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Abstract

We review some recent work by Carone, Erlich and Vaman on composite gravitons in metric-

independent quantum field theories, with the aim of clarifying a number of basic issues. Focusing

on a theory of scalar fields presented previously in the literature, we clarify the meaning of the

tunings required to obtain a massless graviton. We argue that this formulation can be interpreted

as the massless limit of a theory of massive composite gravitons in which the graviton mass term is

not of Pauli-Fierz form. We then suggest closely related theories that can be defined without such

a limiting procedure (and hence without worry about possible ghosts). Finally, we comment on

the importance of finding a compelling ultraviolet completion for models of this type, and discuss

some possibilities.
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I. INTRODUCTION

A quantum field may represent a fundamental degree of freedom, or a composite state

described within the context of an effective theory that is applicable in a low-energy regime.

The idea that the gauge fields of the standard model may not be fundamental has appeared

periodically in the literature over the past 50 years [1–3]. Such models must have a gauge

invariance even when no gauge fields are included ab initio. Of particular interest to us

here are models like those described in Ref. [3] where the gauge invariance is maintained by

adopting rather odd-looking actions that are non-polynomial in the fields. It is then shown

that the massless gauge field emerges as a composite state, demonstrated by studying the

properties of appropriately chosen scattering amplitudes. A theory whose Lagrangian has

no gauge field but nonetheless produces one in the infrared appeals to a certain sense of

theoretical frugality; this motivates further study of these and other similar models, even

if their starting point is rather unconventional. Moreover, models in which all the force

carriers are emergent in this way may relate the values of their couplings in the ultraviolet

to the cut off of the theory, potentially leading to interesting relations [2]. This may serve

as a separate motivation.

The present mini-review describes quantum field theory models of this type, proposed by

Carone, Erlich and Vaman [4, 5], that are designed to produce an emergent graviton in the

infrared1. We will focus primarily on a model of scalar fields in this review, since all the

relevant features of this framework can be illustrated with the fewest technical complications.

A similar theory involving fermionic constituents (that is somewhat more complicated to

analyze) was presented in Ref. [7]. While models of composite gauge fields, like the one of

Ref. [3], have gauge-invariant actions that do not include a fundamental gauge field, the

theories we consider here, by analogy, have actions that are generally covariant but that do

not include a fundamental graviton field. Hence, they are metric independent. Early work

on theories where the graviton arises as a composite state can be found in Refs. [8–12]. The

starting point for our discussion will be the metric-independent action

S =

∫
dDx

(
D
2
− 1

V (φa)

)D
2
−1
√√√√∣∣∣∣ det

(
N∑
a=1

∂µφa ∂νφa +
D−1∑
I,J=0

∂µXI ∂νXJ ηIJ

)∣∣∣∣ . (1.1)

1 For other quantum field theory approaches to gravity, see Ref. [6], and references therein.
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This is a theory of N +D real scalar fields, with the XI fields distinguished since they will

be gauge fixed so that

XI = xµδIµ

√
V0

D
2
− 1
− c1, I = 0, . . . , D − 1 . (1.2)

Here V0 has been chosen to be the same as the constant part of the potential

V (φa) = V0 + ∆V − c2 . (1.3)

Note that we may define the constant part of the potential in terms of the two constants

V0 and c2, and the overall scale of the XI profile in terms of the two constants V0 and

c1, without any loss of generality. The counterterms c1 and c2 are chosen to normal order

the operators ∂µφ
a∂νφ

a and m2φ2, respectively (i.e., the counterterms will cancel the loop

formed by contracting the two φa fields in either operator). This choice will allow the

resummation of scattering diagrams to all orders in 1/V0 but at leading order in 1/N , which

will allow us to confirm a massless spin-2 pole, for a special choice of V0. We review this

analysis in Sec. II. In Sec. III, we clarify the meaning of the tuning of V0, as well as its

appearance in both Eqs. (1.2) and (1.3). We will argue that the formulation presented in

Refs. [4, 5] is interpreted consistently as the massless limit of a massive composite gravity

model, where the graviton mass does not have the Pauli-Fierz form. Since this implies the

presence of ghosts, we discuss how that can be avoided by an alternative formulation in

Sec. IV. We discuss possible ultraviolet (UV) completions for this kind of model in Sec. V,

and summarize our conclusions in Sec. VI.

II. GRAVITON POLE

In this section, we review the approach of Refs. [4, 5] towards analyzing the theory defined

in Eq. (1.1). We first assume, for simplicity, the potential of an O(N)-symmetric free scalar

field theory

∆V (φa) =
N∑
a=1

m2

2
φaφa. (2.1)

We then expand Eq. (1.1) formally in powers of 1/V0. The counterterms c1 and c2, which

would appear multiplying a variety of local operators, can be omitted from that expansion,

since any interaction in which they appear will (by design) exactly cancel another in which
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a scalar loop is closed by contracting a pair of φa on a factor of ∂µφ
a∂νφ

a or m2φ2. One then

finds

S =

∫
dDx

[
V0

D/2− 1
+

1

2

N∑
a=1

∂µφ
a∂µφa −∆V (φa) + Lint

]
, (2.2)

where, after some algebra, Lint takes the remarkably simple form

Lint = − 1

4V0
Tµν Πµν|αβ Tαβ +O(1/V 2

0 ) . (2.3)

Here, T µν is the energy-momentum tensor for the free scalar fields φa in Minkowski space

T µν =
N∑
a=1

[
∂µφa∂νφa − ηµν

(
1

2
∂αφa∂αφ

a − 1

2
m2φaφa

)]
, (2.4)

and Πµν|αβ represents the tensor structure

Πµν|αβ =
1

2

[(
D

2
− 1

)
(ηµαηνβ + ηµβηνα)− ηµνηαβ

]
. (2.5)

Unlike Eq. (1.1), this action is suitable for conventional diagrammatic study. In particular,

it was argued in Refs. [4, 5] that the two-into-two scattering of scalars of type a into type

c, with a 6= c, and at leading order in 1/N , gives the set of scattering diagrams shown in

Fig. 1, which can be exactly resummed. As indicated by the diagrams in the bottom line of

Fig. 1, the scattering amplitude iM has a convenient recursive representation. We define

iM(p1, a ; p2, a→ p3, c ; p4, c) ≡ Eµν(p1, p2)[i A
µν|ρσ(q)]Eρσ(p3, p4) , (2.6)

=

+ + +

+

a

p
2

p
1

a

p
3

c

p
4 c

ap
1 ap

1

ap
1

ap
1

p
2

a p
2

a

p
2

a p
2

a

p
3

c

p
3

c p
3

c

p
3

c

p
4 c p

4 c

p
4 c p

4 c

= +

a

p
2

p
1

a

a

p
2

p
1

a

p
3

c

p
4 c

p
3

c

p
4 c

FIG. 1: Two-into-two scalar scattering, a a→ c c, with a 6= c.
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where the factors of Eµν represent the Feynman rule for the flat-space energy-momentum

tensor in Eq. (2.4),

Eµν(p1, p2) ≡ −(pµ1 p
ν
2 + pν1 p

µ
2) + ηµν(p1 · p2 +m2) . (2.7)

The amplitude of Fig. 1 may then be written

Aµν|ρσ = A
µν|ρσ
0 +Kµν

αβ A
αβ|ρσ , (2.8)

where A0 represents the tree-level diagram

A
µν|ρσ
0 = − 1

4V0

[
(D
2
− 1) (ηνρηµσ + ηµρηνσ)− ηµνηρσ

]
, (2.9)

and the kernel Kµν
αβ is given by

Kµν
αβ = −1

2
λ

[
1− D

12

q2

m2

]
(δµαδ

ν
β + δµβδ

ν
α) +O(q4) , (2.10)

where q = p1 + p2 = p3 + p4 and

λ ≡ N(D/2− 1)

2V0

Γ(−D/2)

(4π)D/2
(m2)D/2 . (2.11)

Here we use dimensional regularization, with D = 4 − ε, to evaluate the loops, since this

choice preserves general covariance. We comment further on the choice and meaning of the

regulator in Sec. V. For the choice of V0 for which λ = −1, the momentum independent

terms in Eq. (2.8) cancel and one can solve for the amplitude2 in the vicinity of q2 = 0,

Aµν|ρσ(q) = −M
2−D
Pl

D − 2

[
(D
2
− 1) (ηνρηµσ + ηνσηµρ)− ηµνηρσ

] 1

q2
, (2.12)

where MPl is the D-dimensional Planck mass,

MPl = m

[
N Γ(1− D

2
)

6 (4π)D/2

]1/(D−2)
. (2.13)

Eq. (2.13) implies that we must take ε to be small and negative, which further implies that V0

is positive. The amplitude in Eq. (2.12) displays the correct tensor structure for the gauge-

invariant part of the propagator of a massless, spin-two field. A similar diagrammatic study

2 Our definition of the counterterms c1 and c2 leads to the set of diagrams shown in Fig. 1. Other definitions

would lead to additional diagrams that may make resummation of the scattering amplitude intractable.

If such a resummation could be completed, one would anticipate that the final results would remain

unchanged, given a tuning equivalent to the one in our present scheme.

5



of two-into-four scattering in the same theory was employed to study the self-interactions

of the composite graviton state and the results were found to be consistent with Einstein

gravity, up to higher-derivative corrections [5]. We do not summarize that more burdensome

calculation here, but refer the reader to the original literature. It is worth noting that

the scalar mass m in Eq. (2.13) is smaller than MPl by a factor that is proportional to√
N/|ε|, which we assume is large. For example, a TeV-scale scalar mass would result from

N/|ε| ∼ O(1035). In this sense, our toy model serves as a possible analogy to more realistic

scenarios: the φa fields play the role of ordinary matter (which is light) and generate their

own graviton state (which is massless), with couplings that are Planck-suppressed. One

might also imagine realistic models in which the φa are included in addition to other matter

fields in the theory, with phenomenological consequences. We comment on the approach one

might take to construct more realistic models in Sec. V.

Finally, it is worth stressing that Eq. (2.13) requires that ε is finite. Unlike a conventional

renormalizable field theory, where one would take ε to zero, and absorb divergences in a

finite number of couplings (which is not the case here), the finite regulator implies that

loop diagrams in the present framework give finite and calculable radiative corrections that

depend on the assumed form of the tree-level theory. Similar statements could be made had

we chosen Pauli-Villars fields as regulators instead: the value of the Planck and Pauli-Villars

scale are related, so that the Pauli-Villars states may not be decoupled from the theory. They

would also lead to finite radiative corrections in any loop calculation of interest. The use

of dimensional regularization with finite ε, rather than Pauli-Villars fields at a fixed mass

scale, is a choice motivated by convenience; either would act as a proxy for the generally

covariant physics that completes the theory in the UV. What that physics may be is an issue

we return to in Sec. V.

III. INTERPRETATION AND SUBTLETIES

In this section, we discuss a number of subtleties related to the formulation of the model

that were not fully addressed in the original literature.
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A. The meaning of the tunings

We reviewed in the previous section the method of establishing the existence of a massless

graviton. The result in Eq. (2.12) required that we set λ = −1, or equivalently, tune

V0 = −N(D/2− 1)

2

Γ(−D/2)

(4π)D/2
(m2)D/2 . (3.1)

To understand the physical meaning of this choice, let us first compute the counterterms c1

and c2, which were designed to eliminate an infinite number of scalar loop tadpole diagrams

like the one shown in Fig. 2, which are also of leading order in 1/N . This choice led us to

a tractable calculation. A straightforward calculation, using the same regulator, yields at

leading order in 1/N

c1 = −N
2

Γ(−D/2)

(4π)D/2
(m2)D/2 and c2 =

N

2

Γ(1−D/2)

(4π)D/2
(m2)D/2 . (3.2)

One notices that V0/(D/2−1)− c1 exactly vanishes with this tuning, a fact that was missed

in Ref. [4] due to a sign error, but corrected in Ref. [5]. This quantity is precisely what

determines the assumed vacuum expectation value (vev) for the fields XI in Eq. (1.2). A

set of D scalar fields with the profile given in Eq. (1.2) have appeared elsewhere in the

literature, namely in models which implement a gravitational Higgs mechanism, for the

purpose of producing massive gravitons [13]. From that perspective, the meaning of the

tuning of V0 is demystified: it is the one value that avoids the spontaneous breaking of

general covariance so that we obtain a massless spin-2 pole in the solution of Eq. (2.8).

FIG. 2: Example of a diagram that is exactly cancelled by the counterterms c1 and c2.

This observation, however, leads to some interesting complications. The profile of the

XI field in Eq. (1.2) is achieved via a gauge-fixing, analogous to the static gauge fixing

condition in string theory, but not if the profile is exactly vanishing. A natural way around

this problem is to implement the gauge fixing by working in the limit

V0
D/2− 1

− c1 −→ 0 (3.3)
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without actually hitting the limit point. This will assure that the massless graviton identified

in Sec. II still remains in the spectrum of the theory.

On the other hand, this approach may assure that other unwanted states are present as

well. If one repeats the calculation of Sec. II away from the limit point, one finds

Aµν|ρσ(q) =
1

λ

M2−D
Pl

D − 2

[
(D
2
− 1) (ηνρηµσ + ηνσηµρ)− ηµνηρσ

] 1

q2 − 12
Dλ
m2(1 + λ)

, (3.4)

which reproduces Eq. (2.12) in the limit λ → −1. Provided (1 + λ)/λ > 0, there is a

(non-tachyonic) massive graviton pole. While a massive spin-2 state has additional degrees

of freedom, the tensor structure of the amplitude remains unchanged, and there is no van-

Damn-Veltman-Zhakarov (vDVZ) discontinuity [14, 15]. This result can be understood if the

graviton mass is not of Pauli-Fierz form, which implies the existence of a spin-0 ghost [16].

In particular, given a mass term of the form

Lmass = −
m2
g

2
(hµν hµν −

1

2
h2) , (3.5)

the spin-2 and ghost degrees of freedom are degenerate in mass [17] and their propagators can

be combined, so that the parts which contribute to our scattering amplitude have precisely

the tensor structure shown in Eq. (3.4). This can be confirmed using the formula in Ref. [18]

for the graviton propagator assuming an arbitrary non-Pauli-Fierz mass term. So, we may

still have a massless composite graviton, but at the expense of a composite ghost.

Does this ghost cause any problems in the limit that the graviton mass is taken to zero?

The situation is unclear. Certainly the diagrams that we have considered in Sec. II are

unaffected since the composite ghost only appears after summing internal chains of scalar

loops which also yield the massive composite graviton; one of the degrees of freedom of

the massive graviton exactly cancels the ghost (as we described earlier), while two degrees

of freedom do not couple to the conserved energy-momentum tensors on the external lines.

What is left are the two degrees of freedom we usually associate with a massless graviton. We

can then smoothy take the massless limit of the amplitude considered in Sec. II, recovering

our earlier results. However, the fact that the spectrum contains a stable ghost state suggests

that the exact S-matrix of the theory is not unitary and raises the worry that some violation

of unitarity at the perturbative level lurks somewhere at higher loop order in the theory.3

3 Here we assume that a violation of unitarity above MPl due to our choice of regulator would be addressed in

a UV-complete theory, while the problem originating from ghosts would likely persist in such a completion.
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Rather than attempt to resolve these issues, we will suggest a modification of the model

that avoids these potential problems entirely. We describe this in Sec. IV.

However, before we discuss that reformulation, let us discuss the remaining tuning that

was incorporated in the formulation of Sec. II; the appearance of the same constant V0 in

the potential and in the XI vev. To understand the meaning of this choice, let us imagine

shifting the value of V0 in the potential, which we can equivalently interpret as a shift

c2 → c2 − ∆c2, with c2 defined precisely as before, a counterterm that effectively normal

orders the operator m2φ2/2. The shift ∆c2 appears everywhere in the interaction Lagrangian

where ∆V appears; hence one finds a new interaction

Lint = − 1

4V0
Tµν Πµν|αβ Tαβ −

∆c2
2V0

ηαβTαβ . (3.6)

Imagine connecting the interaction proportional to ∆c2 to a chain of loops, as in Fig. 3. This

is precisely the same diagrammatic resummation as in our scattering calculation except that

one external two-scalar-line factor E(p1, p2)µν is replaced by −∆c2 ηµν . This corresponds to

scattering off a graviton tadpole, an indication of an instability that one would expect when

doing a flat-space expansion gµν = ηµν + hµν in the presence of a cosmological constant.

Hence, ∆c2 must be tuned to zero, which was built into our initial choice for the form of

Eqs. (1.2) and (1.3). Aside from the vanishing of the graviton mass, further evidence that

our tunings eliminate a cosmological constant was provided in Ref. [5], where two-into-four

scattering amplitudes were studies to gain information on the form of the three-composite

graviton vertex. Various contributions to the induced vertex that were independent of

graviton momenta were found to exactly cancel, just as one would expect if the cosmological

constant has been set to zero. In summary, the two tunings we have identified eliminate the

spontaneous breaking of general covariance (by enforcing a vanishing XI field vev) and also

eliminate the terms one would expect if a cosmological constant were present.

B. Relation to the Weinberg-Witten Theorem

The Weinberg-Witten Theorem provides an impediment to constructing a theory of

massless composite gravitons if the theory has an S-matrix and a non-vanishing, conserved

Lorentz-covariant energy-momentum tensor [19]. With the usual definition

Tµν =
2√
|g|

δS

δgµν
, (3.7)
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FIG. 3: Composite graviton tadpole for ∆c2 6= 0.

it is clear that Eq. (1.1) has no conserved energy-momentum tensor, by virtue of its metric

independence. Alternatively, one can write the action in terms of an auxiliary metric gµν ,

S =

∫
dDx

√
|g|

[
1

2
gµν

(
N∑
a=1

∂µφ
a ∂νφ

a +
D−1∑
I,J=0

∂µX
I∂νX

JηIJ

)
− V (φa)

]
, (3.8)

while imposing a constraint on the partition function that the energy-momentum tensor

vanishes.4 Solving the constraint for gµν and replacing the auxiliary metric in the action

leads precisely to our starting point in Eq. (1.1) [4, 5]. One might expect that similar results

should be obtained in metric-independent theories that cannot necessarily be re-expressed

in terms of an auxiliary metric, so the existence of a mapping between these two descriptions

is not essential. In any case, the absence of a Lorentz-covariant energy-momentum tensor

violates the assumptions of the Weinberg-Witten theorem, so the results we have described

present no inconsistency. Note that the vanishing of the energy-momentum tensor of the

full theory (gravity and matter) does not preclude the graviton from coupling to the non-

vanishing energy-momentum tensor of the scalar fields alone, as we have seen in Sec. II.

Conversely, if one were handed an alternative theory that matched only the leading

order terms appearing in the expanded action, Eqs. (2.2) and (2.3), one would expect the

Weinberg-Witten theorem to apply, even though our calculation at leading order in 1/N

would give the same results in both theories. In this case, one simply expects that a graviton

mass would appear at next order in 1/N in the alternative theory; this is precisely the order

at which that theory would fail to reproduce the metric-independent and generally covariant

form of Eq. (1.1).

4 Imposing a constraint on the partition function differs from simply integrating over the auxiliary metric,

since the latter leads to the presence of a functional determinant in the remaining integrand; hence, we

cannot show at a quantum mechanical level that our formulation is equivalent to simply changing the

order of integration over the metric and the fields in a model of induced gravity.
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Based on our results, and the general covariance of Eq. (1.1), we would expect the massless

graviton pole to persist away from the large-N limit, even if there were a single scalar field φ.

In this case, however, other non-perturbative techniques would be required to demonstrate

the existence of the massless spin-2 state. This direction is worthy of further investigation.

IV. A MODEL WITHOUT THE LIMIT

In Sec. III, we clarified the interpretation of the results presented in Sec. II. The XI fields

are gauge-fixed, with no remaining physical degrees of freedom, with a profile that must be

taken to approach zero as a limit so that general covariance is not spontaneously broken.

One then wonders: are the XI fields really serving any meaningful purpose in the theory?

In this section, we show that the results of Sec. II could be obtained in the same theory

without the XI fields, working at the λ = −1 limit point where general covariance is exact.

In this case, one does not need to worry about the potential consequence of ghosts from the

composite massive gravity theory that may remain after the massless limit is taken.

The reformulation of the theory can be summarized as follows: We begin with the simpler

action

S =

∫
dDx

(
D
2
− 1

V (φa)

)D
2
−1
√√√√∣∣∣∣ det

(
N∑
a=1

∂µφa ∂νφa

)∣∣∣∣ , (4.1)

and add zero to it in the following way:

S =

∫
dDx

(
D
2
− 1

V (φa)

)D
2
−1
√√√√∣∣∣∣ det

(
V0

D
2
− 1

ηµν − c1 ηµν +
N∑
a=1

∂µφa ∂νφa

)∣∣∣∣ , (4.2)

where V0 and c1 have precisely the same values given in Eqs (3.1) and (3.2), respectively.

In other words, we now have no XI fields, we have not specified a gauge fixing condition,

and we have simply added zero to the quantity within the determinant in Eq. (4.2). In

doing so, the general covariance of the theory remains unaffected. Nevertheless, we may

still organize our perturbative expansion as before, formally treating c1 as a counterterm

that normal orders ∂µφ
a∂νφ

a and retaining all diagrams that are leading order in a 1/N

expansion. This is identical to the calculation presented in Sec. II and we would again

identify a massless graviton pole. In this case, however, we had no need to spontaneously

break general covariance and then take a limit to restore it, allowing us to avoid the potential

problems associated with ghosts, as discussed in Sec. III.
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One point may be puzzling about this result: no mention was made of gauge fixing. While

gauge fixing is of course necessary, we need not specify it to establish the existence of the

massless pole in the way that the calculation of Sec. II is organized. To understand this, it is

useful to consider an analogy. Let us imagine computing e+e− → µ+µ− scattering in QED

in the following way. Let us add precisely zero to the QED Lagrangian by two cancelling

gauge-non-invariant terms

LQED =

[
LQED −

1

2
(∂µAµ)2

]
+

1

2
(∂µAµ)2 , (4.3)

where LQED is the usual QED Lagrangian without any gauge fixing terms. To echo our

previous language, we have not specified a gauge fixing condition, but have simple added

zero to the original Lagrangian, so that the U(1) gauge invariance of the theory remains

unaffected. However, we will now organize our perturbation theory so that the last term in

Eq. (4.3) is treated as an interaction (which will have to be formally resummed to all orders

so that we obtain a reliable result). The part of the quantity in brackets that is quadratic

in the fields is invertible and leads to the same photon propagator that one would have

obtained had we chosen to work in Feynman gauge,

D̃µν =
−igµν

k2 + iε
. (4.4)

With the Feynman rule for the new interaction shown in Fig. 4, the scattering amplitude of

interest is represented by the sum of diagrams shown in the same figure. Notice that each

diagram involving insertions of the new vertex provides a factor of the s-channel momentum

pµ that contracts with the conserved fermion current on the external lines. Hence, each of

the diagrams involving a new vertex vanish and we are left with the first diagram, precisely

the correct answer we would have obtained in QED had we fixed the gauge at the start.

This result is a consequence both of our unconventional expansion and the particular set of

diagrams we have chosen to consider. The fact that the quadratic terms in QED are not

invertible until a gauge is fixed would be manifest had we summed only the internal lines of

the diagrams first, which would have led to a divergent result. However, order-by-order in

our expansion, the problematic momentum-dependent terms cancel when contracted with

the conserved currents on the external lines, so that we are left with the correct gauge-

invariant part of the amplitude. Diagrams where this cancelation does not occur involve

loops with internal photon lines, but these are not relevant if we are only interested in tree-

level, s-channel photon exchange. The analogous situation is obtained in our gravity theory,
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FIG. 4: QED example discussed in the text.

where the diagrams we consider encode tree-level, s-channel composite graviton exchange;

momentum dependent terms are discarded when contracted with the conserved energy-

momentum tensors on the external lines before the infinite series of diagrams is summed.

What is left is the correct gauge-invariant part of the amplitude. For our present purposes,

we need not specify the gauge fixing condition, which would certainly be relevant if we were

computing amplitudes involving loops of scalar loops (i.e., graviton loops), where we have no

expectation that terms originating from the momentum-dependent parts of the composite

graviton propagator would vanish. How exactly such a gauge fixing condition is implemented

will not effect our results, as one can see from the following argument: in an effective field

theory with the composite graviton field hµν , one can directly write down a general gauge-

fixed form for the hµν propagator and observe that the parts which depend on the gauge

choice vanish in the particular s-channel amplitude that we study. This implies that our

corresponding result for the amplitude near the graviton pole will not change regardless of

how the gauge choice is imposed on the fundamental scalar degrees of freedom in the full

theory.

V. UV COMPLETIONS

We have commented in Sec. I that the model reviewed here presents a gravitational

analogy to a similar class of composite gauge boson models, and is of theoretical interest

for similar reasons. Could a model of this type be developed into a realistic description

of nature? First, a metric-independent field theory that reduces to the standard model

plus gravity would need to be presented; this is likely a matter of fleshing out technical
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details, since the basic conceptual approach is clear from the scalar and fermionic models

that have appeared in the literature, as well as the formulation without XI fields suggested

in Sec. IV of the present review. The recipe one would follow is similar to the one suggested

in the case of our scalar theory in Ref. [4]: One could construct a generally covariant action,

involving the field content of interest, with the help of a non-dynamical auxiliary metric that

one immediately eliminates via the constraint of vanishing energy-momentum tensor. The

technical difficulty comes in solving for the auxiliary metric (or vielbein) field in the general

case; while this could be done exactly in our scalar theory, and in the particular theory

of fermions presented in Ref. [7], more general theories are typically not as cooperative,

with solutions only available in the form of a perturbative expansion in the parameter 1/V0.

Applying such a perturbative approach to eliminating the auxiliary field leads to an expanded

action analogous to Eqs. (2.2) and (2.3), that would allow diagrammatic studies to confirm

the existence of an emergent graviton state. Generalization to the standard model seems

possible via this approach and is the subject of ongoing work.

However, a compelling ultraviolet completion appears to be more challenging. The use

of dimensional regularization in the evaluation of scalar loops in Sec. II was convenient

since it does not break the general covariance of the theory. The Planck scale was then

found to be a function of the scalar mass m and the finite regulator 1/ε. Unfortunately,

this choice for regulating the theory does not allow us to extrapolate scattering amplitudes

above the Planck scale, which we would want in a UV complete theory. (Higher-derivative

operators suppressed by the ε-dependent Planck scale will lead to scattering amplitudes

that grow with energy, leading eventually to a violation of unitarity.) In the model we

have discussed, dimensional regularization represents a placeholder for whatever generally

covariant, physical regulator cuts off the theory. In a similar way, one could have maintained

general covariance with Pauli-Villars regulators, but one would again suffer from the same

problem, namely that the unitarity of scattering amplitudes would be violated above a finite

Pauli-Villars scale. (In this case, unitarity violation is associated with the fact that Pauli-

Villars states have negative norm.) Another possibility is to develop a lattice formulation

of the theory, with a finite lattice spacing setting the Planck scale. One would not have

to worry about scattering amplitudes above the Planck scale, since field theory would not

be applicable above the Planck scale. The difficulty in this approach would be in finding

a lattice formulation that preserves a massless graviton without requiring that one go to
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the continuum limit. Finally, an even more exotic completion has been suggested by Erlich,

in which the critical points of the XI field configurations are given a fundamental role in

the stochastic behavior of hidden variables that leads to the emergence of something that

approximates quantum theory [20]. As discussed earlier, the formulation of the theory with

the XI fields implies the presence of ghosts. It would be desirable to show (or arrange)

that these states lead to no inconsistencies in any UV completion that gives the XI fields a

special significance.

VI. CONCLUSIONS

In this mini-review, we have summarized a recent approach to models of composite gravi-

tons, with a focus on clarifying issues that were not transparent in the original literature.

In particular, we have explained that the original formulation of these models involving

so-called “clock-and-ruler” fields XI produces a massive composite graviton, whose mass

is taken to approach zero as the expectation values of the XI field are chosen to do the

same. A separate tuning eliminates a linear graviton term which indicates an instability

associated with the presence of a cosmological constant. We clarified the relevance of the

Weinberg-Witten theorem, explaining (for pedagogical clarity) why an inequivalent theory

consisting only of the interaction terms included in our amplitude analysis (but not our full

theory in its entirety), would yield the same results we obtain in scalar-scalar scattering at

leading order in a 1/N expansion, but would not be expected to preserve a massless graviton

pole at higher order. We also present a reformulation of the model without the XI fields,

not discussed previously in the literature, which preserves general covariance at all times

and provides the massless graviton state without the worry about ghosts that might linger

after taking a limit in a massive composite gravity model. Finally, we point out that the

generalization to the entire standard model plus gravity seems to be a matter of resolving

technical rather than conceptual difficulties, but that a compelling ultraviolet completion

is not yet at hand and worthy of further investigation. The approach summarized here is

unconventional. Nevertheless, the value of thinking about an old problem in unconventional

ways is that it might suggest new avenues for progress that might not be readily apparent

when following well-worn paths. It is hoped that the worked summarized here will, at the

very least, have that positive effect.
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