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ABSTRACT. Although plasmids are important for bacterial survival and adaptation, plasmid detection and 

assembly from genomic, let alone metagenomic, samples remain challenging. The recently developed 

plasmidSPAdes assembler addressed some of these challenges in the case of isolate genomes but 

stopped short of detecting plasmids in metagenomic assemblies, an untapped source of yet to be 

discovered plasmids. We present the metaplasmidSPAdes tool for plasmid assembly in metagenomic 

datasets that reduced the false positive rate of plasmid detection as compared to the state-of-the-art 

approaches. We assembled plasmids in diverse datasets and have demonstrated that thousands of 

plasmids remained below the radar in already completed genomic and metagenomic studies. Our 

analysis revealed the extreme variability of plasmids and has led to the discovery of many novel plasmids 
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(including many plasmids carrying antibiotic-resistance genes) without significant similarities to currently 

known ones.  

 

INTRODUCTION 

 

Plasmids are extrachromosomal independently replicating DNA molecules that provide their 

bacterial hosts with additional genetic material important for their survival and adaptation. Prior 

to the sequencing era, plasmids were detected based on the various phenotypic changes they 

provide to their host, such as antibiotic resistance or ability to degrade recalcitrant organic 

compounds. Sequencing efforts, however, have revealed many cryptic plasmids that do not 

contribute to the phenotype of the host cell in any obvious way. Although there are about 10,000 

plasmids listed in the RefSeq database (Pruitt et al, 2006), many plasmids remain undetected 

since the task of assembling plasmids from genomic and metagenomic datasets is far from 

trivial (Antipov et al., 2016, Rozov et al., 2017). We thus conjecture that many classes of 

plasmids continue to remain unknown the same way the many previously unknown classes of 

viruses that were found in recent studies (Paez-Espino et al, 2016, Roux et al., 2016).  

 

Since plasmids exchange genetic material with the host chromosomes and vary in structure 

(circular or linear), size (from a thousand to millions of nucleotides), and gene content, it is not 

clear how to computationally define the concept of a plasmid in such a way that it would be 

possible to distinguish them from the chromosomes. Also, plasmid assembly is complicated by 

various repeats that are difficult to resolve using short reads sequencing technologies:   

1. An intra-plasmidic repeat refers to a repeat within a plasmid. 34% of plasmids in the 

RefSeq database contain intra-plasmidic repeats longer than 300 nucleotides, the typical 

insert size in metagenomic studies. 
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2. An inter-plasmidic repeat refers to a repeat shared by multiple plasmids. 

3. A shared repeat refers to a repeat shared between a plasmid and a chromosome. For 

many isolate samples shared repeats can be resolved if the plasmid coverage by reads 

significantly differs from the chromosome coverage (Antipov, 2016). It is, however, 

difficult to resolve such repeats in the case of metagenomic samples with a wide 

spectrum of chromosome and plasmid coverages across the bacterial community 

(Rozov et al., 2017), or in isolate samples sequenced during the growth phase (Antipov 

et al., 2016).  

 

Circular plasmids form uniformly covered cycles within genomic and metagenomic assembly 

graphs, i.e., cycles that have a relatively uniform coverage by reads (with the exception of 

regions corresponding to intra-plasmidic, inter-plasmidic, and shared repeats). These cycles are 

difficult to detect since they are “hidden” within a large assembly graph that contains both 

chromosomal edges (originating from chromosomes) and plasmidic edges (originating from 

plasmids). Moreover, plasmids with inter-plasmidic repeats form self-overlapping cycles (that 

traverse edges corresponding to these repeats more than once) thus complicating their 

detection even further.  

 

plasmidSPAdes (Antipov et al., 2016) and Recycler (Rozov et al, 2017) are plasmid assembly 

tools that identify plasmids as short uniformly covered cycles in the assembly graph constructed 

by the SPAdes assembler (Bankevich et al., 2012). Both tools address the complications 

caused by shared repeats using the difference between the plasmid and chromosome 

coverages (plasmidSPAdes is limited to isolate genomes, while Recycler can work with 

metagenomes).  Although plasmidSPAdes and Recycler revealed a number of novel plasmids, 

they report many false-positives, especially in situations when the chromosome coverage is 
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non-uniform. Arredondo-Alonso et al., 2017 benchmarked these tools on 42 datasets containing 

short reads sampled from isolate bacterial genomes with 148 plasmids and estimated that 

plasmidSPAdes and Recycler have a precision 0.78 and 0.30, respectively. The low precision 

and reliance on the uniform coverage makes plasmidSPAdes inapplicable to metagenomic 

datasets with highly varying coverage across multiple genomes. This is unfortunate since 

metagenomic datasets represent an untapped source of yet to be discovered plasmids 

(Jørgensen et al, 2014, Li et al., 2015).  

 

We present the metaplasmidSPAdes algorithm that improves on plasmidSPAdes and Recycler 

by (i) iteratively extracting subgraphs with gradually increasing coverage from the metagenome 

assembly graph, (ii) finding putative plasmids as uniformly-covered cycles in these subgraphs, 

and (iii) verifying the found putative plasmids using a new plasmidVerify tool. We applied 

plasmidSPAdes+ (plasmidSPAdes complemented by plasmidVerify) and metaplasmidSPAdes to 

diverse genomic and metagenomic samples and revealed 1000s of plasmids that were missed 

in previous studies, including many plasmids that share no significant similarities with currently 

known plasmids, and plasmids carrying antibiotic-resistance genes.  

 

RESULTS 

 

metaplasmidSPAdes workflow. plasmidSPAdes constructs the plasmid graph by removing all 

edges with coverage similar to the median coverage in the assembly graph. This approach does 

not work for metagenomes since they have highly non-uniform coverage across various 

bacterial genomes within a metagenome. metaplasmidSPAdes improves on plasmidSPAdes by 

resolving dominant plasmids in metagenomes, i.e., plasmids with coverage exceeding that of 

chromosomes and other plasmids, with which they share repeats with.  
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metaplasmidSPAdes utilizes metaSPAdes (Nurk et al, 2016) for transforming the de Bruijn 

graph into an assembly graph. It further detects plasmids in the assembly graph by iteratively 

constructing smaller and smaller subgraphs of the assembly graph and detecting plasmids in 

these subgraphs. metaplasmidSPAdes removes low-coverage edges (with increasing coverage 

cutoff at each iteration), uses exSPAnder (Prjibelski et al., 2014) to generate contigs, and 

detects putative plasmids as cyclic contigs (cyclocontigs) or small connected components in the 

generated subgraphs.  

 

metaplasmidSPAdes sets a coverage cutoff cov, removes all edges with coverage below cov 

from the assembly graph, and searches either for a cycle (cyclocontig) supported by the paired-

end reads or a small connected component in the resulting graph. Some of the found 

cyclocontigs and connected components represent dominant plasmids that were “hidden” in the 

assembly graph before the removal of low coverage edges. To reveal more and more hidden 

plasmids with progressively increasing coverage, metaplasmidSPAdes iteratively increases the 

coverage cutoff as cov+covadd or as cov*covmult (Figure 1). Finally, it uses the plasmidVerify tool 

to check whether contigs and connected components found by metaplasmidSPAdes indeed 

represent plasmids. The Methods section describes the metaplasmidSPAdes workflow in further 

detail.  

 

Plasmid verification. Each cyclocontig/component reconstructed by metaplasmidSPAdes may 

contain some chromosomal edges (or even consist entirely of chromosomal edges) arising from 

phage sequences, transposons, repeats within bacterial chromosomes, etc. We thus developed 

a plasmidVerify tool that examines the gene content of a cyclocontig and classifies it as 

plasmidic (chromosomal) using a Naive Bayesian classifier. Since plasmids harbor a large 
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variety of genes, plasmidVerify uses a plasmid-specific profile-HMM database to detect remote 

similarities between cyclocontigs/components detected by metaplasmidSPAdes and known 

plasmid-specific genes (see Methods section). To construct a set of plasmid-specific HMMs, we 

formed the PlasmidDatabase dataset containing all 9,937 plasmids from the RefSeq database 

(total length 1,007 Mb) and the nonPlasmidDatabase dataset containing randomly selected 10% 

of complete bacterial chromosomes from RefSeq (837 bacterial genomes with total length 3,229 

Mb).  

 

Analysis of putative novel plasmids found by metaplasmidSPAdes. We annotated some 

putative novel plasmids found by metaplasmidSPAdes using Prodigal (Hyatt et al., 2010) in 

metagenomic mode for gene prediction (version 2.6.3), the hmmsearch tool (Finn et al., 2011) 

with PfamA 30.0 database for gene annotation (version 3.1b2), and the CARD database (Jia et 

al. 2017) for predicting antibiotic-resistance genes (only “Perfect” and “Strict” hits).  

    
Benchmarking plasmid verification tools. We benchmarked plasmidVerify against three 

plasmid verification tools (Table 1):  

1. cBar tool based on 5-mer frequencies (Zhou and Xu, 2010), 

2. PlasFlow tool based on deep neural networks (Krawczyk et al., 2018), 

3. repl_HMM approach based on manually curated plasmid replicase HMMs (Jørgensen et 

al., 2014).   

We did not include PlasmidFinder (Carattoli et al., 2014) in the benchmarking because 

Arredondo-Alonso et al, 2017 recently showed that it has a very low recall rate (0.36). 

 

To construct a true negative dataset for benchmarking, we randomly selected 10% of bacterial 

genomes from the RefSeq database using Python random.sample() function. Since most 

putative plasmids output by metaplasmidSPAdes are shorter than typical bacterial 
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chromosomes, we split all bacterial chromosomes into fragments of length 10 kb and used them 

as the true negative dataset. This procedure resulted in 323,362 sequences (partitioning of 

PlasmidDatabase into 10 kb long fragments) that we refer to as nonPlasmidContigs. We 

selected PlasmidDatabase as the true positive dataset for benchmarking.  

 

Table 1 illustrates that plasmidVerify improved on both the true positive and the false positive 

rates compared to the cBar and PlasFlow tools. Although the repl_HMM approach (that uses a 

small manually curated set of plasmid replicase HMMs) has a lower false positive rate than 

plasmidVerify, it is not well suited for our goals since it has a low true positive rate and is limited 

in its ability to detect diverse plasmids, i.e., it fails to detect novel plasmid with replicases that 

significantly differ from the replicases in the curated dataset. 

 

To evaluate plasmidVerify’s performance on the unseen branches of the microbial tree of life, 

we performed the following procedure. For each of the four phyla (Firmicutes, Proteobacteria, 

Cyanobacteria, and Bacteroidetes) we removed all plasmids from the phylum from the training 

dataset, retrained plasmidVerify on the reduced training dataset, and tested it on the members 

of the removed phylum (Supplemental Table S1). The false negative (positive) rates varied from 

14.6% to 19.6% (1.3% to 3.6%) across the four analyzed phyla.  

 

We also tested various plasmid verification tools on the set of viral contigs that represent a 

major source of non-plasmidic circular DNA elements (Supplemental Table S2).  

 

Datasets. We benchmarked metaplasmidSPAdes using one dataset with multiple isolate 

genomes, three mock metagenomic datasets with known bacterial genomes, four metagenomic 

datasets (with unknown genomes), and one plasmidome dataset (all datasets contain paired-
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end Illumina reads). To infer the set of plasmids in each mock metagenomic dataset, we 

compiled the list of known plasmids from the genomes (including all strains with data present in 

RefSeq) present in this dataset. To check which plasmids from this list are indeed present in the 

mock sample, we mapped all metagenomic reads to each of this plasmids. We assume that a 

plasmid is present in the mock dataset (reference plasmid) if more than 95% of its length is 

covered by metaSPAdes assembly. We used metaSPAdes for this verification since all existing 

plasmid analysis tools use its assembly graph for plasmid assembly. See Supplemental Table 

S3 for information about plasmids in the mock datasets. It is worth noting that even though 

mock metagenomes are usually formed from well-studied genomes, metaplasmidSPAdes was 

able to reveal some still unknown plasmids even in the mock metagenomes.  

 
Below we provide a brief description of each of the datasets (see Supplemental Table S4 
“Information about benchmarking datasets” for detailed information).  
 

ISOLATES. The ISOLATES dataset consists of 21,933 bacterial datasets from the JGI GOLD 

database (gold.jgi.doe.gov) representing isolate bacterial samples. 

HMP. The HMP dataset is a mock community of 19 bacterial species, one archaea and one 

yeast species studied by the Human Microbiome Project Consortium (HMP Consortium, 2012). 

20 plasmids were originally reported in this dataset but our more stringent approach reduced the 

number of reference plasmids to 14 (total length ≈854 kb). 

MBARC. The MBARC (Mock Bacteria ARchaea Community) dataset is a mock microbial 

community of 23 bacterial and 3 archaeal species described in Singer et al, 2016. We identified 

10 plasmids of total length ≈756 kb in the MBARC dataset.  

SYNTH. The SYNTH dataset is a mock microbial community of 64 diverse bacterial and 

archaeal species described in Shakya et al., 2013. Shakya et al., 2013 identified 32 plasmids in 
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this dataset but our more stringent approach reduced the number of reference plasmids to 19 

(total length ≈1450 kb). 

INFANT. The INFANT is a human microbiome dataset from an infant’s gut described in 

Bäckhed et al., 2017.   

CROHN. The CROHN is a human gut microbiome dataset from a patient suffering from Crohn’s 

disease (analyzed in Nurk et al., 2017). 

PLASMIDOME. The PLASMIDOME is a plasmid-enriched dataset from a microbial community 

in a biological wastewater treatment reactor described in Shi et al., 2018.  

MARINE. The MARINE is a marine sediment metagenome dataset collected near the field of 

active hydrothermal vents in the Atlantic Ocean (Spang et al., 2015).  

LAKE. The LAKE is a lake metagenome dataset collected at an Indian lake subjected to 

industrial pollution with fluoroquinolone antibiotics. 

 

Analyzing the ISOLATES dataset. We searched for plasmids in the ISOLATES dataset with 

the goal of identifying new plasmids that might have evaded detection in the already completed 

sequencing projects. We did not benchmark Recycler since Arredondo-Alonso et al, 2017 have 

already benchmarked plasmidSPAdes and Recycler on diverse isolate datasets.  

  

plasmidSPAdes generated 44,172 plasmidic connected components, including 15,499 

cyclocontigs that originated from 7,987 out of 21,933 genomes in the ISOLATES dataset. To 

simplify analysis, we limited benchmarking to cyclocontigs and ignored other connected 

components output by plasmidSPAdes+.  
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To remove duplicated cyclocontigs from this set, we clustered them based on their k-mer 

content using Mash (Ondov et al. 2016) and classified plasmids as duplicates if their k-mer 

compositions differed by less than 1%. Once duplicates have been removed 6,694 out of the 

15,499 identified cyclocontigs were classified as unique. 2,280 of these cyclocontigs (referred to 

as plasmidic cyclocontigs) were classified as plasmids by plasmidVerify (Figure 2). We 

compared these cyclocontigs against the CARD database of antibiotic-resistance genes (ARG) 

and detected 356 ARGs in 203 cyclocontig out of 2,280 cyclocontigs (see Figure 2B and 

Supplemental Table S5 for details). 

 

To doublecheck whether a putative cyclocontig originated from a plasmid or a bacterial 

chromosome, we aligned it against the nt database using the BLAST tool (Altschul et al, 1990) 

with the e-value threshold 0.001. Cyclocontigs that aligned to the non-plasmidic sequences in 

the nt database (bacterial chromosomes, viruses, etc.) likely represent false positives, but 

cyclocontigs that aligned to plasmids (or do not align at all) may represent known or novel 

plasmids. Thus BLAST alignments can be used as an approximation for the ground truth for 

additional benchmarking of plasmidVerify, cBar, repl_HMM and PlasFlow (Supplemental Table 

S6).  

 

If a cyclocontig aligned to multiple sequences in the nt database, we analyzed the one with the 

maximal BLAST score (alignments to sequences of unknown origin are ignored). BLAST 

generates either a single alignment that extends over the entire length of the cyclocontig or 

multiple local alignments. We defined the span of a cyclocontig as the ratio of the total 

alignment length over the cyclocontig length, and the identity of the cyclocontig as the average 

percent identity across all alignments.  
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1,134 and 603 out of 2,280 plasmidic cyclocontigs aligned to known plasmids with the span 

exceeding 10% and 90%, respectively. The remaining 2,280 - 1,134 = 1,146 cyclocontigs can 

be broken down into the following three categories (see Supplemental Table S5 for details):   

1. 255 cyclocontigs ambiguously matched to plasmid/chromosome with span >10% 

(putative integrative plasmids) 

2. 480 matched bacterial chromosomes (false positive bacterial segments) 

3. 31 matched viral sequences (false positive phage segments) 

4. 380 did not match any known plasmids/chromosomes with the span exceeding 10% and 

were classified as novel plasmids 

 

We analyzed some of the newly identified plasmids in more details (see Supplemental Figure 

S1 for plasmid maps): 

1.  A 7,895 nucleotide long putative plasmid (from Streptococcus pseudopneumoniae 

clinical isolate) with span 28% and identity 96% carried an Erm 23S ribosomal RNA 

methyltransferase, providing resistance to macrolide antibiotics. It also carried a toxin-

antitoxin system PparE/relB and zeta toxin that may inhibit the cell wall biosynthesis and 

act as a bacteriocin.  

2. A 53,557 nucleotide long putative plasmid (from Enterobacter sp. CC120223-11) with 

span 12% and identity 90% carried an ATP-binding cassette (ABC) antibiotic efflux 

pump. It contained a toxin-antitoxin system vapB-vapC, genes related to pili and flagella 

development, and putative members of type IV conjugal transfer systems (Pfam families 

T4SS_TraI and TraI_2_C), indicating that it is likely self-transferable. It was similar to 

known plasmids only in the short region containing the parA/parB operon that ensures 

the accurate partitioning of plasmids after division. 
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3. The longest putative novel plasmid in the ISOLATES dataset (582 kb) belonged to the 

halophilic marine gammaproteobacteria Ferrimonas marina, strain DSM 16917. It 

encoded 685 predicted genes and contained the plasmid replication protein gene repA, 

as well as an outer membrane phospholipase A1 (OMPLA) essential for bacterial 

secretion, proteins for flagella formation, and ydaS/ydaT toxin-antitoxin system. It also 

had some phage signatures such as the phage integrase genes and bacteriophage T4-

like capsid assembly protein (Gp20). However, the phage integrase genes do not 

represent a strong phage marker since they often occur in plasmids.  

4. The shortest putative novel plasmid in the ISOLATES dataset (length 1284 bp) encoded 

a single protein (firmicute plasmid replication protein RepL) and belonged to the fish 

pathogen Ca. Ichthyocystis 2013Ark19i, a recently described novel intracellular β-

proteobacteria (Seth-Smith et al., 2016).  

 

Analyzing the HMP dataset. metaplasmidSPAdes reconstructed 21 cyclocontigs in the HMP 

dataset. plasmidVerify classified seven of them as plasmidic and all of them have corresponding 

reference plasmids. metaSPAdes and Recycler reconstructed 4 and 6 reference plasmids, 

respectively (Table 2 and Supplemental Table S3). metaplasmidSPAdes identified no small 

uniformly-covered connected components in the HMP dataset.  

 

We analyzed why metaplasmidSPAdes missed 14-7=7 reference plasmids in the HMP dataset. 

Six of them were non-dominant plasmids that share repeats with their bacterial hosts or other 

plasmids (see Supplemental Table S3 for details). The remaining one (dominant plasmid 

NZ_CP015213.1) was not reconstructed as a single cyclocontig since it had a long intra-repeat 

This plasmid was not output as a uniformly covered connected component since it shares more 

than 50% of its length with another plasmid (NC_009007.1) and fails the test on the uniformity of 
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coverage as the total length of medial edges (see Methods section) exceeds 80% of the size of 

this component. For each plasmid that was not assembled in a single cyclocontig by 

metaplasmidSPAdes, we computed the size and the number of edge count of the largest 

connected component that contains this plasmid at each iteration of metaplasmidSPAdes 

(Supplemental Table S7). 

 

Analyzing the MBARC dataset. metaplasmidSPAdes reconstructed 32 cyclocontigs and 

plasmidVerify classified 8 of them as plasmidic. metaplasmidSPAdes assembled eight out of ten 

reference plasmids in the MBARC dataset into a single cyclocontig (metaSPAdes and Recycler 

reconstructed six plasmids each). Two remaining plasmids were non-dominant plasmids that 

were missed by metaplasmidSPAdes because their coverage was close to the median 

coverages of their host chromosomes that share long repeats with these plasmids.  

 

plasmidVerify erroneously classified 2 out of 8 assembled reference plasmids as non-plasmidic: 

(i) one plasmid from the archaea Natronococcus occultus was misclassified because 

plasmidVerify is not designed to verify archaeal plasmids and (ii) one short plasmid (of length 

2,931 bp) did not yield any hits in the Pfam-A database. 

 

Additionally, plasmidVerify classified two cyclocontigs as plasmidic - a 2,876 nucleotide-long 

cyclocontig with a plasmid replication protein that likely represents a novel plasmid (span 19% 

and identity 76%) and a 53 kb long cyclocontig that carries a plasmid-specific resolvase gene, 

and aligns to a bacterial chromosome and various plasmids. 

 

Analyzing the SYNTH dataset. metaplasmidSPAdes reconstructed 87 cyclocontigs in the 

SYNTH dataset and plasmidVerify classified 13 of them as plasmidic. metaSPAdes, Recycler, 
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and metaplasmidSPAdes reconstructed 6, 7, and 8 out of the 19 reference plasmids, 

respectively. The remaining 11 reference plasmids in the SYNTH dataset evaded identification 

by metaplasmidSPAdes since:  

1. 10 of them were non-dominant and share long repeats with chromosomes or plasmids 

with the same or higher coverage (see Supplemental Table S3 for details).   

2. one dominant plasmid was not output as a cyclocontig because it has inter-plasmidic 

repeats larger than the library insert size. It was not output as a uniformly covered 

connected component either since its length (408 kb) exceeds the default threshold for 

the connected component length (200 kb). 

 

Six out of 13 cyclocontigs that metaplasmidSPAdes classified as plasmidic likely represent still 

unknown plasmids in the SYNTH community:  

1. three cyclocontigs have ~40% span and 80%-93% identity with known plasmids in 

various Phaeobacter genomes. Two of them (of lengths 22,035 and 5,444 nucleotides) 

were conjugative plasmids carrying mobilization proteins (MobA/MobC), and one of them 

(of length 11,215 bp) contained a plasmid replicase gene repA, a toxin-antitoxin system 

parE/parD, and a copper resistance operon copAB.  

2. one cyclocontig (of length 38,668 nucleotides) did not match any known 

plasmid/bacterial genomes but carried a plasmid replicase gene.   

3. two cyclocontigs (of length 22,963 and 4,103 nucleotides) both had short matches to 

known plasmids and chromosomes (with span 20% and identity 97-99%). Since they 

carry both a replicase gene and conjugal transfer proteins, they likely represent 

conjugative plasmids. 
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The remaining 2 out of 13 cyclocontigs that metaplasmidSPAdes classified as plasmidic aligned 

to bacterial chromosomes and likely represent false-positives (prophages or transposones). 

plasmidVerify misclassified three reference plasmids (of lengths 16,625, 8,368 and 8,362 

nucleotides) as non-plasmidic since it did not detect any distinctively plasmidic genes within 

them.  

 

Analyzing the INFANT dataset. metaplasmidSPAdes reconstructed 33 cyclocontigs in the 

INFANT dataset and plasmidVerify classified 5 of them as plasmidic (Table 3):  

1. one of them (of length 4,234 nucleotides) matched the pRGFK1358 plasmid with 100% 

span and 95% identity. 

2. one of them (of length 4,608 nucleotides) matched the pRGFK1348 plasmid with 56% 

span and 95% identity. 

3. two of them (of length 3,687 and 3,338 nucleotides) did not match any known 

plasmids/chromosomes, but harbored the Mob plasmid recombination enzyme and the 

initiator of plasmid replication Rep3.  

4. one of them (of length 1,553 nucleotides) matched bacterial chromosomes (likely a false 

positive).  

 

Analyzing the CROHN dataset. metaplasmidSPAdes reconstructed 77 cyclocontigs in the 

CROHN dataset and plasmidVerify classified 28 of them as plasmidic (Table 3):  

1. 4 of them matched known plasmids with 100% span and identity varying from 92% to 

99%.  

2. 14 of them matched known plasmids with spans varying from 21% to 79% and identity 

varying from 78% to 97%. 
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3. 9 of them had a span of under 10% and did not have significant matches with any 

sequences in the nr database. 

4. 1 of them aligned to a bacterial chromosome with a span of 38% (likely a false positive).  

 

A 1868-nucleotide long cyclocontig reconstructed by metaplasmidSPAdes and classified as 

non-plasmidic by plasmidVerify turned out to be a Streptococcus phage phiJH1301-2, carrying 

an aminoglycoside resistance gene (phages were recently shown to carry antibiotics-resistance 

genes (Balcazar, 2014)). Although plasmidSPAdes and metaplasmidSPAdes were not designed 

for viral assembly (there is still no specialized software for viral assembly from genomic and 

metagenomic datasets), our analysis demonstrates that they are able to detect viruses in 

genomic and metagenomic datasets. 

 

Analyzing the PLASMIDOME dataset. Since the PLASMIDOME dataset did not contain 

information about the reference plasmids, we generated some references for this dataset by 

mapping the assembled PLASMIDOME contigs against the plasmid database (with Mash 

screen (Ondov et al., 2019), QUAST (Gurevich et al., 2013), and BLAST). This analysis 

revealed ten reference plasmids with a total length of ≈100 kb. The fact that the total length of 

the identified reference plasmids in the PLASMIDOME dataset was two orders of magnitude 

smaller than the total assembly length suggests that most plasmids in the PLASMIDOME 

dataset are not present in the plasmid database.  

 

metaplasmidSPAdes reconstructed 103 cyclocontigs in the PLASMIDOME dataset and 

plasmidVerify classified 87 of them as plasmidic (Table 3). Seven of these 87 cyclocontigs 

 Cold Spring Harbor Laboratory Press on June 4, 2020 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 
 

 
 

17 

matched known plasmids with a span >90% (with identity varying from 82% to 99%) and 54 

have a span exceeding 10% (with identity varying from 75% to 99%). 9 out of these 87 

cyclocontigs matched a bacterial chromosome or a phage with a span exceeding 10% (likely 

false positives). The remaining 87-7-54-9=17 contigs have spans under 10% and were 

classified as putative novel plasmids.  

 

Analyzing the MARINE dataset. metaplasmidSPAdes reconstructed 127 cyclocontigs in the 

MARINE dataset and plasmidVerify classified 21 of them as plasmidic (Table 3). Three of these 

cyclocontigs matched known plasmids (one with a 99% span and identity, two with spans of 

20% and 60% and identity of 87% and 93%, respectively). Three others matched bacterial 

chromosomes with spans of 14%, 33%, and 48%, and identity of 75%, 100% and 74%, 

respectively. The remaining 15 cyclocontigs have spans under 10% and were classified as 

putative novel plasmids.  

 

Analyzing the LAKE dataset. metaplasmidSPAdes reconstructed 1,860 cyclocontigs in the 

LAKE dataset and plasmidVerify classified 417 of them as plasmidic (Table 3). 7 of these 

cyclocontigs matched bacterial chromosomes, 13 matched viral sequences, 9 matched both 

chromosomes and plasmids and thus likely represent integrative plasmids. 59 cyclocontigs 

matched known plasmids with span exceeding 10%, and the remaining 329 cyclocontigs had no 

significant matches to the nt database. The large number of putative plasmids in the LAKE 

dataset (as compared to the other datasets we analyzed) may be explained by the fact that the 

lake was polluted with fluoroquinolones, making plasmids carrying antibiotics resistance and 

other genes particularly beneficial to the hosts.  

 

DISCUSSION 
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We demonstrated that plasmidSPAdes+ and metaplasmidSPAdes improve on existing tools for 

plasmid reconstruction and identify many novel plasmids in diverse genomic and metagenomic 

datasets. However, even with the improved mechanism of identifying new plasmids, it is still 

likely that many more plasmids continue to evade detection (false negatives) and some non-

plasmidic cyclocontigs end up being reported as plasmids (false positives).  

 

Since some plasmids do not harbour any distinctively plasmidic genes (as defined based on the 

analysis of known plasmids), the corresponding cyclocontigs are not detected by 

metaplasmidSPAdes. Users have the option to switch off the plasmidVerify tool and manually 

analyze all cyclocontings that fall into this category. 

 

Application of plasmidSPAdes+ and metaplasmidSPAdes to various datasets revealed that 

many plasmids remain undetected during genomic and metagenomic studies. Moreover, this 

analysis revealed the enormous variability of plasmids: a large fraction of the found plasmids did 

not match to any known ones. Even in the already completed sequencing projects (ISOLATES 

dataset) we found 1166 putative plasmidic cyclocontigs with <90% similarity to known ones and 

without significant hits to viruses or bacterial chromosomes. 91 of these putative plasmids 

contain antibiotic resistance genes, 246 contain carbohydrate-active enzymes (CAZymes), and 

54 contain adhesion-related genes (possibly contributing to horizontal gene transfer). Expansion 

of the set of known plasmids can help classify them and reflects the evolutionary relationships 

between plasmids. One can compare plasmid phylogeny with host phylogeny and phenotypic 

traits, and analyze the relationships between resistance type, plasmid replication type, and host 

type. This information would also be relevant for epidemiological studies. For example, it 

remains unclear whether resistance dissemination involves a diverse set of plasmids or a single 
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dominant epidemic type. It may correlate with the host range and the type of the antibiotic 

resistance gene (Mathers et. al, 2015). metaplasmidSPAdes will help generate a 

comprehensive dataset of plasmids to help address these questions.  

 

METHODS 

metaplasmidSPAdes workflow.  

 

 

metaplasmidSPAdes uses the default values covadd=5x and covmult=1.3. The plasmidVerify 

module checks whether a cyclocontig or a connected component in the assembly graph 

originated from a plasmid using a Naive Bayesian classifier. To avoid time-consuming read 

alignments at each iteration, metaplasmidSPAdes aligns paired-end reads against the assembly 

graph only once and updates the information about the read alignments during the graph 

modifications. The concept of a plasmid-like connected component is described in the Methods 

section. metaplasmidSPAdes pseudocode can be presented as follows: 

 

metaplasmidSPAdes(Reads, covadd, covmult) 

Plasmids ← empty set 

Graph ← assembly graph of Reads constructed by metaSPAdes 

align paired-end reads to Graph and compute coverage of each edge by reads  

covmax ← maximum coverage of an edge in Graph  

cov ← 0 

while cov < covmax  

    Contigs ← the set of all paths (contigs) in Graph generated by exSPAnder 

    for each cyclocontig Cycle in Contigs 
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        add Cycle to the set Plasmids 

    for each small plasmid-like connected components Component in Graph 

        if Component contains edges that do not belong to cyclocontigs in Plasmids             

           add Component to the set Plasmids and remove it from Graph 

    cov ← max{cov + cadd, cov * cmult}     

    remove edges with coverage below cov from the assembly graph  

    Iteratively remove dead-end edges from Graph (Antipov et al, 2016)  

    replace each non-branching path in Graph with a single edge and recompute its coverage   

 for each cyclocontig or connected component C in Plasmids  

    If plasmidVerify(C)=0 

        remove С from Plasmids 

return Plasmids 

 

 

 

plasmidVerify workflow. We predicted genes with Prodigal v2.6.3  (Hyatt, 2010) and ran 

hmmsearch (part of HMMER 3.1b2, http://hmmerorg/) using Pfam-A database v. 30.0 (Finn et 

al, 2016) on the training datasets from both PlasmidDatabase and nonPlasmidDatabase (7550 

plasmids and 242,681 “contigs”, respectively). For each of the two runs and for each HMM, we 

counted the frequencies of matches (with the bit-score cutoff set to the “noise” level from the 

Pfam-A database) to PlasmidDatabase and nonPlasmidDatabase, respectively. These 

frequencies were used to train a Naive Bayesian classifier (Friedman et al., 2001). 

Supplemental Table S8 lists the HMM frequencies in the training dataset. Given a cyclocontig, 

plasmidVerify predicts genes in this contig using Prodigal in the metagenomic mode, runs 
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hmmsearch on the predicted proteins, and classifies the contig as plasmidic or chromosomal by 

applying the Naive Bayesian classifier.  

 

plasmidVerify classified 1-2% of contigs in the analyzed metagenomic assemblies as plasmidic 

(Supplemental Table S9). However, since plasmidVerify incorrectly classified a number of 

chromosomal contigs as plasmidic, plasmidVerify (and other plasmid verification tools) by itself 

is unable to accurately classify plasmids and thus has to be combined with metaplasmidSPAdes 

for increased accuracy.  

 

Plasmid-like connected components. We define the size of a connected component in the 

assembly graph as the total length of its edges. The connected component is called small if its 

size does not exceed sizemax (default value: 200 kb). For each connected component, we 

compute its median coverage by reads (covmed) as described in Antipov et al., 2016. An edge in 

a connected component is called medial if its coverage exceeds covmed/α and does not exceed 

covmed*α (the default value α=1.3). A connected component is called uniform if the total length of 

its medial edges exceeds 80% of the size of this component. We classify a small uniform 

connected component as plasmid-like if its size exceeds 1 kb and if it contains at most two 

dead-end edges.  

 

DATA ACCESS 

 metaplasmidSPAdes results on all mentioned datasets are available at 

http://data.cab.spbu.ru/index.php/s/tz7mCqDipgbcsbW as a Supplemental File S1. 

Source code is available at https://github.com/ablab/spades/tree/metaplasmid_3.13.0 and as 

Supplemental File S2. 
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Figure 1: Iterative plasmid detection in the assembly graph. (A) The assembly graph Graph with 

three dotted edges representing edges with the lowest coverage. (B) Removal of three edges with the 

lowest coverage from Graph reveals a plasmid (cyclocontig) shown in blue. The three edges on the graph 

in panel A now represent a single dashed edge that has the lowest coverage in Graph. (C) The same 

graph after the second iteration of metaplasmidSPAdes that removes the dashed edge with the lowest 

coverage and reveals a plasmid (connected component) shown in red.  

 

 

Figure 2. The scatter plot of the span and identity for all 2,280 unique cyclocontigs in the 

ISOLATES dataset reconstructed by plasmidSPAdes+ (A) and the Venn diagram for cyclocontigs 

identified as plasmids by plasmidVerify, cyclocontigs identified as plasmids by BLAST (span over 

10%) and cyclocontigs containing ARGs (B). (A) Each dot represents a cyclocontig reported by 

plasmidSPAdes and verified by plasmidVerify. Red dots represent cyclocontigs containing antibiotic-

resistance genes. Green dots represent cyclocontigs classified as viral sequences. (B) The Venn diagram 

illustrates that the HMM-based approach in metaplasmidSPAdes identifies many plasmids with important 

phenotypes that are missed by a straightforward BLAST-based approach.  
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 cBar PlasFlow repl_HMM plasmidVerify 

PlasmidDatabase test dataset  

true positive, 2,484 plasmids 

2,117 

(85.2% ) 

1,959 

(78.9%) 

1,298 

(52,3%) 

2,208 

(88.9%) 

nonPlasmidContigs test dataset 

true negative, 80,840 contigs  

15,810 

( 19.5%) 

16,526 

( 20.4%) 

580 

(0.7%) 

2,463 

(3.1%) 

 

Table 1. Benchmarking various plasmid verification tools. PlasmidDatabase (9937 plasmids) and 

nonPlasmidContigs (323362 contigs of length 10 kb) were divided into a training (75%) and a test (25%) 

datasets. plasmidVerify was trained on the training dataset. All plasmid verification tools were 

benchmarked on the test dataset. Since our goal is to distinguish complete plasmids from short 

chromosomal fragments output by metaplasmidSPAdes, our benchmarking datasets differ from the ones 

described in Zhou et al., 2010 and Krawczyk et al., 2018 where various plasmid verification tools were 

benchmarked on full plasmids/chromosomes or plasmidic/chromosomal contigs of varying lengths.  
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dataset 
#reference 

plasmids 

#reconstructed reference plasmids  

metaSPAdes Recycler metaplasmidSPAdes 

HMP   14 4 6 7 

MBARC 10 6 6 8 

SYNTH 19 6 7 8  

 

Table 2. Information about reference plasmids reconstructed as cyclocontigs by metaSPAdes, 

Recycler, and metaplasmidSPAdes (HMP, MBARC, and SYNTH datasets).  
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Dataset 
Assembly length 

(metaSPAdes) 

# of cyclocontigs (# of cyclocontigs verified by plasmidVerify) 

metaSPAdes Recycler metaplasmidSPAdes 

INFANTGUT 230 Mb 11(2) 49 (5) 33 (5) 

CROHN 596 Mb 45 (15) - 77 (28) 

PLASMIDOME 18 Mb 56 (35) 71 (49) 103 (87) 

MARINE 234 Mb 175 (24) 210(28) 127(21) 

LAKE 119 Mb 1,882 (277) 1,609 (370) 1,860 (417) 

 

Table 3. Number of cyclocontigs reconstructed by metaSPAdes, Recycler, and 

metaplasmidSPAdes in the INFANTGUT, CROHN, PLASMIDOME, MARINE, and LAKE datasets. We 

did not provide the Recycler results on the most complex CROHN dataset since it ran for over a month, 

but did not output any putative plasmids.  
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