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Abstract—Quantum cryptography provides absolute security
against an all-powerful eavesdropper (Eve). However, in practice
Eve’s resources may be restricted to a limited aperture size
so that she cannot collect all paraxial light without alerting
the communicating parties (Alice and Bob). In this paper we
study a quantum wiretap channel in which the connection from
Alice to Eve is lossy, so that some of the transmitted quantum
information is inaccessible to both Bob and Eve. For a pure-
loss channel under such restricted eavesdropping, we show that
the key rates achievable with a two-mode squeezed vacuum
state, heterodyne detection, and public classical communication
assistance—given by the Hashing inequality—can exceed the se-
cret key distillation capacity of the channel against an omnipotent
eavesdropper. We report upper bounds on the key rates under the
restricted eavesdropping model based on the relative entropy of
entanglement, which closely match the achievable rates. For the
pure-loss channel under restricted eavesdropping, we compare
the secret-key rates of continuous-variable (CV) quantum key
distribution (QKD) based on Gaussian-modulated coherent states
and heterodyne detection with the discrete variable (DV) decoy-
state BB84 QKD protocol based on polarization qubits encoded
in weak coherent laser pulses.

For a full version see: https://arxiv.org/abs/1903.03136.

I. INTRODUCTION

In classical information theory, private communication over
a wiretap channel PY,Z|X between a sender X and a legitimate
receiver Y in the presence of a wiretapper Z (Fig. 1 (a)), both
without public discussion [1], and with public discussion [2],
has been widely studied. The capacity of the channel for the
latter task, often known as the secret key agreement capacity
P2, can exceed the capacity for the former (the private capacity
P1), and is upper bounded by the intrinsic information [3]

P1 ≤ P2 ≤ min
Z→Z′

I(X : Y |Z ′), (1)

where I(X : Y |Z ′) is the conditional mutual information.
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Fig. 1. (a) A Classical wiretap channel. (b) A quantum wiretap channel
NA′E′→BE from sender A′ to receiver B, isometrically extended to depict
a wiretapper E, who has access to the full purification of the channel.

In the quantum case, Takeoka et al [4] gave an upper bound
on the P2 capacity of a quantum wiretap channel (Fig. 1 (b))
based on the squashed entanglement [5] of the channel, an
entanglement measure inspired by the intrinsic information.
More recently, Pirandola et al. [6] gave an upper bound to the
P2 capacity based on the relative entropy of entanglement of
the channel. In the case of a pure-loss bosonic channel, this
upper bound matches the best known lower bound [7], [8] on
its P2 capacity, and thus establishes its capacity [6].

Traditionally, in a quantum wiretap channel as shown in
Fig. 1(b), the eavesdropper Eve is considered as all-powerful.
Mathematically, this is referring to an isometric extension
UNA′E′→BE (Note that UA′E′→BE is a unitary, NA′→B is a
channel (TPCP map), and UA′→BE is an isometry. We don’t
need to define an isometry formally for the purposes of this
paper.) of the quantum channel NA′→B , a trace-preserving
completely positive map from A to B. Eve has access to
an input quantum system E′, which is in a state statistically
independent of Alice’s system A′, and jointly evolves with A′

under a unitary transformation U leading to Bob’s quantum
system B and Eve’s system E, where the BE joint system
may be classical correlated or in general entangled. Physically,
this implies that Eve has access to all the light Alice transmits
that doesn’t arrive at Bob, and all operations at the input
and the output of the channel as allowed by the laws of
quantum physics. However, in most realistic scenarios, Eve’s
capabilities are limited. Various forms of relaxations to this all
powerful Eve have considered in the literature, such as lossy
power collection [9], imperfect reverse classical communica-
tion [10] and finite memory lifetimes [11]. One such restriction
on Eve is with regard to her flux-collection capability, e.g., in
wireless communication she could be limited by the size of
her receiver aperture, or more generally, she may be forbidden
from collecting light from an exclusion zone around Bob’s
receiver without being detected. A similar model is the trusted
noise QKD, see [12] for a related review.

In this work, we present a secure-key rate (SKR) analysis
(lower and upper bounds) of secret key agreement over a pure-
loss channel from a sender Alice to receiver Bob (Eve injects
vacuum state) under such a restricted wiretap channel model,
in which the eavesdropper Eve receives only a fraction of the
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photons that are lost in transmission as shown in Fig. 2. Note
that this scenario is exclusive to the quantum case, i.e., it does
not arise in the classical case, because the presence of any
other correlated output to the channel, which neither Bob nor
Eve have access to, can simply be ignored.

(a) (b)

Fig. 2. (a) A restricted Eve quantum wiretap channel, modeled as a
broadcast channel from sender Alice to receiver Bob, Eavesdropper Eve and
a system F that neither Bob nor Eve can access. (b) Entanglement-based
model for quantum communication over a lossy bosonic wiretap channel
of transmissivity η from Alice to Bob under restricted eavesdropping. Alice
prepares an entangled pure state |ψ〉AA′

and sends A′ through the channel
to Bob. The restriction on the eavesdropper Eve is modeled by a pure-loss
beam splitter of transmissivity κ. Eve is shown to inject a state ρE

′
into the

channel to Bob, which is a vacuum state (passive attack) in this paper.

II. ACHIEVABLE SECURE KEY RATES OVER PURE-LOSS
CHANNEL UNDER RESTRICTED EAVESDROPPING

Consider an asymptotically large number of independent
and identically distributed (i.i.d.) copies of an entangled pure
state ψAA

′
at Alice’s side, and A′ being sent to Bob through

the wiretap channel as illustrated in Fig. 2. Traditionally in
security analysis, Eve is assumed to have access to all the light
that doesn’t arrive at Bob, i.e. access to the full purification of
the state across the channel ρAB . In other words, Eve holds a
quantum system E such that the systems A, B and E are in
a pure state |ψ〉ABE satisfying ρAB = TrE(ψABE).

In this model, with collective attack as the optimal attack
for an eavesdropper Eve [13], the Hashing lower bound on
the key rate for direct reconciliation, namely when Alice
measures system A to give rise to a classical outcome X that
is publically communicated to Bob, is given by

K→(ρ) ≥ I(X;B)ω − I(X;E)ω. (2)

Here state ωXBE =
∑
x P (x)|x〉〈x|X ⊗ ρBEx , the quantum

mutual information quantities I(X;B) and I(X;E) are the
Holevo information quantities

I (P (x);B) = H(B)−
∑
x

P (x)H
(
ρBx
)

(3)

I (P (x);E) = H(E)−
∑
x

P (x)H
(
ρEx
)
. (4)

Conditional quantum states ρBx and ρEx are defined as:

ρBx =
∑
|e〉

〈e|ρBEx |e〉, ρEx =
∑
|b〉

〈b|ρBEx |b〉, (5)

where ρBEx is the density matrix of system BE conditioned
on the measurement result X = x.

K→ ≥ I(X;B)− I(X;E) (6)

= H(B)−H(E)−
∑
x

P (x)
(
H
(
ρBx
)
−H

(
ρEx
))
. (7)

For reverse reconciliation, similarly, by changing the roles of
Alice and Bob, we arrive at an expression for a Hashing lower
bound on the secret key distillation rate K← given by

K← ≥ I(A;Y )− I(Y ;E) (8)

= H(A)−H(E)−
∑
y

P (y)
(
H
(
ρAy
)
−H

(
ρEy
))

(9)

Y being the classical outcome of measuring Bob’s quantum
system B. Notice that because κ 6= 1 in Fig. 2, ρABE is not a
pure state . (Here the pure state would be |ψ〉ABEF for pure-
loss channel.) That’s why Eqs. (7) and (9) can’t be further
simplified. In unrestricted case (κ = 1), Eqs. (7) and (9) can
give us coherent and reverse coherent information [14], [15].

III. UPPER BOUNDS FOR SECRET KEY DISTILLATION
UNDER RESTRICTED EAVESDROPPING

In this section, we recall the relative entropy of entangle-
ment [16] of a channel, which serves as an upper bound
on the entanglement and secret key distillation capacities of
the channel under unlimited two-way classical assistance. We
extend these measures to the restricted eavesdropping model.

Definition 1: The relative entropy of entanglement of a state
ρAB is defined as its relative entropy with the closest separable
state in Hilbert space:

ER(ρ) := inf
σ∈SEP

D(ρ||σ), (10)

where D(ρ||σ) is the relative entropy between states ρ and σ,
defined as D(ρ||σ) := Tr (ρ (log ρ− log σ)).

Definition 2: The relative entropy of entanglement of a
channel NA′→B is defined as [6]

ER(N ) := sup
φAA′

ER (A;B)ρ , (11)

where ρAB = NA′→B(φAA
′
). In other words, it is the relative

entropy of the state distributed across the channel optimized
over all possible inputs to the channel.

Using the relative entropy of entanglement of a channel,
Pirandola et al. (PLOB) [6] gave an upper bound to the energy-
unconstrained, two-way unlimited LOCC-assisted secret key
distillation capacity of a pure-loss channel of transmissivity
η as P2 ≤ − log2 (1− η). Using the same method, Takeoka
et al. [17], then derived the capacity region of a pure-loss
broadcast channel.

An upper bound on the secret key distillation capacity under
the restricted eavesdropping model considered here follows
from the broadcast channel result [17][Eq. (26)] as:

ER(B;AF )φ = log2

(
1− ηF

1− ηB − ηF

)
. (12)

Here the notation B;AF means that the closest separable
state for the relative entropy entanglement calculation is a
state separating system B from systems AF . In Ref. [17],
key to obtaining the above bound was the different physical
realizations of the same broadcast channel, one of them being
as shown in Fig. 3. Since only vacuum states are injected from

3033

Authorized licensed use limited to: The University of Arizona. Downloaded on June 04,2020 at 20:32:50 UTC from IEEE Xplore.  Restrictions apply. 



𝐴′

𝐴

𝐸′ = |0⟩

𝐸

𝐵

𝐹

𝐹′ = |0⟩

𝜓𝐴𝐴′

(TMSV)

1 − 𝜂𝐶
𝜂𝐵

1 − 𝜂𝐶

Broadcast channel

Fig. 3. Broadcast channel shown in [17], where a single sender sends
information to receivers F , E and B through different lossy channels. Here
the signal state is sent out from A′ while only vacuum states are injected from
F ′ and E′. This can be viewed as equivalent to our model if we consider
mode F as an inaccessible system, and E as the eavesdropper Eve.

F ′ and E′ in Fig. 3, it is equivalent to our model in Fig. 2
with ηB = η and ηC = (1−κ)(1−η). Thus, the upper bound
expression for our restricted eavesdropping case is obtained as

ER(B;AF ) = log2

(
η + κ(1− η)

κ(1− η)

)
. (13)

IV. RESULTS

In this section, we apply the methods of secure
key rate (SKR) analysis and upper bounds presented in
Secs. II and III to pure-loss channels fed with an in-
put two-mode squeezed vacuum (TMSV) state |Ψ〉AA′

=
(cosh r)−1

∑∞
n=0(tanh r)n|n〉|n〉. The achievable rates are

given for heterodyne detection either at Alice or Bob, which
correspond to direct and reverse information reconciliation
scenarios, respectively.

A. Achievable Secure Key Rates

First we will show the achievable rate with direct recon-
ciliation, namely when Alice performs heterodyne detection
on her system, as depicted in Fig. 4. Assuming TMSV state
input, we calculate the achievable rate for this setup.

Since the heterodyne measurement on A projects the other
part A′ of the TMSV onto a coherent state ρA

′

x = |α〉, we know
that the state at the outputs of the beam splitters conditioned on
measurement result x, namely ρBx , ρEx , ρFx , are also coherent
states with attenuated amplitudes. Because they are pure states
we have

H
(
ρBx
)

= H
(
ρEx
)

= 0 (14)

So, using Eq. (7), we have

K→ ≥ H(B)−H(E) (15)
= h (ηµ)− h (κµ (1− η)) , (16)

lim
µ→∞

K→ = log2

η

κ(1− η)
, (17)

where h(x) = (x + 1) log2(x + 1) − x log2(x) is the von
Neumann entropy of a thermal Gaussian state of mean photon
number x [18]. Eq. (17) gives the limiting value of the key
rate when the input mean photon number µ is taken to infinity,

which can be shown to be the optimal input power. Notice that
in Eq. (17) κ is in the denominator inside the log function,
thus restricting Eve’s received power can help increase the
achievable rate beyond the rate achievable against unrestricted
Eve, viz., log2

(
η

1−η

)
(κ = 1 in Eq. (17)).

In the case of an unrestricted Eve and direct reconciliation,
we need to have η > (1 − η) to attain a positive key rate in
Eq. (17). Similarly, for the key rate to be greater than zero in
the restricted Eve case, we need to have η > κ(1 − η). This
condition captures the limitation of direct reconciliation with
regard to the transmission distance, namely that the key rate
turns vanishes beyond a threshold distance because transmis-
sivity η decreases with increasing transmission distance.
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Fig. 4. Entanglement-based model for secret key distillation over a pure
loss bosonic channel based on heterodyne detection and direct reconciliation.
Here Alice performs heterodyne measurement of system A and this projects
the system A′ of the TMSV state onto a coherent state |α〉A′

. She then sends
side information in the classical channel to Bob to help him distill keys from
his system. Here vacuum states are injected from E′ and F ′ denoting a pure-
loss channel. The restriction on Eve is imposed by letting only a fraction κ
of the wiretapped light to arrive at Eve’s receiver.
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Fig. 5. Entanglement-based model for secret key distillation over a pure-loss
bosonic channel based on heterodyne detection and reverse reconciliation.
Here Bob performs heterodyne measurement on his system B; the states
injected from E′ and F ′ are vacuum states.

Now, consider the case of reverse reconciliation, as depicted
in Fig. 5. Here, Bob performs heterodyne measurement on
his system B and sends side information through a classical
communication channel to Alice to help her distill secret key.
Using Eq. (9), we get

K← ≥ h(µ)− h(κµ(1− η))

−
∑
y

P (y)

(
h

(
µ(1− η)

1 + ηµ

)
− h

(
(1− η)κµ

1 + ηµ

))
(18)
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= h(µ)− h(κµ(1− η))

−
(
h

(
µ(1− η)

1 + ηµ

)
− h

(
(1− η)κµ

1 + ηµ

))
, (19)

lim
µ→∞

K← = log2

1

κ(1− η)
− h

(
1− η
η

)
+ h

(
(1− η)κ

η

)
.

(20)

Since in this case the post-measurement conditional states
are mixed states, we will have to derive the covariance
matrix and calculate the von Neumann entropies shown in
Eq. (18). Since the argument of the h functions in Eq. (18) is
independent of P (y), we get Eq. (19) by summing over P (y)
to equal one. Taking the limit of input photon number µ→∞,
we obtain the optimal achievable rate given in Eq. (20).

Eq. (20), when κ = 1, reduces to − log2(1 − η), which
is the capacity for the pure-loss channel under unrestricted
eavesdropping. If we compare Eq. (20) for κ 6= 0 with
− log2(1 − η), not only do we have κ showing up in the
denominator inside the log function, but we also have the
correction term: −(h(µ(1−η)1+ηµ )− h( (1−η)κµ

1+ηµ )). This correction
term changes differently with κ compared to the first term
log2( 1

κ(1−η) ). Unlike the case with omnipotent Eve, we find
that the achievable rate with reverse reconciliation is not
always better than the rate with direct reconciliation.

Here in Fig. 6, we plot the SKR as a function of κ for
channel transmissivity η = 0.6. When 1 − κ � 1, which
includes the unrestricted Eve’s case (κ = 1), we find that
reverse reconciliation gives a higher achievable rate than direct
reconciliation. However this is not always the case, since for
κ � 1 the rate with direct reconciliation is shown to exceed
the rate with reverse reconciliation.
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Fig. 6. Secure key rate against restricted eavesdropping over a pure-loss
channel with TMSV state and heterodyne detection. Direct reconciliation vs.
reverse reconciliation rates as a function of κ. Here the channel transmissivity
is set to η = 0.6.

In Fig. 7, we plot the direct and reverse reconciliation
achievable rates as a function of the channel loss in dB for
κ = 0.1. We see that the reverse reconciliation scheme has

a better transmission distance than the direct reconciliation
scheme, which is similar to the case when Eve is unrestricted
as was shown in [7]. However, here both direct reconciliation
and reverse reconciliation can achieve higher rates than is the
case when Eve is unrestricted.

channel loss in dB
10-1 100 101 102

Se
cu

re
 K

ey
 R

at
e 

(e
bi

t/m
od

e)

0

1

2

3

4

5

6

7

8

9
SKR vs channel loss in dB with 5=0.1

Reverse Reconciliation
Direct Reconciliation
Unrestricted Eve's case capacity: -log2((1-eta))

Fig. 7. Direct reconciliation vs. reverse reconciliation achievable rate as a
function of channel loss in dB with κ = 0.1. Here the channel capacity
against unrestricted Eve [6] is also shown for comparison.

B. Upper Bounds

In this section we apply Eq. (13) to plot the upper bound
against lower bounds for different values of κ in Fig. 8. The
plot shows how our upper bound works against lower bound in
pure loss channel. We plot the relative entropy entanglement
upper bound and lower bound for three sets of different values
of κ, denoted by different colors.
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Fig. 8. Relative entropy of entanglement upper bounds (UB ER) and lower
bounds with different values of thermal noise. The input photon number for
the upper bounds is 103.

Here we can see that when κ is close to 1, the upper bound
almost matches the lower bound. And they match each other
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when κ = 1 which corresponds to the unrestricted case [6].
However when κ decreases the upper bound becomes looser,
but still can give us a very narrow space for possible capacity
of the channel for the task of secret key distillation. The small
gaps between our upper bounds and lower bounds have narrow
the region to search for this problem’s capacity.

One interesting thing to see from Fig. 8 is that the region
where direct reconciliation gives higher rate than reverse
reconciliation has a large overlap with the region where the
upper bound and lower bound are closest to each other. For
example, when κ = 0.01 in Fig. (8) the upper bound and
lower bound diverge from each other close to the point where
direct reconciliation starts to give a lower rate than reverse
reconciliation. Another observation from the plot is that when
κ decreases the lower bound tends to decrease slower with
increasing channel loss at least when channel loss is low.

V. COMPARISON BETWEEN CV AND DV QKD UNDER
RESTRICTED EAVESDROPPING

In this section, we compare achievable rates against re-
stricted Eve for the Gaussian-modulated CV QKD protocol
(with coherent states and heterodyne detection) and the DV
decoy-state BB84 protocol. A similar restricted eavesdropping
model analysis on DS-BB84 is done in "Exclusion-Zone
Analysis for Decoy-State BB84 Quantum Key Distribution" by
Jeffrey H. Shapiro, to be published.
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DV:DS-BB84
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Fig. 9. Comparison of achievable rates for secret key distillation from
TMSV state with heterodyne detection and reverse reconciliation vs. DS-
BB84 protocol over a pure-loss channel. Here we assume the same Alice’s
signal-state transmission rate for both protocols: R = 1 Gbit/s. Plots with
Bob and Alice both making heterodyne detection and imperfect reconciliation
efficiency are included in [19].

In Fig. 9, we can see that for any value of input power,
the CV scheme has a higher rate than DS-BB84. Also in
the analysis of DS-BB84 there is an optimal input photon
number, which is why we see the peak in the green curve
whereas the optimal input photon number in the CV scheme
is infinity, and hence the rate keeps increasing with increasing
input photon number. This shows the potential of Gaussian-
modulated CVQKD to outperform DS-BB84 in this restricted-
eavesdropping scenario, opening competitive alternative op-
tions for realistic applications.

VI. CONCLUDING REMARKS

In summary, we showed lower bounds (achievable rates)
for secret key distillation under restricted eavesdropping over
pure-loss channels based on heterodyne detection. We showed
that putting a reasonable restriction on Eve can increase
the key rate and extend the transmission range under the
same channel conditions. Furthermore, we calculated upper
bounds under the same conditions using the relative entropy
of entanglement and showed that they are very close to the
achievable rates with heterodyne detection, thus establishing a
narrow gap in which capacity must be. All our results capture
how the key rates and the transmission distances can increase
with the assumption of restricted eavesdropping, which could
help with realistic applications in which Eve’s light capture is
apt to be restricted in the manner assumed in this paper.
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