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1 Introduction

Braid group representations are plentiful; for example, from any object X in a
braided fusion category C one obtains a sequence of braid group representations
pX : B, —» End(X®"). Braided vector spaces (R, V) [1], i.e., matrix solutions to the
Yang—Baxter equation, are also a very rich source, as are families of finite dimen-
sional quotients of braid group algebras F(B,), such as Hecke algebras, Temper-
ley—Lieb algebras [27] and BMW-algebras [5, 31]. That the braided fusion category
construction essentially supersedes these sources is well known (see, e.g., [41]),
explicit matrices for the generators are not easy to come by—one typically needs
the associativity constants (6j-symbols or F-matrices) in addition to the R-symbols,
and these are only available for a few families of categories. Generally, the irreduc-
ible representations of B, are only classified for dimensions at most n [14] and for
B, for dimensions up to 5 [40]. Braided vector spaces (R, V) are only classified for
dim(V) = 2 [24]. Much of the landscape of braid group representations remains to
be explored, with a diversity of techniques and constructions available, see, e.g., [3,
4, 42] for some discussion of faithful representations.

In this article, we outline an approach to finding families of braid group represen-
tations from twisted tensor products of algebras. We motivate our approach with the
following two “proof of principle” examples.

In [20], the following representations of the braid group B, were described:
set ¢ = e*/™ for m odd and let A,(Z,) be the C-algebra generated by u; for
1 <i < n— lsatisfying

o uU"=1
1
_ 2
& Ulliy) = q Uiy U,

o wu; =uu; for|i—j| # L

The algebra A,(Z,,) is denoted by ES(m,n — 1) in [29] and by T"(g) in [38]. Our
perspective is to regard A,(Z,,) as an iterated twisted tensor product of the group
algebra C[Z,,]:

A.(Z,) =CIZ,]®y ClZ,]®, -+ ® ClZ,,],
where 9 is the twisting map corresponding to the second relation above. Defining
1
Vi

we obtain a representation B, — A,(Z,). These representations are known
to have finite image [18, 20], as are the images of the even m analogue. Moreo-
ver, we may obtain a matrix representation by defining U € End(C" @ C™) by
U, ®e) = ¢ e, @ e, and assigning

£

M=

p,(0) =R, :=

Il
(=}

u; > 1d® @ U @ 1d® !,

@ Springer



Braid Representations from Algebras

From this representation, one obtains a braided vector space as R := p,(6,) on
Vv=Ccm

Another example of braid group representations related to twisted tensor products
of algebras is found in [35] (due to Jones) where the quaternion group Qg appears.
Forl <i<n-1,let A,(Qyg) be the algebra generated by u;, v; satisfying

(1) u?=v?>=—1foralli,
(2) [u;v;]l=-1ifli—jl <2,
3) [M,’a uj] = [V,‘, Vj] =1,

4) [wv] =1if|i—j| > 2.

Although A, (Qy) is, strictly speaking, a quotient of a twisted tensor product of
group algebras, we nonetheless obtain braid group representations via

o= (1 +u; +v;+uy,).

In this article, we initiate the general problem of finding braid group representa-
tions in twisted tensor products of (group) algebras, unifying the two examples just
outlined.

Our study is motivated by more than just idle curiosity. In the last section we
explore some relationships between these twisted tensor products of group alge-
bras and G-gaugings of pointed modular categories, laying the groundwork towards
understanding braid group representations associated with weakly group theoreti-
cal modular categories and the property F conjecture. This conjecture [32] predicts
that the braid group images obtained from any weakly integral braided fusion cat-
egory C have finite image, i.e., C has property F. By taking Drinfeld centers one may
reduce this conjecture to the case where C is a modular category. A major motiva-
tion for this conjecture is to characterize topological phases of matter in which par-
ticle exchange induces braid group representations with infinite image. This would
provide a simple criterion for braiding universality for the corresponding topological
quantum computation model, see [37] for a survey of this approach. For this reason,
we mainly focus on unitary representations, but the general algebraic framework
does not require this assumption. The property F conjecture has been verified for
many classes of braided fusion categories, for example, group-theoretical categories
[13], quantum group categories [16, 27, 30, 35, 38], and certain metaplectic catego-
ries [23].

The paper is organized as follows: In Sect. 2, we set down the general framework
for our problem, which is explicitly described and analyzed in Sect. 3. We carry out
several case studies for both abelian and non-abelian cases in Sect. 4 while the con-
nections to categories obtained by gauging symmetries of pointed modular catego-
ries are speculated upon in Sect. 5, followed by a short section of conclusions. An
appendix contains some Magma codes for some explicit examples.
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2 Preliminaries

We first describe the general algebraic ingredients for the problem we are interested in.

2.1 Twisted Tensor Products

The treatment of twisted tensor products in [8] is most suitable for our purposes:
let A and B be F-algebras with multiplication maps p,, 4y respectively, and a map
9 :B®A—>AQB, such that 9 is F-linear map with (b ® 1) =(1 ® b) and
(1 ®a)=(@®1). Themap y : (A®B) Q@ (A ® B) > A ® B defined by

MS = (MA ® MB)O(IdA ® 19 ® IdB)
defines an associative multiplication if and only if
90(ug ® Hy) = 1go(9 ® 9o(ldy ® I @ 1d,). Q.1

The corresponding algebra, denoted A ® ¢ B will be called a twisted tensor product
of A and B, and the map 9 will be called a unital twisting map. We shall be most
interested in the case where A = B.

To iterate this process, we rely on the results of [26]. Given 3 algebras A, B and
C and unital twisting maps 9, : BA —->AQ®B, 9, :C®B—-BQ®C and
93 : C®A — AQ® C each of which satisfy Equation (2.1), one can define two maps
Ty =(Idy @ 9,)0(9; ®Idg) on C® (A®y B) and T, = (I; @ Id¢)o(Idz ® 93) on
(B ®y, €) ® A which are potentially unital twisting maps. [26, Theorem 2.1] shows
that these are both unital twisting maps if and only if the compatibility condition

(Idy ® 9,)(9; ® ldg)(Idr ® 9)) = (9, @ 1d)(dg ® 95)(9, ®1d,)  (2.2)

is satisfied. Moreover, the two iterated twisted tensor products (A ®, B) ®; C
and A Qy, (B®,, C) constructed from these twisting maps are isomorphic
algebras. One may inductively define twisted tensor products for any num-
ber of algebras A; provided the analogous compatibility conditions are satis-
fied. Again, we will be especially interested in the case where A=A, =A,
and 9=9;;,, A1 ®A > A ®A;,, for adjacent copies of A and
c=9,;1A,®A;, - A QA for|i—j| > lis the usual flip map 6(a ® b) =b Q a.
In fact, for all of our examples we will have 9(a ® b) = 7(a, b)b ® a for some func-
tionz : A® A — F. One then easily sees that (2.2) is satisfied:

RN RINIdR Na®b®c) and PR IDId® 0)I @ Id)(a® b ® )
(2.3)

are both equal to 7(a, b)t(b, c)(c @ b ® a). Moreover, Condition (2.1) and unitality
are equivalenttor : A ® A — [ being a bihomomorphism of [F-algebras:

T(alaz, blbz) = T(az, bl)T(Cll, bl)T(az, bl)T(Clz, bz),

and unitality implies 7(1,a) = z(a, 1) = 1, while bilinearity is immediate.
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Braid Representations from Algebras

2.2 Braid Group Representations and Property F

Our goal is to study families of representations of the braid group B,,. In particu-
lar, we are interested in representations that are related in the following way:

Definition 2.1 An indexed family of complex B, -representations (p,,V,) is a
sequence of braid representations if there exist injective algebra homomorphisms
1, : Cp,(B,) = Cp,,(B,,) such that the following diagram commutes:

CB,,

Cpu(Bn)

CBTH»I - prz+] (‘B’!L+1)

where the left-hand side of the square is induced by the inclusion B, < B, given
by o; — o,

Our examples are typically of the following form: let]l € @/, C </, C --- C &7, C -+
be a tower of finite dimensional semisimple algebras, and p, : CB, — 4/, algebra
homomorphisms that respect the inclusions 27, C <7, ;. Then the canonical faithful
representation of <7, provides a sequence of representations.

For example, we obtain a sequence of B, -representations from any braided
vector space (R, V), i.e., an invertible operator R € Aut(V®?) that satisfies the
Yang—Baxter equation

RONIRRRRN=IQRMRNU®R) € Aut(V®).

Explicitly we have B, — Aut(V®") via 5; — Id?"_1 QR®I1d®

Other standard examples come from the Temperley—Lieb, Hecke and BMW-
algebras mentioned in Sect. 1.

Some conjectures on the images of such representations are found in [17, 18,
36]. For example, it is an open question whether unitary braided vector spaces
have virtually abelian images, but there is strong evidence that this is so.

3 Twisted Tensor Products of Algebras and Yang-Baxter Operators
The problem that we propose to study is the following:

Problem 3.1 Find and classify braid group representations inside (iterated) twisted
tensor products of (group) algebras, generalizing the well-known Gaussian solutions.

More explicitly we will first define and analyze iterated twisted tensor powers

of group algebras Q(¢)[G] ®y Q(q)[G] ;4 ‘- ®y Q(g)[G] following the formalism
of the previous section. Then we will look for sequences of representations p, of
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the braid group B, inside these algebras where p, (o;) is supported in the ith tensor
factor and all p,(o;) have the same form as elements of Q(g)[G].

3.1 Twisted Tensor Products of Group Algebras

First, we describe the twisted tensor products of (group) algebras we will study.
Fix a finite group G and ¢ € U(1). On the group algebra Q(g)[G] we would like
to find a unital twisting map J : Q(¢)[G] ® Q(g)[G] - Q(9)[G] ® Q(g)[G]
such that (g ®h) =1(g,h)h® g on basis elements where (g, h) = g*&M.
Here « is a priori simply a function GXG — Z. If § is a unital twist-
ing map then 7(g,h) : GXG — U(l) is a bicharacter of G, i.e., satis-
fies (2.3). Since ¢*¢"" = gk*&M we assume that ¢ is an mth root of unity
(where m | exp(G)), and that « : GXG — Z,, is a bihomomorphism. Now
define ¢ : Q(¢)[G] ® Q(¢)[G] = Q(¢)[G] ® Q(g)[G] to be the usual flip map
g®h=hQ® g.Itisroutine to check that (2.2) is satisfied by 9 and o.

With these verifications, we can define a finite dimensional semisimple algebra
A, (G,7) as an iterated twisted tensor product of C[G] follows: as a Q(gq) vector
space A (G, 7) = Q(q)[G]®""!. For each 1 <i<n—1and g € G we define ele-
ments g; = 1971 @ ¢ ® 1972, We can then dispense with the ® symbol alto-
gether, and write monomials as g(’1 - g,(; " where g% € G. The multiplication
on A, (G, 7) has the following stra1ghtemng rules on the generators g;:

hig;, I.l —]| > 1
gy = { g Phiy g, =izl
(gh);, j=i

where the bihomomorphism «a : G X G — Z,, determines z. The following is pre-
sumably well known but can be proved directly using classical techniques, which we
provide for the reader’s amusement.

Proposition 3.2 The algebra A, (G, 7) is semisimple of dimension |G|"~' over Q(qg).
Proof Notice that the set of monomials in normal form M : {qf W gflif‘) :
¢ € G,¢ € 7,,} form a basis for A, (G, 7) over Q since A, (G, ) is Q(q)[ 1971 a5
a vector space. To show that A,(G, 7) is semisimple, let X C A, (G, 7) be a submod-
ule, and 7 : A,(G,7) — X any vector space projection. Note that any t € M has an
inverse in M, since the straightening rules allow us to write t~! in the normal form of
M. We then use the standard averaging trick to find an A,(G, r)-module projection
onto X:

T,y :

2 tat™'y).

teM

|G|n 1
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One can readily check that 7, is a surjective A, (G, r)-module homomorphism so
that the kernel of 7, provides a direct complement to X in A,(G, 7), proving that
A, (G, 7) is semisimple. 0

3.1.1 Connection to Group Extensions

We also note the following alternative construction of the algebra A,(G, r) via
group extensions. In this section, we show that, as a Q-algebra, A,(G, 7) is iso-
morphic to the group algebra over Q of a central extension of G"~.

More concretely, let G be a finite group and m | exp(G). Leta : GXG - Z,,
be a bihomomorphism. Forn > 2, letc : G" X G* — Z,, be the bihomomorphism
defined by

n—1
c(g.h) ==Y ally, giv)-
i=1

Since c is a bihomomorphism, it satisfies the two-cocycle condition. We define G*<"
to be the central extension of G” corresponding to the two-cocycle ¢ € Z*(G*, Z,).

m

Proposition 3.3 Let g be a primitive mth root of unity. There is an isomorphism
of Q-algebras

A1 (G, 1) = QGE"),

where 7 : Q(g)[G] ® Q(g)[G] — Q@IG] ® Q(@)[G] is the same twisting map
defined above, i.e., (g, @ h,) = q"‘(g’h)h2 ® g, on basis elements.

Proof We represent G*<" as the set Z,, X G" where the multiplication is given by
(xxg)- (yxh) =(c(g.h) +x+y) Xgh.

Let ¢ : A, ;(G,7)—> QG*") be the Q-linear bijection defined by
g, ® - ®g,~jx(g,-..,g,) To see that ¢ is an algebra map, we need to verify
that it preserves the straightening relations. If i — j # 1, we have c(¢(g,), ¢(h)) = 1.
Ifi —j =1, we have c(¢(g,), p(h;)) = a(h, g . Thus,

[(8): Bhiy )] = B Py )b(g; NP )
= ¢(g)(a(g, h) X (e, ..., e,gi_l, hiiy.e, ... ,e))¢(hi‘+11)

=a(g, h)xe

= 9(g"e").
Thus, the straightening relations are preserved by ¢. It follows that ¢ is an isomor-
phism of Q-algebras. O
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3.2 Braid Group Representations

The second part of the problem is to look for and classify the representations of the
braid group inside the algebras A, (G, 7). Fix a pair (G, ) where G is a finite group
anda : GX G — Z,, is a bthomomorphism. We then have a corresponding twisted
tensor power A, (G, t) where 7(g, h) = ¢*¢") as in Sect. 3.1. We are interested in
finding the invertible

r= ) f(e)¢ € CIG]

geG

so that fori = 1,2 the r; := deGf(g)gi € A;(G, 1) ®a) C satisfy the braid rela-

tion r,ryr, = r,r;r,. We shall call such solutions r A(G, 7)-Yang—Baxter operators
(YBOs). Since the braid equation may be written as a linear combination of mono-

mials g(lil)g(;Z) € A;(G, 7) with coefficients in Q(q)[x,, ... . X||] where x; = (g,

we may assume that the function f takes values in @ = @, i.e., the algebraic clo-
sure of Q(g). For the sake of notation, we will usually just consider scalars in the
complex field C.

This should be compared with the problem of finding Yang—Baxter operators on
a vector space V. In our case, we seek invertible r € C[G] so that p,(c;) =1, 1is a
homomorphism p, : B, — A,(G, ) (suitably complexified). As A, (G,7)®@C is a
finite-dimensional semisimple C-algebra, one can obtain B,-representations by pull-
back on any A,(G, 7) ® C-module. For example, one might use the regular repre-
sentation to get a sequence of braid group representations (p,,, V,), as defined in [36].
However, one cannot, in general, turn such a homomorphism into a solution to the
Yang—Baxter equation. There is one situation where one can perform such a trans-
formation: if the sequence of braid group representations (p,, V,) is localizable in
the sense of [36]. For example, suppose A, (G, ) has a representation 9, of the form
V@ with 9(g,) acting locally:

9,8V @@V, ®Viy; & ®V,)=08 - ®IIV; ®Viy ) ® - ®V,),

where 9 : G — Aut(V®?) is a G-representation. Then d(r) will be a Yang—Baxter
operator, and 9,(r;) = (Id,)®' ® 9(r) ® (Id,)®"~~! is a localization of the corre-
sponding braid group representation.

We may also put a #-structure on A, (G,7) as follows: define gF = gl." and
q* = 1/q = q and then extend to an antiautomorphism on products and linearly on
sums in the usual way. This makes A, (G, 7) a -algebra. In this way, we can discuss
unitary A(G, 7)-YBOs, as those r with r*r = 1.

3.3 Equivalence Classes of A,,(G, T)

For a fixed G, different choices of 7 give isomorphic algebras. We identify a few of
these isomorphisms to reduce the complexity of our main goal.

One equivalence of A,(G, r) comes from the choice of Galois conjugates of g.
For (s,m) = 1 defining 7°(g, h) = ¢**¢" obviously gives us A (G, 7) = A, (G, t*) by
Galois conjugation.
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Another equivalence comes from automorphisms of G. If y € Aut(G) then the
bicharacter (g, h) — a(y(g), w(h)) gives us a new ¥ (g, h) = 7(y(g), w(h)) and gives
us A,(G,7) = A, (G, V).

An important problem is to understand the orbits under these actions. The Galois
symmetry amounts to replacing a with sa. Now observe that sincea : GXG = Z,,
has abelian co-domain, it is determined by its values on the abelianization
G, = G/[G,G]. So we may assume G = A is abelian for the purposes of deter-
mining the orbits. It is clear that the bicharacters A X A — U(1) for a finite abe-
lian group A form an abelian group under pointwise addition. In fact, this group
is isomorphic to Hom(A,A*) where A* = Hom(A, U(1)) is the group of charac-
ters. Indeed, if ¥ : AXA — U(l) is a bicharacter then define F, € Hom(4,A")
by F,(a)(b) = x(a,b). Since y is a bicharacter F, is a Z-module map with val-
ues in Hom(A, U(1)). Since f &€ Hom(A,A*) determines a unique bicharacter
Xr(a,b) = f(a)(b), the map y — F, is clearly a bijection, and F, + F, = F . As
the bihomomorphisms a : AXA — Z, are in one-to-one correspondence with
bicharacters, this determines all such bihomomorphisms a. For elementary abelian
p-groups A = (Zp)k a bihomomorphism to Z, can be represented as a k X k matrix
X with i, j entry a(e;, ej) €Z, where ¢; is the generator (0, ...,0,1,0,...,0) of the
ith factor. That is, a(g, h) = g”Xh where we identify g € A with column vectors.
Of course an automorphism ¥ € Aut(A) = GLk(Zp) as well, so we may sweep out
orbits of & under Aut(A) as P7 XY since a(¥(g), P(h)) = g"¥T Xh. Although we will
not need it in what follows, one can handle general abelian p-groups in a similar
way by identifying Z . with a subgroup of Z,,, for a < b. Even more generally, biho-
momorphisms on a finite abelian group can be factored by restricting to p-Sylow
subgroups.

3.3.1 Forbidden Symmetries

Thus far, we have not applied different automorphisms of G to each factor as such an
action will generally fail to produce A(G, 7)-YBOs r; independent of i. Moreover, if
we apply different automorphism to each tensor factor of A, (G, 7) the twisting will
no longer be uniform across the iterated twisted tensor product. However, in the fol-
lowing special cases, uniformity is preserved.

Proposition 3.4 Suppose G = Z”; for an odd integer m and t(x,y) = ¢**¥ for a non-
degenerate symmetric or skew-symmetric bihomomorphism a : GX G — Z,. Then

there is an isomorphism of algebras A, (G, t) = A, (G, y), where y(x,y) = q"'Ty.

Proof Observe that for G = Z’; with p odd, nondegenerate bihomomorphisms
a : GXG — Z,, are the same as nondegenerate bilinear forms, all of which are of
the form a(x, y) = x’ Sy for some matrix S € GL(Z,,).

First assume a(x,y) =x'Sy is a non-degenerate symmetric bilinear map
GxG—Z, Let C,DeGL/(Z,) be such that [ = CSD (the Smith normal

form of S). Let n(x,y) := x"y be the corresponding twist. We claim that the map
¢ : G"! - G"! defined by
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_J "))y, iodd,
b(g,) = { (D7 'g);, i even

induces an isomorphism A, (G, ) = A, (G, n). Indeed, for x,y € G, we have
n((CH~'x, D7'y) = (C") ™0 CSD(ID™'y) = x"Sy.
On the other hand,
n(D™'x, (€)™ y) = (D' y
= "D~ (DT STCTY(CT) 1y
= xTSy.

Now since the Smith normal form of a non-degenerate symmetric matrix over Z,,
is diagonal and we may rescale each entry by isomorphisms described above, we
obtain an isomorphism with A,(G, y) as promised.

Now suppose that k is even, and S is invertible and skew-symmetric so that we
0 I,
-1, 0/
bihomomorphism. Notice that S?> = —I and S” = —S. Letting 5(x,y) = —x"y, we
define ¢ : A,(G,7) = A, (G,n) by ¢(g;) = (S'g);. To see that ¢ is an algebra
homomorphism, we compute:

may assume S = where Iy =1d; y» and a(x,y) = xSy the associated

a(S'x, §*1y) = 2T (=9 y = (= 1)x"§**2y = —xy = n(x.y).

Since ¢ is clearly bijective, we have shown that it is an algebra isomorphism
A, (G, 1) = A,(G,n). Since n is symmetric, we may use the above to obtain an iso-
morphism A, (G, ) =2 A, (G, y) as promised. O

3.4 Symmetries of (A,(G, T),r)

For a fixed G and , the set R of A(G, 7)-YBOs could be quite large: they are deter-
mined by the functions f : G - C with r = ), e/ (8)g € R. To reduce the search
space we can make use of various symmetries, identifying function f in the same
orbit. Informally we will say that two A4,(G,7)YBOs r and s are equivalent if
o p° B, > A,(G, ) have the same image, projectively.

One obvious symmetry comes from the homogeneity of the braid equation
riryry = rpriry: we can rescale any solution by z € C* and if our solution is unitary,
then we can rescale by z € U(1). This corresponds to identifying f and zf since the
B, images are projectively equivalent.

We also have rescaling symmetries of the form g; = ¢*®)g, for some homomor-
phism s : G — Z,,. Since the straightening relations in A, (G, r) are homogeneous,
it is only necessary to check that the map y : G — U(1) given by y(g) = ¢°® is a
linear character. This automorphism of C[G] lifts to an automorphism of A (G, 7),
which carries r; = ¥ f(8)g; to 1} 1= ¥ . f(8)g"®g; and hence the images are
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isomorphic. Therefore, we can identify the solutions that are in the orbit of f under
[ q@f.

Denote by Aut(G,a) the group of automorphisms yw € Aut(G) such that
ao(y Xy) =a. Any y € Aut(G, ) lifts to an automorphism of A, (G, 7). For such
v € Aut(G, ), the y(r;) = dec f(@w(g), for i =1,2 will satisfy the braid rela-
tion, and hence y~'(r) = dec Ffr~(g)g will also be an A(G, 7)-YBO. Moreo-
ver, this obviously induces an isomorphism between p"(B,) and p¥(B,), so we
will thus identify all solutions in the orbit of f under this symmetry f — w*f for
v € Aut(G, a).

3.4.1 Symmetry Induced by Inversion

An important special case of symmetry induced by automorphisms is the following:
if G is abelian, the inversion automorphism: : g = g~! on G lifts to an automor-
phism of A, (G, ) by defining i(¢q) = ¢, and 1(g;h)) = (g )i(h;) = gi‘lhl.‘1 on products
and extending linearly. We will carefully check the defining relations are preserved.
First,

(g hyy) = g7 ) = (hyy i)™ = (P gihi ) = ¢S iy (g,

so that 1(g;h;,,) = q*"@*My(h,,,g,). Second, since G is abelian,

W(gh)) = 1(gh) = g7 h' = (g7, = (67 i), Z ((gh) ™) = (u(gh)),,

where the equality denoted = uses the G abelian assumption. Finally, note that if g;
and h; commute then so do i(g;) and 1(h)). If r = decf(g)g is an A(G, 7)-YBO then
soisi(r) = X f(8)g s hence, 1"’ = ¥, f(g™ g is as well.

If G is abelian there is an additional symmetry of the braid relation ry 7,1 = 1,171,
that we may use to show that r = 3 _;f(g)g and r' := 3 ;f(g)g have isomor-
phic images. The map o on A;(G, 7) given by o(g,) = g, and o(xy) = o(y)o(x) for
x,y € A;(G,7)and 6(q) = g~! = g is an anti-automorphism of .A;(G, 7) since

o(gihy) =hig, = C]a(h’g)gzhl = G(CIQ(g’h)hzgl)

and o((gh),) = (gh), = g,h, = h,g, = o(h,)o(g,) = 6(g,h,). This implies that r’ is
an A(G, t)-YBO since

A A
Py = o(riryr)) = o(ryrry) = FiTo

4 Case Studies

In practice, we take the following approach, using symbolic computation software
such as Magma and Maple.

@ Springer



P. Gustafson et al.

(1) Fix G and a, and present the corresponding finitely generated algebra
A3(G,7) X Q(g)lx, : g € GI, using generators and relations, with the x, being
commuting variables.

(2) Definer; =Y e X8 fori =1,2, and use non-commutative Grobner bases to
write r r,r| — r,r 7, in its normal form, i.e., as a polynomial in the g(ll‘)g(;) with
coefficients in Q(g)[x, : g € GI.

(3) Compute a commutative Grobner basis for the ideal generated by the the coef-
ficients using pure lexicographic order to find the ideal of solutions.

(4) Use symmetries to describe families of related solutions.

Often we find that there are finitely many solutions, so that we can give a com-
plete description of them.

4.1 Abelian Groups
4.1.1 Prime Cyclic Groups G = Z,

We first apply our approach to a well-known case both as a proof of principle
and a template for further study.

Let p > 3 be prime and fix g a primitive pth root of unity. A nontrivial bichar-
acter Z, X Z, — U(1) must take values in y, = {¢ : 0<j<p-—1},soany bich-
aracter corresponds to a bihomomorphism « € Hom(Z,x Z,,Z,), which is
determined by a(1,1). Define a bihomomorphism « :Z,xXZ, > Z, by
a(l,1) = 2. The orbit of & under automorphisms of Z, gives half of all non-triv-
ial bihomomorphisms since a(@.(1), @,(1)) = 2k* for k € Z; is a square modulo
p if and only if 2 is. Galois symmetry w(g) =¢* maps the bicharacter
7(x,y) = ¢*“Y to t¥(x,y) = ¢***». Thus, we may assume that our bicharacter is
associated with the bihomomorphism a(x,y) = 2xy. The reader may wonder why
we do not choose a’(x,y) = xy instead—we will see later that this simplifies the
form of our An(ZP, 7)-YBOs. Indeed, this choice of a recovers the ((g)-algebra
A,(Z,) described in the Sect. 1, with generators u,...,u,  satisfying
Uity = q U u; and wu; = wu, folr li—jl > 1and ! = 1. The goal now is to find
invertible A(Z,)-YBOs r =y Zf:o fG)w € ClZ,).

To reduce redundancy we will normalize f(0) =1 (the solutions where
f(0) = 0 do not seem to be interesting). The symmetries of these solutions again
come in several forms. First, since each automorphism of Zp that leaves « invari-
ant leads to an automorphism of .4,(Z,) we may identify the corresponding solu-
tions. For a(x,y) = 2xy only inversion x — —x leaves « invariant, which means
we may freely identify f and f’(j) = f(—j). We have an additional symmetry in
A,(Z,) given by u; — q'u; since the first two defining relations are homogene-
ous and (¢°u;) = uf = 1. This corresponds to identifying f with f*(j) := f())¢".
Finally, complex conjugation is a symmetry of the braid equation ryr,r; = ryrir,,
so that we may identify f and its complex conjugate f.
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4.1.2 The Gaussian Solution

One unitary A(Z,)-YBO is the Gaussian solution r = ﬁ Zfz_ol Fuie, fG)=¢"
[18, 20, 29] and y = ﬁ Complex conjugation gives us the solution ]7(1‘) =q7

and the rescaling symmetry gives us f*(j) = ¢, giving 2p distinct solutions.
In [18], it is shown that the braid group representation p, : B, = A,(Z,) given
by o, = r; has finite image. In fact, one has

-1 _ 1
Filip ;- = qu; Uiy,

1 _ -1
=q UiU;

Ty rl._
so that the conjugation action on .A,(Z,) provides a homomorphism of p, (3,) into
monomial matrices, with kernel a subgroup of the center of .A,(Z,). For n odd,
the normal form for An(Zp) allows one to show that the center consists of scalars,
and since any p,(f) in the center of An(Zp) has determinant a root of unity (under
the regular representation of .4,(Z,)) the kernel of the conjugation action above is
finite, for n odd. Since p,(B,) C p,,,(B,), this is sufficient.

The algebras An(Zp) have a local representation (see [36]). Let V = C” and
define an operator on V& by U(e, @ €) = ¢ ‘e, @ e;,; where {e;}?_ is a basis
for V with indices taken modulo p. Then @, : u; — (1d,)®~! ® U ® (1d,)®"~!
defines a representation An(Zp) — End(V®"). In particular, ®,(r) is an honest
p* x p*> YBO.

Example 4.1 We use Magma [7] to work two explicit examples. First consider the
case G = Z;, and suppose r = 1 + au + bu? is an A(Z,)-YBO. All solutions satisfy
a® = b® = 1 and a® # b, so that there are exactly 6 distinct solutions (as elements of
the algebra, up to rescaling) all of which are obtained from the Gaussian solution via
the symmetries described above, hence are equivalent in our sense. In particular, the
solutions are all unitary when appropriately normalized.

Similarly for p =35, under the additional assumption that a, b, ¢, d are
S5th roots of unity, we find that there are exactly 10 non-trivial solutions
r=1+au+ bu® + cu® + du* (up to rescaling), all of which are obtained from the
Gaussian solution via the above symmetries. These solutions are unitary when
appropriately normalized. There are ten other non-trivial solutions; however, none
of them are (projectively) unitary.
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42 G=27,x7,

Let p be an odd prime, and let G = Z, X Z,,. To classify .An((Zp)z, 7) we first look

at orbits of bihomomorphisms « : (Zp)2 — Z,. Such bihomomorphisms are

determined by the values on pairs of generators (1, 0), (0, 1) of Zp X Zp, encoded
ab

cd
phisms X € GL,(Z,) of (Zp)2 the orbit of a is represented by the matrices
{(XTAX : X e GL,(Z,)}. From [43], we know that there are p + 7 orbits.

in a matrix A, := > € My(Z,), so that a(x,y) = x"A,y. Under automor-

Example 4.2 The case of p=3 can be completely analyzed computationally
as follows: from a representative of each of the 10 orbits of bihomomorphisms
Zy X Z5 — Z5 we use Magma [7] to search for non-degenerate, unitary solutions
r=y ZiJf(i,j)uivf to the corresponding A(Z; X Z5, v)-YBE. Here by non-degener-
ate we mean that it does not degenerate to the Z;-case. The results of these computa-
tions are:

e Non-degenerate unitary solutions only exist for the classes represented by

20 02 20

e In all cases, after applying an appropriate symmetry of (A,(Z; X Z5,7),r),
the non-degenerate unitary solutions factor as a product of Gaussian A4,(Z5)-
YBOs, and hence have finite images.

From this example, we expect that the most interesting ones correspond to
non-degenerate symmetric or skew-symmetric bilinear forms on Z2. We also

allow ourselves to rescale @ by a constant. Thus, we focus on A, = (g g),

Ay = <_02 (2)> and A; = <3 20x> where x is a non-square modulo p. The appear-
ance of the scalar 2 is simply for convenience when we make contact with the
Gaussian solution.

We consider each of these cases in turn. We will distinguish the sym-
metric cases A;,A; by noting that A; corresponds to an elliptic form, while A,
corresponds to a hyperbolic form. For A, = A;, the corresponding algebras
A(Z,x Z,,7;) have generators uy, vy, ..., U,_;,V,_; with the multiplicative group
(u;,v;) = Z, X Z,. All generators commute except for:

. ) — %2

(1) ForApuu,, =q 2“&1”:‘ and vy, | =¢q 2V;¢1Vi-
. — 4t — aF

(2) For Ay:upvi = g v u;and v, | = g v, u;

. — ,t2 — ,+2x
() For As:wittjyy = Gty ; and viviyp = G5 v,

We pause to describe the structure of the algebras A,(Z,, X Z,, ;) for arbi-

trary odd m. Since the monomials in the u;,v; form a basis, we see that
dirn@(q) AZ,%x2Z,,7;)= m2n2,
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1
1 / e \ 1

\ /

m2
/ \
m? 43 m?

\ /
m4
Fig. 1 Bratteli diagram for A,(Z,, X Z,,, 7;) for m odd

The following proposition explores the structure of A,(Z,, X Z,,, ;) and the
subalgebra of fixed points under the automorphism 1 described in Sect. 3.4.1
given by lifting u; = u7',v; = v7' to A, (G, ;). We describe inclusions of alge-
bras in terms of Bratteli diagrams (see [21]): generally, to a tower of multi-matrix
algebras with common unit 1 €A, C ---A, CA,,, C -+, we associate a graph
with vertices labeled by simple A;-modules M, ; with d,_, ;; edges between M, ;
and M, _, ; if the restriction of M, ; to A,_, contains M, _, ; with multiplicity d;_, ;.

Proposition 4.3 Let m be odd and G = Z,, X Z,,. Consider the algebra A, (G, ;)
with the twists t; given by A;,1 < i < 3. Then

(1)

@)

The center of A,(G, 1) is 1 dimensional if n is odd and is m* dimensional if n
is even. Moreover, when n is odd A, (G, t;) 2 M,,.-1(Q(q)) is simple while for n
even A, (G, t;) decomposes as a direct sum of m* simple algebras of dimension
m*"=*. Moreover, the Bratteli diagram of -+ C A,(G,t,) C -+ is given in Fig. 1.
Consider the fixed point subalgebra C,(G, t;) for the automorphism 1 induced by
inversion on A, (G, t;). Then for n > 3 odd, C,(G, t;) is a direct sum of two matrix
m*+3
2

algebras of dimensions (%)2 Forn > 4 and even, C,(G, t;) has simple

2n—4

m2—1 . . . . m24+1\2
summands: - of dimension m and two others of dimensions ( o ) .
Moreover, the Bratteli diagram for --- C C,(G, ;) C C, (G, ;) C - is given by
Fig. 2, where the nodes are labelled by the dimensions of the distinct simple

modules.
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S
%

e S
X

Fig.2 Bratteli diagram for C,(Z,, X Z,,, t;) for m odd

Proof Similar results are found, for example, in [28, 29], so we are content to pro-
vide a sketch.

We first note that, by its construction, the isomorphism A,(G, ) = A,(G, y)
of Proposition 3.4 restricts to a bijection on the subalgebras (u;, ;) for each j, and
respect inclusions. It follows that it restricts to an isomorphism C,(G, 7) = C,(G, y).
Thus, it suffices to prove the proposition for z(x,y) = y(x,y) := q"'TV in which the y;
and v; commute. Now one could derive the stated result directly from [28] Wlthout
too much trouble, but since some details are left out we will give some idea of how
to proceed.

Since the monomials in in normal form u{" - ™| v};‘ v:”_’ll inA,(Z,%x2,),x)
form a basis over ()(g), a routine calculation gives a basis for the center to be 1 for
n odd and {H.u‘? ’.’ : 0<a,b <m—1}for n even. For later use, we note that for n

— 4 b a
even, {X,, = ujv) -un lvn , 2 0<a,b<m-1}forms an abelian group isomor-

phic to G, and the m* elements &, , := # Y TPPX,, € A, (G, y) are minimal
set of orthogonal idempotents, and one obviously has the Bratteli diagram given in
Fig. 1.

Now let us consider the fixed point subalgebra C,(G, y) of the automorphism
1. Recall that A, (G, y) has dimension d(n)* where d(n) = m""!, and is spanned by

ap e v_bnfl
n—1

, respectively.

monomials. Since l(ua‘ ey ) =uy one computes that the subspaces

1

with 1(x) = +x have dlmensmns d(") xl
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First, suppose n is odd—we will compute the +1 eigenspaces for 1 in another way.
In this case, C,(G, y) is simple, so that 1 is an inner automorphism, i.e., i((x) = JxJ
for some d(n) X d(n) matrix with J?> = k a constant. After rescaling J, we may
assume that J is diagonal, J?=1, and J has eigenvalue 1 with multiplicity & and
eigenvalue —1 with multiplicity d(n) — k < k. Writing an arbitrary x as a k,d(n) — k
block matrix, we find that the subspaces E, = {x : JxJ = £x} have dimensions
k2 4+ (d(n) — k) and 2k(d(n) — k), respectively. Subtracting dimension and compar-
ing to the above we obtain 1 = (2k — d(n))%; hence, k = 40+l Now a double com-
mutant argument shows that C,(G, y) is a direct sum of two simple algebras of
dimension k? and (d(n) — k)? as required.

For the n even case, we observe that on each simple constituent : either gives an
isomorphism to another simple constituent or is an automorphism. Since the simple
(d(n)/m)*dimensional) constituents are A, (x,y) := B, A(G, ¥)E,,, we observe
that «(Z, ) = E_, _, so that 7 induces an automorphism on 4,(0,0) and permutes
the other m? — 1 simple constituents in pairs. Thus, an argument similar to the% odd
case above shows that 4, (0,0) splits into two components of dimension (m”_zil )2

and the remaining w1 pairs interchanged by ¢ each yield a single simple m?'~*-

dimensional algebra.
Dimension counting finishes the calculation of the Bratteli diagram as stated. [

We now return to the problem of finding solutions

r=y Y, fGlou

0<j.k<p—1

to the A(Zp X Zp, 7;>-YBE fori = 1,2 and 3.

We could not find any non-trivial unitary solutions that do not factor as
fG, k) =f£,()f, (k) after applying the symmetries of Sect. 3.4, and can verify com-
putationally that all solutions factor as products of Gaussian-type solutions in the
case for p = 3. Thus we focus on such solutions. All of the solutions that follow will
have finite braid group image when properly normalized to be unitary, which can
be easily verified using the finiteness of the Gaussian representation images. The
eigenvalues of r = .o, ¢ Wk for g = e2™/7 and € = +1 in any faithful rep-

resentation of A,(G, 7;) are

Ag (S, nH= <Z qi2+sj> <Z qexk2+tk>.
J k

Up to an overall normalization factor, the eigenvalues and their multiplicities can be
computed using standard Gaussian quadratic form techniques, and only depend on
the sign + and whether —1 and x are squares or non-squares modulo p. We have that
the multi-set [4, (s, 1)] has

(1) 1 with multiplicity 1 and e*”V/? with multiplicity p + 1 foreach1 <j<p—1
When(e,( )7( )) € {(1’_131)5 (_1?_15_])9(1715_1)9 (_]715_])}and

L ANNES
P/’ \p
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(2) 1 with multiplicity 2p — 1and e?*V/? with multiplicity p — 1foreachl <j <p—1
when (¢, (= Y, ( ) e {1, -1,-1),(=1,=1, 1), (1, 1, ), (-1, 1, D}.

4.2.1 Elliptic Symmetric Case

First, consider the case A;. We can deduce some solutions

(uvy= Y FG v

0<jk<p—1

to the .A,,(Zp X Z 7;)-YBE from the Gaussian solutions. Indeed, if f,/ : Z - C
and are such that r(u) = Zp "f() and s(v) = Z‘” 1h(])\ﬂ are solutions to the

An(Zp)-YBE, then setting t(u v) = r(u)s(v) we can easﬂy verify
Lty = (ry8)(ry8)(rys1) = (1 )(s18,81) = L1,

since r; := r(u;) commutes with s; := s(v) If both f and & correspond to Gaussian
solut1ons we may rescale uand v 1ndependently followed by complex conjugation to
assume that f(j) = q’ and h(k) = g**. The choice of sign indeed gives two distinct
solutions. The additional symmetry that we have not used comes from the group of
7-invariant G-automorphism, i.e., {X € GL,(Z)) : XTA,X = A,}, which is a group
of order 2(p — 1) in this case.

4.2.2 Skew-Symmetric Case

Next we consider the case A,. Suppose that our solution

(u,v) = 2 F(j, kvt
0<jk<p—1
factors as #(u, v) = r(u)s(v) where r(u) = Z f(])u’ and s(v) = Ej:ol h(j)V are solu-
tions to the .An(Zp)-YBE. Again, setting r; = r(y;) and s; = s(v;) we observe that
[ry,7,] = land [s,s,] = 1, so that #,t,t; = r8,7,8,7,5; = (5;755,)(r;S,7,). From this
we deduce that we should take r(u) = s(u) and r(v) = s(v), i.e., h=f so that
t(u,v) = r(w)r(v). Now we can use symmetry to choose f(j) = h(j) = qiz. In this case,
the group of automorphisms of Z, X Z,, that preserve a, is SL,(Z,)), a group of order

(P —p)p+1D).
4.2.3 Hyperbolic Symmetric Case

As the details are similar to the elliptic symmetric case, we are content to provide
the factored solution

Hu, v) = Z qizisz ujvk-

0<j.k<p—1

It is an easy exercise to show that this is the unique factorizable solution up to sym-
metries. The group of automorphisms of A(G, 75) that preserve a5 has order 2(p + 1).
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4.3 Non-commutative Cases

To illustrate our methods for non-abelian groups, we first apply them to the case of
the symmetric group S; and the algebra A, (Qy) from the introduction.

4.3.1 Symmetric Group S,

For S5, the bithomomorphisms « : S; X S; = Z,, are determined by the abeliani-
zation Z, X Z, = Z,, so that we may take m = 2. In particular, we have the fol-
lowing description of A, (S5, 7) for the non-trivial choice a((1 2),(12)) = 1. We
take generators u = (1 2) and v = (1 2 3) for S5 and corresponding generators of
A, (S5, T) Uy, vy, ... U,_q,v,_; With relations:

“u; and u? = v} = 1(S; relations) and
® wiliy = —uu;and v,y; = v, for all 4, j, and
o uy; =vu;fori#j.

e Uy, =v

We seek (invertible) solutions r = y(1 + au + bv + cv* + duv + ew?) € C[S;] to
the A(S;, 7)-YBE, where y is a normalization factor chosen to give r finite order.
Appendix contains the details of the computation, the upshot of which is that
b = c = 01is a consequence of invertibility and to have solutions r that are unitary
with respect to the standard s-operation we should take y = 1+r1 and
(a,d,e) = (ix,iy,iz) with (x,y,2) € R3 on the intersection of the surface given by
xy + xz + yz = 0 with the unit sphere x> +y*> + 7> = 1. Since (x +y + z)> = 1 mod-
ulo the ideal generated by these two polynomials we conclude that the solutions
are the points on the intersection of the two planes (x + y + z) = =1 with the unit
sphere.

In all cases, we find that 7* = 1, with eigenvalues 1, —i. This suggests that this
representation is related to the Ising theory, see [15].

4.3.2 Quaternionic Algebra .A,(Qg)

Recall the algebra A, (Qyg) described in the introduction, generated by u;, v; satisfying
@))] u?:vi2 = —1for all i,

2) [u;, vl =-1ifli—j| <2,

(3) [”i’ u,] = [Vi, V,] =1,

@) [u; vl =1ifli—j| > 2.

From the relations, one deduces that for each i the pair u;, v; generates a group iso-
morphic to Qg. Notice, however, that (i;, v;) N (u;, v;) = {x1} so that A, (Qg) is not
a twisted tensor product of group algebras; indeed, it is not C[Qg4]®"~! as a vector
space. The algebra is closely related to group algebras, in at least two ways. First,
suppose that Qg = (u, v), where uv = zvu with u*> = v? = z central of order 2. Then
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we may define the quotient 7= C[Qg]/(z+ 1) and then .A(Qy) above is a twisted
tensor product of n — 1 copies of 7 with the tensor product twist given as above,
determined by 7(u,v) = —1 and 7(u, u) = 7(v,v) = 1 since u,v; .| = —1v, u;.

Alternatively, we can consider the twisted group algebra C'[Z, X Z,] associ-
ated with the cocycle v € Z3(Z, X Z,, U(1)) defined by

e v((1,0),(0,1)) = =v((0, 1), (1,0)) = 1,
e v((1,0),(1,0)) = v((0,1),(0,1)) = -1

with multiplication in C¥[Z, X Z,] given by g %, h = v(g,h)gh for g,h € Z, X Z,.
Then

A, (Qg) =C"Z, X 72,1, C"'[Z, X Z,]1®, - ®, C'[Z, X Z,],

where 7 is the twisting corresponding to the relations above.

We look for A(Qg)YBOs of the form r =1+ au+ bv + cuv. We find 8 non-
trivial solutions namely a, b, c € {i% }, normalized to a unitary solution. These are
all related by symmetry since we may rescale a - —a and b — —b independently,
permute the a, b, c¢ freely using the fact that 7 is invariant under permuting u, v, uv
and inversion corresponds to simultaneously changing all signs. The Magma code is
found in Appendix.

5 Categorical Connections

The class of weakly integral modular categories, i.e., those for which FPdim(C) € Z
is not well understood. However, a long-standing question [12, Question 2] asks if
the class of weakly integral fusion categories coincides with the class of weakly
group-theoretical fusion categories, i.e., those that are Morita equivalent to a nilpo-
tent fusion category. Recently Natale [33] proved that any weakly group-theoretical
modular category is a G-gauging of either a pointed modular category (all simple
objects are invertible) or a Deligne product of a pointed modular category and an
Ising-type modular category [10, Appendix B]. These latter categories are well
known to have property F, which reduces the verification of the property F conjec-
ture for weakly integral braided fusion categories to verifying that G-gauging pre-
serves property F and that weak integrality is equivalent to weak group-theoreticity.
In fact, after this article was submitted, the preprint [22] appeared, which proves
that weakly group-theoretical braided fusion categories has property F. Nonetheless,
understanding the precise connection between the braid group representations asso-
ciated with a category C and its G-gaugings is an interesting problem.

The difficulty with verifying property F for a given category is that one rarely has
a sufficiently explicit description of the braid group representations py associated
with an object X € C. The braiding cy x on X ® X provides a map CB, — End(X®")
which then acts on each Hom(Y, X®") for simple objects ¥ by composition, but
an explicit basis for Hom(Y,X®") is lacking. In all cases where the property F
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conjecture has been verified for a weakly integral braided fusion category [13,
16, 27, 32, 36], the first step is a concrete description of the centralizer algebras
End(X®"), and the corresponding modules Hom(Y, X®") which are obtained by
studying a specific realization of C, as a subquotient category of representations
of a quantum group, for example. From this description, one extracts a sufficiently
explicit B, representation to facilitate the verification of property F.

One approach to a uniform proof of (one direction of) the property F conjec-
ture is to understand the connection between the centralizer algebras of pointed
modular categories and those of its G-gaugings. Pointed modular categories are
in one to one correspondence with metric groups, i.e., pairs (A, Q), where A is a
finite abelian group and Q is a non-degenerate quadratic form on A. We denote by
C(A, Q) the corresponding modular category. Pointed modular categories and their
products with Ising-type categories are well known to have property F [32]. Thus,
if we could prove G-gauging preserves property F, then this direction of the prop-
erty F conjecture would reduce to [12, Question 2].

For a general mathematical reference on G-gaugings, see [9], the notation of
which we will adopt here. Let A be an abelian group, and Q a non-degenerate
quadratic form on A, and C(A, Q) the corresponding pointed modular category,
with twists given by 6, = Q(a) and braiding by c,, = f(a,b)o, where o is the
usual flip map and f(a,b) := Q(a + b) — Q(a) — Q(b). A G symmetry of C(A, Q)
is a group homomorphism p : G — Autg(C(A,Q)) ~ 0O(A, Q). Provided certain
cohomological obstructions vanish one may construct (potentially several) modu-
lar categories by gauging the G symmetry. In the case of an elementary abelian
p-group for p an odd prime all of the obstructions vanish by [11, Theorem 6.1].

We expect there to be a connection between the algebras A, (G, r) described
above and the H-gaugings of pointed modular categories, i.e., categories
C(G, Q):I’H, where H C Aut';(C(G, 0)). Indeed, in the case G = Z, and H = Z, act-
ing by inversion, these categories are called p-metaplectic and we have the follow-
ing, using results of [2, 23, 28, 38] and some careful adjustment of parameters:

Theorem 5.1 Let Z, act on C := C(Z,,, Q) by inversion, and let D = C;’ZZZ be any of
the corresponding gaugings, and X a simple object of dimension \/]_7 Then

End(X®") = (u; +u;', ... ,u,_ +u' ) C A (Z,).

In fact, this result is key to verifying the property F conjecture for p-metaplec-
tic categories.

A similar relationship exists between a Z;-gauging of the so-called three fer-
mion theory C(Z, X Z,, Q) where Q(x) = —1 for x # (0,0) and the algebra A, (Qg)
described above. In this case, C(Z, X Z,, Q)ZZS = SU(3); for one choice of Z;-
gauging, where the action of Z; at the level of object is given by cyclic permuta-
tion of the three non-trivial simple objects (see [9]). Now for a generating
2-dimensional object X it is shown in [35] that the subalgebra C,(Qy) of A,(Qg)
generated by (4; +v; + u,v;) for | <i <n—1is isomorphic to End(X®"), which is
also isomorphic to a quotient of the Hecke algebra specialization H,(3,6). The
reader will also notice that the Z;-action on Qg given by cyclic permutation of u, v

@ Springer



P. Gustafson et al.

and uv lifts to an automorphism of A,(Qy) and C,(Qy) is the fixed point subalge-
bra. Finally, we remark that the image of the braid group representation on
End(X®") is finite—it factors through the representations found above:
o; = (1 +u;+v;, +uy,).

This inspires the following:

Principle 5.2 If G C Aut® (C(A Q)) is a gaugeable action on C(A, Q) then there is
a (quotient of an) 1terated twisted tensor product A4,(A, ) of C[A] and an object
X eC(CA, Q)E‘G so that End(X®") is isomorphic to the fixed point subalgebra C,(A, 7)
of the automorphism induced by the action of G on A. Moreover there is an A(A, 7)-
YBO r supported in C,(A, t) such that the B, representation on End(X®") factors
through the B, representation defined by r.

We do not have a general proof of this principle for all groups. In the case of Z, X Z,
with Z, acting by inversion, we give some compelling evidence for this principle.

Now suppose that |A| =m =2k+11is odd and p : Z, — Aut (C’(A 0)) is the
action by inversion. The Z,-extensions are Tambara—Yamagami categorles TY(A, y,+)
[39], and their equlvanantlzatlons are found in [19] (see also [25]). There are two dis-
tinct Z,-gaugings D, := C(A, Q) %2 of the inversion action p. Bach modular category

D, has dimension 4|A|. It has the following simple objects:

. two invertible objects,1 = X, and X_,

. T two-dimensional objects Y ae A — {0} (withY_, =Y,
* two \/_ dimensional objects Zl, le 7,

The fusion rules of D, are given by

X ®X_=X,, X, ®Y,=Y, X, 7,=27,

X ®Z =2, Y, ®Y,=Y,, @Y, Y, ®Y, =X, @X_®Y,,

Y, 82,=2,®7, ZI®ZI=X+®<®Y(1>’ ZI®ZI+1=X®<®Y41>’
a a

where a, b € A (a # b) and | € Z,. All objects of D, are self-dual. Here the addi-
tion a + b takes place in A. We see that X_ must be a boson, in the sense that the
subcategory (X_) = Rep(Z,) as a braided fusion category. Indeed, as D, is a non-
degenerate bralded fusion category it is faithfully Z,-graded with the trivial compo-
nent having the =~ sunple objects Y, X, and non-trivial component having the two
simple objects Zl

In particular, the algebras End(Zgz’”) C End(Z?"H) have the Bratteli diagram of
Fig. 3, where we have labeled the objects Y, by an arbitrary choice Y, for1 <i <k.

The categories D, described above for the group G = Z,, X Z,, were explored in
[19], and found to be non- group-theoretical in one case and group -theoretical in the
other. For the case p = 3, the group-theoretical cases are equivalent to Rep(D®S;)
where w is a 3-cocycle on S;. Up to equivalence there is one non-trivial choice for w.
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SN
N Z><Z
1 / Y0><Y1 \ X
P

Fig.3 Bratteli diagram for C(A, Q)ZZz for IAl odd

We expect that:

(1) End(Z®") = C,(Z, X Z,, 7) for some choice of 7.
(2) Under the above isomorphisms the image of the braid group generators are
described by the .A(Zp XZ,, 7)-YBOs determined above.

The two pieces of evidence are as follows:

(1) The Bratteli diagrams for End(Zgb”) and C,(Z, X Z,,, 7;) coincide and
(2) The eigenvalue profile of c; , and Y, ¢"** w/\* coincide, for some choice of

+x where x is either 1 or any non-square modulo p.

The S and T matrices of all 4 of these categories are given in [19], as they are equiv-
alent to Z,-equivariantizations of Tambara—Yamagami categories. From [6, Prop.
2.3] we may deduce the eigenvalues of the braiding for the object Z; of dimension p.

5.1 ASpecial Case:p =3

Let ¢ = e>/3, The two group-theoretical categories Rep(D®S;) can be obtained by
gauging the Z, inversion symmetry on C(Z; X Z5,Q;) where O, (x,y) = g~ is
hyperbolic. For the elliptic quadratic form Q,(x,y) = q’“2 7 the two inequivalent
Z,-gaugings are non-group-theoretical. Each of these categories can be tensor gen-
erated by a simple object Z of dimension 3. The two group theoretical-categories
Rep(D”G) have property F [13], but it is currently open whether the non-group-
theoretical cases have property F.

On the other hand, we can completely determine all unitary solutions to the
A(Z; x Z5,7)-YBE for the bicharacters 7 associated with the 3 matrices A, A, and
Aj;, up to the usual symmetries in Example 4.2.
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One more piece of circumstantial evidence is that the results of [23] show that
the braid group representations associated with a modular category only nominally
depend on the finer structures such as the associativity constraints: for odd primes
p, the images of the braid group representations for p-metaplectic modular catego-
ries are projectively equivalent. Since the property F conjecture depends only on the
dimensions of objects, which are determined by fusion rules, it would perhaps not
be so surprising if the fusion rules essentially determine the braid group images. A
related result in [34] implies that the images of the braid group representations asso-
ciated with different modular categories with the same underlying fusion category
are either all finite or all infinite.

6 Conclusions

In this paper, we have unified some explicit constructions of braid group representations
that come from finite groups in a fairly direct way. We have also provided strong evidence
that twisted tensor products of group algebras simplify the analysis of gaugings of pointed
modular categories. In particular, the data describing A(A, 7)-YBOs, simply a function
on A, is much simpler than the construction of the R-matrices of a gauged modular ten-
sor category. However, beyond the Gaussian case, the connection between the two braid
group representations remains at the level of Bratteli diagrams and eigenvalues.

It would be of great interest to formulate precise intertwining operators between
braid group representations in centralizer algebras of gaugings of pointed modular ten-
sor categories and those from A(A, 7)-YBOs. This was accomplished with great dif-
ficulty in the Gaussian case [36]. Ideally, we would like to find a uniform framework
generalizing this construction to all gaugings of pointed modular tensor categories.

Appendix: Computations for G = S; and A,,(Qy)

In what follows we provide some details classifying solutions to the .A(S;, 7) and

A(Qg)-YBE.

Symmetric Group S;

We let u, v be the generators for S; with u? =v3 =1 and uvu = v2. For exam-
ple, we could take u = (1 2) and v = (1 2 3). By the theory above, we initialize
with the following Magma code to find conditions on a,b,c,d,e € C so that
r=1+au+bv+cv? +duv + ew? is an A(S;, 7)-YBO.
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F<w>:=CyclotomicField(4);
R<ul,vl,v2,u2,a,b,c,d,e>:=FreeAlgebra(F,9);
f:=function(x,y,z)

return Xx*y-z*y*x;

end function;

X:=[ul,vl,u2,v2,a,b,c,d,el;
B:=[ul"2-1,v1°3-1,u2"2-1,v2"3-1,ul*vi-v1i~2*ul,u2*v2-v2~2+u2] cat
[f(ul,u2,-1),f(v1,v2,1),f(ul,v2,1),f(u2,v1,1)] cat
[f(a,x,1): x in X] cat

[f(c,x,1): x in X] cat

[f(b,x,1): x in X] cat

[f(e,x,1): x in X] cat

[f(d,x,1): x in X];

I:=ideal<R|B>;
R1l:=1+a*ul+b*vi+cxvl~2+d*ul*xvi+texul*vl~2;
R2:=1+a*xu2+b*xv2+c*v2~2+d*u2*v2+e*xu2*v2~2;
NormalForm(R1*R2+¥R1-R2%¥R1*R2,1);

The ideal of solutions is generated by the coefficients of the monomials in u;, v;.
We enforce invertibility of r by assuming the determinant of the image of » under
the faithful S, representation on C? is non-zero. The output of the Grébner basis is
the following set of polynomials:

{c,b,e(a2+d2+e2+ 1),ad+ae+de,a3+aze+2aez+deZ+e3 +a+e,
—d*e+ae® +d® +2de* + d).

Notice that c=b =0, in all cases. f e=0then ad =0, and > +a=d°> +d =0,
which are degenerate solutions of the form 1 4+ xu that can be obtained from Z, (see
[15D.

If e # 0, we find that e is a free parameter, and the following code shows that we
may normalize to get #* = 1. There is a 1-parameter family of solutions for (a, d, ¢).
Moreover, one sees that if we require a unitary solution each of a, d, e should be
pure imaginary, and consequently the equation a® +d? +e? + 1 = 0 implies that
(a/i,d/i,e/i) is a point on the unit sphere. Geometrically, this is the intersection of
the unit sphere with the surface given by xy + xz + yz = 0.

F<w>:=CyclotomicField(4);
R<ul,vl,v2,u2,a,d,e>:=FreeAlgebra(F,7);

f:=function(x,y,z)

return x*y-z*y*x;

end function;

X:=[ul,vl,u2,v2,a,d,el;
B:=[u1"2-1,v1°3-1,u2°2-1,v2"3-1,ul*vi-v1~2%ul,u2*v2-v-2*u2] cat
[f(ul,u2,-1),f(v1,v2,1),f(ul,v2,1),f(u2,v1,1)] cat

[f(a,x,1): x in X] cat

[f(e,x,1): x in X] cat

[f(d,x,1): x in X] cat [a"4+2*a"3*e+3*a"2*e " 2+2*axe”3+e 4+a"2+2*xa*e+e”2,
a”3+a"2xd+2*a"2xe+axe”2+e”3+ate, axd+are+dre, (a"2+d"2+e"2+1)];
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I:=ideal<R|B>;
R1:=(1+axul+d*ul*vi+exul*vl~2)/(1+w);
Rli:=(1-(a*xul+d*ul*vi+exul*vi~2))/(1-w);
R2:=(1+a*xu2+d*u2*v2+exu2*v2°2) /(1+w) ;
NormalForm(R1*R2*R1-R2*R1*R2,I) ;
NormalForm(R1°4,I);
NormalForm(R1i*R1,I);

Quaterionic Algebra .4,,(Qg)

For the case of the algebra 4,(Qg), we use Magma to classify .A(Qg)-YBOs. The
following is the final code, where the last polynomial relations are the coefficients
obtained from an initial run of the normal form command on an initial run (i.e.,
without the last set of relations). One finds that the non-trivial solutions for (a, b, ¢)
are all +1, so that if we want unitary solutions, the inverse of R1 is of the form given
as R1i since u* = u™! = —u, etc. We conclude that all unitary solutions are equiva-
lent to the choice (a,b,c) = (1,1, 1).

F<w>:=CyclotomicField(12);
R<ul,v1,v2,u2,a,b,c>:=FreeAlgebra(F,7);
f:=function(x,y,z)

return x*y-z*y*x;

end function;

g:=function(a)

return a”"2+1;

end function;

X:=[ul,v1,v2,u2,a,b,c]l;
Y:=[ul,vl,v2,u2];

B:=[g(x):x in Y] cat
[f(ul,vl,-1),f(u2,v2,-1)] cat
[f(ul,u2,1),f(v1,v2,1),f(ul,v2,-1),f(u2,vl,-1)]
cat [f(a,x,1): x in X]

cat [f(b,x,1): x in X]

cat [f(c,x,1): x in X]

cat [-2%b*a”2+ 2%c”2%b,2%b"~2%a-2%c"2%*a,
c*ka~2+c*xb"2-c"3-c,4*c*b"2- 2%c"3-2x%c,
a”3-2%c”2*a+a,b”~3-2*c"2%b+b] ;
I:=ideal<R|B>;
Rl:=(1+a*ul+b*vi+crul*vl)/2;
R2:=(1+a*u2+b*v2+c*xu2*v2) /2;
Ri1i:=1/2-(a*ul+b*vi+cxul*vl)/2;
NormalForm(R1*%R2*¥R1-R2*R1*R2,I);
NormalForm(R1*R1i,I);
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