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Abstract

Motivation: Although the set of currently known viruses have been steadily increasing, only a tiny fraction
of the Earth’s virome has been sequenced so far. Shotgun metagenomic sequencing provides an excellent
opportunity to reveal novel viruses but faces the computational challenge of identifying viral genomes that
are often difficult to detect in metagenomic assemblies.

Results: We describe a metaviralSPAdes tool for identifying viral genomes in metagenomic assembly
graphs that is based on analyzing variations in the coverage depth between viruses and bacterial chro-
mosomes. We benchmarked metaviralSPAdes on diverse metagenomic datasets, verified our predictions
using a set of virus-specific Hidden Markov Models, and demonstrated that it improves on the state-of-

the-art viral identification pipelines.
Availability: metaviralSPAdes
ules. viralAssembly,
https://github.com/ablab/spades/tree/metaviral_publication,
https://github.com/ablab/viralComplete/

Contact: d.antipov@spbu.ru

includes viralAssembly,
viralVerify and viralComplete are available as standalone packages:
https://github.com/ablab/viralVerify/ and

viralVerify, and viralComplete mod-

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the last few years, metagenomic sequencing greatly expanded our
knowledge of the Earth’s virome (Paez-Espino et al., 2016; Roux et al.,
2016). However, since extracting complete sequences of viral genomes
from metagenomic assemblies remains challenging, many viruses evade
identification even though metagenomic datasets contain reads sampled
from these viruses (Dutilh et al., 2014).

Previous studies, aimed at the discovery of novel viruses, often fo-
cused on viral contigs in metagenomic assemblies and thus missed an
opportunity to sequence complete viral genomes by switching from the
contig-based to the assembly graph-based analysis. Since a recent study
(Roux et al., 2017) reported that metaSPAdes (Nurk et al., 2017) resulted
in the most contiguous viral assemblies, we extended metaSPAdes into
metaviralSPAdes that attempts to sequence complete viral genomes rather
than fragmented viral contigs.

Identifying viral genomes in metagenomic datasets is not unlike iden-
tifying plasmids since both viruses and plasmids form small subgraphs of
the metagenomic assembly graphs. However, in difference from plasmid
sequencing where multiple plasmid identification tools have been devel-
oped (Antipov et al., 2016, 2019; Rozov et al., 2017), there is still no
specialized viral assembler. metaviralSPAdes modifies various steps of

the metaplasmidSPAdes tool (Antipov et al., 2019) to make it applicable
to viral sequencing. Below we describe the metaviralSPAdes pipeline and
apply it for virus discovery in diverse metagenomic datasets.

2 Methods

metaviralSPAdes pipeline consists of three independent steps - vi-
ralAssembly for finding putative viral subgraphs in a metagenomic assem-
bly graph and generating contigs in these graphs, viral Verify for checking
whether the resulting contigs have viral origin, and viralComplete for
checking whether these contigs represent complete viral genomes.

2.1 Assembling viral sequences (viralAssembly)

To assemble viral sequences, metaviralSPAdes modifies approaches imple-
mented in metaSPAdes (Nurk et al., 2017) and metaplasmidSPAdes (An-
tipov et al., 2019). First, it uses metaSPAdes to construct the assembly
graph. Since various viral strains are often highly variable (Shapiro
and Putonti, 2018), and since we focus on species-level viral assem-
bly, viralAssembly modifies the bulge removal procedure as compared
to metaSPAdes (Nurk et al., 2017). Specifically, it collapses long and sim-
ilar (with respect to the edit distance) parallel edges in the assembly graph
that are shorter than max BulgeSize (the default value 1000 nucleotides)
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and that differ from each other by less than max Divergence (the default
value 0.2). The divergence between two sequences is defined as the edit
distance between them divided by the length of the shorter sequence.

Since the vast majority of plasmids are circular, metaplasmidSPAdes is
based on identifying high-coverage cycles in the assembly graph, i.e., cy-
cles with coverage by reads exceeding the coverage of neighboring edges
in the assembly graph. In contrast, since many viruses are linear (50%
of DNA viruses in the RefSeq (O’Leary et al., 2016) database), metavi-
ralSPAdes searches for both high coverage cycles and high coverage paths
that start from a vertex of in-degree O (source vertices) and end in a vertex
of out-degree O (sink vertices) of the assembly graph. We classity such a
path as long if its length exceeds a threshold Length (the default value
1000 nucleotides) and high coverage if its coverage exceeds a threshold
Coverage (the default value 5x). Long high-coverage paths represent
putative sequences of linear viruses.

Many linear DNA viruses have terminal repeats (Deng et al., 2012;
Casjens and Gilcrease, 2009), and thus correspond to small subgraphs
rather than isolated paths in the assembly graphs. Sequences of 377 out
of 2584 linear DNA viruses in the RefSeq database have terminal repeats
with a length exceeding the typical length of k-mers used for construct-
ing assembly graphs (the default value & = 55 for metaSPAdes). 168 of
such viruses can be represented as sequences ARBR or RAR/, where
R is a terminal repeat of length > 55 bp and R’ is its complement
(Supplementary Figure 1S).

To identify linear viruses with terminal repeats metaviralSPAdes con-
sider small (less than 6 edges) connected components of the assembly
graph. We refer to a path in a graph as a postman tour if it visits each edge
of the graph and the total length of its unique edges (i.e., edges that are
visited just once) exceeds half of the total path length. For components
of type ARBR and RAR/, since there exists a unique postman tour in
such components, viralAssembly outputs complete sequence instead of
the corresponding subgraph.

To give users an option to examine both complete viral sequences (iden-
tified based on analyzing small subgraphs of the metaSPAdes assembly
graphs) and partial viral sequences (corresponding to metaSPAdes con-
tigs), the viralAssembly output is combined with the regular metaSPAdes
output.

2.2 Viral verification (viralVerify)

The viralVerify module checks whether contigs found by viralAssem-
bly indeed represent viruses. The popular virus identification tools, such
as the HMM-based VirSorter (Roux et al., 2015) and the k-mer based
VirFinder (Ren et al., 2017) have limitations: they are sometimes confuse
phages with plasmids and are rather conservative, thus missing putative
novel viruses. We thus developed the viralVerify tool that examines the
gene content of a contig and classifies it as viral/bacterial/uncertain using
a Naive Bayesian classifier. It can be used as a standalone tool to predict
contigs of viral origin in any assembled metagenome.

The viral Verify step in metaviralSPAdes is designed similarly to the
plasmidVerify step in metaplasmidSPAdes (Antipov et al., 2019). To
construct a set of viral HMMs, we selected all 10,544 viruses from the
RefSeq database and split them into the training and validation datasets
(7,381 and 3,163 viruses, respectively). We predicted genes with Prodi-
gal v2.6.3 (Hyatt et al., 2010) and ran hmmsearch (part of HMMER
3.1b2, http://hmmerorg/) using Pfam-A database v. 30.0 (El-Gebali et al.,
2018). Afterwards, we counted the frequencies of matches to the train-
ing dataset, and used them to train a Naive Bayesian classifier (Friedman
et al., 2001) along with frequencies from nonViralDatabase (combined
PlasmidDatabase and nonPlasmidDatabase from Antipov et al., 2019).
Supplemental Table 1 lists the HMM frequencies in the training dataset.

Given a contig, viral Verify predicts genes in this contig using Prodigal
in the metagenomic mode, runs hmmsearch on the predicted proteins,

and calculates the score as the ratio of log probabilities. If the absolute
score is less than a scoreT hreshold (the default value is 3), a contig
is classified as "uncertain", otherwise it is classified as "viral" (score >
scoreT hreshold) or "bacterial" (score < —scoreT hreshold).

To help analyze the rapidly growing amount of novel data, we have
added a script that allows users to construct their own training database
from a set of viral, chromosomal and plasmid contigs, as well as custom
HMM database.

2.3 Viral completeness verification (viralComplete)

If a newly constructed viral contig is complete and belongs to a known
family of viruses then its gene content is likely to be similar to the gene
content of a known virus. We thus compute the "similarity" of a given
contig (based on the Naive Bayesian Classifier) to each known virus from
the RefSeq database, and check whether the most similar known virus have
length similar to the contig length. This comparison includes the following
steps:

1. Predict genes and proteins in a given contig using Prodigal.

2. Match each predicted protein P against all N viral proteins from the
RefSeq database using BLAST (with e-value cutoff = 1e-6) and define
number (P) as the number of viral proteins matching P. We say that
a virus V' matches a protein P if one of the proteins in this virus
matches P.

3. If a virus V matches a protein P, we define Prob(V|P) =
1/number(P) — e, where € is a small number (equal to le-6
in implementation). If a virus V' does not match P, we define
Prob(V|P) = € - number(P)/(N — number(P)). Thus, each
virus that matches P has the same (large) probability Prob(V|P)
and each virus that does not match P has the same small probability.

4. If a given contig has predicted proteins Pi, Ps,..., Py, we as-
sume that they all are pairwise conditionally independent and define
Prob(V|P1, Pa,...,Py) as Prob(V|P1) - Prob(V|P2) - ... -
Prob(V|Pg). A most probable virus V* is defined as a virus
maximizing this probability.

5. Check whether the given contig and the virus V* have simi-
lar lengths, i.e., if the length of V* falls in the range (0.9 -
length(contig), length(contig)/0.9).

3 Results
3.1 Datasets

‘We used both simulated metagenomes and real metagenomes/metaviromes
to benchmark metaviralSPAdes:

3.1.1 Simulated metagenomes

We simulated 5 metagenomic datasets using CAMISIM (Fritz et al., 2019).
For each metagenome, 15 bacterial and 15 viral genomes were drawn
from the test datasets. The abundance distribution followed the log-normal
distribution with 4 = 1and o = 0.5. Total abundance of the viral genomes
was set to be 10 times higher than the abundance of microbial genomes,
to model high abundances of viruses in real metagenomic datasets (see
Supplemental Table 2).

3.1.2 Real metagenomes

We selected 18 diverse metagenomic datasets described in Supplemen-
tal Table 3 to benchmark metaviralSPAdes. Two out of these 18 datasets
represent metavirome datasets originating from marine samples that were
size-selected for viruses. Additionally, we used sequences of known origin
from the RefSeq database for benchmarking viralVerify and viralCom-
plete. As the true negative test datasets, we used the PlasmidDatabase
dataset (2,387 plasmids) and 9,890 randomly selected fragments from
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nonPlasmidContigs dataset (80,681 chromosome fragments) described in
Antipov et al., 2019. Since VirSorter and VirFinder are designed for DNA
viruses, for a fair comparison we selected only double-stranded DNA
viruses (total 1,368) from the viralVerify validation dataset as the true
positive test dataset. Additionally, we trained and checked viral Verify’s
performance on small RNA viruses (Supplemental Table 7). The same
true positive test dataset was used to benchmark viralComplete.

3.2 viralAssembly benchmarking

Since there are still no specialized assembly tools that identify viral
genomes in metagenomic datasets, we compared viralAssembly against
metaSPAdes on 18 real datasets described in Supplemental Table 3. We
analyzed only complete (i.e., circular contigs or linear contigs starting in
sources and ending in sinks) and high-coverage (>5x) sequences for bench-
marking (viralAssembly and metaSPAdes report the same set of partial
contigs). We used three different contig length cutoffs (0.5 kb, 3 kb, and
10 kb) and checked the viral origin of the contigs using viral Verify. Since
the contigs number may reflect an increase in the number of fragmented
contigs (rather than complete viruses), we also checked the completeness
of the predicted viral contigs using viralComplete. viralAssembly outper-
formed metaSPAdes in the number of assembled viral contigs on 12 out
of these 18 samples (Supplemental Table 6).

3.3 viralVerify benchmarking

We benchmarked viralVerify versus VirSorter (Roux et al., 2015)
VirFinder (Ren et al., 2017) and virMine (Garretto et al., 2019) on 1368
dsDNA viruses from Refseq database as the true positive dataset, and
two true negative datasets - plasmids from the RefSeq database and the
set of 10kb-long randomly selected fragments of bacterial chromosomes,
to mimic a real output of a metagenomic assembly (see Table 1). Re-
searchers are usually interested in viruses distantly related to known ones,
or in the contigs of unknown origin, referred to as the "dark matter" of
metagenome. We thus took into account contigs of interest that cannot
be certainly attributed as viruses or chromosomes but deserve manual
inspection (category 3 in the VirSorter output, "Uncertain" category in
the viralVerify output and "Unknown" in virMine). Since BLASTN and
BLASTX (Altschul et al., 1990) are popular as virus detection tools, we
also included them in our benchmarking analysis. Although BLASTX and
viralVerify showed similar results, it is two orders of magnitude slower
than viral Verify. For the true negative dataset (9,890 chromosomal frag-
ments), the running time of viralVerify and BLASTX was 279 and 36,364
minutes, respectively. Also, since we randomly split the entire dataset into
the training and testing datasets, the training dataset is likely to contain
viruses from the same taxonomic groups as the testing dataset. To test
the performance in the case of novel taxonomic groups, we excluded the
entire viral family of Podoviridae from the training dataset and compared
viralVerify and BLASTX results on the members of this family. After-
wards, to compare performance on higher taxonomic level, we trained
classifier on Caudovirales order (tailed bacteriophages), and compared vi-
ralVerify with BLASTX on the non-Caudovirales phages. Supplemental
Table 8 illustrates that viral Verify improves on BLASTX in this more dif-
ficult test, likely because the HMM-based approach is more sensitive than
the local alignment approach.

Additionally, we benchmarked VirSorter, VirFinder, virMine and vi-
ralVerify on simulated metagenomes. Since the bacterial chromosomes
we use for simulation may carry prophages, we needed to separate contigs
that belong to reference viruses from those of prophage origin.

To identify contigs of viral origin (true positives), we compared them
with the reference viruses using minimap2 (Li, 2018) and considered
sequences with nucleotide identity > 95% as viral. To account for possible
prophage sequences in the reference chromosomes, we aligned all contigs
that were unaligned on the previous step against the viral RefSeq database.

Table 1. Benchmarking various viral detection approaches.

True positive,  True negative, True negative,

dsDNA viruses 10k chunks plasmids
Total 1,368 9,890 2,387
VirSorter 758 151 441
(1-2 categories) 55.4% 15.5% 18.5%
VirSorter 766 200 677
(1-2-3 categories) 56% 15.5% 28.4%
VirFinder 866 117 205
63.3% 1.1% 8.6%
viral Verify 1,277 118 79
(Virus only) 93.3% 1.2% 3.3%
viral Verify 1,319 245 149
(Virus+Uncertain) 96.4% 2.5% 6.2%
virMine 1,176 39 14
(Virus only) 85.9% 0.4% 0.6%
virMine 1,229 42 15
(Virus+Unknown) 89.8% 0.4% 0.6%
BLASTN 1,069 42 8
78.1% 0.4% 0.3%
BLASTX 1,258 55 17
91.9 % 0.6% 0.7%

Results of the viral detection benchmarking on the true positive and the true
negative test datasets. The numbers and percentages represent sequences
identified as viral. VirFinder was launched with the score at least 0.7 and
p-value below 0.05, BLASTN and BLASTX were launched against the
database from the viral Verify training dataset, with the E-value threshold
0.001 (top hit was selected).

All contigs that mapped to any virus not used for simulation with identity >
80% and span > 50% were removed from comparison (see Supplemental
Table 2).

Although all tools except virMine showed similar precision , viral Ver-
ify improved on all tools in terms of recall. Relatively low precision of
all tools except virMine (< 64%) can be explained by many identified
prophage sequences that are absent in the viral RefSeq database. Fig. 1
and Supplemental Table 4 illustrate that performance of all tools increases
with the increase in the contig lengths.

For the real datasets, we analyzed the results of the metaSPAdes as-
sembly for the 18 metagenomic samples. We compared viral Verity with
VirSorter, VirFinder and the results of BLAST alignment to viral RefSeq
and metagenomic viral contigs (mVCs) from Paez-Espino et al. (2016).
Although the ground truth in this computational experiment is unknown,
VirFinder and viralVerify predicted significantly more sequences than
VirSorter for most samples (Supplemental Table 5).

3.4 viralComplete benchmarking

To benchmark viralComplete, we randomly split the test dataset of 1368
dsDNA viruses from RefSeq in two equal parts, and cut one of these
parts into fragments of size % of their original length, resulting in a true
negative dataset (z% is selected uniformly at random between 10% and
90%). Table 2 presents viralComplete results. viralComplete shows 12.1%
completeness (83 out of 684 viral fragments) for the true negative dataset
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(fragmented viruses) and 86.8% completeness (594 out of 684 complete
viruses) for the true positive dataset.

Table 2. Benchmarking viralComplete on true

positive and true negative datasets.

684 fragmented | 684 complete

dsDNA viruses | dsDNA viruses
Complete | 83 (12.1%) 594 (86.8%)
Partial 601 (87.9%) 90 (13.2%)

3.5 Exploring novel viruses assembled by metaviralSPAdes

We checked whether some of the assembled viral contigs represent
crAssphages, wide-spread and abundant phages in the human micro-
biome that however evaded all virus detection tools until recently (Dutilh
et al., 2014). Yutin et al. (2018) revealed a previously unknown family of
crAssphage-like viruses, represented in many genomic and metagenomic
databases as misclassified bacterial contigs or uncultured viruses. These
crAssphage contigs avoided detection because over 80% of the predicted
proteins in these contigs showed no significant similarity to known pro-
tein sequences. Also, even though the length of the previously known
crAssphage genomes is 90-100 kbp, the lengths of these contigs were
significantly shorter, likely representing incomplete phage genomes. How-
ever, based on a conserved gene content, Yutin et al. (2018) identified a
distinct crAssphage group and a group of similar crAssphage-like viruses.

metaviralSPAdes assembled seven complete or near-complete phages
from the crAssphage family, including members of the crAssphage group,
in various metagenomes (Supplemental Table 3). Supplemental Figure 2
presents a phylogenetic tree of major capsid proteins of the fully assembled
viruses from the crAssphage family.

4 Discussion

We demonstrated that metaviralSPAdes improves identification of com-
plete viruses from metagenomic datasets. Our analysis of newly sequenced
phages from the crAssphage family illustrates that metaviralSPAdes has
a potential to transform metagenomics-based assembly of novel viruses
from a challenging task into a routine procedure.

However, many viruses still remain undetected or incomplete, indicat-
ing that we may be close to reaching the limits of viral sequencing using
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Figure 1. Average precision and recall on five simulated datasets for viralVerify (blue),
VirFinder (violet) virMine (red) and VirSorter (green). Precision and recall were calculated
separately for contigs longer than 0.5 kb, 3 kb, and 10 kb.

short-read technologies. Kolmogorov et al., 2019 recently demonstrated
that long-read technologies recover more viruses from metagenomic
datasets than short-read technologies. However, the accuracy of viral se-
quences recovered from long-read metagenomic datasets is often inferior,
especially for viral genomes with coverage below 30x. We thus argue
that integration of long-read and short-read metagenomic datasets is a
promising approach for recovering many new viruses.
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