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Abstract
We unify and generalize several approaches to constructing braid group representa-
tions from finite groups, using iterated twisted tensor products. We provide some 
general characterizations and classification of these representations, focusing on the 
size of their images, which are typically finite groups. The well-studied Gaussian 
representations associated with metaplectic modular categories can be understood 
in this framework, and we give some new examples to illustrate their ubiquity. Our 
results suggest a relationship between the braiding on the G-gaugings of a pointed 
modular category C(A,Q) and that of C(A,Q) itself.
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1  Introduction

Braid group representations are plentiful; for example, from any object X in a 
braided fusion category C one obtains a sequence of braid group representations 
𝜌X ∶ Bn → End(X⊗n) . Braided vector spaces (R, V) [1], i.e., matrix solutions to the 
Yang–Baxter equation, are also a very rich source, as are families of finite dimen-
sional quotients of braid group algebras � (Bn) , such as Hecke algebras, Temper-
ley–Lieb algebras [27] and BMW-algebras [5, 31]. That the braided fusion category 
construction essentially supersedes these sources is well known (see, e.g., [41]), 
explicit matrices for the generators are not easy to come by—one typically needs 
the associativity constants (6j-symbols or F-matrices) in addition to the R-symbols, 
and these are only available for a few families of categories. Generally, the irreduc-
ible representations of Bn are only classified for dimensions at most n [14] and for 
B3 for dimensions up to 5 [40]. Braided vector spaces (R, V) are only classified for 
dim(V) = 2 [24]. Much of the landscape of braid group representations remains to 
be explored, with a diversity of techniques and constructions available, see, e.g., [3, 
4, 42] for some discussion of faithful representations.

In this article, we outline an approach to finding families of braid group represen-
tations from twisted tensor products of algebras. We motivate our approach with the 
following two “proof of principle” examples.

In [20], the following representations of the braid group Bn were described: 
set q = e2�i∕m for m odd and let An(ℤm) be the ℂ-algebra generated by ui for 
1 ≤ i ≤ n − 1 satisfying

•	 um
i
= 1

•	 uiui+1 = q2ui+1ui,

•	 uiuj = ujui for |i − j| ≠ 1.

The algebra An(ℤm) is denoted by ES(m, n − 1) in [29] and by Tm
n
(q) in [38]. Our 

perspective is to regard An(ℤm) as an iterated twisted tensor product of the group 
algebra ℂ[ℤm]:

where � is the twisting map corresponding to the second relation above. Defining

we obtain a representation Bn → An(ℤm) . These representations are known 
to have finite image [18, 20], as are the images of the even m analogue. Moreo-
ver, we may obtain a matrix representation by defining U ∈ End(ℂm ⊗ ℂm) by 
U(�i ⊗ �j) = qj−i�i+1 ⊗ �j+1 and assigning

An(ℤm) = ℂ[ℤm]⊗𝜗 ℂ[ℤm]⊗𝜗 ⋯⊗𝜗 ℂ[ℤm],

�n(�i) = Ri ∶=
1√
m

m�
j=0

qj
2

u
j

i
,

ui ↦ Id⊗i ⊗ U ⊗ Id⊗n−i−1.
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From this representation, one obtains a braided vector space as R ∶= �2(�1) on 
V = ℂm.

Another example of braid group representations related to twisted tensor products 
of algebras is found in [35] (due to Jones) where the quaternion group Q8 appears. 
For 1 ≤ i ≤ n − 1 , let An(Q8) be the algebra generated by ui, vi satisfying 

(1)	 u2
i
= v2

i
= −1 for all i,

(2)	 [ui, vj] = −1 if |i − j| < 2,
(3)	 [ui, uj] = [vi, vj] = 1,
(4)	 [ui, vj] = 1 if |i − j| ≥ 2.

Although An(Q8) is, strictly speaking, a quotient of a twisted tensor product of 
group algebras, we nonetheless obtain braid group representations via

In this article, we initiate the general problem of finding braid group representa-
tions in twisted tensor products of (group) algebras, unifying the two examples just 
outlined.

Our study is motivated by more than just idle curiosity. In the last section we 
explore some relationships between these twisted tensor products of group alge-
bras and G-gaugings of pointed modular categories, laying the groundwork towards 
understanding braid group representations associated with weakly group theoreti-
cal modular categories and the property F conjecture. This conjecture [32] predicts 
that the braid group images obtained from any weakly integral braided fusion cat-
egory C have finite image, i.e., C has property F. By taking Drinfeld centers one may 
reduce this conjecture to the case where C is a modular category. A major motiva-
tion for this conjecture is to characterize topological phases of matter in which par-
ticle exchange induces braid group representations with infinite image. This would 
provide a simple criterion for braiding universality for the corresponding topological 
quantum computation model, see [37] for a survey of this approach. For this reason, 
we mainly focus on unitary representations, but the general algebraic framework 
does not require this assumption. The property F conjecture has been verified for 
many classes of braided fusion categories, for example, group-theoretical categories 
[13], quantum group categories [16, 27, 30, 35, 38], and certain metaplectic catego-
ries [23].

The paper is organized as follows: In Sect. 2, we set down the general framework 
for our problem, which is explicitly described and analyzed in Sect. 3. We carry out 
several case studies for both abelian and non-abelian cases in Sect. 4 while the con-
nections to categories obtained by gauging symmetries of pointed modular catego-
ries are speculated upon in Sect. 5, followed by a short section of conclusions. An 
appendix contains some Magma codes for some explicit examples.

�i ↦ (1 + ui + vi + uivi).
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2 � Preliminaries

We first describe the general algebraic ingredients for the problem we are interested in.

2.1 � Twisted Tensor Products

The treatment of twisted tensor products in [8] is most suitable for our purposes: 
let A and B be �-algebras with multiplication maps �A,�B respectively, and a map 
𝜗 ∶ B⊗ A → A⊗ B , such that � is �-linear map with 𝜗(b⊗ 1) = (1⊗ b) and 
𝜗(1⊗ a) = (a⊗ 1) . The map 𝜇𝜗 ∶ (A⊗ B)⊗ (A⊗ B) → A⊗ B defined by

defines an associative multiplication if and only if

The corresponding algebra, denoted A⊗𝜗 B will be called a twisted tensor product 
of A and B, and the map � will be called a unital twisting map. We shall be most 
interested in the case where A = B.

To iterate this process, we rely on the results of [26]. Given 3 algebras A, B and 
C and unital twisting maps 𝜗1 ∶ B⊗ A → A⊗ B , 𝜗2 ∶ C⊗ B → B⊗ C and 
𝜗3 ∶ C⊗ A → A⊗ C each of which satisfy Equation (2.1), one can define two maps 
T1 = (IdA ⊗ 𝜗2)◦(𝜗3 ⊗ IdB) on C⊗ (A⊗𝜗1

B) and T2 = (𝜗1 ⊗ IdC)◦(IdB ⊗ 𝜗3) on 
(B⊗𝜗2

C)⊗ A which are potentially unital twisting maps. [26, Theorem  2.1] shows 
that these are both unital twisting maps if and only if the compatibility condition

is satisfied. Moreover, the two iterated twisted tensor products (A⊗𝜗1
B)⊗T1

C 
and A⊗T2

(B⊗𝜗2
C) constructed from these twisting maps are isomorphic 

algebras. One may inductively define twisted tensor products for any num-
ber of algebras Ai provided the analogous compatibility conditions are satis-
fied. Again, we will be especially interested in the case where A = Ai = Aj , 
and 𝜗 = 𝜗i,i+1 ∶ Ai+1 ⊗ Ai → Ai ⊗ Ai+1 for adjacent copies of A and 
𝜎 = 𝜗i,j ∶ Aj ⊗ Ai → Ai ⊗ Aj for |i − j| > 1 is the usual flip map 𝜎(a⊗ b) = b⊗ a . 
In fact, for all of our examples we will have 𝜗(a⊗ b) = 𝜏(a, b)b⊗ a for some func-
tion 𝜏 ∶ A⊗ A → �  . One then easily sees that (2.2) is satisfied:

are both equal to 𝜏(a, b)𝜏(b, c)(c⊗ b⊗ a) . Moreover, Condition (2.1) and unitality 
are equivalent to 𝜏 ∶ A⊗ A → �  being a bihomomorphism of �-algebras:

and unitality implies �(1, a) = �(a, 1) = 1 , while bilinearity is immediate.

𝜇𝜗 = (𝜇A ⊗ 𝜇B)◦(IdA ⊗ 𝜗⊗ IdB)

(2.1)𝜗◦(𝜇B ⊗ 𝜇A) = 𝜇𝜗◦(𝜗 ⊗ 𝜗)◦(IdB ⊗ 𝜗⊗ IdA).

(2.2)(IdA ⊗ 𝜗2)(𝜗3 ⊗ IdB)(IdC ⊗ 𝜗1) = (𝜗1 ⊗ IdC)(IdB ⊗ 𝜗3)(𝜗2 ⊗ IdA)

(2.3)
(Id⊗ 𝜗)(𝜎 ⊗ Id)(Id⊗ 𝜗)(a⊗ b⊗ c) and (𝜗 ⊗ Id)(Id⊗ 𝜎)(𝜗 ⊗ Id)(a⊗ b⊗ c)

�(a1a2, b1b2) = �(a2, b1)�(a1, b1)�(a2, b1)�(a2, b2),
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2.2 � Braid Group Representations and Property F

Our goal is to study families of representations of the braid group Bn . In particu-
lar, we are interested in representations that are related in the following way:

Definition 2.1  An indexed family of complex Bn-representations (�n,Vn) is a 
sequence of braid representations if there exist injective algebra homomorphisms 
�n ∶ ℂ�n(Bn) → ℂ�n+1(Bn+1) such that the following diagram commutes:

where the left-hand side of the square is induced by the inclusion Bn ↪ Bn+1 given 
by �i ↦ �i.

Our examples are typically of the following form: let 1 ∈ A1 ⊂ A2 ⊂ ⋯ ⊂ An ⊂ ⋯ 
be a tower of finite dimensional semisimple algebras, and �n ∶ ℂBn → An algebra 
homomorphisms that respect the inclusions An ⊂ An+1 . Then the canonical faithful 
representation of An provides a sequence of representations.

For example, we obtain a sequence of Bn-representations from any braided 
vector space (R,  V), i.e., an invertible operator R ∈ Aut(V⊗2) that satisfies the 
Yang–Baxter equation

Explicitly we have Bn → Aut(V⊗n) via 𝜎i → Id⊗i−1

V
⊗ R⊗ Id⊗n−i−1

V
.

Other standard examples come from the Temperley–Lieb, Hecke and BMW-
algebras mentioned in Sect. 1.

Some conjectures on the images of such representations are found in [17, 18, 
36]. For example, it is an open question whether unitary braided vector spaces 
have virtually abelian images, but there is strong evidence that this is so.

3 � Twisted Tensor Products of Algebras and Yang–Baxter Operators

The problem that we propose to study is the following:

Problem 3.1  Find and classify braid group representations inside (iterated) twisted 
tensor products of (group) algebras, generalizing the well-known Gaussian solutions.

More explicitly we will first define and analyze iterated twisted tensor powers 
of group algebras ℚ(q)[G]⊗𝜗 ℚ(q)[G]⊗𝜗 ⋯⊗𝜗 ℚ(q)[G] following the formalism 
of the previous section. Then we will look for sequences of representations �n of 

(R⊗ I)(I ⊗ R)(R⊗ I) = (I ⊗ R)(R⊗ I)(I ⊗ R) ∈ Aut(V⊗3).
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the braid group Bn inside these algebras where �n(�i) is supported in the ith tensor 
factor and all �n(�i) have the same form as elements of ℚ(q)[G].

3.1 � Twisted Tensor Products of Group Algebras

First, we describe the twisted tensor products of (group) algebras we will study. 
Fix a finite group G and q ∈ U(1) . On the group algebra ℚ(q)[G] we would like 
to find a unital twisting map 𝜗 ∶ ℚ(q)[G]⊗ℚ(q)[G] → ℚ(q)[G]⊗ℚ(q)[G] 
such that 𝜗(g⊗ h) = 𝜏(g, h)h⊗ g on basis elements where �(g, h) = q�(g,h) . 
Here � is a priori simply a function G × G → ℤ . If � is a unital twist-
ing map then �(g, h) ∶ G × G → U(1) is a bicharacter of G, i.e., satis-
fies (2.3). Since q�(gk ,h) = qk�(g,h) we assume that q is an mth root of unity 
(where m ∣ exp(G) ), and that � ∶ G × G → ℤm is a bihomomorphism. Now 
define 𝜎 ∶ ℚ(q)[G]⊗ℚ(q)[G] → ℚ(q)[G]⊗ℚ(q)[G] to be the usual flip map 
g⊗ h = h⊗ g . It is routine to check that (2.2) is satisfied by � and �.

With these verifications, we can define a finite dimensional semisimple algebra 
An(G, �) as an iterated twisted tensor product of ℂ[G] follows: as a ℚ(q) vector 
space An(G, 𝜏) = ℚ(q)[G]⊗n−1 . For each 1 ≤ i ≤ n − 1 and g ∈ G we define ele-
ments gi = 1⊗i−1 ⊗ g⊗ 1⊗n−i−2 . We can then dispense with the ⊗ symbol alto-
gether, and write monomials as g(i1)

1
⋯ g

(in−1)

n−1
 where g(ij) ∈ G . The multiplication 

on An(G, �) has the following straightening rules on the generators gi:

where the bihomomorphism � ∶ G × G → ℤm determines � . The following is pre-
sumably well known but can be proved directly using classical techniques, which we 
provide for the reader’s amusement.

Proposition 3.2  The algebra An(G, �) is semisimple of dimension |G|n−1 over ℚ(q).

Proof  Notice that the set of monomials in normal form M ∶= {q𝓁g
(i
1

)

1

⋯ g
(in−1)

n−1
∶

g(ij) ∈ G,� ∈ ℤm} form a basis for An(G, �) over ℚ since An(G, �) is ℚ(q)[G]⊗n−1 as 
a vector space. To show that An(G, �) is semisimple, let X ⊂ An(G, 𝜏) be a submod-
ule, and � ∶ An(G, �) → X any vector space projection. Note that any � ∈ M has an 
inverse in M, since the straightening rules allow us to write �−1 in the normal form of 
M. We then use the standard averaging trick to find an An(G, �)-module projection 
onto X:

gihj =

{ hjgi, |i − j| > 1,

q±𝛼(g,h)hi±1gi, j = i ± 1,

(gh)i, j = i,

T�(y) ∶=
1

m|G|n−1
∑
�∈M

��(�−1y).
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One can readily check that T� is a surjective An(G, �)-module homomorphism so 
that the kernel of T� provides a direct complement to X in An(G, �) , proving that 
An(G, �) is semisimple. 	�  ◻

3.1.1 � Connection to Group Extensions

We also note the following alternative construction of the algebra An(G, �) via 
group extensions. In this section, we show that, as a ℚ-algebra, An(G, �) is iso-
morphic to the group algebra over ℚ of a central extension of Gn−1.

More concretely, let G be a finite group and m ∣ exp(G) . Let � ∶ G × G → ℤm 
be a bihomomorphism. For n ≥ 2 , let c ∶ Gn × Gn

→ ℤm be the bihomomorphism 
defined by

Since c is a bihomomorphism, it satisfies the two-cocycle condition. We define G×�n 
to be the central extension of Gn corresponding to the two-cocycle c ∈ Z2(Gn,ℤm).

Proposition 3.3  Let q be a primitive mth root of unity. There is an isomorphism  
of ℚ-algebras

where 𝜏 ∶ ℚ(q)[G]⊗ℚ(q)[G] → ℚ(q)[G]⊗ℚ(q)[G] is the same twisting map 
defined above, i.e., 𝜏(g1 ⊗ h2) = q𝛼(g,h)h2 ⊗ g1 on basis elements.

Proof  We represent G×�n as the set ℤm × Gn where the multiplication is given by

Let � ∶ An+1(G, �) → ℚ(G×�n) be the ℚ-linear bijection defined by 
qjg1 ⊗⋯⊗ gn ↦ j × (g1,… , gn) . To see that � is an algebra map, we need to verify 
that it preserves the straightening relations. If i − j ≠ 1 , we have c(�(gi),�(hj)) = 1 . 
If i − j = 1 , we have c(�(gi),�(hj)) = �(h, g−1) . Thus,

Thus, the straightening relations are preserved by � . It follows that � is an isomor-
phism of ℚ-algebras. 	�  ◻

c(g, h) = −

n−1∑
i=1

�(hi, gi+1).

An+1(G, �) ≅ ℚ(G×�n),

(x × g) ⋅ (y × h) = (c(g, h) + x + y) × gh.

[�(gi),�(hi+1)] = �(gi)�(hi+1)�(g
−1
i
)�(h−1

i+1
)

= �(gi)(�(g, h) × (e,… , e, g−1
i
, hi+1, e,… , e))�(h−1

i+1
)

= �(g, h) × e

= �(q�(g,h)).
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3.2 � Braid Group Representations

The second part of the problem is to look for and classify the representations of the 
braid group inside the algebras An(G, �) . Fix a pair (G, �) where G is a finite group 
and � ∶ G × G → ℤm is a bihomomorphism. We then have a corresponding twisted 
tensor power An(G, �) where �(g, h) = q�(g,h)) as in Sect.  3.1. We are interested in 
finding the invertible

so that for i = 1, 2 the ri ∶=
∑

g∈G f (g)gi ∈ A3(G, 𝜏)⊗ℚ(q) ℂ satisfy the braid rela-
tion r1r2r1 = r2r1r2 . We shall call such solutions r A(G, �)-Yang–Baxter operators 
(YBOs). Since the braid equation may be written as a linear combination of mono-
mials g(i1)

1
g
(i2)

2
∈ A3(G, �) with coefficients in ℚ(q)[x1,… , x|G|] where xi ∶= f (g(i)) , 

we may assume that the function f takes values in ℚ(q) = ℚ , i.e., the algebraic clo-
sure of ℚ(q) . For the sake of notation, we will usually just consider scalars in the 
complex field ℂ.

This should be compared with the problem of finding Yang–Baxter operators on 
a vector space V. In our case, we seek invertible r ∈ ℂ[G] so that �n(�i) = ri is a 
homomorphism �n ∶ Bn → An(G, �) (suitably complexified). As An(G, 𝜏)⊗ ℂ is a 
finite-dimensional semisimple ℂ-algebra, one can obtain Bn-representations by pull-
back on any An(G, 𝜏)⊗ ℂ-module. For example, one might use the regular repre-
sentation to get a sequence of braid group representations (�n,Vn) , as defined in [36]. 
However, one cannot, in general, turn such a homomorphism into a solution to the 
Yang–Baxter equation. There is one situation where one can perform such a trans-
formation: if the sequence of braid group representations (�n,Vn) is localizable in 
the sense of [36]. For example, suppose An(G, �) has a representation �n of the form 
V⊗n with �(gi) acting locally:

where 𝜗 ∶ G → Aut(V⊗2) is a G-representation. Then �(r) will be a Yang–Baxter 
operator, and 𝜗n(ri) = (IdV )

⊗i−1 ⊗ 𝜗(r)⊗ (IdV )
⊗n−i−1 is a localization of the corre-

sponding braid group representation.
We may also put a ∗-structure on An(G, �) as follows: define g∗

i
= g−1

i
 and 

q∗ = 1∕q = q and then extend to an antiautomorphism on products and linearly on 
sums in the usual way. This makes An(G, �) a ∗-algebra. In this way, we can discuss 
unitary A(G, �)-YBOs, as those r with r∗r = 1.

3.3 � Equivalence Classes of An(G, �)

For a fixed G, different choices of � give isomorphic algebras. We identify a few of 
these isomorphisms to reduce the complexity of our main goal.

One equivalence of An(G, �) comes from the choice of Galois conjugates of q. 
For (s,m) = 1 defining �s(g, h) = qs�(g,h) obviously gives us An(G, �) ≅ An(G, �

s) by 
Galois conjugation.

r =
∑
g∈G

f (g)g ∈ ℂ[G]

𝜗n(gi)(v1 ⊗⋯⊗ vi ⊗ vi+1 ⊗⋯⊗ vn) = (v1 ⊗⋯⊗ 𝜗(g)(vi ⊗ vi+1)⊗⋯⊗ vn),
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Another equivalence comes from automorphisms of G. If � ∈ Aut(G) then the 
bicharacter (g, h) ↦ �(�(g),�(h)) gives us a new �� (g, h) = �(�(g),�(h)) and gives 
us An(G, �) ≅ An(G, �

� ).
An important problem is to understand the orbits under these actions. The Galois 

symmetry amounts to replacing � with s� . Now observe that since � ∶ G × G → ℤm 
has abelian co-domain, it is determined by its values on the abelianization 
Gab ∶= G∕[G,G] . So we may assume G = A is abelian for the purposes of deter-
mining the orbits. It is clear that the bicharacters A × A → U(1) for a finite abe-
lian group A form an abelian group under pointwise addition. In fact, this group 
is isomorphic to Hom(A,A∗) where A∗ = Hom(A,U(1)) is the group of charac-
ters. Indeed, if � ∶ A × A → U(1) is a bicharacter then define F� ∈ Hom(A,A∗) 
by F� (a)(b) = �(a, b) . Since � is a bicharacter F� is a ℤ-module map with val-
ues in Hom(A,U(1)) . Since f ∈ Hom(A,A∗) determines a unique bicharacter 
�f (a, b) = f (a)(b) , the map � ↦ F� is clearly a bijection, and F� + F� = F�+� . As 
the bihomomorphisms � ∶ A × A → ℤm are in one-to-one correspondence with 
bicharacters, this determines all such bihomomorphisms � . For elementary abelian 
p-groups A = (ℤp)

k a bihomomorphism to ℤp can be represented as a k × k matrix 
X with i,  j entry �(ei, ej) ∈ ℤp where ei is the generator (0,… , 0, 1, 0,… , 0) of the 
ith factor. That is, �(g, h) = gTXh where we identify g ∈ A with column vectors. 
Of course an automorphism Ψ ∈ Aut(A) ≅ GLk(ℤp) as well, so we may sweep out 
orbits of � under Aut(A) as ΨTXΨ since �(Ψ(g),Ψ(h)) = gTΨTXh . Although we will 
not need it in what follows, one can handle general abelian p-groups in a similar 
way by identifying ℤpa with a subgroup of ℤpb for a ≤ b . Even more generally, biho-
momorphisms on a finite abelian group can be factored by restricting to p-Sylow 
subgroups.

3.3.1 � Forbidden Symmetries

Thus far, we have not applied different automorphisms of G to each factor as such an 
action will generally fail to produce A(G, �)-YBOs ri independent of i. Moreover, if 
we apply different automorphism to each tensor factor of An(G, �) the twisting will 
no longer be uniform across the iterated twisted tensor product. However, in the fol-
lowing special cases, uniformity is preserved.

Proposition 3.4  Suppose G = ℤk
m
  for an odd integer m and �(x, y) = q�(x,y) for a non-

degenerate symmetric or skew-symmetric bihomomorphism � ∶ G × G → ℤp . Then 
there is an isomorphism of algebras An(G, �) ≅ An(G,�) , where �(x, y) = qx

Ty.

Proof  Observe that for G = ℤk
p
 with p odd, nondegenerate bihomomorphisms 

� ∶ G × G → ℤm are the same as nondegenerate bilinear forms, all of which are of 
the form �(x, y) = xTSy for some matrix S ∈ GLk(ℤm).

First assume �(x, y) = xTSy is a non-degenerate symmetric bilinear map 
G × G → ℤm . Let C,D ∈ GLk(ℤm) be such that I = CSD (the Smith normal 
form of S). Let �(x, y) ∶= xTy be the corresponding twist. We claim that the map 
� ∶ Gn−1

→ Gn−1 defined by
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induces an isomorphism An(G, �) ≅ An(G, �) . Indeed, for x, y ∈ G , we have

On the other hand,

Now since the Smith normal form of a non-degenerate symmetric matrix over ℤm 
is diagonal and we may rescale each entry by isomorphisms described above, we 
obtain an isomorphism with An(G,�) as promised.

Now suppose that k is even, and S is invertible and skew-symmetric so that we 

may assume S =

(
0 I0
−I0 0

)
 , where I0 = Id(ℤm)

k∕2 and �(x, y) = xTSy the associated 

bihomomorphism. Notice that S2 = −I and ST = −S . Letting �(x, y) = −xTy , we 
define � ∶ An(G, �) → An(G, �) by �(gi) = (Si−1g)i . To see that � is an algebra 
homomorphism, we compute:

Since � is clearly bijective, we have shown that it is an algebra isomorphism 
An(G, �) ≅ An(G, �) . Since � is symmetric, we may use the above to obtain an iso-
morphism An(G, �) ≅ An(G,�) as promised. 	�  ◻

3.4 � Symmetries of (An(G, �), r)

For a fixed G and � , the set R of A(G, �)-YBOs could be quite large: they are deter-
mined by the functions f ∶ G → ℂ with r =

∑
g∈G f (g)g ∈ R . To reduce the search 

space we can make use of various symmetries, identifying function f in the same 
orbit. Informally we will say that two An(G, �)-YBOs r and s are equivalent if 
�r, �s ∶ Bn → An(G, �) have the same image, projectively.

One obvious symmetry comes from the homogeneity of the braid equation 
r1r2r1 = r2r1r2 : we can rescale any solution by z ∈ ℂ× and if our solution is unitary, 
then we can rescale by z ∈ U(1) . This corresponds to identifying f and zf since the 
Bn images are projectively equivalent.

We also have rescaling symmetries of the form gi ↦ qs(gi)gi for some homomor-
phism s ∶ G → ℤm . Since the straightening relations in An(G, �) are homogeneous, 
it is only necessary to check that the map � ∶ G → U(1) given by �(g) = qs(g) is a 
linear character. This automorphism of ℂ[G] lifts to an automorphism of An(G, �) , 
which carries ri =

∑
g∈G f (g)gi to r�

i
∶=

∑
g∈G f (g)qs(g)gi and hence the images are 

�(gi) =

{
((CT )−1g)i, i odd,

(D−1g)i, i even

�((CT )−1x,D−1y) = ((CT )−1x)TCSD(D−1y) = xTSy.

�(D−1x, (CT )−1y) = (D−1x)T (CT )−1y

= xT (D−1)T (DTSTCT )(CT )−1y

= xTSy.

�(Six, Si+1y) = xT (−S)i(S)Si+1y = (−1)ixTS2i+2y = −xTy = �(x, y).
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isomorphic. Therefore, we can identify the solutions that are in the orbit of f under 
f ↦ qs(g)f .

Denote by Aut(G, �) the group of automorphisms � ∈ Aut(G) such that 
�◦(� × �) = � . Any � ∈ Aut(G, �) lifts to an automorphism of An(G, �) . For such 
� ∈ Aut(G, �) , the �(ri) =

∑
g∈G f (g)�(g)i for i = 1, 2 will satisfy the braid rela-

tion, and hence �−1(r) =
∑

g∈G f (�−1(g))g will also be an A(G, �)-YBO. Moreo-
ver, this obviously induces an isomorphism between �r(Bn) and ��(r)(Bn) , so we 
will thus identify all solutions in the orbit of f under this symmetry f ↦ �∗f  for 
� ∈ Aut(G, �).

3.4.1 � Symmetry Induced by Inversion

An important special case of symmetry induced by automorphisms is the following: 
if G is abelian, the inversion automorphism � ∶ g ↦ g−1 on G lifts to an automor-
phism of An(G, �) by defining �(q) = q , and �(gihj) = �(gi)�(hj) = g−1

i
h−1
j

 on products 
and extending linearly. We will carefully check the defining relations are preserved. 
First,

so that �(gihi+1) = q�(�(g),�(h))�(hi+1gi) . Second, since G is abelian,

where the equality denoted ⋆= uses the G abelian assumption. Finally, note that if gi 
and hj commute then so do �(gi) and �(hj) . If r =

∑
g∈G f (g)g is an A(G, �)-YBO then 

so is �(r) =
∑

g∈G f (g)g−1 ; hence, r�� =
∑

g∈G f (g−1)g is as well.
If G is abelian there is an additional symmetry of the braid relation r1r2r1 = r2r1r2 

that we may use to show that r =
∑

g∈G f (g)g and r� ∶=
∑

g∈G f (g)g have isomor-
phic images. The map � on A3(G, �) given by �(g1) = g2 and �(xy) = �(y)�(x) for 
x, y ∈ A3(G, �) and �(q) = q−1 = q is an anti-automorphism of A3(G, �) since

and �((gh)1) = (gh)2 = g2h2 = h2g2 = �(h1)�(g1) = �(g1h1). This implies that r′ is 
an A(G, �)-YBO since

4 � Case Studies

In practice, we take the following approach, using symbolic computation software 
such as Magma and Maple. 

�(gi)�(hi+1) = g−1
i
h−1
i+1

= (hi+1gi)
−1 = (q−�(g,h)gihi+1)

−1 = q�(g,h)�(hi+1)�(gi)

𝜄((gh)i) = 𝜄(gihi) = g−1
i
h−1
i

= (g−1)i(h
−1)i = (g−1h−1)i

⋆
= ((gh)−1)i = (𝜄(gh))i,

�(g1h2) = h1g2 = q�(h,g)g2h1 = �(q�(g,h)h2g1)

r�
2
r�
1
r�
2
= �(r1r2r1) = �(r2r1r2) = r�

1
r�
2
r�
1
.



	 P. Gustafson et al.

1 3

(1)	 Fix G and � , and present the corresponding finitely generated algebra 
A3(G, �) ×ℚ(q)[xg ∶ g ∈ G] , using generators and relations, with the xg being 
commuting variables.

(2)	 Define ri =
∑

g∈G xggi for i = 1, 2 , and use non-commutative Gröbner bases to 
write r1r2r1 − r2r1r2 in its normal form, i.e., as a polynomial in the g(i1)

1
g
(i2)

2
 with 

coefficients in ℚ(q)[xg ∶ g ∈ G].
(3)	 Compute a commutative Gröbner basis for the ideal generated by the the coef-

ficients using pure lexicographic order to find the ideal of solutions.
(4)	 Use symmetries to describe families of related solutions.

Often we find that there are finitely many solutions, so that we can give a com-
plete description of them.

4.1 � Abelian Groups

4.1.1 � Prime Cyclic Groups G = ℤp

We first apply our approach to a well-known case both as a proof of principle 
and a template for further study.

Let p ≥ 3 be prime and fix q a primitive pth root of unity. A nontrivial bichar-
acter ℤp × ℤp → U(1) must take values in �p = {qj ∶ 0 ≤ j ≤ p − 1} , so any bich-
aracter corresponds to a bihomomorphism � ∈ Hom(ℤp × ℤp,ℤp) , which is 
determined by �(1, 1) . Define a bihomomorphism � ∶ ℤp × ℤp → ℤp by 
�(1, 1) = 2 . The orbit of � under automorphisms of ℤp gives half of all non-triv-
ial bihomomorphisms since �(�k(1),�k(1)) = 2k2 for k ∈ ℤ×

p
 is a square modulo 

p if and only if 2 is. Galois symmetry �(q) = qs maps the bicharacter 
�(x, y) = q�(x,y) to �� (x, y) = qs�(x,y) . Thus, we may assume that our bicharacter is 
associated with the bihomomorphism �(x, y) = 2xy . The reader may wonder why 
we do not choose ��(x, y) = xy instead—we will see later that this simplifies the 
form of our An(ℤp, �)-YBOs. Indeed, this choice of � recovers the ℚ(q)-algebra 
An(ℤp) described in the Sect.  1, with generators u1,… , un−1 satisfying 
uiui+1 = q2ui+1ui and uiuj = ujui for |i − j| > 1 and up

i
= 1 . The goal now is to find 

invertible A(ℤp)-YBOs r = �
∑p−1

j=0
f (j)uj ∈ ℂ[ℤp].

To reduce redundancy we will normalize f (0) = 1 (the solutions where 
f (0) = 0 do not seem to be interesting). The symmetries of these solutions again 
come in several forms. First, since each automorphism of ℤp that leaves � invari-
ant leads to an automorphism of An(ℤp) we may identify the corresponding solu-
tions. For �(x, y) = 2xy only inversion x → −x leaves � invariant, which means 
we may freely identify f and f �(j) = f (−j) . We have an additional symmetry in 
An(ℤp) given by ui → qsui since the first two defining relations are homogene-
ous and (qsui)p = u

p

i
= 1 . This corresponds to identifying f with f s(j) ∶= f (j)qjs . 

Finally, complex conjugation is a symmetry of the braid equation r1r2r1 = r2r1r2 , 
so that we may identify f and its complex conjugate f .
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4.1.2 � The Gaussian Solution

One unitary A(ℤp)-YBO is the Gaussian solution r = 1√
p

∑p−1

j=0
qj

2

u , i.e., f (j) = qj
2 

[18, 20, 29] and � =
1√
p
 . Complex conjugation gives us the solution f (j) = q−j

2 
and the rescaling symmetry gives us f s(j) = qj

2+sj , giving 2p distinct solutions.
In [18], it is shown that the braid group representation �n ∶ Bn → An(ℤp) given 

by �i → ri has finite image. In fact, one has

so that the conjugation action on An(ℤp) provides a homomorphism of �n(Bn) into 
monomial matrices, with kernel a subgroup of the center of An(ℤp) . For n odd, 
the normal form for An(ℤp) allows one to show that the center consists of scalars, 
and since any �n(�) in the center of An(ℤp) has determinant a root of unity (under 
the regular representation of An(ℤp) ) the kernel of the conjugation action above is 
finite, for n odd. Since 𝜌n(Bn) ⊂ 𝜌n+1(Bn) , this is sufficient.

The algebras An(ℤp) have a local representation (see [36]). Let V = ℂp and 
define an operator on V⊗2 by U(�i ⊗ �j) = qj−i�i+1 ⊗ �j+1 where {�i}

p−1

i=0
 is a basis 

for V with indices taken modulo p. Then Φn ∶ ui → (IdV )
⊗i−1 ⊗ U ⊗ (IdV )

⊗n−i−1 
defines a representation An(ℤp) → End(V⊗n) . In particular, Φ2(r) is an honest 
p2 × p2 YBO.

Example 4.1  We use Magma [7] to work two explicit examples. First consider the 
case G = ℤ3 , and suppose r = 1 + au + bu2 is an A(ℤ3)-YBO. All solutions satisfy 
a3 = b3 = 1 and a2 ≠ b , so that there are exactly 6 distinct solutions (as elements of 
the algebra, up to rescaling) all of which are obtained from the Gaussian solution via 
the symmetries described above, hence are equivalent in our sense. In particular, the 
solutions are all unitary when appropriately normalized.

Similarly for p = 5 , under the additional assumption that a,  b,  c,  d are 
5th roots of unity, we find that there are exactly 10 non-trivial solutions 
r = 1 + au + bu2 + cu3 + du4 (up to rescaling), all of which are obtained from the 
Gaussian solution via the above symmetries. These solutions are unitary when 
appropriately normalized. There are ten other non-trivial solutions; however, none 
of them are (projectively) unitary.

riui+1r
−1
i

= qu−1
i
ui+1,

riui−1r
−1
i

= q−1ui−1ui,
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4.2 � G = ℤp × ℤp

Let p be an odd prime, and let G = ℤp × ℤp . To classify An((ℤp)
2, �) we first look 

at orbits of bihomomorphisms � ∶ (ℤp)
2
→ ℤp . Such bihomomorphisms are 

determined by the values on pairs of generators (1, 0), (0, 1) of ℤp × ℤp , encoded 

in a matrix A� ∶=

(
a b

c d

)
∈ M2(ℤp) , so that �(x, y) = xTA�y . Under automor-

phisms X ∈ GL2(ℤp) of (ℤp)
2 the orbit of � is represented by the matrices 

{XTA�X ∶ X ∈ GL2(ℤp)} . From [43], we know that there are p + 7 orbits.

Example 4.2  The case of p = 3 can be completely analyzed computationally 
as follows: from a representative of each of the 10 orbits of bihomomorphisms 
ℤ3 × ℤ3 → ℤ3 we use Magma [7] to search for non-degenerate, unitary solutions 
r = �

∑
i,j f (i, j)u

ivj to the corresponding A(ℤ3 × ℤ3, �)-YBE. Here by non-degener-
ate we mean that it does not degenerate to the ℤ3-case. The results of these computa-
tions are:

•	 Non-degenerate unitary solutions only exist for the classes represented by

	   A1 =

(
2 0

0 2

)
 , A2 =

(
0 2

−2 0

)
 and A3 =

(
2 0

0 − 2

)
.

•	 In all cases, after applying an appropriate symmetry of (An(ℤ3 × ℤ3, �), r) , 
the non-degenerate unitary solutions factor as a product of Gaussian An(ℤ3)- 
YBOs, and hence have finite images.

From this example, we expect that the most interesting ones correspond to 
non-degenerate symmetric or skew-symmetric bilinear forms on ℤ2

p
 . We also 

allow ourselves to rescale � by a constant. Thus, we focus on A1 =

(
2 0

0 2

)
 , 

A2 =

(
0 2

−2 0

)
 and A3 =

(
2 0

0 2x

)
 where x is a non-square modulo p. The appear-

ance of the scalar 2 is simply for convenience when we make contact with the 
Gaussian solution.

We consider each of these cases in turn. We will distinguish the sym-
metric cases A1,A3 by noting that A1 corresponds to an elliptic form, while A3 
corresponds to a hyperbolic form. For A� = Ai , the corresponding algebras 
An(ℤp × ℤp, �i) have generators u1, v1,… , un−1, vn−1 with the multiplicative group 
⟨ui, vi⟩ ≅ ℤp × ℤp . All generators commute except for: 

(1)	 For A1 : uiui±1 = q±2ui±1ui and vivi±1 = q±2vi±1vi.
(2)	 For A2 : uivi±1 = q±2vi±1ui and viui±1 = q∓2vi±1ui.
(3)	 For A3 : uiui±1 = q±2ui±1ui and vivi±1 = q±2xvi±1vi.

We pause to describe the structure of the algebras An(ℤm × ℤm, �i) for arbi-
trary odd m. Since the monomials in the ui, vi form a basis, we see that 
dimℚ(q) An(ℤm × ℤm, �i) = m2n−2.
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The following proposition explores the structure of An(ℤm × ℤm, �i) and the 
subalgebra of fixed points under the automorphism � described in Sect.  3.4.1 
given by lifting ui ↦ u−1

i
, vi ↦ v−1

i
 to An(G, �i) . We describe inclusions of alge-

bras in terms of Bratteli diagrams (see [21]): generally, to a tower of multi-matrix 
algebras with common unit 1 ∈ A1 ⊂ ⋯An ⊂ An+1 ⊂ ⋯ , we associate a graph 
with vertices labeled by simple Ak-modules Mk,i with dk−1,i,j edges between Mk,i 
and Mk−1,j if the restriction of Mk,i to Ak−1 contains Mk−1,j with multiplicity dk−1,i,j.

Proposition 4.3  Let m be odd and G = ℤm × ℤm . Consider the algebra An(G, �i) 
with the twists �i given by Ai , 1 ≤ i ≤ 3 . Then

(1)	 The center of An(G, �i) is 1 dimensional if n is odd and is m2 dimensional if n 
is even. Moreover, when n is odd An(G, �i) ≅ Mmn−1(ℚ(q)) is simple while for n 
even An(G, �i) decomposes as a direct sum of m2 simple algebras of dimension 
m2n−4 . Moreover, the Bratteli diagram of ⋯ ⊂ An(G, 𝜏i) ⊂ ⋯ is given in Fig. 1.

(2)	 Consider the fixed point subalgebra Cn(G, �i) for the automorphism � induced by 
inversion on An(G, �i) . Then for n ≥ 3 odd, Cn(G, �i) is a direct sum of two matrix 
algebras of dimensions 

(
mn−1±1

2

)2 . For n ≥ 4 and even, Cn(G, �i) has m
2+3

2
 simple 

summands: m
2−1

2
 of dimension m2n−4 and two others of dimensions 

(
mn−2±1

2

)2 . 
Moreover, the Bratteli diagram for ⋯ ⊂ Cn(G, 𝜏i) ⊂ Cn+1(G, 𝜏i) ⊂ ⋯ is given by 
Fig. 2, where the nodes are labelled by the dimensions of the distinct simple 
modules.

Fig. 1   Bratteli diagram for An(ℤm × ℤm, �i) for m odd

1

1
m2

· · · 1

m2

m2 m2

· · · m2

m4

...
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Proof  Similar results are found, for example, in [28, 29], so we are content to pro-
vide a sketch.

We first note that, by its construction, the isomorphism An(G, �) ≅ An(G,�) 
of Proposition 3.4 restricts to a bijection on the subalgebras ⟨uj, vj⟩ for each j, and 
respect inclusions. It follows that it restricts to an isomorphism Cn(G, �) ≅ Cn(G,�) . 
Thus, it suffices to prove the proposition for �(x, y) = �(x, y) ∶= qx

Ty , in which the ui 
and vj commute. Now one could derive the stated result directly from [28] without 
too much trouble, but since some details are left out we will give some idea of how 
to proceed.

Since the monomials in in normal form ua1
1
⋯ u

an−1
n−1

v
b1
1
⋯ v

bn−1
n−1

 in An(ℤm × ℤm),�) 
form a basis over ℚ(q) , a routine calculation gives a basis for the center to be 1 for 
n odd and {

∏
i u

a
i
vb
i
∶ 0 ≤ a, b ≤ m − 1} for n even. For later use, we note that for n 

even, {Xa,b = ua
1
vb
1
⋯ ua

n−1
vb
n−1

∶ 0 ≤ a, b ≤ m − 1} forms an abelian group isomor-
phic to G, and the m2 elements Ξx,y ∶=

1

m2

∑
a,b q

xa+ybXa,b ∈ An(G,�) are minimal 
set of orthogonal idempotents, and one obviously has the Bratteli diagram given in 
Fig. 1.

Now let us consider the fixed point subalgebra ℂn(G,�) of the automorphism 
� . Recall that An(G,�) has dimension d(n)2 where d(n) = mn−1 , and is spanned by 
monomials. Since �(ua1

1
⋯ v

bn−1
n−1

) = u
−a1
1

⋯ v
−bn−1
n−1

 one computes that the subspaces 
with �(x) = ±x have dimensions d(n)

2±1

2
 , respectively.

1

1 1 1

m2+1
2

m2−1
2

m2+1
2 m2 m2 m2−1

2

m4+1
2

m4−1
2

...
...

···

··· ···

··· ···

··· ···

Fig. 2   Bratteli diagram for Cn(ℤm × ℤm, �i) for m odd
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First, suppose n is odd—we will compute the ±1 eigenspaces for � in another way. 
In this case, ℂn(G,�) is simple, so that � is an inner automorphism, i.e., �(x) = JxJ 
for some d(n) × d(n) matrix with J2 = � a constant. After rescaling J, we may 
assume that J is diagonal, J2 = I , and J has eigenvalue 1 with multiplicity k and 
eigenvalue −1 with multiplicity d(n) − k < k . Writing an arbitrary x as a k, d(n) − k 
block matrix, we find that the subspaces E± = {x ∶ JxJ = ±x} have dimensions 
k2 + (d(n) − k)2 and 2k(d(n) − k) , respectively. Subtracting dimension and compar-
ing to the above we obtain 1 = (2k − d(n))2 ; hence, k = d(n)+1

2
 . Now a double com-

mutant argument shows that Cn(G,�) is a direct sum of two simple algebras of 
dimension k2 and (d(n) − k)2 as required.

For the n even case, we observe that on each simple constituent � either gives an 
isomorphism to another simple constituent or is an automorphism. Since the simple 
( d(n)∕m)2-dimensional) constituents are An(x, y) ∶= Ξx,yAn(G,�)Ξx,y , we observe 
that �(Ξx,y) = Ξ−x,−y , so that � induces an automorphism on An(0, 0) and permutes 
the other m2 − 1 simple constituents in pairs. Thus, an argument similar to the odd 
case above shows that An(0, 0) splits into two components of dimension 

(
mn−2±1

2

)2 
and the remaining m

2−1

2
 pairs interchanged by � each yield a single simple m2n−4- 

dimensional algebra.
Dimension counting finishes the calculation of the Bratteli diagram as stated. 	� ◻

We now return to the problem of finding solutions

to the A(ℤp × ℤp, �i)-YBE for i = 1, 2 and 3.
We could not find any non-trivial unitary solutions that do not factor as 

f (j, k) = fu(j)fv(k) after applying the symmetries of Sect.  3.4, and can verify com-
putationally that all solutions factor as products of Gaussian-type solutions in the 
case for p = 3 . Thus we focus on such solutions. All of the solutions that follow will 
have finite braid group image when properly normalized to be unitary, which can 
be easily verified using the finiteness of the Gaussian representation images. The 
eigenvalues of r =

∑
0≤j,k≤p−1 q

j2�xk2ujvk for q = e2�i∕p and � = ±1 in any faithful rep-
resentation of A2(G, �i) are

Up to an overall normalization factor, the eigenvalues and their multiplicities can be 
computed using standard Gaussian quadratic form techniques, and only depend on 
the sign ± and whether −1 and x are squares or non-squares modulo p. We have that 
the multi-set [��,x(s, t)] has 

(1)	 1 with multiplicity 1 and e2�ij∕p with multiplicity p + 1 for each 1 ≤ j ≤ p − 1 
when (�,

(−1
p

)
,
(
x

p

)
) ∈ {(1,−1, 1), (−1,−1,−1), (1, 1,−1), (−1, 1,−1)} and

r = �
∑

0≤j,k≤p−1

f (j, k)ujvk

��,x(s, t) =

(∑
j

qj
2+sj

)(∑
k

q�xk
2+tk

)
.
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(2)	 1 with multiplicity 2p − 1 and e2�ij∕p with multiplicity p − 1 for each 1 ≤ j ≤ p − 1 
when (�,

(−1
p

)
,
(
x

p

)
) ∈ {(1,−1,−1), (−1,−1, 1), (1, 1, 1), (−1, 1, 1)}.

4.2.1 � Elliptic Symmetric Case

First, consider the case A1 . We can deduce some solutions

to the An(ℤp × ℤp, �i)-YBE from the Gaussian solutions. Indeed, if f , h ∶ ℤp → ℂ 
and are such that r(u) =

∑p−1

j=0
f (j)uj and s(v) =

∑p−1

j=0
h(j)vj are solutions to the 

An(ℤp)-YBE, then setting t(u, v) = r(u)s(v) we can easily verify

since ri ∶= r(ui) commutes with si ∶= s(vj) . If both f and h correspond to Gaussian 
solutions, we may rescale u and v independently followed by complex conjugation to 
assume that f (j) = qj

2 and h(k) = q±k
2 . The choice of sign indeed gives two distinct 

solutions. The additional symmetry that we have not used comes from the group of 
�1-invariant G-automorphism, i.e., {X ∈ GL2(ℤp) ∶ XTA1X = A1} , which is a group 
of order 2(p − 1) in this case.

4.2.2 � Skew‑Symmetric Case

Next we consider the case A2 . Suppose that our solution

factors as t(u, v) = r(u)s(v) where r(u) =
∑p−1

j=0
f (j)uj and s(v) =

∑p−1

j=0
h(j)vj are solu-

tions to the An(ℤp)-YBE. Again, setting ri = r(ui) and si = s(vi) we observe that 
[r1, r2] = 1 and [s1, s2] = 1 , so that t1t2t1 = r1s1r2s2r1s1 = (s1r2s1)(r1s2r1) . From this 
we deduce that we should take r(u) = s(u) and r(v) = s(v) , i.e., h = f  so that 
t(u, v) = r(u)r(v) . Now we can use symmetry to choose f (j) = h(j) = qj

2 . In this case, 
the group of automorphisms of ℤp × ℤp that preserve �2 is SL2(ℤp) , a group of order 
( p2 − p)(p + 1).

4.2.3 � Hyperbolic Symmetric Case

As the details are similar to the elliptic symmetric case, we are content to provide 
the factored solution

It is an easy exercise to show that this is the unique factorizable solution up to sym-
metries. The group of automorphisms of A(G, �3) that preserve �3 has order 2(p + 1).

t(u, v) =
∑

0≤j,k≤p−1

F(j, k)ujvk

t1t2t1 = (r1s1)(r2s2)(r1s1) = (r1r2r1)(s1s2s1) = t2t1t2

t(u, v) =
∑

0≤j,k≤p−1

F(j, k)ujvk

t(u, v) =
∑

0≤j,k≤p−1

qj
2±xk2ujvk.
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4.3 � Non‑commutative Cases

To illustrate our methods for non-abelian groups, we first apply them to the case of 
the symmetric group S3 and the algebra An(Q8) from the introduction.

4.3.1 � Symmetric Group S
3

For S3 , the bihomomorphisms � ∶ S3 × S3 → ℤm are determined by the abeliani-
zation ℤ2 × ℤ2 → ℤm so that we may take m = 2 . In particular, we have the fol-
lowing description of An(S3, �) for the non-trivial choice �((1 2), (1 2)) = 1 . We 
take generators u = (1 2) and v = (1 2 3) for S3 and corresponding generators of 
An(S3, �) u1, v1,… , un−1, vn−1 with relations:

•	 uivi = v2
i
ui and u2

i
= v3

i
= 1 ( S3 relations) and

•	 uiui+1 = −ui+1ui and vivj = vjvi for all i, j, and
•	 uivj = vjui for i ≠ j.

We seek (invertible) solutions r = �(1 + au + bv + cv2 + duv + euv2) ∈ ℂ[S3] to 
the A(S3, �)-YBE, where � is a normalization factor chosen to give r finite order. 
Appendix  contains the details of the computation, the upshot of which is that 
b = c = 0 is a consequence of invertibility and to have solutions r that are unitary 
with respect to the standard ∗-operation we should take � =

1

1+i
 and 

(a, d, e) = (ix, iy, iz) with (x, y, z) ∈ ℝ3 on the intersection of the surface given by 
xy + xz + yz = 0 with the unit sphere x2 + y2 + z2 = 1 . Since (x + y + z)2 = 1 mod-
ulo the ideal generated by these two polynomials we conclude that the solutions 
are the points on the intersection of the two planes (x + y + z) = ±1 with the unit 
sphere.

In all cases, we find that r4 = 1 , with eigenvalues 1,−i . This suggests that this 
representation is related to the Ising theory, see [15].

4.3.2 � Quaternionic Algebra An(Q8
)

Recall the algebra An(Q8) described in the introduction, generated by ui, vi satisfying 

(1)	 u2
i
= v2

i
= −1 for all i,

(2)	 [ui, vj] = −1 if |i − j| < 2,
(3)	 [ui, uj] = [vi, vj] = 1,
(4)	 [ui, vj] = 1 if |i − j| ≥ 2.

From the relations, one deduces that for each i the pair ui, vi generates a group iso-
morphic to Q8 . Notice, however, that ⟨ui, vi⟩ ∩ ⟨ui, vi⟩ = {±1} so that An(Q8) is not 
a twisted tensor product of group algebras; indeed, it is not ℂ[Q8]

⊗n−1 as a vector 
space. The algebra is closely related to group algebras, in at least two ways. First, 
suppose that Q8 = ⟨u, v⟩ , where uv = zvu with u2 = v2 = z central of order 2. Then 
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we may define the quotient T = ℂ[Q8]∕⟨z + 1⟩ and then A(Q8) above is a twisted 
tensor product of n − 1 copies of T  with the tensor product twist given as above, 
determined by �(u, v) = −1 and �(u, u) = �(v, v) = 1 since uivi+1 = −1vi+1ui.

Alternatively, we can consider the twisted group algebra ℂ�[ℤ2 × ℤ2] associ-
ated with the cocycle � ∈ Z2(ℤ2 × ℤ2,U(1)) defined by

•	 �((1, 0), (0, 1)) = −�((0, 1), (1, 0)) = 1,

•	 �((1, 0), (1, 0)) = �((0, 1), (0, 1)) = −1

with multiplication in ℂ�[ℤ2 × ℤ2] given by g ⋆𝜈 h = 𝜈(g, h)gh for g, h ∈ ℤ2 × ℤ2 . 
Then

where � is the twisting corresponding to the relations above.
We look for A(Q8)-YBOs of the form r = 1 + au + bv + cuv . We find 8 non-

trivial solutions namely a, b, c ∈ {±
1

2
} , normalized to a unitary solution. These are 

all related by symmetry since we may rescale a → −a and b → −b independently, 
permute the a, b, c freely using the fact that � is invariant under permuting u, v, uv 
and inversion corresponds to simultaneously changing all signs. The Magma code is 
found in Appendix.

5 � Categorical Connections

The class of weakly integral modular categories, i.e., those for which FPdim(C) ∈ ℤ 
is not well understood. However, a long-standing question [12, Question 2] asks if 
the class of weakly integral fusion categories coincides with the class of weakly 
group-theoretical fusion categories, i.e., those that are Morita equivalent to a nilpo-
tent fusion category. Recently Natale [33] proved that any weakly group-theoretical 
modular category is a G-gauging of either a pointed modular category (all simple 
objects are invertible) or a Deligne product of a pointed modular category and an 
Ising-type modular category [10, Appendix B]. These latter categories are well 
known to have property F, which reduces the verification of the property F conjec-
ture for weakly integral braided fusion categories to verifying that G-gauging pre-
serves property F and that weak integrality is equivalent to weak group-theoreticity. 
In fact, after this article was submitted, the preprint [22] appeared, which proves 
that weakly group-theoretical braided fusion categories has property F. Nonetheless, 
understanding the precise connection between the braid group representations asso-
ciated with a category C and its G-gaugings is an interesting problem.

The difficulty with verifying property F for a given category is that one rarely has 
a sufficiently explicit description of the braid group representations �X associated 
with an object X ∈ C . The braiding cX,X on X ⊗ X provides a map ℂBn → End(X⊗n) 
which then acts on each Hom(Y ,X⊗n) for simple objects Y by composition, but 
an explicit basis for Hom(Y ,X⊗n) is lacking. In all cases where the property F 

An(Q8) = ℂ
𝜈[ℤ2 × ℤ2]⊗𝜏 ℂ

𝜈[ℤ2 × ℤ2]⊗𝜏 ⋯⊗𝜏 ℂ
𝜈[ℤ2 × ℤ2],
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conjecture has been verified for a weakly integral braided fusion category [13, 
16, 27, 32, 36], the first step is a concrete description of the centralizer algebras 
End(X⊗n) , and the corresponding modules Hom(Y ,X⊗n) which are obtained by 
studying a specific realization of C , as a subquotient category of representations 
of a quantum group, for example. From this description, one extracts a sufficiently 
explicit Bn representation to facilitate the verification of property F.

One approach to a uniform proof of (one direction of) the property F conjec-
ture is to understand the connection between the centralizer algebras of pointed 
modular categories and those of its G-gaugings. Pointed modular categories are 
in one to one correspondence with metric groups, i.e., pairs (A, Q), where A is a 
finite abelian group and Q is a non-degenerate quadratic form on A. We denote by 
C(A,Q) the corresponding modular category. Pointed modular categories and their 
products with Ising-type categories are well known to have property F [32]. Thus, 
if we could prove G-gauging preserves property F, then this direction of the prop-
erty F conjecture would reduce to [12, Question 2].

For a general mathematical reference on G-gaugings, see [9], the notation of 
which we will adopt here. Let A be an abelian group, and Q a non-degenerate 
quadratic form on A, and C(A,Q) the corresponding pointed modular category, 
with twists given by �a = Q(a) and braiding by ca,b = �(a, b)� , where � is the 
usual flip map and �(a, b) ∶= Q(a + b) − Q(a) − Q(b) . A G symmetry of C(A,Q) 
is a group homomorphism 𝜌 ∶ G → Autbr

⊗
(C(A,Q)) ≅ O(A,Q) . Provided certain 

cohomological obstructions vanish one may construct (potentially several) modu-
lar categories by gauging the G symmetry. In the case of an elementary abelian 
p-group for p an odd prime all of the obstructions vanish by [11, Theorem 6.1].

We expect there to be a connection between the algebras An(G, �) described 
above and the H-gaugings of pointed modular categories, i.e., categories 
C(G,Q)×,H

H
 , where H ⊂ Autbr

⊗
(C(G,Q)) . Indeed, in the case G = ℤp and H = ℤ2 act-

ing by inversion, these categories are called p-metaplectic and we have the follow-
ing, using results of [2, 23, 28, 38] and some careful adjustment of parameters:

Theorem 5.1  Let ℤ2 act on C ∶= C(ℤp,Q) by inversion, and let D = C
×,ℤ2

ℤ2
 be any of 

the corresponding gaugings, and X a simple object of dimension 
√
p . Then

In fact, this result is key to verifying the property F conjecture for p-metaplec-
tic categories.

A similar relationship exists between a ℤ3-gauging of the so-called three fer-
mion theory C(ℤ2 × ℤ2,Q) where Q(x) = −1 for x ≠ (0, 0) and the algebra An(Q8) 
described above. In this case, C(ℤ2 × ℤ2,Q)

×,ℤ3

ℤ3
≅ SU(3)3 for one choice of ℤ3- 

gauging, where the action of ℤ3 at the level of object is given by cyclic permuta-
tion of the three non-trivial simple objects (see [9]). Now for a generating 
2-dimensional object X it is shown in [35] that the subalgebra Cn(Q8) of An(Q8) 
generated by (ui + vi + uivi) for 1 ≤ i ≤ n − 1 is isomorphic to End(X⊗n) , which is 
also isomorphic to a quotient of the Hecke algebra specialization Hn(3, 6) . The 
reader will also notice that the ℤ3-action on Q8 given by cyclic permutation of u, v 

End(X⊗n) ≅ ⟨u1 + u−1
1
,… , un−1 + u−1

n−1
⟩ ⊂ An(ℤp).
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and uv lifts to an automorphism of An(Q8) and Cn(Q8) is the fixed point subalge-
bra. Finally, we remark that the image of the braid group representation on 
End(X⊗n) is finite—it factors through the representations found above: 
�i ↦ (1 + ui + vi + uivi).

This inspires the following:

Principle 5.2  If G ⊂ Autbr
⊗
(C(A,Q)) is a gaugeable action on C(A,Q) then there is 

a (quotient of an) iterated twisted tensor product An(A, �) of ℂ[A] and an object 
X ∈ C(A,Q)×,G

G
 so that End(X⊗n) is isomorphic to the fixed point subalgebra Cn(A, �) 

of the automorphism induced by the action of G on A. Moreover there is an A(A, �)- 
YBO r supported in Cn(A, �) such that the Bn representation on End(X⊗n) factors 
through the Bn representation defined by r.

We do not have a general proof of this principle for all groups. In the case of ℤp × ℤp 
with ℤ2 acting by inversion, we give some compelling evidence for this principle.

Now suppose that |A| = m = 2k + 1 is odd and 𝜌 ∶ ℤ2 → Autbr
⊗
(C(A,Q)) is the 

action by inversion. The ℤ2-extensions are Tambara–Yamagami categories TY(A,� ,±) 
[39], and their equivariantizations are found in [19] (see also [25]). There are two dis-
tinct ℤ2-gaugings D± ∶= C(A,Q)

×,ℤ2

ℤ2
 of the inversion action � . Each modular category 

D± has dimension 4|A| . It has the following simple objects:

•	 two invertible objects, � = X+ and X−,
•	 m−1

2
 two-dimensional objects Ya, a ∈ A − {0} (with Y−a = Ya),

•	 two 
√
m-dimensional objects Zl , l ∈ ℤ2.

The fusion rules of D± are given by

where a, b ∈ A (a ≠ b) and l ∈ ℤ2 . All objects of D± are self-dual. Here the addi-
tion a + b takes place in A. We see that X− must be a boson, in the sense that the 
subcategory ⟨X−⟩ ≅ Rep(ℤ2) as a braided fusion category. Indeed, as D± is a non-
degenerate braided fusion category it is faithfully ℤ2-graded with the trivial compo-
nent having the m+1

2
 simple objects Ya,X± , and non-trivial component having the two 

simple objects Zl.
In particular, the algebras End(Z⊗n

0
) ⊂ End(Z⊗n+1

0
) have the Bratteli diagram of 

Fig. 3, where we have labeled the objects Ya by an arbitrary choice Yi for 1 ≤ i ≤ k.
The categories D± described above for the group G = ℤp × ℤp were explored in 

[19], and found to be non-group-theoretical in one case and group-theoretical in the 
other. For the case p = 3 , the group-theoretical cases are equivalent to Rep(D�S3) 
where � is a 3-cocycle on S3 . Up to equivalence there is one non-trivial choice for �.

X− ⊗ X− = X+, X± ⊗ Ya = Ya, X+ ⊗ Zl = Zl,

X− ⊗ Zl = Zl+1, Ya ⊗ Yb = Ya+b ⊕ Ya−b, Ya ⊗ Ya = X+ ⊕ X− ⊕ Y2a,

Ya ⊗ Zl = Z0 ⊕ Z1, Zl ⊗ Zl = X+ ⊕

(⨁
a

Ya

)
, Zl ⊗ Zl+1 = X− ⊕

(⨁
a

Ya

)
,
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We expect that: 

(1)	 End(Z⊗n) ≅ Cn(ℤp × ℤp, 𝜏) for some choice of �.
(2)	 Under the above isomorphisms the image of the braid group generators are 

described by the A(ℤp × ℤp, �)-YBOs determined above.

The two pieces of evidence are as follows: 

(1)	 The Bratteli diagrams for End(Z⊗n

0
) and Cn(ℤp × ℤp, �i) coincide and

(2)	 The eigenvalue profile of cZ0,Z0 and 
∑

j,k q
j2±xk2ujvk coincide, for some choice of 

±x where x is either 1 or any non-square modulo p.

The S and T matrices of all 4 of these categories are given in [19], as they are equiv-
alent to ℤ2-equivariantizations of Tambara–Yamagami categories. From [6, Prop. 
2.3] we may deduce the eigenvalues of the braiding for the object Z0 of dimension p.

5.1 � A Special Case: p = 3

Let q = e2�i∕3 . The two group-theoretical categories Rep(D�S3) can be obtained by 
gauging the ℤ2 inversion symmetry on C(ℤ3 × ℤ3,Q1) where Q2(x, y) = qx

2−y2 is 
hyperbolic. For the elliptic quadratic form Q2(x, y) = qx

2+y2 , the two inequivalent 
ℤ2-gaugings are non-group-theoretical. Each of these categories can be tensor gen-
erated by a simple object Z of dimension 3. The two group theoretical-categories 
Rep(D�G) have property F [13], but it is currently open whether the non-group-
theoretical cases have property F.

On the other hand, we can completely determine all unitary solutions to the 
A(ℤ3 × ℤ3, �)-YBE for the bicharacters � associated with the 3 matrices A1,A2 and 
A3 , up to the usual symmetries in Example 4.2.

Fig. 3   Bratteli diagram for C(A,Q)×,ℤ2

ℤ
2

 for |A| odd

Z0

1 Y1 Yk

Z0 Z1

1 Y1 Yk X−

Z0 Z1

···

··· ···

··· ···

··· ···
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One more piece of circumstantial evidence is that the results of [23] show that 
the braid group representations associated with a modular category only nominally 
depend on the finer structures such as the associativity constraints: for odd primes 
p, the images of the braid group representations for p-metaplectic modular catego-
ries are projectively equivalent. Since the property F conjecture depends only on the 
dimensions of objects, which are determined by fusion rules, it would perhaps not 
be so surprising if the fusion rules essentially determine the braid group images. A 
related result in [34] implies that the images of the braid group representations asso-
ciated with different modular categories with the same underlying fusion category 
are either all finite or all infinite.

6 � Conclusions

In this paper, we have unified some explicit constructions of braid group representations 
that come from finite groups in a fairly direct way. We have also provided strong evidence 
that twisted tensor products of group algebras simplify the analysis of gaugings of pointed 
modular categories. In particular, the data describing A(A, �)-YBOs, simply a function 
on A, is much simpler than the construction of the R-matrices of a gauged modular ten-
sor category. However, beyond the Gaussian case, the connection between the two braid 
group representations remains at the level of Bratteli diagrams and eigenvalues.

It would be of great interest to formulate precise intertwining operators between 
braid group representations in centralizer algebras of gaugings of pointed modular ten-
sor categories and those from A(A, �)-YBOs. This was accomplished with great dif-
ficulty in the Gaussian case [36]. Ideally, we would like to find a uniform framework 
generalizing this construction to all gaugings of pointed modular tensor categories.

Appendix: Computations for G = S
3
 and An(Q8

)

In what follows we provide some details classifying solutions to the A(S3, �) and 
A(Q8)-YBE.

Symmetric Group S3

We let u,  v be the generators for S3 with u2 = v3 = 1 and uvu = v2 . For exam-
ple, we could take u = (1 2) and v = (1 2 3). By the theory above, we initialize 
with the following Magma code to find conditions on a, b, c, d, e ∈ ℂ so that 
r = 1 + au + bv + cv2 + duv + euv2 is an A(S3, �)-YBO.
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The ideal of solutions is generated by the coefficients of the monomials in ui, vj . 
We enforce invertibility of r by assuming the determinant of the image of r under 
the faithful S3 representation on ℂ3 is non-zero. The output of the Gröbner basis is 
the following set of polynomials:

Notice that c = b = 0 , in all cases. If e = 0 then ad = 0 , and a3 + a = d3 + d = 0 , 
which are degenerate solutions of the form 1 + xu that can be obtained from ℤ2 (see 
[15]).

If e ≠ 0 , we find that e is a free parameter, and the following code shows that we 
may normalize to get r4 = 1 . There is a 1-parameter family of solutions for (a, d, e). 
Moreover, one sees that if we require a unitary solution each of a, d, e should be 
pure imaginary, and consequently the equation a2 + d2 + e2 + 1 = 0 implies that 
(a∕i, d∕i, e∕i) is a point on the unit sphere. Geometrically, this is the intersection of 
the unit sphere with the surface given by xy + xz + yz = 0.

{c, b, e(a2 + d2 + e2 + 1), ad + ae + de, a3 + a2e + 2ae2 + de2 + e3 + a + e,

− a2e + ae2 + d3 + 2de2 + d}.
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Quaterionic Algebra An(Q8)

For the case of the algebra An(Q8) , we use Magma to classify A(Q8)-YBOs. The 
following is the final code, where the last polynomial relations are the coefficients 
obtained from an initial run of the normal form command on an initial run (i.e., 
without the last set of relations). One finds that the non-trivial solutions for (a, b, c) 
are all ±1 , so that if we want unitary solutions, the inverse of R1 is of the form given 
as R1i since u∗ = u−1 = −u , etc. We conclude that all unitary solutions are equiva-
lent to the choice (a, b, c) = (1, 1, 1).
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