroom increases

the pressure on developing accurate assessment techniques that

match the pedagogical approaches and tools used for this age group.

A popular programming language and development environ-

ment used in elementary school is Scratch [6]. Three assessment

techniques are common in this realm: analyzing programs that

students create (artifact analysis), giving written assessments, and

interviewing students. Each has its major advantages and draw-

backs. For example, artifact analysis has both false negatives and

false positives. That is, students include code in their programs that

they do not understand [3], leading to false positives. At the same

time, students may understand concepts that they do not choose

to include in their culminating project. On the other hand, inter-

views are the most accurate measure because of the ability to ask

follow-up questions, but they are prohibitively time consuming.

In this study, we explore the space with a novel approach—

creating a personalized assessment that asks students questions

involving their own code. The ultimate goal is to create written as-

sessments that allow students to demonstrate their understanding

of code within their artifacts and beyond. However, this study is just

one step towards this larger goal. It seeks to answer the following

question: How does integrating a student’s code from their artifacts
affect the understanding they demonstrate on written assessment
questions?

This paper presents key findings from different types of assess-

ment questions using generic code or code drawn from student

projects, including the following patterns:

• students answer differently when their code blocks are tak-

ing out of context and placed int a different script in multiple-

choice questions,

• results were mixed when asking multiple-choice or fill-in-

the-blank questions about partial or full scripts when kept

in context, and

• student answer in a way that demonstrates functional un-

derstanding but not structural understanding when asked

EiPE questions about their own code.

In the next section, we present relevant literature on assessment

of student learning in elementary school. We then describe our

personalized assessment generator in Section 4.1. In Section 4, we

describe our methods. We present our results in Section 5. We then

provide conclusions in Section 6.

Paper Session: Elementary School Experiences  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

514

https://doi.org/10.1145/3328778.3366833
https://doi.org/10.1145/3328778.3366833


2 BACKGROUND & RELATED WORK
In this section, we provide background on three methods of assess-

ment: automated assessment, interviews, and written assessments.

There is a wealth of literature on automated assessment, in-

cluding Scrape[19], Hairball[2], and Dr. Scratch[14]. Automated

assessments have gotten more sophisticated over time, moving

from counting instances of particular blocks [19, 1], to identifying

correct and incorrect uses of code constructs[2], to analyzing higher

order understanding[14, 16].

However, any technique focused on artifact analysis assumes

that students understand the code they use in their projects. This

is not necessarily true [3]; students can use code in their projects

that they don’t truly understand, either by copying exact code they

were taught or remixing from the Scratch community. In addition,

a student may understand a concept even though they did not

choose to use it in their open-ended artifact. Written assessments

or interviews are necessary to find out whether students understand

the concepts both included and not included in their code.

Written assessments are used to assess student learning in Scratch,

both in formal [8, 12] and informal [7, 4, 10] settings. In addition,

Marinus et al. developed an assessment around Cubetto, a simpli-

fied version of the turtle LOGO programming task developed by

Seymour Papert [11, 15].

Interviews provide a more nuanced and personalized way of

assessing student learning. Brennan and Resnick found that through

artifact-based interviews, they were able to identify the depth of

a student’s understanding of a particular concept, as well as how

students were employing computational thinking practices while

developing their projects[3].

While interviews can provide a more complete and process-

oriented picture of student learning, interviews are limited by what

students can remember about their projects and the project(s) se-

lected for discussion [3]. Interviews are also very time-consuming,

making them unrealistic for teachers who are already very time-

constrained.

This work builds upon previous research in assessing student

learning by exploring written assessments that use code snippets

from student artifacts to understand how that affects the way in

which students answer the questions.

3 THEORETICAL FRAMEWORK
To contextualize our study, we use Schulte’s Block model, a model

for program comprehension [18]. It comprises of a duality between

"structure" (how the code works) and "function" (the purpose of

the code). In the context of Scratch programming, it would be

reasonable to expect a student who remixes projects to have a

functional understanding of the code—they may know what the

code does, but not how or why. However, structural understanding

is frequently the goal when students are asked to build their own

projects, which is the case with the curriculum in this study.

In this study, we experiment with integrating student code into

different kinds of questions to see what patterns emerge. For exam-

ple, Explain in Plain English (EiPE) questions present an interesting

conundrum. To answer an EiPE question about code they did not

write, students must arrive at a functional understanding of the

code by leveraging a structural understanding, i.e. interpreting the

syntax, semantics, and control flow of the code. However, this is

not the case when asking students about their own code as they

presumably would have run it and seen its results. Grounded in the

Block model, we investigate the different kinds of understanding

that students demonstrate when presented with code from their

own projects in various ways, as opposed to generic code snippets.

4 METHODS
4.1 Personalized Assessment Worksheets for

Scratch (PAWS)
We developed PAWS, an assessment generator that searches Scratch

projects for code snippets that are suitable for personalized ques-

tions, hereafter referred to as "candidate code". Candidate code is

specified differently for each question. If there was candidate code

in the student project, the generator randomly assigned the student

either a personalized question using their candidate code or code

from a generic question.

4.2 Study Design
The study consists of two years of students from a large urban

school district, with revisions to assessment question formats oc-

curring between the two years. In the first year, our study consisted

of 316 4th grade students. Student gender was split almost evenly.

The participant ethnic breakdown was 32.91% Asian, 28.79% His-

panic/Latino, 9.49 % White, 8.29% Pacific Islander, and 6.33% Black.

In the second year, our study consisted of 329 3rd, 4th, and 5th

grade students.

In both years, students completed three modules in an introduc-

tory computational thinking (CT) curriculum in Scratch over the

course of a year—the first module was an introduction to Scratch,

the second covered events & sequence, and the third covered count-

able loops. The Constructionist-inspired [9] curriculum was a modi-

fication of the Creative Computing Curriculum [5]. For all students

in the study, this curriculumwas their first formal in-school comput-

ing experience, though they may have had informal out-of-school

exposure.

4.3 Assessment Design
Upon completion of Modules 2 and 3, students took a pen-and-

paper assessment, consisting of multiple-choice, fill-in-the-blank

and open-ended questions. Following the Evidence-Centered De-

sign framework [13], assessments were designed based on domain

analysis informed by the CS K-12 framework and K-8 learning tra-

jectories [17]. Overarching learning goals were narrowed in domain

modeling to identify specific knowledge and skills desired.

The assessment questions were designed by a team of CS and

education researchers and practitioners. For face validity, questions

were then reviewed by a larger group of practitioners and reading

comprehension experts. They were also piloted in Year 1 of our

study and improved upon in Year 2. Assessment questions were

analyzed by undergraduate researchers.

4.4 Data Analysis
Analysis was performed separately on each question, including

only students with candidate code for that question. Due to absent

Paper Session: Elementary School Experiences  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

515



students or blank responses, there was a slight (< 10%) imbalance

in the number of generic and personalized questions available for

analysis. To account for the imbalance, the Type 3 Sum of Squares

was used.

We first performed statistical tests to see if personalization had

any influence on question scores; we compared students with can-

didate code who received (1) personalized questions and (2) generic

questions using the ANOVA F-test. This test provides the F value in

addition to the p value; in this study, we used p < .05 for statistical
significance in all tests.

A subsequent hand analysis was performed on a subset of in-

correct responses to detect patterns. This analysis came in sev-

eral forms. With personalized questions, the answers were cross-

referenced with student artifacts to find associations between in-

correct responses and contents of student artifacts. For questions

where student responses could be categorized without any overlap,

the Chi-squared test was used to see if there was a dependency

between the treatments (personalized vs generic) and the frequency

of each response type. This test results in a Chi-squared value (χ2)
and like the ANOVA F-test, a p value.

Finally, open-response questions were also qualitatively coded

for patterns in specific attributes of their answers. First, a subset of

free-response questions were open-coded to develop the qualitative

coding scheme. The questions were then coded by at least two

researchers with an inter-rater reliability (Fleiss’ Kappa) of 80%.

The proportion of personalized or generic responses with specific

attributes were next compared using the Fisher’s exact test, which

is a non-parametric test for the equality of two proportions that

also results in a p value. A non-parametric test was selected due to

the small number of occurrences for some attributes.

5 RESULTS
In this section, we present results divided by the different question

types in which we integrated students’ code. We first show results

for a multiple-choice question in which students’ individual code

blocks are placed in a generic snippet of code. We then present

multiple-choice questions involving full or truncated code snippets

from students projects, which were not combined with generic code.

Finally, we present results on open-ended questions on student

scripts.We follow each set of results with a discussion of the insights

gained and the kinds of understanding elicited from each form of

code integration.

5.1 Blocks Integrated in Generic Code
This question (B1) asked students to circle the say block that ran

last in a script with alternating say and wait blocks (Figure 1).

Candidate code was any say block. Candidate say blocks replaced

generic say blocks in the script.

87.04% of students who received the generic question circled

the correct answer, compared with only 79.66% of students who

received personalized questions. However, this difference was not

statistically significant (F(1,221)=1.83, p=.18).

After inspecting the projects of students who did not answer

the personalized question correctly, we found that some students

circled the last say block in their projects, not the last say block

Figure 1: Generic (left) and Personalized (right) Scripts in B1

in the script shown to them. Seeing their own code in the ques-

tion may have caused students to think of characteristics of their

own projects rather than the assessment code. Therefore, the use

of student code in an assessment question should not differ too

greatly from its use in their projects, lest it elicits a mismatch be-

tween a student’s functional understanding of their own code and

a structural understanding of the code snippet in the question.

5.2 Multiple-Choice/Fill-in-the-Blank with
Code Snippets

We tested three questions using code snippets in multiple-choice

questions: one on events and two on loops.

5.2.1 MF1: Multiple-Choice on Events. MF1 showed four scripts

and asked students to circle which script(s) would run if they

click on the sprite. In the generic assessment, there are two scripts

with the when sprite clicked event block, one with when
green flag clicked, and one with when (space) key
pressed. Candidate code was any script from student projects; if

their script had more than 3 blocks, only the first 3 were included.

In Year 1’s personalized assessment, one of the generic when
sprite clicked scripts was retained, and a candidate script

could be swapped with any of the other three scripts. However,

this could lead to one, two, or three when sprite clicked
events. To hold the number of each event type constant, in Year 2,

candidate code only swapped out a script with same event block

(though a different parameter was allowed for when key pressed).

Because there were multiple correct answers, we split student

responses in several ways: (1) NO correct - students who circled

none of the correct answers, (2) SOME correct & incorrect - stu-

dents who circled some answers that were correct and some that

were incorrect, (3) SOME correct & NO incorrect - students who

only circled (some subset of the) correct answers and none of the

incorrect ones, and (4) ALL correct & NO incorrect - students who

circled all the correct answers and none of the incorrect ones - in

other words, answered the question correctly. The distribution of

student responses is displayed on Table 1.

Comparing the frequencies of each response type, we found a

statistically-significant dependency between whether a student had

a personalized or a generic question and how they responded on

MF1 (Year 1: χ2 = 19.59,p < .01; Year 2: χ2 = 27.34,p < .01).
As shown in Table 1, students who had a personalized question

were more likely to circle both some (lower percentage of NO C)

or all (higher percentage of All C, No I) of the correct options than

students who had a generic question.

From Year 1 to Year 2, there was also an improvement in the

proportion of students circling all the correct answers, as opposed

to only a subset. This may be attributed to the stricter candidate

Paper Session: Elementary School Experiences  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

516



Figure 2: MF2 Repeat Iteration Count Results

code selection criteria and/or more direct instruction of parallelism

in Year 2.

Feature Category

NO C Some C Some C All C

Some I No I No I

Personalized (Y1) 15.6% 9.0% 20.7% 54.1%

Generic (Y1) 25.7% 13.3% 11.5% 49.6%

Personalized (Y2) 15.3% 9.0% 3.6% 72.1%

Generic (Y2) 23.7% 15.8% 0% 60.4%

Table 1: MF1 Qualitative Results

5.2.2 MF2: Repeat Iteration Count. Students were shown a re-

peat block and asked how many times the loop would repeat. Can-

didate code was defined as a repeat block with fewer than 3 blocks

inside it. If a student had a repeat block with more blocks, PAWS

included only the first three blocks.

Overall, students performed well on this question, with at least

85% of students answering correctly in both years. There was no

statistically-significant difference between control and treatment

(Year 1: F(1,123)=2.27, p=.13; Year 2: F(1,126)=.33, p=.56; see Figure 2).

5.2.3 MF3: Unrolling a Loop. In Year 1, students were shown

two blocks inside a repeat 4 loop and given choices of those

blocks repeated 1, 2, 3, and 4 times. Students were asked to choose

the unrolled code that did the same thing as the loop. Candidate

code consisted of a repeat block with 2 blocks that was repeated

at most 4 times. If a student had a repeat block with more than

2 blocks and/or the repeat block was repeated more than 4 times,

PAWS included only the first 2 blocks and changed the number of

times the repeat block ran to 4.

Overall, many more students struggled with MF3 than MF2;

only 63.33% of students with a personalized question and 65.38%

of students with a generic question answering correctly. These dif-

ferences, however, were not statistically significant (F(1,110)=.0018,

p=.97).

Hand inspection of assessments raised a potential issue with

personalized code: certain personalized block combinations are

visually similar (i.e. similar colors), which may have increased the

difficulty of some personalized questions. This occurrence was too

rare, however, to know whether it influenced the results.

5.2.4 Multiple-Choice/Fill-in-the-Blank Discussion. Unlike in-
serting individual blocks into a larger script, using complete scripts
did not result in students bringing in project context that would

impact their answers. However, further research is necessary to un-

derstand whether students are remembering how their code worked

(functional understanding) or if it shows that they truly understand

the mechanics of how the code works (structural understanding).

In addition, care should be taken when defining candidate code,

because students may be confused by idiosyncratic cases such as

duplicate blocks.

5.3 Open-Response Questions
We tried three open-response questions. The first two asked stu-

dents to explain code (one for sequence/events and one for loops),

and the last asked them to describe when to use loops.

5.3.1 OR1: Explain a Sequence. In Year 2, OR1 was an open-

response question in which students are provided a single script

and asked to explain what that script does. OR1 was design to

allow students to demonstrate (1) their ability to articulate an in-

struction’s functionality and their understanding of the order of
instructions, and (2) their ability to identify the event that causes
the action. A candidate code snippet was any script, excluding code

constructs beyond the scope of their curriculum (e.g. forever loops,

conditionals, and variables), limiting script length by allowing a

maximum of 3 action blocks (the length of the generic script), and

excluding blocks that had ambiguous sequential execution (e.g. the

play sound block).

Our Year 2 revision transformed a fully open-ended question

(Figure 3) into more targeted questions that asked students to iden-

tify the event and sequence of the script (Figure 4). The number of

lines changed based on the number of action blocks in their script,

as we allowed scripts with anywhere from 1-3 action blocks.

OR1 was worth 7 points—1 point was given for identifying the

correct event that triggered the script, and 6 points were given for

correctly describing the order and action of the blocks in the script.

In order to receive credit for describing a block, the student needed

to use the block name (e.g. say) and, if applicable, the major pa-

rameter (e.g. say "hello"). However, they were not expected to
articulate minor details such as for 3 seconds. Students who
received personalized and generic questions performed similarly

in their score (F(1, 192)=.17, p=.68).

For this question, the score could obscure differences in student

response patterns, so we performed a qualitative analysis of dif-

ferent details about the responses. This analysis revealed some

patterns.

Students given personalized assessments were less thorough

in their answer in two ways. First, 6.06% of them provided an

answer with incomplete or missing parameters, compared with

3.52% of students with generic code (p=.50). Seeing their own code

may have led them to provide answers that demonstrated their

functional understanding (because they likely executed their own

code), as opposed to their structural understanding. For example,

when describing a script with several move blocks, a student wrote

"it will go back and forth and stop".

In addition, 5.05% of students with personalized assessments,

in contrast with 2.11% of students with generic assessments, had

Paper Session: Elementary School Experiences  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

517



Figure 3: Year 1 Fully Open-Ended OR1

Figure 4: Year 2 Scaffolded OR1

an answer where they incorrectly described at least one block’s

functionality (p=0.45). The generic code snippet used only blocks

students have seen before, but personalized code may have had

blocks not covered by the second module (events & sequence).

Although students may have used such blocks in their projects,

they may not fully understand them.

Nonetheless, a greater percentage of students with personalized

assessments answered the question (90.91% personalized vs 87.37%

generic; p=.37). Students with the generic question may have been

less familiar with or engaged by the generic code, causing them to

just copy the numbers from the blocks, write nonsensical responses,

or leave the question blank.

5.3.2 OR2: Explain a Loop. For OR2, students were shown a

loop and asked to explain what the loop would do in their own

words.

In Year 1, candidate code was defined as either a countable or

forever loop. Answers were given between 0-10 points depending

on accuracy and completeness. As in OR1, the Year 2 question was

revised to provide more scaffolding for student responses. Instead

of a blank empty box, students were given lines preceded by "First",

"Next", and "Last", similar to OR1 (Figure ??), and there was a sepa-

rate blank for the number of times the loop would repeat. Year 2’s

OR2 was graded in the same way as Year 2’s OR1, with an additional

point for identifying the number of loop iterations. In addition, for-

ever loops were excluded as they were not explicitly covered in the

curriculum; thus, we could not expect students to understand them.

Most students performed well on this question, with an average

score of 8.37 out of 10 possible points in Y1 and 5.97 out of 7 points

in Y2. As shown in Figure 5, there was no statistically-significant

difference in performance between students who received a generic

Figure 5: OR2 Free-Response on Loops Results

question and students who received a personalized question (Y1:

F(1,156)=3.30, p=.071, Y2: F(1,75)=.69, p=.50).

While there was no statistically-significant difference in perfor-

mance between the two treatments, qualitative analysis of Year 2

responses again revealed distinct patterns in student responses to

personalized and generic questions.

Students who received personalized questions were more likely

to write responses that were not precise enough to assess their struc-

tural understanding (how the code works). A greater proportion

of them left out parameters (8.33% personalized vs 7.69% generic).

They were also more leave out block descriptions entirely (16.67%

personalized vs 0% generic; p <.05). As in OR1, some students with

personalized questions brought in context from their projects in

their responses, demonstrating functional instead of structural un-

derstanding (Figure 6).

Similar to Year 2’s OR1, a higher percentage of students who

received personalized code in Year 2 answered the question (97.22%

personalized vs. 89.74% generic; p=.36). This could be attributed to

students being more familiar or engaged by seeing their own code.

Nonetheless, there was one trend from OR2 that differed from

OR1. In OR1, a greater proportion of students with personalized
code described a block incorrectly. In contrast, a greater propor-

tion of students with generic code described a block incorrectly in

OR2 (12.82% vs. 2.78%; p=.20). Closer inspection of responses re-

vealed that for this question, more of the personalized code included

blocks that were taught in the curriculum, whether in the events

& sequence module or in the loops module. By this point in the

curriculum, students have been exposed to more blocks. Students

with personalized code actually used the blocks they were being

asked about. At a minimum, these students could be expected to

have a functional understanding of the loop shown in their ques-

tion and thus, would be less likely to provide a description that

was completely wrong. On the other hand, students may not have

actually used the blocks in the generic script, even though they

were covered in the curriculum.

5.3.3 OR3: Reasons for Using a Loop. In Year 2, OR3 was added

to simulate an interview question and thus, was not graded for

correctness like the previous open response questions. Candidate

code was any countable loop from their projects, which was trun-

cated if it had more than 3 blocks. The generic version of OR3

asked students to explain when they should use a loop, while the

personalized question showed them a loop from their project and

asked them why they chose to use that loop and how they decided

the number of iterations.

Paper Session: Elementary School Experiences  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

518



Figure 6: OR2 Personalized Script described with Project Context

Students who received generic questions were nearly twice as

likely to write the correct, general purpose use of a loop (63% vs

36%; p < .05). This included responses like: "when I want to do

something more than once", "when I want to repeat something"

and "when you put the same blocks over and over".

In contrast, a higher percentage of students who received per-

sonalized questions cited a specific use of a loop (17% vs 9%; p=.34).

Responses that were too specific included: "to start movements",

"when you play a sound" and "to change costume". Since students

are shown a snippet of their own code in the personalized question,

they may interpret the question as asking them to identify the use

of a loop in that specific instance. This led students to explain the

loop in terms of its use in the sample code rather than its general

use.

A higher proportion of students with personalized questions

also attributed the use of a loop to making their code shorter or

to save time (19% vs 7%; p=.12). Since the students see their own

code in the personalized question, they may have been prompted

to think of the reason why they used the specific loop shown in the

question. In this case, students cited benefits of using a loop, rather

than its general purpose, which is to repeat code.

These situations where students do not provide the appropriate

level of specificity or describe benefits of using a code construct

without explaining their underlying reasons would be mitigated in

an interview setting because an interviewer would be able to ask

follow-up questions.

5.3.4 Open-Response Discussion. Overall, we found that when

students explain code snippets, they are less precise when given

their own code but are more likely to answer with correct state-

ments.

Students who received personalized code may remember their

intentions in coding that script and the project in general, allowing

them to better understand what the sprite would do when the

script was run. However, this familiarity may put them more in a

functional frame of mind, causing them to skim over the details in

their answers. In addition, thinking of their specific project may

have thwarted the question which asks when, in general, students

should use loops in projects.

It is not clear the reason for the difference in accuracy in re-

sponses. On one hand, students given code from their projects may

be more likely to understand that code because they have used it.

On the other hand, they may have used blocks in their project that

they don’t fully understand. A counter argument is that a block

in generic code might have only been seen by the student in a

lesson but never used in their own program, so they may not be

as familiar with it. Interviews or thinkalouds would be required to

better understand if these trade-offs favor one side or the other.

6 CONCLUSION
We now revisit our original driving question to see what this analy-

sis reveals: How does integrating a student’s code from their artifacts
affect the understanding they demonstrate on written assessment
questions?

We identified the following patterns:

• When blocks are taken out of context from their project,

they may answer based on how the block is used in their

project rather than in the script on the assessment.

• When asked multiple-choice questions about their scripts

or partial scripts in which the original meaning is retained,

they answer similarly to or better than students receiving

generic questions.

• When explaining their code, they are more likely to answer

the question, but they often do not describe the individual

blocks as thoroughly as students receiving generic questions.

When students with personalized and generic questions an-

swered differently, they demonstrated a functional understanding

of the code in the question, instead of the intended structural un-

derstanding. As they built the code snippets they were being asked

about, they were likely to remember their goals while creating

their projects; interviews about student artifacts also face a similar

challenge [3]. Further research is merited to explore how to ask

questions that are not overly complicated but cause students to

demonstrate structural understanding of their code.

In this paper, we investigated the space between the three com-

mon assessment techniques (artifact analysis, written assessments,

and interviews) in elementary computing with a novel approach –

integrating student code into written assessments through our tool

Personalized Assessment Worksheets for Scratch (PAWS). Our results
revealed patterns in student responses and mismatches between

the types of understanding demonstrated; future work will explore

ways to address these mismatches.

7 LIMITATIONS
The technique used in this study is product-oriented, limiting what

we could ask students. We can only postulate why different kinds

of understanding were elicited, not fully explained them. More

process-oriented future work, including thinkalouds as students

approach these questions, would be necessary to better understand

the reasons behind these differences.

8 ACKNOWLEDGEMENTS
This project was funded by National Science Foundation (NSF)

Grant No. 1660871 and DGE-1746045.

Paper Session: Elementary School Experiences  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

519



REFERENCES
[1] Joel C Adams and Andrew R Webster. “What do students learn about program-

ming from game, music video, and storytelling projects?” In: Proceedings of
the 43rd ACM technical symposium on Computer Science Education. ACM. 2012,

pp. 643–648.

[2] Bryce Boe et al. “Hairball: Lint-inspired Static Analysis of Scratch Projects”. In:

Proceeding of the 44th ACM Technical Symposium on Computer Science Education.
SIGCSE ’13. Denver, Colorado, USA: ACM, 2013, pp. 215–220. isbn: 978-1-4503-

1868-6. doi: 10.1145/2445196.2445265. url: http://doi.acm.org/10.1145/2445196.

2445265.

[3] Karen Brennan and Mitchel Resnick. “New frameworks for studying and as-

sessing the development of computational thinking”. In: Proceedings of the 2012
annual meeting of the American Educational Research Association, Vancouver,
Canada. Vol. 1. 2012, p. 25.

[4] Quinn Burke and Yasmin B Kafai. “The writers’ workshop for youth program-

mers: digital storytelling with scratch in middle school classrooms”. In: Pro-
ceedings of the 43rd ACM technical symposium on Computer Science Education.
ACM. 2012, pp. 433–438.

[5] Creative Computing. An introductory computing curriculum using Scratch.
[6] Louise P Flannery et al. “Designing ScratchJr: support for early childhood learn-

ing through computer programming”. In: Proceedings of the 12th International
Conference on Interaction Design and Children. ACM. 2013, pp. 1–10.

[7] Diana Franklin et al. “Assessment of computer science learning in a scratch-

based outreach program”. In: Proceeding of the 44th ACM technical symposium
on Computer science education. ACM. 2013, pp. 371–376.

[8] Michal Gordon, Assaf Marron, and Orni Meerbaum-Salant. “Spaghetti for the

main course?: observations on the naturalness of scenario-based programming”.

In: Proceedings of the 17th ACM annual conference on Innovation and technology
in computer science education. ACM. 2012, pp. 198–203.

[9] Idit Ed Harel and Seymour Ed Papert. Constructionism. Ablex Publishing, 1991.
[10] Colleen M Lewis and Niral Shah. “Building upon and enriching grade four

mathematics standards with programming curriculum”. In: Proceedings of the

43rd ACM technical symposium on Computer Science Education. ACM. 2012,

pp. 57–62.

[11] Eva Marinus et al. “Unravelling the Cognition of Coding in 3-to-6-year Olds:

The development of an assessment tool and the relation between coding ability

and cognitive compiling of syntax in natural language”. In: Proceedings of the
2018 ACM Conference on International Computing Education Research. ACM.

2018, pp. 133–141.

[12] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. “Learning

computer science concepts with scratch”. In: Computer Science Education 23.3

(2013), pp. 239–264.

[13] Robert J Mislevy and Geneva D Haertel. “Implications of evidence-centered

design for educational testing”. In: Educational Measurement: Issues and Practice
25.4 (2006), pp. 6–20.

[14] Jesús Moreno-León et al. “On the Automatic Assessment of Computational

Thinking Skills: A Comparison with Human Experts”. In: Proceedings of the 2017
CHI Conference Extended Abstracts on Human Factors in Computing Systems.
CHI EA ’17. Denver, Colorado, USA: ACM, 2017, pp. 2788–2795. isbn: 978-1-

4503-4656-6. doi: 10.1145/3027063.3053216. url: http://doi.acm.org/10.1145/

3027063.3053216.

[15] Seymour Papert. Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc., 1980.

[16] Alexander Repenning and Andri Ioannidou. “Broadening participation through

scalable game design”. In: ACM SIGCSE Bulletin. Vol. 40. 1. ACM. 2008, pp. 305–

309.

[17] KathrynM Rich et al. “K-8 learning trajectories derived from research literature:

Sequence, repetition, conditionals”. In: Proceedings of the 2017 ACM Conference
on International Computing Education Research. ACM. 2017, pp. 182–190.

[18] Carsten Schulte. “Block Model: an educational model of program comprehen-

sion as a tool for a scholarly approach to teaching”. In: Proceedings of the Fourth
international Workshop on Computing Education Research. ACM. 2008, pp. 149–

160.

[19] Ursula Wolz, Christopher Hallberg, and Brett Taylor. “Scrape: A tool for vi-

sualizing the code of Scratch programs”. In: Poster presented at the 42nd ACM
Technical Symposium on Computer Science Education, Dallas, TX. 2011.

Paper Session: Elementary School Experiences  SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

520

https://doi.org/10.1145/2445196.2445265
http://doi.acm.org/10.1145/2445196.2445265
http://doi.acm.org/10.1145/2445196.2445265
https://doi.org/10.1145/3027063.3053216
http://doi.acm.org/10.1145/3027063.3053216
http://doi.acm.org/10.1145/3027063.3053216

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Theoretical Framework
	4 Methods
	4.1 Personalized Assessment Worksheets for Scratch (PAWS)
	4.2 Study Design
	4.3 Assessment Design
	4.4 Data Analysis

	5 Results
	5.1 Blocks Integrated in Generic Code
	5.2 Multiple-Choice/Fill-in-the-Blank with Code Snippets
	5.3 Open-Response Questions

	6 Conclusion
	7 Limitations
	8 Acknowledgements



