
SciTokens SSH: Token-based Authentication for Remote Login to
Scientific Computing Environments

You Alex Gao
University of Illinois
yougao2@illinois.edu

Jim Basney
NCSA

jbasney@illinois.edu

Alex Withers
NCSA

alexw1@illinois.edu

ABSTRACT
SciTokens SSH is a pluggable authentication module (PAM) that
uses JSON Web Tokens (JWTs) for authentication to the Secure
Shell (SSH) remote login service. SciTokens SSH supports multiple
token issuers with local token verification, so scientific computing
providers are not forced to rely on a single OAuth server for token
issuance and verification. The decentralized design for SciTokens
SSHwasmotivated by the distributed nature of scientific computing
environments, where scientists use computational resources from
multiple providers, with a variety of security policies, distributed
across the globe.

CCS CONCEPTS
• Security and privacy → Authorization.

KEYWORDS
SSH, OAuth, JWT, PAM, distributed computing
ACM Reference Format:
You Alex Gao, Jim Basney, and Alex Withers. 2020. SciTokens SSH: Token-
based Authentication for Remote Login to Scientific Computing Environ-
ments. In Practice and Experience in Advanced Research Computing (PEARC
’20), July 26-30, 2020, Portland, OR, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3311790.3399613

1 INTRODUCTION
Secure Shell (SSH) [14] is widely used for distributed scientific
computing, enabling scientists to log in to supercomputers to com-
pile, optimize, and run simulations, to transfer scientific data sets
to/from Science DMZs, to connect with scientific computing re-
sources through JupyterHub, OpenOnDemand, etc., and to forward
network ports to securely access visualization systems, to name
a few common uses. SSH supports many authentication methods,
including long-lived passwords, one-time passwords, public keys,
Kerberos tickets, and X.509 certificates. Each one of these SSH au-
thentication methods has been adopted by the distributed scientific
computing community over the years. More recently, OAuth [5] has
become a preferred authentication (and authorization) method, due
to its design as a web-native (REST) protocol, using the standard
JSON Web Token (JWT) format [6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEARC ’20, July 26-30, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6689-2/20/07. . . $15.00
https://doi.org/10.1145/3311790.3399613

In this article, we present the design and open source implemen-
tation of SciTokens SSH, an SSH version that uses JWTs for authen-
tication. SciTokens SSH supports multiple token issuers with local
token verification, so scientific computing providers are not forced
to rely on a single OAuth server for token issuance and verification.
The decentralized design for SciTokens SSH was motivated by the
distributed nature of scientific computing environments, where sci-
entists use computational resources from multiple providers, with
a variety of security policies, distributed across the globe.

Our article is organized as follows. In Section 2, we present
related work, including the existing software components that we
used to implement SciTokens SSH. Then in Section 3, we describe
our implementation and compare it to alternatives. Next, in Section
4, we present our threat model and associated security evaluation.
Lastly, we present conclusions and future work in Section 5.

2 RELATEDWORK
For over 20 years, GSI-OpenSSH1 has been the de facto standard
solution for remote login to scientific computing resources. GSI-
OpenSSH is a modified version of OpenSSH that adds support for
authentication and credential forwarding (delegation) using X.509
proxy certificates [10] as part of the Grid Security Infrastructure
(GSI) [11]. GSI-OpenSSH suffers from two major drawbacks: 1) it
requires use of modified SSH clients and servers, and 2) it uses
"impersonation" credentials, so an exposed proxy certificate yields
access to all the user’s logins globally (i.e., the opposite of least
privilege).

Globus Auth SSH [1] aims to address the drawbacks of GSI-
OpenSSH using web-native authentication. It provides a pluggable
authenticationmodule (PAM) that accepts OAuth tokens for authen-
tication, so it is compatible with standard SSH clients and servers
that support PAM ("keyboard-interactive") authentication. Specifi-
cally, it supports opaque tokens from the Globus Auth [9] service,
which enables logins from many institutional identity providers.
The PAMmodule uses OAuth token introspection [8] to validate the
opaque token, including the target account and server (audience).
Thus, Globus Auth SSH addresses the GSI-OpenSSH drawbacks
by 1) supporting unmodified SSH clients and servers, and 2) using
per-server (least-privilege) tokens. However, Globus Auth SSH in-
troduces a new drawback: it relies on a single OAuth token server
for token issuance and verification, which is a poor match for large-
scale distributed scientific computing environments. SciTokens SSH
aims to address that drawback. Globus Auth SSH has recently been
donated to the XSEDE project and renamed XSEDE OAuth SSH.2

1https://github.com/globus/gsi-openssh
2https://github.com/XSEDE/oauth-ssh

https://doi.org/10.1145/3311790.3399613
https://doi.org/10.1145/3311790.3399613
https://github.com/globus/gsi-openssh
https://github.com/XSEDE/oauth-ssh

PEARC ’20, July 26-30, 2020, Portland, OR, USA You Alex Gao, Jim Basney, and Alex Withers

{
" s cope " : " s sh : v t 20 " ,
" aud " : " martok . ncsa . i l l i n o i s . edu " ,
" i s s " : " h t t p s : / / demo . s c i t o k e n s . org " ,
" exp " : 1 5 8 3 8 5 5 8 3 6 ,
" i a t " : 1 5 8 3 8 5 5 2 3 6 ,
" nbf " : 1 5 8 3 8 5 5 2 3 6 ,
" j t i " : " 0 7 3 ac358 −4 f07 −4090− ae5 f −b5c5be273269 "

}

Figure 1: An example SciToken issued by
demo.scitokens.org that enables user vt20 to log in to
server martok.ncsa.illinois.edu

SciTokens [12, 13] is a JWT profile and associated open source
implementation3 of least-privilege OAuth tokens for distributed
scientific computing. Instead of using opaque tokens, SciTokens
uses digitally-signed, self-describing JWTs, so SciTokens-enabled
services can locally verify tokens from multiple issuers, to support
large scale distributed scientific computing environments. The Sci-
Tokens JWT profile has been incorporated into theWLCG Common
JWT Profiles [2] for international interoperability. SciTokens SSH
uses the SciTokens JWT profile and SciTokens open source libraries.

oidc-agent4 provides a set of tools to manage OpenID Connect
(OIDC) and OAuth tokens and make those tokens easily usable
from the command line. It follows the ssh-agent design, so users
can handle OIDC/OAuth tokens in a similar way as they do with
SSH keys. While oidc-agent does not (yet) directly integrate with
SSH, it provides the very useful capability of managing multiple
tokens, which is needed for users who log in tomultiple SSH servers.

3 IMPLEMENTATION
The OAuth SSH server package provides a PAM module that is
designed to respond to a challenge prompt requested from the
client and then receive an OAuth token from the client in response
to that challenge. SciTokens SSH is built on XSEDE OAuth SSH.
SciTokens SSH and XSEDE OAuth SSH currently support CentOS
7.

The original OAuth SSH expects an opaque Globus token and
will require registering the SSH service on the Globus developers
console as well as authorizing the host with their SSH client. The
SciToken implementation intercepts the verification logic as soon
as the PAM module receives the token from SSHD and uses the
SciTokens-CPP library [3] to verify the token. SciTokens use JSON
web Tokens [6] as its token format. As shown in Figure 1, two claims
need to be specified by the token issuer. The first one is scope and
the value of the scope field will be a string: “ssh” followed by a
username for which the user of the token will be logging in as on
the host. The second key is the audience which is the SSH hostname.

There are two other key differences between Globus Auth SSH
and SciTokens SSH. First, the SciTokens verification process is

3https://github.com/scitokens
4https://github.com/indigo-dc/oidc-agent

completely independent of Globus Auth and does not require reg-
istration on the Globus developers console nor registering a fully
qualified domain name with Globus. Instead, SciTokens verifies to-
kens directly in the PAM module using the SciTokens-CPP library.
Second, there is no username mapping in SciTokens SSH. Mapping
in SciTokens SSH occurs at token issuance time rather than in the
SSH server.

As illustrated in Figure 2, the verification flow starts with the
authorization server issuing a token to a user. After receiving a
token from the authorization server, the user can use any SSH
client application and cut-n-paste the token after to respond to the
prompt from the host. The prompt is generate by SSHD’s call to
pam_authenticate(). When pam_authenticate is called, libpam reads
the configuration file /etc/pam.conf and determines the modules
that participate in the operation. In this case, we will have multiple
modules defined for the service’s operation and these modules are
called a PAM stack.

In order to route SSH authentication requests to the PAM mod-
ule provided by the server package pam_oauth_ssh.so, the user
is required to configure PAM to use pam_oauth_ssh.so for SSHD
authentication. Figure 3 illustrates an example of necessary modifi-
cations to PAM on a fresh EL7 installation. This is the PAM stack
mentioned in the last paragraph. In addition to the PAM config-
uration, SSHD must also be configured to use PAM and Challen-
geResponseAuthentication protocol in /etc/ssh/sshd_config. Notice
that if ChallengeResponseAuthentication in SSHD configuration is
set, the password from the client is ignored. However, if the PAM
service on the host has both password and challenge-response au-
thentication enabled, the PAM service will prompt for the user a
second time if challenge-response authentication initially fails.

An overview of the auth stack for the login service: Auth
specifies the module providing two aspects of authenticating the
user. First, establish the user’s identity by prompting the user for a
password, or a token in this case. Second, grant privileges through
credential granting properties. In order to determine the result of
this stack, the result codes of the individual modules require an
integration process. Modules in the stack are executed in order
as specified and each result is integrated into the final result us-
ing the module’s control flag. For example, the first control flag
of pam_sepermit.so is set to required. That means a success in
meeting pam_sepermit.so’s requirement is necessary and a fail-
ure will cause the overall result to fail and the login request to
be declined. pam_oauth_ssh.so has a relatively more complicated
control flag (success,maxtries,new_authtok_reqd,default) which
corresponds to the return code from pam_oauth_ssh.so and they
are all PAM error codes. For example, maxtries is corresponding
to PAM_MAXTRIES as defined as "One or more of the authenti-
cation modules has reached its limit of tries authenticating the
user. Do not try again.” The die, done, and ignore settings, on the
other hand, are the action to take after receiving a code. For ex-
ample, die tells PAM to immediately return to the application and
indicates that the return code specifies the module failing. Fol-
lowed by pam_oauth_ssh.so, the uid >= 1000 quiet_success option
restricts the login request to non-system accounts. (In CentOS
SYS_UID_MAX, the upper limit of IDs that can be used for the
creation of system users is usually set to 999.) pam_sepermit.so
"allows or denies login depending on SELinux enforcement state".

https://github.com/scitokens
https://github.com/indigo-dc/oidc-agent

SciTokens SSH PEARC ’20, July 26-30, 2020, Portland, OR, USA

Figure 2: Verification flow

auth r e q u i r e d pam_sepermit . so
auth r e q u i r e d pam_env . so
auth [s u c c e s s =done max t r i e s = d i e new_authtok_reqd=done d e f a u l t = i gno r e] pam_oauth_ssh . so
auth r e q u i s i t e pam_succeed_ i f . so u id >= 1000 q u i e t _ s u c c e s s
auth r e q u i r e d pam_deny . so

Figure 3: example PAMmodification for OAuth SSH(Auth Stack), (/etc/pam.d/sshd)

pam_sepermit module returns PAM_IGNORE for users not match-
ing any entry in the config file, and pam_env.so is used to set/unset
the environment variables.

The pam_oauth_ssh.so module executes the SciTokens verifi-
cation process. The verification function first checks if the token
is a valid Scitoken [12, 13]. To verify the digital signature on the
token, the verification function uses the OAuth discovery protocol
to obtain metadata for the token issuer, including public signing
keys [7]. The OAuth issuer metadata is cached, and the token issuer
does not need to be contacted for each authentication. In addition
to validating the digital signature, the verification function also
checks other standard JWT criteria such as having an expiration
time no later than the current time.

Three other conditions are enforced. First, the token must be
issued by an issuer listed in the configuration which will be dis-
cussed below. Second, the username that the user is trying to log
in as must be the same as the one in the scope field in the token.
Third, the audience of the token must match the hostname. No-
tice that the second check is not the only user matching check,
since as mentioned above, before pam_oauth_ssh.so. is executed,
pam_sepermit.so will attempt to match user against list of user-
names in /etc/security/sepermit.conf.

For SciTokens SSH, two additional options are required in the
server-side configuration file (/etc/oauth_ssh/globus-ssh.conf): au-
thentication method and issuers. Both SciTokens and Globus Auth
tokens may be accepted by the same SSH server. The example in
Figure 4 shows a configuration that allows both SciTokens issued
by demo.scitokens.org and valid Globus tokens.

auth_method g lobus_au th s c i t o k e n s
i s s u e r s h t t p s : / / demo . s c i t o k e n s . org

Figure 4: An example OAuth SSH server configuration that
accepts both Globus Auth tokens and SciTokens

The authentication method option tells PAM to either consider
the input token as a Globus token or Scitokens. If both "globus_auth"
and "scitokens" are present in the auth_method option field, the
order of the setting is respected. Two attempts will be tried based
on the user-supplied order.

XSEDE OAuth SSH supplies a wrapper script that will authenti-
cate the user once OAuth SSH is authorized to access a host. How-
ever, in the SciTokens implementation, users will need to manually
enter the token they receive.

In the following section, some potential security risks will be
discussed. In order to protect the token, it will be mentioned that
the user needs to keep the access tokens in transient memory and
should never attempt to write tokens to disk.

4 EVALUATION
Here we evaluate the security of SciTokens SSH and present a threat
model of SciTokens SSH using the OAuth 2.0 Threat Model and
Security Considerations [4].

• Eavesdropping access tokens: an attacker could attempt to
obtain an access token when transported between the SSH

PEARC ’20, July 26-30, 2020, Portland, OR, USA You Alex Gao, Jim Basney, and Alex Withers

client and server. As a countermeasure we rely on the SSH
protocol to encrypt the access token via an SSH public key
encrypted channel [14]. Additionally it is recommended that
a short lifetime is used for the access token.

• Replay of resource server requests: an attacker could attempt
to replay resource server requests to access or modify data.
Again, the SSH protocol provides transport security mea-
sures as a countermeasure to this threat.

• Guessing of access tokens: an attacker could attempt to guess
access tokens based on knowledge gained from other access
tokens. As a countermeasure to this threat all SciToken to-
kens are signed JSON Web Tokens [6]. The WLCG Common
JWT Profiles provides token lifetime guidance to ensure to-
ken lifetimes are set appropriately to mitigate against this
and other threats [2].

• Counterfeit SSH server to phish access tokens: attackers
could attempt to imitate an SSH server to which the user is
attempting to access with an access token. A countermeasure
to this threat exists in the SSH protocol itself in verification
of SSH host keys. However, there is still a risk if a host has
never been connected to and the user does not validate the
host keys. An additional option would be to create a wrapper
script to check the “audience” of the token. This would also
protect against users pasting in or using the wrong access
token. Note that this protection would not work with opaque
tokens.

• Abuse of token by resource server: a legitimate resource
server could use an access token to access other resource
servers. For example, if a token’s scope is broad then a stolen
token from one compromised could be used on other re-
source servers. To counteract this threat the token’s scope
should be narrowly defined. Additionally, the audience field
dictates specific resource server to be used, further narrow-
ing the scope.

• Leakage of tokens via log files: access tokens may be logged
and thus leaked for attackers to harvest. As a countermea-
sure, the SciTokens SSH implementation is very conservative
as to what information is logged with enough information
to allow administrators and user to debug issues with their
connection.

Other security considerations:
• SciTokens does not encrypt its tokens and the tokens do
contain user data. SciTokens relies on the SSH protocol to
keep the token encrypted in transit.

• SciTokens is an assertion-based token design and adopts the
JavaScript Object Notation Web Token (JWT) [6].

• In order to further protect the access tokens, user as required
to copy and paste the access token into the input field when
using SciTokens SSH. This keeps the access tokens in tran-
sient memory and they’re never written to disk.

5 CONCLUSIONS AND FUTURE WORK
In conclusion, SciTokens SSH provides a remote login service for
distributed scientific computing that supports multiple token is-
suers with local token verification, so scientific computing providers
are not forced to rely on a single OAuth server for token issuance

and verification. SciTokens SSH is a modification to Globus Auth
SSH (a.k.a. XSEDE OAuth SSH) that adds support for SciTokens
JWTs alongside the existing support for opaque Globus Auth to-
kens. We have submitted the SciTokens SSH modifications in a pull
request to the XSEDE OAuth SSH project on GitHub. Future work
for SciTokens SSH includes packaging and documentation to enable
broader use, as well as integration with oidc-agent for client-side
management of multiple tokens. Visit https://scitokens.org/ for the
latest information about SciToken SSH.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1738962.

REFERENCES
[1] Jason Alt, Rachana Ananthakrishnan, Kyle Chard, Ryan Chard, Ian Foster, Lee

Liming, and Steve Tuecke. 2020. OAuth SSH with Globus Auth. In Proceedings of
the Practice and Experience in Advanced Research Computing (Portland, OR, USA)
(PEARC ’20). ACM, New York, NY, USA, 12. https://doi.org/10.1145/3311790.
3396658

[2] Mine Altunay, Brian Bockelman, Andrea Ceccanti, Linda Cornwall, Matt Craw-
ford, David Crooks, Thomas Dack, David Dykstra, David Groep, Ioannis
Igoumenos, Michel Jouvin, Oliver Keeble, David Kelsey, Mario Lassnig, Nicolas
Liampotis, Maarten Litmaath, Andrew McNab, Paul Millar, Mischa Sallé, Hannah
Short, Jeny Teheran, and Romain Wartel. 2019. WLCG Common JWT Profiles.
https://doi.org/10.5281/zenodo.3460258

[3] Brian Bockelman and Derek Weitzel. 2019. scitokens/scitokens-cpp (Version
v0.3.0). https://doi.org/10.5281/zenodo.2656677

[4] T. Lodderstedt (Ed.), M. McGloin, and P. Hunt. 2013. OAuth 2.0 Threat Model and
Security Considerations. RFC 6819. https://doi.org/10.17487/RFC6819

[5] D. Hardt. 2012. The OAuth 2.0 Authorization Framework. RFC 6749. https:
//doi.org/10.17487/RFC6749

[6] M. Jones, J. Bradley, and N. Sakimura. 2015. JSON Web Token (JWT). RFC 7519.
https://doi.org/10.17487/RFC7519

[7] M. Jones, N. Sakimura, and J. Bradley. 2018. OAuth 2.0 Authorization Server
Metadata. RFC 8414. https://doi.org/10.17487/RFC8414

[8] J. Richer. 2015. OAuth 2.0 Token Introspection. RFC 7662. https://doi.org/10.
17487/RFC7662

[9] S. Tuecke, R. Ananthakrishnan, K. Chard, M. Lidman, B. McCollam, S. Rosen,
and I. Foster. 2016. Globus Auth: A research identity and access management
platform. In 2016 IEEE 12th International Conference on e-Science (e-Science). 203–
212. https://doi.org/10.1109/eScience.2016.7870901

[10] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. 2004. Internet
X.509 Public Key Infrastructure (PKI) Proxy Certificate Profile. RFC 3820. https:
//doi.org/10.17487/RFC3820

[11] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kessel-
man, S. Meder, L. Pearlman, and S. Tuecke. 2003. Security for Grid services. In
High Performance Distributed Computing, 2003. Proceedings. 12th IEEE Interna-
tional Symposium on. 48–57. https://doi.org/10.1109/HPDC.2003.1210015

[12] Alex Withers, Brian Bockelman, Derek Weitzel, Duncan Brown, Jeff Gaynor, Jim
Basney, Todd Tannenbaum, and Zach Miller. 2018. SciTokens: Capability-Based
Secure Access to Remote Scientific Data. In Proceedings of Practice and Experience
on Advanced Research Computing (Pittsburgh, PA, USA) (PEARC ’18). ACM, New
York, NY, USA, Article 24, 8 pages. https://doi.org/10.1145/3219104.3219135

[13] Alex Withers, Brian Bockelman, Derek Weitzel, Duncan Brown, Jason Patton,
Jeff Gaynor, Jim Basney, Todd Tannenbaum, You Alex Gao, and Zach Miller.
2019. SciTokens: Demonstrating Capability-Based Access to Remote Scientific
Data using HTCondor. In Proceedings of the Practice and Experience in Advanced
Research Computing (Chicago, IL, USA) (PEARC ’19). ACM, New York, NY, USA,
Article 118, 4 pages. https://doi.org/10.1145/3332186.3333258

[14] T. Ylonen and C. Lonvick (Ed.). 2006. The Secure Shell (SSH) Authentication
Protocol. RFC 4252. https://doi.org/10.17487/RFC4252

https://scitokens.org/
https://doi.org/10.1145/3311790.3396658
https://doi.org/10.1145/3311790.3396658
https://doi.org/10.5281/zenodo.3460258
https://doi.org/10.5281/zenodo.2656677
https://doi.org/10.17487/RFC6819
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC7519
https://doi.org/10.17487/RFC8414
https://doi.org/10.17487/RFC7662
https://doi.org/10.17487/RFC7662
https://doi.org/10.1109/eScience.2016.7870901
https://doi.org/10.17487/RFC3820
https://doi.org/10.17487/RFC3820
https://doi.org/10.1109/HPDC.2003.1210015
https://doi.org/10.1145/3219104.3219135
https://doi.org/10.1145/3332186.3333258
https://doi.org/10.17487/RFC4252

	Abstract
	1 Introduction
	2 Related Work
	3 Implementation
	4 Evaluation
	5 Conclusions and Future Work
	Acknowledgments
	References

