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ABSTRACT

Optical sensing has the potential to be an important tool in the
automated monitoring of food quality. Specifically, hyperspectral
imaging has enjoyed success in a variety of tasks ranging from
plant species classification to ripeness evaluation in produce. Al-
though effective, hyperspectral imaging is prohibitively expensive
to deploy at scale in a retail setting. With this in mind, we develop
a method to assist in designing a low-cost multispectral imager
for produce monitoring by using a genetic algorithm (GA) that
simultaneously selects a subset of informative wavelengths and
identifies effective filter bandwidths for such an imager. Instead
of selecting the single fittest member of the final population as
our solution, we fit a univariate Gaussian mixture model to the
histogram of the overall GA population, selecting the wavelengths
associated with the peaks of the distributions as our solution. By
evaluating the entire population, rather than a single solution, we
are also able to specify filter bandwidths by calculating the standard
deviations of the Gaussian distributions and computing the full-
width at half-maximum values. In our experiments, we find that
this novel histogram-based method for feature selection is effective
when compared to both the standard GA and partial least squares
discriminant analysis.
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1 INTRODUCTION

Every year in the United States, more than 43 billion pounds of
fruits and vegetables are thrown away before they ever make it
onto a plate [9]. This equates roughly to a 30 percent rate of loss for
post-harvest produce, amounting to nearly 50 billion dollars a year
in lost produce at the retail and consumer levels. These losses result
from a variety of factors, including mechanical injury, bruising,
sprout growth, rot, secondary infection, biological aging, and over-
ripening [9, 15, 18]. These concrete characteristics all inform the
more nebulous concept of overall produce quality.

This judgment of quality is innately subjective when the eval-
uation is carried out by a human; sensory preferences for color,
texture, smell, and taste vary from person to person. Because of
this variability, instrumental measurements are often preferred
to sensory judgments when it comes to monitoring food quality.
Methods such as mass spectrometry and high performance liquid
chromatography are used in food monitoring, but both require
sample destruction during analysis [16]. This means that only a
representative sample of the produce is tested, which can give in-
sights into the average quality of the produce being monitored, but
it fails to capture the produce-specific characteristics necessary to
perform tasks such as classification and sorting [1].

Several non-destructive techniques for food quality monitoring
exist. One such method is hyperspectral imaging. Hyperspectral
imaging combines the spatial information provided by conventional
imaging and the spectral information captured by spectroscopy [16].
One advantage of hyperspectral images is that they contain a vast
amount of information. The corresponding disadvantage of hyper-
spectral images is that they contain a vast amount of information.
That is to say, the wealth of data provided by this technology can
help lend valuable insight into a variety of problems; however,
due to the curse of dimensionality, many standard processing tech-
niques quickly become impractical. As a brief illustration, a single
1000 x 1000 pixel image taken by an imager with a 600 nm spectral
range and a 2 nm spectral resolution results in a 300 million point
data cube. Because of this, hyperspectral imaging has been a prime
candidate for dimensionality reduction techniques.

In this study, we examine the effects of feature selection on hy-
perspectral image classification. We capture hyperspectral images
of avocados and tomatoes and use the data to classify the produce
as "fresh" versus "old", and also consider the highly cited Indian
Pines dataset [6]. For hyperspectral imaging, the feature space from
which a subset of features is selected comprises the set of wave-
lengths at which reflectance is measured by the imager. By selecting
an informative subset of wavelengths, noise, redundant informa-
tion, and the size of the data cube can all be reduced significantly.
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The feature selection process can also assist in the design of cheaper
multispectral imagers.

A large variety of feature selection techniques have been applied
to hyperspectral data. A hybrid feature subset selection algorithm
that combines weighted feature filtering and the Fuzzy Imperialist
Competitive algorithm [26] has been used successfully to reduce the
classification error of hydrothermal alteration minerals in hyper-
spectral datasets [31]. In another study, ground cover classification
of hyperspectral images is improved by selecting features using
simulated annealing to maximize a joint objective of feature rele-
vance and overall classification accuracy [25]. On the same datasets
used in [25], Feng et al. develop an unsupervised feature selec-
tion technique that improves classification error by optimizing the
maximum information and minimum redundancy criterion via the
clonal selection optimization algorithm (MIMR-CSA) [13].

While a large amount of active research investigates new ad-
vanced feature selection methods, and many other feature selec-
tion techniques (such as forward selection [2], backward elimina-
tion [23], and random forest-based methods [2, 10]) exist, in hyper-
spectral applications, two of the most commonly utilized feature
selection techniques are partial least squares discriminant analysis
(PLS-DA) [5] and genetic algorithms (GAs) [36]. PLS-DA has been
adapted for feature selection by utilizing the coefficients produced
by the PLS-DA method in order to rank the features by importance
(i.e., from largest to smallest coefficient). The top k features are
then selected for use in the analysis. PLS-DA has been used in
application areas ranging from differentiating between fresh and
frozen-to-thawed meat [4], to predicting the chemical composition
of lamb [19], as well as many others [11, 30, 32, 35]. Likewise, in
recent years, GAs have been widely used for feature selection in
hyperspectral data analysis [11, 14, 20, 38].

In each of the aforementioned studies, the goals of dimension-
ality reduction are largely limited to reducing noise, eliminating
redundant information, improving accuracy for a given prediction
task, and reducing the size of the problem to be analyzed. These
studies make the assumption that, in application, a hyperspectral
imager will be used to capture the full spectral response at each
pixel, then the selected wavelengths will be extracted and passed
through the given prediction algorithm. However, hyperspectral
imagers are prohibitively expensive for mass deployment in most
retail settings, often costing tens of thousands of dollars per imager.

As the main contribution of this study, we propose a new feature
selection technique based on the standard GA to assist in multispec-
tral imager design. After the GA has satisfied its stopping criterion,
instead of selecting the fittest member of the final population as
the solution, we use a histogram-based approach that analyzes the
overall population, in a method we call the Histogram Assisted
Genetic Algorithm for Reduction in Dimensionality (HAGRID).
Not only does this method offer a new way of determining the
solution for a GA, but it also allows for the analysis of the distri-
bution of selected features, which, in the context of wavelength
selection for hyperspectral data, allows for the determination of
filter bandwidths for a multispectral imager.

The rest of the paper is organized as follows — section 2 gives
an overview of hyperspectral and multispectral imaging, section
3 covers the formulation of the GA used in this paper, section 4
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Figure 1: Sample spectral reflectance curve of a tomato.

provides details for the HAGRID method, section 5 discusses the ex-
perimental setup and methods, section 6 provides the experimental
results, and section 7 ends with conclusions.

2 HYPERSPECTRAL IMAGING

2.1 Overview

Hyperspectral imaging combines the two main components of
conventional imaging and spectroscopy by capturing spatial and
spectral information simultaneously [16]. The image produced by a
hyperspectral imager can thus be thought of as a cube, consisting of
two spatial dimensions and one spectral dimension. When incident
light strikes an object, a percentage of that light is absorbed by the
object, and a percentage is reflected off the surface [1]. When the
percentages of light reflected at various wavelengths are measured,
a spectral reflectance curve (Fig. 1) is produced. It is this spectral
reflectance curve that defines the spectral dimension of a hyperspec-
tral image. Hyperspectral imagers usually measure reflectance over
a portion of the visible and near-infrared (NIR) spectrum, which
covers wavelengths of light ranging from 400-2500 nanometers
(nm).

Two main parameters inform the collection of spectral informa-
tion for a hyperspectral imager. An imager has a spectral range
and a spectral resolution. The spectral range dictates the range
of wavelengths of light over which the imager is able to measure
reflectance. The spectral resolution indicates the spacing between
these measurements. For example, if an imager has a spectral range
0f 400-800 nm and a spectral resolution of 10 nm, the imager records
the reflectance of light at 400 nm, 410 nm, all the way up to 800
nm, for each pixel in the spatial plane. It is worth noting that each
reflectance measurement is centered around a wavelength deter-
mined by the spectral range and resolution, but the imager captures
some response in a band around the wavelength center. As such,
each individual reflectance measurement can be thought of as the
integral of a Gaussian curve centered at a given wavelength, with
spread proportional to the resolution of the imager.

2.2 Multispectral Imaging

Where hyperspectral imagers usually measure reflectance at hun-
dreds of wavelengths of light, a multispectral imager takes these
measurements at only a handful of wavelengths and therefore can
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be a lot cheaper to manufacture and purchase. Multispectral im-
agers are also more flexible in terms of design and customization.
They consist of a number of bandpass filters that each record the
reflectance centered around a certain wavelength of light. Three
main aspects of these filters can be customized — the number of
filters included in the imager, the wavelength at which each fil-
ter is centered, and the bandwidth of each filter (where a larger
bandwidth filter measures the reflectance over a larger range of
wavelengths surrounding the filter center).

There are two main designs for multispectral imagers and both
utilize bandpass filters. A bandpass filter allows for the transmission
of light in a discrete spectral band [34]. These filters are centered at
specific wavelengths of light and have fixed bandwidths. The first
type of multispectral imager is known as a filter-wheel camera. This
type of camera consists of a rotating wheel of bandpass filters that
pass sequentially in front of the camera, allowing specific ranges
of the spectrum to pass through to be measured by the camera [7].
The other main design utilizes multiple-bandpass filters. Instead
of sequentially passing several filters in front of the camera, a
multiple-bandpass filter comprises a single checkerboard pattern
of microfilters. Each microfilter consists of a set configuration of
bandpass filters, and these microfilters are tiled to create the larger
multiple-bandpass filter. The amount of light transmitted through
each bandpass filter in a given microfilter is measured and combined
into a single pixel value, and these pixel values are combined across
microfilters to create the entire multispectral image [34].

There can be a large amount of redundant information and noise
present in a hyperspectral data cube. By intelligently selecting
bandpass filters for a multispectral imager (either using domain
knowledge or algorithmic feature selection), both the size of the
data and the noise present in the data can be reduced greatly while
still capturing the majority of the relevant information. Often, the
wavelength centers for these filters are known a priori based on
domain expert knowledge [21, 24]. Even so, algorithmic feature
selection tends to do well in selecting relevant wavelength centers.
Regardless of how the wavelengths are selected, the usual approach
in designing a multispectral imager is to incorporate bandpass filters
of standard width centered around these wavelengths (usually 10,
20, or 30 nm, though the bandwidths are customizable). While
a large volume of literature explores methods for selecting the
wavelength centers, very little work has been done in specifying
the bandwidths of the filters algorithmically. Our proposed method
seeks to accomplish both simultaneously.

2.3 Hyperspectral Produce Monitoring

Hyperspectral imaging has seen success in domains ranging from
pharmaceuticals, to astronomy, to agriculture [16], but one promi-
nent application areas is produce quality monitoring. A vast array
of characteristics inform the concept of produce quality. Hyper-
spectral imaging has been able to help automate quality assurance,
succeeding where manual inspections fail, reducing the processing
time, and making the overall process cheaper for many quality
monitoring tasks. While a comprehensive review of the various
applications of hyperspectral imaging in produce monitoring is
beyond the scope of this paper, the following studies offer a repre-
sentative sample of the possibilities hyperspectral imaging offers.
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In a 2006 study, Nicolai et al. were able to identify apple pit
lesions that were invisible to the naked eye by applying PLS-DA
to hyperspectral images of apples harvested from trees known to
display bitter pit symptoms [27]. One interesting finding here is that
the lesions could be identified with as few as two latent variables in
the PLS model, indicating that a small portion of the spectrum can
be sufficient to improve performance significantly for certain tasks.
Serrant et al. were able to apply PLS-DA to hyperspectral images
of grapevine leaves to identify Peronospora infection with a high
degree of accuracy [33]. Polder et al. applied linear discriminant
analysis (LDA) to hyperspectral images of tomatoes in order to
assign the tomatoes to one of five ripeness stages [28]. The authors
saw a significant improvement over the classification performance
using RGB images, dropping the error rate from 51% to as low as
19% in some of their experiments. In a similar vein as [28], in this
study, we investigate the impacts of feature selection on ripeness
classification of avocados and tomatoes.

3 GENETIC ALGORITHM

In order to design a multispectral imager, (to borrow the phrase-
ology of Michael Mahoney [22]) we need a set of wavelengths,
not a set of eigenwavelengths. That is to say, we cannot design an
imager that captures data for transformed subsets of wavelengths;
an imager must measure reflectance at a subset of real wavelengths.
As such, we must consider only feature selection techniques, rather
than feature extraction techniques, when it comes to multispectral
imager design. The genetic algorithm [17] is one such technique
that can be utilized effectively for feature selection [36].

The individuals in our GA population are represented as integer
arrays, where the integers represent a subset of indices correspond-
ing to the wavelengths to be selected. We employ tournament
selection, binonomial crossover, and generational replacement. For
our mutation operator, if a gene (i.e., single wavelength index) is
chosen for mutation, an integer is drawn randomly from the uni-
form distribution over [—3, 3] and added to the index value. In this
way, the mutation is restricted to adjacent wavelengths.

We use two different fitness functions for our experiments. Both
use decision trees [29] to perform classification on the given datasets.
For each member of the population, a decision tree is built using the
subset of wavelengths represented by the individual. Ten-fold cross-
validation is then performed on the given classification task using
the decision tree, and the fitness score is the average classification
accuracy attained across the ten folds.

In the first fitness function (fitnessI), the fitness is simply equal
to the classification accuracy obtained by the decision tree. In the
second fitness function (fitness2), we make two alterations. The
first is a dispersive force that adds a large penalty to solutions
that select wavelengths within 20 nm of each other to encourage
wavelength diversity. The second alteration aims to approximate
an imager with a larger spectral resolution of 30 nm. To accomplish
this, we bin the reflectance of wavelengths within 15 nm on either
side of the selected wavelength center before feeding the data into
the decision tree. The fitness is again equal to the classification
accuracy attained by the decision tree.
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4 HISTOGRAM-BASED APPROACH
4.1 Overview

Our proposed method changes only the determination of the solu-
tion after the GA has satisfied its stopping criterion and is therefore
agnostic to the specific selection, crossover, mutation, and replace-
ment operations used in the formulation of the GA. Instead of
selecting the fittest individual from the final generation of the algo-
rithm, we use a histogram-based approach that analyzes the overall
population in order to determine the solution.

4.2 Population Clustering

Once the GA has terminated, we are left with a population of het-
erogeneous individuals. To produce the solution using HAGRID,
instead of selecting the single fittest individual, we first produce a
histogram of all of the wavelengths selected across every member
of the population. Empirically, the distribution of the wavelengths
roughly appears to follow a mixture of Gaussian distributions (Fig.
2a). However, the number of components present in the histogram
(i.e., the number of individual Gaussian distributions that comprise
the mixture model) does not necessarily equal the number of wave-
lengths to be selected.

For example, suppose we set the number of wavelengths to be
selected to k = 5. The histogram of the entire population may
have five distinct peaks, or it may have several more than five. The
mismatch between these values is due to the existence of hetero-
geneous subpopulations that comprise the overall GA population
(Fig. 2a). In order to identify subpopulations in the overall popula-
tion, we use hierarchical agglomerative clustering (HAC) [12, 37]
to partition the population into similar groups using the centroid
linkage method. Once subpopulations have been identified, all but
the subpopulation with the highest average fitness are discarded. In
this way, we ensure the remaining population is homogeneous (in
that the wavelengths are drawn from the same multimodal Gauss-
ian distribution), and exclude the subpopulations with the worst
performance (Fig. 2b,c).

Let us denote the population size as n. At each step in HAC, we
calculate the pairwise distance between each of the clusters, which
results in O(n?) distance calculations. In the case where all individ-
uals are placed in a single cluster, we must run n iterations of HAC,
resulting in an overall time complexity of O(n?). However, because
n is usually relatively small for genetic algorithms, in practice, the
clustering step is fast.

4.3 Fitting a Gaussian Mixture Model

Once the subpopulations have been identified and the subpopula-
tion with the highest average fitness has been isolated, a Gauss-
ian mixture model is fit to the histogram of the remaining sub-
population. As the name suggests, a Gaussian mixture model is
a model consisting of several constituent Gaussian distributions
that together comprise a multimodal Gaussian distribution. The
parameters of the individual distributions (i.e. distribution mean
and variance) are predicted using the Expectation-Maximization
(EM) algorithm [37]. We assume the distributions in the mixture
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model each follow the univariate normal, given by:

1 exp - m)?
V2ro; 20i2 '

where y; and O'iz are the mean and variance of the i*" distribution,
respectively. If there are k components in the mixture model, then
ui and 0'1.2 must be estimated for i = 1,2, ...,k [37].

f(xlpi,of) =

To begin, all values of y; and Giz are initialized randomly. Then
the algorithm iterates between the expectation step and the maxi-
mization step until convergence. This convergence is determined
by the difference between parameter estimates in subsequent itera-
tions falling below a threshold value. In the expectation step, the
posterior probability of each data point being generated by each of
the k distributions is calculated using the parameter estimates for
ui and O'l-z. In the maximization step, these posterior probabilities
are used determine the maximum likelihood estimates of the pa-
rameters. After the estimates have converged, the parameters of
each of the k distributions are returned.

Let n’ < n be the size of the selected subpopulation, ¢ be the
number of iterations for the EM algorithm, and k be the number of
components in the Gaussian mixture. The time complexity of EM
can thus be expressed as O(¢n’k). In practice, EM converges with
small values of ¢. The value of k is usually small (3-10 in this study)
and n’ is bounded by the population size of the GA. In practice, the
EM step of HAGRID is fast.

4.4 Selecting Features

After the parameters of the Gaussian mixture model have been
estimated, we can use those parameters to select the wavelength
centers and filter bandwidths for the multispectral imager.

In order to select the wavelength centers for the multispectral
imager, we select the estimated means from the output of the EM
algorithm. These means correspond to the peaks of the individual
Gaussian distributions that comprise the Gaussian mixture model.
Here, the assumption is made that more informative wavelengths
are selected a higher proportion of the time by members of the GA
population, and therefore occur more frequently in the histogram
of wavelengths.

We set the bandwidth of each filter based on the standard de-
viation (square root of the variance) of the Gaussian distribution
associated with the wavelength center for that filter. The bandwidth
of a filter is equal to the full-width at half-maximum (FWHM) of
the corresponding Gaussian distribution of the filter. We set this
value based on the definition of FWHM = 20V2In 2, where o is
the standard deviation. Here, the rationale is that the mean wave-
length of a given Gaussian distribution is the most informative and
most frequently selected wavelength, but the adjacent wavelengths
are selected a relatively high proportion of the time as well, and
are likely informative themselves. By setting the bandwidth of the
filters based on the standard deviations of each Gaussian mixture
component, we hope to capture most of the information across the
most relevant wavelengths.

4.5 Transforming Data

Once the filter wavelength centers and bandwidths have been deter-
mined, we can transform the original hyperspectral data to mimic
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Figure 2: Subpopulation clustering to select five wavelengths: a) overlapping heterogeneous subpopulations in the overall
population of the GA; b) subpopulation clusters projected onto three dimensions using principal component analysis (the
subpopulation with the highest average fitness is circled in red); c) histogram of the single selected subpopulation.

data that has been captured by a multispectral imager. First, we
generate the Gaussian distributions determined by the predicted
means and standard deviations. Next, we multiply these Gaussians
by the original data to simulate the reflectance measurements taken
by a multispectral imager. Third, we integrate under each Gaussian
to produce a set of k discrete values, where k is the number of filters
included in the imager. In any camera, standard color, multispectral,
hyperspectral, or otherwise, even though the filters let in light over
a band of wavelengths, the total amount of light is recorded as a
single value for each filter, hence the integration step.

5 EXPERIMENTAL SETUP AND METHODS

5.1 Hyperspectral Imaging and Staging

For the collection of the hyperspectral images analyzed in this study,
we use the Resonon Pika L hyperspectral imager. This imager has a
spectral range of 387-1023 nm and a spectral resolution of roughly
2.1 nm, resulting in 300 spectral channels. The Pika L is a line-scan
imager, meaning a horizontal sweep is made across the object to be
imaged, and vertical slices of the image are successively combined
into a single data cube.

Images produced in this way are stored as Band Interleaved
by Line (BIL) files. All images are dark-corrected and calibrated
to Spectralon reference panels. Spectralon is a specially designed
reflective material that reflects nearly 100% of the incident light that
strikes it. Because of this, the ratio of light reflected off the object of
interest to the light reflected off the Spectralon panel approximates
the percentage of total light reflected off the object.

The Pika L imager is placed on a rotational stage to allow for the
sweep across the produce staging area. This staging area consists of
a flat surface on which the produce is placed as well as a backdrop
to block out external sources of light. Both the flat surface and
backdrop are covered in a non-reflective paper to better control the
source and direction of the illumination. The produce staging area
is illuminated by two Westcott softbox studio lights. The entire hy-
perspectral imaging system (including the imager, lights, rotational
stage, and produce staging area) can be viewed in Fig. 3.

5.2 Data

The avocado and tomato datasets used in this study are captured
using the Resonon Pika L imager and the staging environment
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Figure 3: The hyperspectral imaging system and pro-
duce staging area. A) Lightboxes used for illumination. B)
Resonon Pika L hyperspectral imager. C) Rotational stage.
D) Non-reflective surface. E) Produce for imaging. F) Spec-
tralon calibration panel.

described in Section 5.1. Images of avocados and tomatoes are taken
once daily from the time of initial purchase until manually judged
to be past the point of edibility. At the time of each image capture,
each piece of produce in the image is labeled manually as either
“fresh” or “old” To create the dataset used in the final experiments,
5 X 5 pixel patches are sampled repeatedly from different regions
on each piece of produce. The average spectral response over these
patches is then taken to smooth the spectral reflectance curve of
each sample. Due to hardware limitations, a large amount of noise is
present in the hyperspectral images past 1000 nm, so we exclude the
last ten channels from the avocado and tomato datasets, resulting
in each image containing 290 spectral channels. As a result of the
exclusion of these ten wavelengths and the smoothing over the
pixel patches, each data point is a one-dimensional array consisting
of 290 reflectance measurements over the spectral range of 387-
1001 nm. A description of the avocado and tomato datasets can be
found in Table 1.
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Dataset | Fruit | Samples/fruit | Total Examples
Avocado | 18/10 20/36 720
Tomato | 25/23 20/22 1006

Table 1: Sample sizes for produce data sets showing number
of each fruit and number of samples per fruit for “fresh” and
“old” respectively.

We also run experiments on the Indian Pines dataset [6]. The
dataset consists of spectral reflectance curves for 16 classes of land
cover, ranging from trees, to corn, to stone and steel. Each re-
flectance curve comprises 220 spectral channels with a spectral
resolution of roughly 10 nm. As a preprocessing step, we remove
all classes with fewer than 100 examples, leaving 12 classes and a
total of 10,062 data points.

For all experiments, there are two main phases. In the first phase,
feature selection is performed to select wavelengths and band-
widths. In the second phase, the performances of these feature
subsets on the classification tasks (described in Section 5.3) are
analyzed. In order to better comment on the generalizability of the
feature selection methods and to disentangle the two phases, the
datasets are divided into two portions, with one portion of the data
being used for feature selection, and the other portion being used
for classification evaluation.

5.3 Experimental Design

In our experiments, we aim to demonstrate two main objectives.
First, we intend to show that our histogram-based feature selec-
tion approach is at least as good as existing methods. Second, we
intend to demonstrate that filter bandwidth prediction is a viable
use for the new method. In our experiments, the first of these ob-
jectives is evaluated using the classification accuracy attained on
each dataset. We evaluate the second objective on the avocado
and tomato datasets. For each dataset, a subset of the wavelengths
is selected through various feature selection techniques, then the
spectral responses at those wavelengths are fed into a feedforward
neural network to perform the given classification. The various
wavelength selection techniques and filter bandwidth settings are
compared on the basis of classification accuracy. All experiments
are run using 5 X 2 cross-validation and significance testing is
performed using unpaired t-tests at the & = 0.05 level.

As stated in Section 1, two of the most commonly used feature
selection methods for produce monitoring applications are PLS-DA
and the standard GA. As such, we compare our HAGRID method
to both of these methods. Any feature selection method ought to
outperform more simplistic wavelength choices, such as RGB and
RGB+NIR, so for the sake of completeness, we include these in the
comparison experiments as well!. Finally, we perform the given
classification task using all available wavelengths.

For each algorithm (including the two fitness function variants),
we select 3, 5, and 10 wavelengths for the avocado and tomato
datasets. As RGB, RGB+NIR, and all wavelengths each contain set
numbers of wavelengths, the number and values of wavelengths

I The wavelengths for red, green, blue, and NIR light used in these experiments are
619 nm, 527 nm, 454 nm, and 857 nm, respectively.
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for these three subsets are not varied over experiments. This re-
sults in 18 total subsets of wavelengths to be compared for these
two datasets. GA methods using the fitness2 fitness function are
denoted with an asterisk (i.e. GA* and HAGRID); the absence of an
asterisk denotes fitness1I (i.e. GA and HAGRID). For the Indian Pines
dataset, because the spectral resolution is already more coarse than
the avocado and tomato datasets, we omit the use of fitness2. We
then use the standard GA and HAGRID to select 3, 5, 10, and 15
wavelengths, and compare the accuracies to RGB, RGB+NIR, and
all wavelengths.

For the filter bandwidth experiments on the avocado and tomato
datasets, we do not find any other methods in the literature that
specifically address the problem of algorithmically determining
filter bandwidths for a multispectral imager. However, the band-
widths of RGB and NIR filters follow known Gaussian distributions
and have known wavelength centers. In addition, standard filter
bandwidths exist for custom wavelength-centered filters. In order
to offer some comparison, we consider four alternatives to the HA-
GRID method. First, we compare known standard RGB wavelength
centers and filter bandwidths?. Second, we compare known stan-
dard RGB+NIR wavelength centers and filter bandwidths. Third,
we select wavelength centers using the standard GA and set the
bandwidths to 20 nm, which is a standard filter size, commonly
available at the retail level. Fourth, we select wavelength centers
using HAGRID, and again set the bandwidths to 20 nm.

For each of the GA methods and fitness functions, we again
select 3, 5, and 10 wavelength centers, while RGB and RGB+NIR re-
main constant across experiments, resulting in 20 total wavelength
center and filter bandwidth combinations. Once the wavelength
centers and filter bandwidths are determined, the data in the avo-
cado and tomato datasets are transformed, as described in Section
4.5. From there, the transformed data are fed into a feedforward
neural network to classify “fresh” versus “old.”

5.4 Parameter Settings

For our experiments, the population size for all GA variants is
set to 1,000 and the algorithms are run for 300 generations. The
population size is set to a relatively large value to ensure we have a
large enough number of individuals to produce a histogram that can
be analyzed meaningfully. The crossover rate, mutation rate, and
tournament size are tuned using a grid search. The crossover rate
takes on a values from the set {0.1, 0.25, 0.35, 0.5}. The mutation rate
is chosen from {0.05, 0.10}, which is relatively high to encourage
diversity in the population. Finally, we consider tournament sizes of
3 and 5. We also perform a basic grid search to tune parameters for
the feedforward neural networks. For all networks, we use a single
hidden layer, the Adam optimizer, rectified linear units (ReLU),
and a softmax classifier for the output layer. Between different
experiments, the learning rate varies between 0.0005 and 0.05, while
the number of nodes in the hidden layer varies between 5 and 10.

2The RGB wavelength centers and bandwidths are derived from the known Gaussian
fits for a standard Nikon camera.
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Avocado Tomato Indian Pines
Method | # of Wavelengths | Accuracy | Standard Deviation | Accuracy | Standard Deviation | Accuracy | Standard Deviation
RGB 3 81.001% 1.31% 65.211% 1.46% 59.829% 1.10%
RGB+NIR 4 82.945% 2.80% 74.232% 3.93% 69.214% 1.22%
All 290/290/220 84.667% 1.27% 78.014% 2.24% 89.186% 0.98%
PLS-DA 3 80.165% 3.10% 63.06% 4.18% - -
PLS-DA 5 80.501% 3.01% 62.704% 1.40% - -
PLS-DA 10 80.555% 3.29% 62.465% 1.81% - -
GA 3 84.888% 2.70% 77.177% 1.38% 73.986% 0.84%
GA 5 82.388% 1.81% 75.943% 1.67% 78.991% 1.32%
GA 10 84.889% 2.55% 76.501% 1.19% 81.624% 2.39%
GA 15 - - - - 83.391% 1.15%
HAGRID 3 81.166% 2.74% 73.640% 1.75% 76.108% 0.70%
HAGRID 5 82.554% 1.76% 77.021% 2.51% 77.041% 0.60%
HAGRID 10 84.723% 1.88% 76.500% 1.53% 82.331% 1.40%
HAGRID 15 - - - - 84.154% 1.19%
GA* 3 81.388% 1.22% 76.262% 2.78% - -
GA* 5 85.112% 2.12% 76.224% 1.52% - -
GA* 10 83.945% 2.72% 75.748% 1.97% - -
HAGRID* 3 81.944% 2.24% 75.666% 2.14% - -
HAGRID* 5 86.776% 2.10% 78.407% 2.17% - -
HAGRID* 10 84.000% 2.45% 79.005% 2.11% - -

Table 2: Classification accuracy using RGB, RGB+NIR, all wavelengths, and feature selection. The best accuracy for each dataset

is shown in bold. Asterisks denote the use of fitness2.

6 RESULTS
6.1 Feature Selection

Results for the feature selection experiments are summarized in
Table 2. For both the avocado and tomato datasets, PLS-DA performs
the worst across the board. This is not surprising, as it does not take
into account variable interaction when performing feature selection.
The highest accuracy for the avocado dataset (86.776%) is obtained
by HAGRID* with five wavelengths (denoted HAGRID*/5). Further,
HAGRID*/5 performs significantly better than RGB (p < 0.0001),
RGB+NIR (p = 0.0042), all wavelengths (p = 0.0192), and the best
PLS-DA result (p = 0.0001) at the & = 0.05 level. It is worth noting
that for the avocado dataset, all GA and HAGRID methods are able
to classify the data at least as well as when utilizing all wavelengths.
For the tomato dataset, HAGRID*/10 yields the highest accuracy
(79.005%), which is significantly better than RGB (p < 0.0001),
RGB+NIR (p = 0.0049), the best PLS-DA solution (p < 0.0001), and
the best standard GA solution (GA/3, p = 0.0430).

Since HAGRID changes only how the solution is selected from
the final population, one complete run of the GA is used for the
corresponding GA and HAGRID results. For example, only one run
of the GA is required to provide results for GA*/3 and HAGRID*/3.
In this scenario, the GA is run using fitness2, the fittest member of
the population is selected for GA*/3, and the same population is
used for the histogram approach of HAGRID*/3.

For the avocado dataset, HAGRID outperforms the standard
GA for four of the six head-to-head comparisons; although, the
difference between the methods is not statistically significant in
any of these cases. For the tomato dataset, HAGRID outperforms

the standard GA in three of six experiments with HAGRID being
significantly better than its GA counterpart for HAGRID*/10 (p =
0.0422) and HAGRID*/5 (p = 0.0237).

For the Indian Pines dataset, no feature selection method con-
sidered is able to match the accuracy attained using all 220 avail-
able wavelengths. Of the feature selection methods, HAGRID/15
achieves the highest overall accuracy of 84.154%, which is signifi-
cantly higher than all other methods besides GA/15 (p = 0.1836). In
three of the four head-to-head experiments, HAGRID outperforms
its GA counterpart, but the difference is significant only in the case
of GA/3 and HAGRID/3 (p < 0.0001).

The new HAGRID method has been shown to perform at least
as well as the standard GA, but also has the benefit of estimating
the bandpass filter bandwidths. Another possible benefit includes
allowing for uncertainty quantification.

6.2 Bandwidth Prediction

Results for the filter bandwidth experiments are summarized in
Table 3. The PLS-DA method is omitted from this section due to
its poor performance in the feature selection experiments. For this
section, let “H” denote the histogram-based bandwidths and “S”
denote standard 20 nm bandwidths. For both datasets, the simu-
lated RGB and RGB+NIR filters tend to perform the worst over-
all. For the avocado dataset, the best solution is found by HA-
GRID*/10/H, which achieves an accuracy of 85.889%. The best non-
histogram bandwidth approach for the avocado dataset is GA*/5/S,
which achieves a classification accuracy of 85.723%. Although HA-
GRID*/10/H and GA*/5/S are not statistically significantly different
from each other (p = 0.8790), they both are significantly better
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Walton, Sheppard, and Shaw

Avocado Tomato
Method | Filter Bandwidth | # of Wavelengths | Accuracy | Standard Deviation | Accuracy | Standard Deviation
RGB Known 3 80.388% 2.33% 67.275% 2.75%
RGB+NIR Known 4 82.334% 2.13% 74.314% 2.75%
GA 20 nm 3 84.222% 1.22% 77.335% 2.08%
GA 20 nm 5 83.276% 2.43% 76.339% 2.07%
GA 20 nm 10 84.945% 2.44% 75.703% 2.07%
HAGRID 20 nm 81.112% 2.74% 74.791% 1.35%
HAGRID 20 nm 82.945% 3.00% 78.766% 2.25%
HAGRID 20 nm 10 84.444% 1.94% 78.608% 1.76%
GA* 20 nm 83.168% 1.88% 76.227% 2.40%
GA* 20 nm 5 85.723% 2.98% 76.223% 1.69%
GA” 20 nm 10 84.610% 1.88% 76.621% 1.31%
HAGRID” 20 nm 84.722% 2.41% 73.241% 1.47%
HAGRID* 20 nm 85.500% 2.10% 77.614% 1.72%
HAGRID” 20 nm 10 85.055% 2.35% 76.581% 1.49%
HAGRID Histogram 82.945% 2.17% 74.197% 3.08%
HAGRID Histogram 83.334% 2.21% 76.264% 2.07%
HAGRID Histogram 10 85.721% 1.97% 77.016% 2.84%
HAGRID* Histogram 83.223% 1.72% 73.397% 1.72%
HAGRID” Histogram 5 85.612% 1.68% 77.773% 1.95%
HAGRID” Histogram 10 85.889% 1.22% 76.740% 1.24%

Table 3: Classification accuracy using various wavelength centers and simulated filter bandwidths. The best results for each
dataset are shown in bold. Asterisks denote the use of fitness2.

than RGB (p < 0.0001 and p = 0.0005, respectively) and RGB+NIR
(p = 0.0004 and p = 0.0126, respectively). Note that for both fitness1
and fitness2, the HAGRID/H method achieves the highest accuracy.

For the tomato dataset, the best histogram bandwidth determina-
tion is achieved by HAGRID*/5/H, with 77.773% accuracy. However,
for this dataset, the histogram-based determination is outperformed
by both HAGRID/5/S and HAGRID/10/S, with the former achieving
the highest overall classification accuracy of 78.766%. Again, the
difference between HAGRID*/5/H and HAGRID/5/S is not statis-
tically significant (p = 0.3312), but both significantly outperform
RGB (p < 0.0001 in both cases) and RGB+NIR (p = 0.0066 and
p = 0.0015, respectively).

7 CONCLUSIONS

In the majority of head-to-head comparisons for the wavelength
selection experiments, the HAGRID method outperforms its corre-
sponding standard GA formulation. The filter bandwidth experi-
ments are a little more varied, with the histogram determination of
bandwidths performing the best for the avocado dataset, but second
best for the tomato dataset. Overall, the fact that in all five experi-
ments, HAGRID produces the best overall result is encouraging.
The most computationally intensive portion of a genetic algo-
rithm is the iteration through the generations, not the selection of
the solution from the final population. Since HAGRID is simply a
new way of selecting the solution from this final population, it can
be utilized in tandem with the standard selection of the fittest indi-
vidual without adding much overhead, and the two methods can
then be compared for the selection of the best solution. Specifically,
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the complexity of HAGRID is O(n? + tn’k), but the values of each
term are usually small, leading to fast runtimes in practice.

While here HAGRID is applied to multispectral imager design,
there is no reason why it cannot be extended to other feature se-
lection problems where the input space is continuous. The method
may also have extensions to optimization problems where the vari-
able to be optimized is continuous. As mentioned in Section 6.1,
the fact that HAGRID considers a distribution of solutions, rather
than a single solution opens a number of possibilities, including
uncertainty quantification and other statistical evaluations.

There are several directions for future work. In general, the
manual classification of produce is subjective, which introduces a
fair amount of noise into the data. One way of reducing this noise
would be to use a tool such as a penetrometer, which measures the
force required to dent or penetrate a surface. Penetrometer readings
could be taken for produce at various ages, and the learning target
would then be predicting these readings based on hyperspectral
data, making the classification much more objective. We would also
like to further investigate other methods for feature selection in the
context of hyperspectral image data, including random forests [8]
and layer-wise relevance propagation [3]. Both methods can be used
to derive scores of importance for individual features, which could
be leveraged for effective wavelength selection. Another area of
interest is the fitness functions utilized in the process. Parameters
such as filter prices could be included in the fitness function to
optimize the cost/performance trade-off inherent in imager design.
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