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Abstract

We review some recent work by Carone, Erlich and Vaman on composite gravitons in metric-
independent quantum field theories, with the aim of clarifying a number of basic issues. Focusing
on a theory of scalar fields presented previously in the literature, we clarify the meaning of the
tunings required to obtain a massless graviton. We argue that this formulation can be interpreted
as the massless limit of a theory of massive composite gravitons in which the graviton mass term is
not of Pauli-Fierz form. We then suggest closely related theories that can be defined without such
a limiting procedure (and hence without worry about possible ghosts). Finally, we comment on
the importance of finding a compelling ultraviolet completion for models of this type, and discuss

some possibilities.
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I. INTRODUCTION

A quantum field may represent a fundamental degree of freedom, or a composite state
described within the context of an effective theory that is applicable in a low-energy regime.
The idea that the gauge fields of the standard model may not be fundamental has appeared
periodically in the literature over the past 50 years [1-3]. Such models must have a gauge
invariance even when no gauge fields are included ab initio. Of particular interest to us
here are models like those described in Ref. [3] where the gauge invariance is maintained by
adopting rather odd-looking actions that are non-polynomial in the fields. It is then shown
that the massless gauge field emerges as a composite state, demonstrated by studying the
properties of appropriately chosen scattering amplitudes. A theory whose Lagrangian has
no gauge field but nonetheless produces one in the infrared appeals to a certain sense of
theoretical frugality; this motivates further study of these and other similar models, even
if their starting point is rather unconventional. Moreover, models in which all the force
carriers are emergent in this way may relate the values of their couplings in the ultraviolet
to the cut off of the theory, potentially leading to interesting relations [2]. This may serve
as a separate motivation.

The present mini-review describes quantum field theory models of this type, proposed by
Carone, Erlich and Vaman [4, 5], that are designed to produce an emergent graviton in the
infrared!. We will focus primarily on a model of scalar fields in this review, since all the
relevant features of this framework can be illustrated with the fewest technical complications.
A similar theory involving fermionic constituents (that is somewhat more complicated to
analyze) was presented in Ref. [7]. While models of composite gauge fields, like the one of
Ref. [3], have gauge-invariant actions that do not include a fundamental gauge field, the
theories we consider here, by analogy, have actions that are generally covariant but that do
not include a fundamental graviton field. Hence, they are metric independent. Early work
on theories where the graviton arises as a composite state can be found in Refs. [8-12]. The

starting point for our discussion will be the metric-independent action
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L For other quantum field theory approaches to gravity, see Ref. [6], and references therein.
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This is a theory of N + D real scalar fields, with the X7 fields distinguished since they will
be gauge fixed so that
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D
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X' = atd] —¢, I=0,...,D—1. (1.2)

Here Vj has been chosen to be the same as the constant part of the potential
V(") =Vo+ AV — ¢y . (1.3)

Note that we may define the constant part of the potential in terms of the two constants
Vo and ¢y, and the overall scale of the X' profile in terms of the two constants V, and
c1, without any loss of generality. The counterterms ¢; and ¢, are chosen to normal order
the operators 9,¢%0,¢" and m?¢?, respectively (i.e., the counterterms will cancel the loop
formed by contracting the two ¢® fields in either operator). This choice will allow the
resummation of scattering diagrams to all orders in 1/Vj but at leading order in 1/N, which
will allow us to confirm a massless spin-2 pole, for a special choice of V. We review this
analysis in Sec. II. In Sec. III, we clarify the meaning of the tuning of Vj, as well as its
appearance in both Egs. (1.2) and (1.3). We will argue that the formulation presented in
Refs. [4, 5] is interpreted consistently as the massless limit of a massive composite gravity
model, where the graviton mass does not have the Pauli-Fierz form. Since this implies the
presence of ghosts, we discuss how that can be avoided by an alternative formulation in
Sec. IV. We discuss possible ultraviolet (UV) completions for this kind of model in Sec. V,

and summarize our conclusions in Sec. VI.

II. GRAVITON POLE

In this section, we review the approach of Refs. [4, 5] towards analyzing the theory defined
in Eq. (1.1). We first assume, for simplicity, the potential of an O(N)-symmetric free scalar
field theory
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We then expand Eq. (1.1) formally in powers of 1/Vy. The counterterms ¢; and ¢, which

would appear multiplying a variety of local operators, can be omitted from that expansion,

since any interaction in which they appear will (by design) exactly cancel another in which



a scalar loop is closed by contracting a pair of ¢* on a factor of 9,09, ¢ or m?$*. One then

finds
v
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where, after some algebra, L;,; takes the remarkably simple form
Lint = =T I Ty + O(1/V2) | (2:3)
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Here, 7" is the energy-momentum tensor for the free scalar fields ¢* in Minkowski space
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Unlike Eq. (1.1), this action is suitable for conventional diagrammatic study. In particular,
it was argued in Refs. [4, 5] that the two-into-two scattering of scalars of type a into type
¢, with a # ¢, and at leading order in 1/N, gives the set of scattering diagrams shown in
Fig. 1, which can be exactly resummed. As indicated by the diagrams in the bottom line of

Fig. 1, the scattering amplitude M has a convenient recursive representation. We define
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FIG. 1: Two-into-two scalar scattering, a a — ¢ ¢, with a # c.



where the factors of £, represent the Feynman rule for the flat-space energy-momentum

tensor in Eq. (2.4),
By (pr.p2) = — (0 03 + P 05) + 7" (p1 - p2 + m?) (2.7)
The amplitude of Fig. 1 may then be written
Al = ARTIPT 4 K AP0 (2.8)

where Aj represents the tree-level diagram
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and the kernel K** 3 is given by
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where ¢ = p1 + p2 = p3 + ps and
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Here we use dimensional regularization, with D = 4 — ¢, to evaluate the loops, since this
choice preserves general covariance. We comment further on the choice and meaning of the
regulator in Sec. V. For the choice of Vj for which A = —1, the momentum independent

terms in Eq. (2.8) cancel and one can solve for the amplitude? in the vicinity of ¢? = 0,
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where Mp is the D-dimensional Planck mass,
1/(D-2)
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Eq. (2.13) implies that we must take € to be small and negative, which further implies that V;
is positive. The amplitude in Eq. (2.12) displays the correct tensor structure for the gauge-

invariant part of the propagator of a massless, spin-two field. A similar diagrammatic study

2 Our definition of the counterterms c; and ¢y leads to the set of diagrams shown in Fig. 1. Other definitions
would lead to additional diagrams that may make resummation of the scattering amplitude intractable.
If such a resummation could be completed, one would anticipate that the final results would remain

unchanged, given a tuning equivalent to the one in our present scheme.



of two-into-four scattering in the same theory was employed to study the self-interactions
of the composite graviton state and the results were found to be consistent with Einstein
gravity, up to higher-derivative corrections [5]. We do not summarize that more burdensome
calculation here, but refer the reader to the original literature. It is worth noting that
the scalar mass m in Eq. (2.13) is smaller than Mp, by a factor that is proportional to

N/|e|, which we assume is large. For example, a TeV-scale scalar mass would result from
N/|e| ~ O(10%). In this sense, our toy model serves as a possible analogy to more realistic
scenarios: the ¢ fields play the role of ordinary matter (which is light) and generate their
own graviton state (which is massless), with couplings that are Planck-suppressed. One
might also imagine realistic models in which the ¢* are included in addition to other matter
fields in the theory, with phenomenological consequences. We comment on the approach one
might take to construct more realistic models in Sec. V.

Finally, it is worth stressing that Eq. (2.13) requires that e is finite. Unlike a conventional
renormalizable field theory, where one would take ¢ to zero, and absorb divergences in a
finite number of couplings (which is not the case here), the finite regulator implies that
loop diagrams in the present framework give finite and calculable radiative corrections that
depend on the assumed form of the tree-level theory. Similar statements could be made had
we chosen Pauli-Villars fields as regulators instead: the value of the Planck and Pauli-Villars
scale are related, so that the Pauli-Villars states may not be decoupled from the theory. They
would also lead to finite radiative corrections in any loop calculation of interest. The use
of dimensional regularization with finite €, rather than Pauli-Villars fields at a fixed mass
scale, is a choice motivated by convenience; either would act as a proxy for the generally
covariant physics that completes the theory in the UV. What that physics may be is an issue

we return to in Sec. V.

III. INTERPRETATION AND SUBTLETIES

In this section, we discuss a number of subtleties related to the formulation of the model

that were not fully addressed in the original literature.



A. The meaning of the tunings

We reviewed in the previous section the method of establishing the existence of a massless

graviton. The result in Eq. (2.12) required that we set A\ = —1, or equivalently, tune
N(D/2-1)T(-D/2)
2 (4m)P/2

To understand the physical meaning of this choice, let us first compute the counterterms cq

Vo = (m?)P/% (3.1)

and cg, which were designed to eliminate an infinite number of scalar loop tadpole diagrams
like the one shown in Fig. 2, which are also of leading order in 1/N. This choice led us to
a tractable calculation. A straightforward calculation, using the same regulator, yields at

leading order in 1/N
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One notices that V5 /(D /2 —1) — ¢; exactly vanishes with this tuning, a fact that was missed

G = (m?)P7% (3.2)

in Ref. [4] due to a sign error, but corrected in Ref. [5]. This quantity is precisely what
determines the assumed vacuum expectation value (vev) for the fields X7 in Eq. (1.2). A
set of D scalar fields with the profile given in Eq. (1.2) have appeared elsewhere in the
literature, namely in models which implement a gravitational Higgs mechanism, for the
purpose of producing massive gravitons [13]. From that perspective, the meaning of the
tuning of V; is demystified: it is the one value that avoids the spontaneous breaking of

general covariance so that we obtain a massless spin-2 pole in the solution of Eq. (2.8).

FIG. 2: Example of a diagram that is exactly cancelled by the counterterms ¢; and co.

This observation, however, leads to some interesting complications. The profile of the
X7 field in Eq. (1.2) is achieved via a gauge-fixing, analogous to the static gauge fixing
condition in string theory, but not if the profile is exactly vanishing. A natural way around

this problem is to implement the gauge fixing by working in the limit
Vo

m —C1 — 0 (33)
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without actually hitting the limit point. This will assure that the massless graviton identified
in Sec. II still remains in the spectrum of the theory.
On the other hand, this approach may assure that other unwanted states are present as
well. If one repeats the calculation of Sec. II away from the limit point, one finds
1 Mgr”
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which reproduces Eq. (2.12) in the limit A — —1. Provided (1 + \)/A > 0, there is a
(non-tachyonic) massive graviton pole. While a massive spin-2 state has additional degrees
of freedom, the tensor structure of the amplitude remains unchanged, and there is no van-
Damn-Veltman-Zhakarov (vDVZ) discontinuity [14, 15]. This result can be understood if the
graviton mass is not of Pauli-Fierz form, which implies the existence of a spin-0 ghost [16].

In particular, given a mass term of the form

2

Lmass = —%(hw by — %h2) : (3.5)
the spin-2 and ghost degrees of freedom are degenerate in mass [17] and their propagators can
be combined, so that the parts which contribute to our scattering amplitude have precisely
the tensor structure shown in Eq. (3.4). This can be confirmed using the formula in Ref. [1§]
for the graviton propagator assuming an arbitrary non-Pauli-Fierz mass term. So, we may
still have a massless composite graviton, but at the expense of a composite ghost.

Does this ghost cause any problems in the limit that the graviton mass is taken to zero?
The situation is unclear. Certainly the diagrams that we have considered in Sec. II are
unaffected since the composite ghost only appears after summing internal chains of scalar
loops which also yield the massive composite graviton; one of the degrees of freedom of
the massive graviton exactly cancels the ghost (as we described earlier), while two degrees
of freedom do not couple to the conserved energy-momentum tensors on the external lines.
What is left are the two degrees of freedom we usually associate with a massless graviton. We
can then smoothy take the massless limit of the amplitude considered in Sec. II, recovering
our earlier results. However, the fact that the spectrum contains a stable ghost state suggests
that the exact S-matrix of the theory is not unitary and raises the worry that some violation

of unitarity at the perturbative level lurks somewhere at higher loop order in the theory.?

3 Here we assume that a violation of unitarity above Mpy due to our choice of regulator would be addressed in

a UV-complete theory, while the problem originating from ghosts would likely persist in such a completion.



Rather than attempt to resolve these issues, we will suggest a modification of the model
that avoids these potential problems entirely. We describe this in Sec. IV.

However, before we discuss that reformulation, let us discuss the remaining tuning that
was incorporated in the formulation of Sec. II; the appearance of the same constant Vj in
the potential and in the X’ vev. To understand the meaning of this choice, let us imagine
shifting the value of V{ in the potential, which we can equivalently interpret as a shift
co — co — Aco, with o defined precisely as before, a counterterm that effectively normal
orders the operator m?¢?/2. The shift Ac, appears everywhere in the interaction Lagrangian

where AV appears; hence one finds a new interaction

1 o Acy
4—%Tuv 198 T — 2—‘/;77 "Tas - (3.6)

Imagine connecting the interaction proportional to Acy to a chain of loops, as in Fig. 3. This

‘Cint = -

is precisely the same diagrammatic resummation as in our scattering calculation except that
one external two-scalar-line factor E(py, p2),. is replaced by —Acy 1,,,. This corresponds to
scattering off a graviton tadpole, an indication of an instability that one would expect when
doing a flat-space expansion g,, = 7,, + h,, in the presence of a cosmological constant.
Hence, Acy, must be tuned to zero, which was built into our initial choice for the form of
Egs. (1.2) and (1.3). Aside from the vanishing of the graviton mass, further evidence that
our tunings eliminate a cosmological constant was provided in Ref. [5], where two-into-four
scattering amplitudes were studies to gain information on the form of the three-composite
graviton vertex. Various contributions to the induced vertex that were independent of
graviton momenta were found to exactly cancel, just as one would expect if the cosmological
constant has been set to zero. In summary, the two tunings we have identified eliminate the
spontaneous breaking of general covariance (by enforcing a vanishing X7 field vev) and also

eliminate the terms one would expect if a cosmological constant were present.

B. Relation to the Weinberg-Witten Theorem

The Weinberg-Witten Theorem provides an impediment to constructing a theory of
massless composite gravitons if the theory has an S-matrix and a non-vanishing, conserved

Lorentz-covariant energy-momentum tensor [19]. With the usual definition
2 48
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FIG. 3: Composite graviton tadpole for Acs # 0.

it is clear that Eq. (1.1) has no conserved energy-momentum tensor, by virtue of its metric

independence. Alternatively, one can write the action in terms of an auxiliary metric g,,,

N D-1
1
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a=1
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: (3.8)

while imposing a constraint on the partition function that the energy-momentum tensor

vanishes.*

Solving the constraint for g,, and replacing the auxiliary metric in the action
leads precisely to our starting point in Eq. (1.1) [4, 5]. One might expect that similar results
should be obtained in metric-independent theories that cannot necessarily be re-expressed
in terms of an auxiliary metric, so the existence of a mapping between these two descriptions
is not essential. In any case, the absence of a Lorentz-covariant energy-momentum tensor
violates the assumptions of the Weinberg-Witten theorem, so the results we have described
present no inconsistency. Note that the vanishing of the energy-momentum tensor of the
full theory (gravity and matter) does not preclude the graviton from coupling to the non-
vanishing energy-momentum tensor of the scalar fields alone, as we have seen in Sec. II.
Conversely, if one were handed an alternative theory that matched only the leading
order terms appearing in the expanded action, Eqgs. (2.2) and (2.3), one would expect the
Weinberg-Witten theorem to apply, even though our calculation at leading order in 1/N
would give the same results in both theories. In this case, one simply expects that a graviton
mass would appear at next order in 1/N in the alternative theory; this is precisely the order

at which that theory would fail to reproduce the metric-independent and generally covariant

form of Eq. (1.1).

4 Imposing a constraint on the partition function differs from simply integrating over the auxiliary metric,
since the latter leads to the presence of a functional determinant in the remaining integrand; hence, we
cannot show at a quantum mechanical level that our formulation is equivalent to simply changing the

order of integration over the metric and the fields in a model of induced gravity.
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Based on our results, and the general covariance of Eq. (1.1), we would expect the massless
graviton pole to persist away from the large- N limit, even if there were a single scalar field ¢.
In this case, however, other non-perturbative techniques would be required to demonstrate

the existence of the massless spin-2 state. This direction is worthy of further investigation.

IVv. A MODEL WITHOUT THE LIMIT

In Sec. III, we clarified the interpretation of the results presented in Sec. II. The X7 fields
are gauge-fixed, with no remaining physical degrees of freedom, with a profile that must be
taken to approach zero as a limit so that general covariance is not spontaneously broken.
One then wonders: are the X7’ fields really serving any meaningful purpose in the theory?
In this section, we show that the results of Sec. II could be obtained in the same theory
without the X! fields, working at the A = —1 limit point where general covariance is exact.
In this case, one does not need to worry about the potential consequence of ghosts from the
composite massive gravity theory that may remain after the massless limit is taken.

The reformulation of the theory can be summarized as follows: We begin with the simpler

action

S—/de (%)2_

and add zero to it in the following way:
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where Vj and ¢; have precisely the same values given in Eqgs (3.1) and (3.2), respectively.
In other words, we now have no X7 fields, we have not specified a gauge fixing condition,
and we have simply added zero to the quantity within the determinant in Eq. (4.2). In
doing so, the general covariance of the theory remains unaffected. Nevertheless, we may
still organize our perturbative expansion as before, formally treating c¢; as a counterterm
that normal orders 0,¢%0,¢® and retaining all diagrams that are leading order in a 1/N
expansion. This is identical to the calculation presented in Sec. II and we would again
identify a massless graviton pole. In this case, however, we had no need to spontaneously
break general covariance and then take a limit to restore it, allowing us to avoid the potential

problems associated with ghosts, as discussed in Sec. III.
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One point may be puzzling about this result: no mention was made of gauge fixing. While
gauge fixing is of course necessary, we need not specify it to establish the existence of the
massless pole in the way that the calculation of Sec. II is organized. To understand this, it is
useful to consider an analogy. Let us imagine computing ete™ — u ™ scattering in QED
in the following way. Let us add precisely zero to the QED Lagrangian by two cancelling

gauge-non-invariant terms

LQED = [£QED — %(G“Au)z + %(8’%“)2 : (4.3)
where EQED is the usual QED Lagrangian without any gauge fixing terms. To echo our
previous language, we have not specified a gauge fixing condition, but have simple added
zero to the original Lagrangian, so that the U(1) gauge invariance of the theory remains
unaffected. However, we will now organize our perturbation theory so that the last term in
Eq. (4.3) is treated as an interaction (which will have to be formally resummed to all orders
so that we obtain a reliable result). The part of the quantity in brackets that is quadratic
in the fields is invertible and leads to the same photon propagator that one would have

obtained had we chosen to work in Feynman gauge,
—igh

~ |
k2 + e

(4.4)

With the Feynman rule for the new interaction shown in Fig. 4, the scattering amplitude of
interest is represented by the sum of diagrams shown in the same figure. Notice that each
diagram involving insertions of the new vertex provides a factor of the s-channel momentum
p* that contracts with the conserved fermion current on the external lines. Hence, each of
the diagrams involving a new vertex vanish and we are left with the first diagram, precisely
the correct answer we would have obtained in QED had we fixed the gauge at the start.
This result is a consequence both of our unconventional expansion and the particular set of
diagrams we have chosen to consider. The fact that the quadratic terms in QED are not
invertible until a gauge is fixed would be manifest had we summed only the internal lines of
the diagrams first, which would have led to a divergent result. However, order-by-order in
our expansion, the problematic momentum-dependent terms cancel when contracted with
the conserved currents on the external lines, so that we are left with the correct gauge-
invariant part of the amplitude. Diagrams where this cancelation does not occur involve
loops with internal photon lines, but these are not relevant if we are only interested in tree-

level, s-channel photon exchange. The analogous situation is obtained in our gravity theory,
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FIG. 4: QED example discussed in the text.

where the diagrams we consider encode tree-level, s-channel composite graviton exchange;
momentum dependent terms are discarded when contracted with the conserved energy-
momentum tensors on the external lines before the infinite series of diagrams is summed.
What is left is the correct gauge-invariant part of the amplitude. For our present purposes,
we need not specify the gauge fixing condition, which would certainly be relevant if we were
computing amplitudes involving loops of scalar loops (i.e., graviton loops), where we have no
expectation that terms originating from the momentum-dependent parts of the composite
graviton propagator would vanish. How exactly such a gauge fixing condition is implemented
will not effect our results, as one can see from the following argument: in an effective field
theory with the composite graviton field A, , one can directly write down a general gauge-
fixed form for the h,, propagator and observe that the parts which depend on the gauge
choice vanish in the particular s-channel amplitude that we study. This implies that our
corresponding result for the amplitude near the graviton pole will not change regardless of
how the gauge choice is imposed on the fundamental scalar degrees of freedom in the full

theory.

V. UV COMPLETIONS

We have commented in Sec. I that the model reviewed here presents a gravitational
analogy to a similar class of composite gauge boson models, and is of theoretical interest
for similar reasons. Could a model of this type be developed into a realistic description
of nature? First, a metric-independent field theory that reduces to the standard model

plus gravity would need to be presented; this is likely a matter of fleshing out technical
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details, since the basic conceptual approach is clear from the scalar and fermionic models
that have appeared in the literature, as well as the formulation without X7 fields suggested
in Sec. IV of the present review. The recipe one would follow is similar to the one suggested
in the case of our scalar theory in Ref. [4]: One could construct a generally covariant action,
involving the field content of interest, with the help of a non-dynamical auxiliary metric that
one immediately eliminates via the constraint of vanishing energy-momentum tensor. The
technical difficulty comes in solving for the auxiliary metric (or vielbein) field in the general
case; while this could be done exactly in our scalar theory, and in the particular theory
of fermions presented in Ref. [7], more general theories are typically not as cooperative,
with solutions only available in the form of a perturbative expansion in the parameter 1/Vj.
Applying such a perturbative approach to eliminating the auxiliary field leads to an expanded
action analogous to Egs. (2.2) and (2.3), that would allow diagrammatic studies to confirm
the existence of an emergent graviton state. Generalization to the standard model seems
possible via this approach and is the subject of ongoing work.

However, a compelling ultraviolet completion appears to be more challenging. The use
of dimensional regularization in the evaluation of scalar loops in Sec. Il was convenient
since it does not break the general covariance of the theory. The Planck scale was then
found to be a function of the scalar mass m and the finite regulator 1/e. Unfortunately,
this choice for regulating the theory does not allow us to extrapolate scattering amplitudes
above the Planck scale, which we would want in a UV complete theory. (Higher-derivative
operators suppressed by the e-dependent Planck scale will lead to scattering amplitudes
that grow with energy, leading eventually to a violation of unitarity.) In the model we
have discussed, dimensional regularization represents a placeholder for whatever generally
covariant, physical regulator cuts off the theory. In a similar way, one could have maintained
general covariance with Pauli-Villars regulators, but one would again suffer from the same
problem, namely that the unitarity of scattering amplitudes would be violated above a finite
Pauli-Villars scale. (In this case, unitarity violation is associated with the fact that Pauli-
Villars states have negative norm.) Another possibility is to develop a lattice formulation
of the theory, with a finite lattice spacing setting the Planck scale. One would not have
to worry about scattering amplitudes above the Planck scale, since field theory would not
be applicable above the Planck scale. The difficulty in this approach would be in finding

a lattice formulation that preserves a massless graviton without requiring that one go to
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the continuum limit. Finally, an even more exotic completion has been suggested by Erlich,
in which the critical points of the X! field configurations are given a fundamental role in
the stochastic behavior of hidden variables that leads to the emergence of something that
approximates quantum theory [20]. As discussed earlier, the formulation of the theory with
the X! fields implies the presence of ghosts. It would be desirable to show (or arrange)
that these states lead to no inconsistencies in any UV completion that gives the X7 fields a

special significance.

VI. CONCLUSIONS

In this mini-review, we have summarized a recent approach to models of composite gravi-
tons, with a focus on clarifying issues that were not transparent in the original literature.
In particular, we have explained that the original formulation of these models involving
so-called “clock-and-ruler” fields X’ produces a massive composite graviton, whose mass
is taken to approach zero as the expectation values of the X’ field are chosen to do the
same. A separate tuning eliminates a linear graviton term which indicates an instability
associated with the presence of a cosmological constant. We clarified the relevance of the
Weinberg-Witten theorem, explaining (for pedagogical clarity) why an inequivalent theory
consisting only of the interaction terms included in our amplitude analysis (but not our full
theory in its entirety), would yield the same results we obtain in scalar-scalar scattering at
leading order in a 1/N expansion, but would not be expected to preserve a massless graviton
pole at higher order. We also present a reformulation of the model without the X! fields,
not discussed previously in the literature, which preserves general covariance at all times
and provides the massless graviton state without the worry about ghosts that might linger
after taking a limit in a massive composite gravity model. Finally, we point out that the
generalization to the entire standard model plus gravity seems to be a matter of resolving
technical rather than conceptual difficulties, but that a compelling ultraviolet completion
is not yet at hand and worthy of further investigation. The approach summarized here is
unconventional. Nevertheless, the value of thinking about an old problem in unconventional
ways is that it might suggest new avenues for progress that might not be readily apparent
when following well-worn paths. It is hoped that the worked summarized here will, at the

very least, have that positive effect.
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