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Abstract

We consider diffusivity of random walks with transition probabil-

ities depending on the number of consecutive traversals of the last

traversed edge, the so called senile reinforced random walk (SeRW).

In one dimension, the walk is known to be sub-diffusive with identity

reinforcement function. We perturb the model by introducing a small

probability δ of escaping the last traversed edge at each step. The per-

turbed SeRW model is diffusive for any δ > 0, with enhanced diffusivity

(� O(δ2)) in the small δ regime. We further study stochastically per-

turbed SeRW models by having the last edge escape probability of the

form δ ξn with ξn’s being independent random variables. Enhanced

diffusivity in such models are logarithmically close to the so called

residual diffusivity (positive in the zero δ limit), with diffusivity be-

tween O
(

1
| log δ|

)

and O
(

1
log | log δ|

)

. Finally, we generalize our results

to higher dimensions where the unperturbed model is already diffusive.

The enhanced diffusivity can be as much as O(log−2 δ).
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1 Introduction

Enhanced diffusivity arises in large scale fluid transport through chaotic and

turbulent flows, and has been studied for nearly a century, see [19, 10, 9,

3, 6, 15, 16, 12, 13] among others. It refers to the much larger macroscopic

effective diffusivity (DE) than the microscopic molecular diffusivity (D0) as

the latter approaches zero. An example of smooth chaotic flow is the time

periodic Hamiltonian flow (X = (x, y) ∈ R
2):

v(X, t) = (cos(y), cos(x)) + θ cos(t) (sin(y), sin(x)), θ ∈ (0, 1]. (1)

The first term of (1) is a steady flow consisting of periodic arrays of counter-

rotating vortices, and the second term is a time periodic perturbation that

injects an increasing amount of disorder into the flow trajectories as θ be-

comes larger. At θ = 1, the flow is fully mixing, and empirically sub-diffusive

[21]. The flow (1) is one of the simplest models of chaotic advection in

Rayleigh-Bénard experiment [4]. The motion of a diffusing particle in the

flow (1) satisfies the stochastic differential equation (SDE):

dXt = v(Xt, t) dt+
√

2D0 dWt, X(0) = (x0, y0) ∈ R
2, (2)

where Wt is the standard 2-dimensional Wiener process. The mean square

displacement in the unit direction e at large times is given by [2]:

lim
t↑+∞

E(|(X(t)−X(0)) · e|2)/t = DE , (3)

where DE = DE(D0, e, θ) > D0 is the effective diffusivity. Numerical simula-

tions [3, 16, 12, 13] based on the associated Fokker-Planck equations (or cell

problems of homogenization [2]) suggest that at e = (1, 0), θ = 1, DE = O(1)

as D0 ↓ 0, the residual diffusivity emerges. In fact, DE = O(1) for e = (0, 1)

and a range of values in θ ∈ (0, 1) as well [12, 13]. Recently, computation

of (2)-(3) by structure preserving schemes [20] reveals residual diffusivity

also for a time stochastic version of (1). At θ = 0, enhanced DE scales as

O(
√
D0) � D0 as D0 ↓ 0, see [5, 7, 17] for various proofs and generalizations.

2



Motivated by enhanced diffusion in advecting fluids, we are interested in

the enhanced diffusion phenomenon in discrete stochastic dynamics such as

random walk models with some memory or tendency to return. The memory

effects on a walker induce a slowdown of transport (movement) similar to

spinning vortices in fluid flows. We shall add a small probability of symmetric

random walk and examine the large time behavior of the second moment, in

similar spirit to (3). The first work along this line of inquiry is [14] where

the baseline model is the so called elephant random walk model with stops

(ERWS) [18, 11]. The ERWS is non-Markovian and exhibits sub-diffusive,

diffusive and super-diffusive regimes. The ERWS plays the role of flow (1).

A transition from sub-diffusive to enhanced diffusive regime emerges with

diffusivity strictly above that of the baseline model (hence residual diffusivity

appears) as the added probability of symmetric random walk tends to zero

[14].

In this paper, we study enhanced diffusivity by perturbing the so called

nearest-neighbor reinforced senile random walk model (SeRW, [8]) on Z
d.

The model involves a reinforcement function f : N → [−1,∞). The walk

{Sn}n≥0 starts at the origin and initially steps to one of the 2 d nearest

neighbors with equal probability. Subsequent steps are defined by the num-

ber of times the current undirected edge has been traversed consecutively: If

{Sn−1, Sn} has been traversed m consecutive times in the immediate past,

then the probability of traversing that edge in the next step is 1+f(m)
2d+f(m) ,

with the rest of the possible 2d − 1 choices being equally likely. As soon as

a new edge is traversed, the reinforcement ends on the previous edge and

restarts on the new edge. For identity reinforcement function f , the walk

is sub-diffusive in d = 1, and diffusive in higher dimension [8]. Our work

analyzes the asymptotics of the enhanced diffusivity when adding a variety

of symmetric random walks at small probability.

The rest of the paper is organized as follows. In section 2, we review the

baseline SeRW model and the key results of [8]. In section 3, we introduce

the perturbed SeRW models, in which the walk becomes diffusive. In section

4, we state and discuss our main results on the diffusivity of the random
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walk in the perturbed models and the corresponding asymptotics for both

d = 1 and d ≥ 2. The enhancements come logarithmically close to residual

diffusivity. In section 5, we present proofs of the main results. Concluding

remarks are in section 6.

2 Nearest Neighbor SeRW Model

A nearest-neighbor senile reinforced random walk in Z
d is a sequence {Sn}n≥0

of Zd-valued random variables on a probability space (Ω,F ,Pf ), with corre-

sponding filtration {Fn = σ(S0, ..., Sn)}n≥0, defined by:

• The walk begins at the origin of Zd, i.e. S0 = 0,Pf -almost surely.

• Pf (S1 = x) = D(x), where D(x) = (2d)−1
1|x|=1

• For n ∈ N, en = {Sn−1, Sn} is an Fn-measurable undirected edge and

mn = max{k ≥ 1 : en−l+1 = en for all 1 ≤ l ≤ k}

is an N-valued, Fn-measurable random variable.

• For n ∈ N and x ∈ Z
d such that |x| = 1:

Pf (Sn+1 = Sn + x|Fn) =







1+f(mn)
2d+f(mn)

, if {Sn, Sn + x} = en,

1
2d+f(mn)

, if {Sn, Sn + x} 6= en,

We shall consider the case f(mn) = mn, and suppress the f dependence

in the probability Pf notation. We shall refer to the analysis of SeRW model

by Holmes and Sakai [8] and their main results without proofs.

Let τ = sup{n ≥ 1 : Sm = 0 or S1 ∀m ≤ n} denote the number of times

that the walk traverses the first edge before leaving that edge for the first

time. Note that τ is not a stopping time (however τ + 1 = inf{n ≥ 2 : Sn 6=
Sn−2} is a stopping time). Let Nx denote the number of times the walk Sn

visits x. If P(Nx = ∞) = 1 for all x, we say the walk is recurrent (I). If

P(Nx = ∞) = 0 for all x, we say the walk is transient (I). If E[Nx] = ∞
for every x, we say the walk is recurrent (II), and if E[Nx] < ∞ for all x,

we say the walk is transient (II). Note that for the standard random walk,
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the two characterizations of recurrence/transience are equivalent; and the

walk is recurrent in d ≤ 2, and transient otherwise. For the senile reinforced

random walks, the two notions need not be the same.

Theorem 1. (Holmes and Sakai [8]) For f satisfying Pf (τ = ∞) = 0, but

excluding the degenerate case where d = 1 and f(1) = −1, we have:

(1) SeRWf is recurrent (I)/transient (I) if and only if SeRW0 is recurrent

(I)/transient (I).

(2) When Ef [τ ] < ∞, SeRWf is recurrent (II)/transient (II) if and only if

SeRW0 is recurrent (II)/transient (II).

(3) When Ef [τ ] = ∞, SeRWf is recurrent (II).

A consequence of this proposition is the following corollary:

Corollary 1.1. The nearest-neighbor senile reinforced random walk with lin-

ear reinforcement of the form f(m) = Cm is recurrent (I), (II) when d = 1, 2

and transient (I) when d > 2. It is transient (II) for d > 2 if and only if

C < 2d− 1.

The diffusion constant is defined as ν = limn→∞ E[|Sn|2] (=1 for the

standard random walk) whenever this limit exists. The main result of [8] is:

Theorem 2. (Holmes and Sakai [8]) Suppose that there exists ε > 0 and

E[τ1+ε] < ∞. Then the walk is diffusive and the diffusion constant is given

by

ν =
P(τ odd)

1− 1
dP(τ odd)

1

E[τ ]
. (4)

The proof of Theorem 2 is based on the formula for the Green’s function,

and a Tauberian theorem, whose application requires the (1 + ε)th moment

of τ to be finite. Except for the degenerate case, it was shown in [8] that

the result holds for all f by a time-change argument. When E[τ ] = ∞, the

right-hand side of (4) is zero, which suggest that the walk is sub-diffusive.

When f(m) = m, special hypergeometric functions are applicable and

various well-known properties of these functions enable a proof of:
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Proposition 2.1. (Holmes and Sakai [8]) The diffusion constant ν of the

nearest-neighbor senile random walk with reinforcement f(l) = l satisfies

0 < ν < 1 when d > 1. For the one-dimensional nearest-neighbor model,

lim
n→∞

log n

n
E[|Sn|2] =

1− log 2

2 log 2− 1
.

Hence at d = 1, the walk is sub-diffusive, slower than diffusion by a

logarithmic factor (log n)−1/2.

3 Perturbed SeRW Models

3.1 Deterministic Perturbation (Model I)

The one-dimensional model with f(m) = m is sub-diffusive. This is partly

due to the walk having a strong tendency to return to the last traversed

edge. We add a small perturbation δ to the conditional probability of Sn+1

as:

P(Sn+1 = Sn + x|Fn) =







1+mn

2+mn
− δ, if {Sn, Sn + x} = en,

1
2+mn

+ δ, if {Sn, Sn + x} 6= en.

In other words, at each step we add a small probability δ of escaping the

last traversed edge, where δ > 0 is deterministic. As mn → ∞, 1
2+mn

→ 0.

So if an edge has already been traversed consecutively too many times, the

probability of escaping will be dominantly determined by δ. This means that

the perturbed model will gradually converge to a simplified model where the

probability of returning to the last traversed edge is 1− δ.

3.2 Stochastic Perturbation

3.2.1 Sequence of i.i.d. perturbations (Model II)

Let (ξn)n∈N be a sequence of independent identically distributed (i.i.d.) non-

negative random variable and consider:

P(Sn+1 = Sn + x|Fn) =







max{1+n
2+n − δξn, 0}, if {Sn, Sn + x} = en,

min{ 1
2+n + δξn, 1}, if {Sn, Sn + x} 6= en.
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At each step, the random variable ξn takes a value, then the reinforcement is

based on this value. We only assume that ξn is continuous with probability

density function f = fξn .

Notice that if ξn takes any value greater than 1+n
2+n , the walk will escape

the last traversed edge on the n+ 1th turn. So in this model, the tail of the

distribution function f provides a stronger chance of breaking out of the last

traversed step, leading to more enhanced diffusion.

3.2.2 Sequence of independent perturbations (Model III)

To further enhance diffusivity, we shall consider the situation that (ξn)n∈N

are no longer i.i.d., but rather have n-dependent distributions.

P(Sn+1 = Sn + x|Fn) =







max{1+n
2+n − δξn, 0}, if {Sn, Sn + x} = en,

min{ 1
2+n + δξn, 1}, if {Sn, Sn + x} 6= en,

For example, ξn’s can have the same type of distribution and expectation, but

with variance n2. This modification will reinforce the probability of the walk

breaking out of the last traversed edge. We only assume that E[ξn] < ∞, for

all n.

4 Main Results

The diffusivity from the perturbation (the simple symmetric random walk)

similar to "molecular diffusivity” D0 of (2) is νδ = δ2. We will show that, in

all of our three models, the enhanced diffusivity is much greater than O(δ2).

Our main results are stated in the following theorems.

Theorem 3. The deterministic perturbed model (I) is diffusive for any δ > 0,

and the diffusion constant is given by

ν =
P(τ odd)

P(τ even)E[τ ]
. (5)

Moreover,

ν(δ) = O

(

1

| log δ|

)

as δ → 0+. (6)
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The formula (5) for ν is a direct result of Theorem 2. It is dramatic

that the walk becomes diffusive for any value of δ > 0. Proposition 2.1

says the walk is sub-diffusive by an order of log n. The added perturbation

reduces the probability of revisiting the last traversed edge. However small,

the perturbation is enough to create diffusivity.

To prove Theorem 3, we first verify that the model is diffusive by checking

the condition of Theorem 2, then we will find a lower bound for E[τ ] and

show that the bound goes to ∞ as n → ∞. A straightforward computation

shows 1 ≤ P(τ odd)
P(τ even) ≤ 2. This concludes the proof. In the last section, we

discuss the rate at which ν goes to zero as δ tends to zero.

Theorem 4. The stochastic perturbed model (II) is diffusive for any δ > 0,

and the diffusion constant is given by the same formula as in Theorem 3.

Moreover,

(i) If E[ξn] < ∞, then ν(δ) = O
(

1
| log δ|

)

as δ → 0+.

(ii) If E[ξn] = ∞, one can construct ξn so that ν(δ) = O( 1
log | log δ|) as δ → 0+.

Similar to the deterministic case, the stochastic perturbed model is still

not strong enough to sustain residual diffusivity. We can, however, reduce

the rate at which ν converges to 0. If ξn has infinite expected value (fat tail),

then ξn is more likely to attain very large values, and the walk is less likely

to get stuck. The maximal enhancement on ν(δ) is O( 1
log | log δ|).

Theorem 5. The stochastic perturbed model (III) is diffusive for any δ > 0.

The diffusion constant is given by the same formula as in Theorem 3 with

ν(δ) = O
(

1
| log δ|

)

as δ → 0+.

The proofs of the three theorems above are based on Theorem 2 to show

diffusivity and the calculation of the diffusion constant ν. Our approach is

elementary and relies heavily on the computation of the quantity P(τ ≥ n).

The absence of residual diffusivity and the rate of convergence are obtained

via asymptotic analysis in the small δ regime.

Theorem 6. When the baseline diffusive SeRW model on Z
d (d ≥ 2) is

perturbed into models (I, II, III), we have the following:
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(i) Under model I, the walk has a linearly enhanced diffusivity:

νδ = ν0 +O(δ),

where ν0 is the diffusivity of the unpeturbed model.

(ii) Under models II and III, if E[ξn] < ∞, for all n, the walk has the same

linear enhanced diffusivity as in model I.

(iii) Under models II and III, if E[ξn] = ∞, for all n, one can construct ξn

to achieve the following enhanced diffusivity rates:

(a) νδ = ν0 +O(δ | log δ|),
(b) νδ = ν0 +O(δj), for some j ∈ (0, 1),

(c) νδ = ν0 +O(log−2 δ).

5 Proofs of Main Results

5.1 Theorem 3: Existence of positive diffusion constant

First we verify the perturbed model is diffusive. It is easy to see that

P(τ = 1) =
1

3
+ δ and P(τ = n) =

[

n
∏

k=2

(

k

k + 1
− δ

)

]

(

1

n+ 2
+ δ

)

for n ≥ 2. We will show there exists ε > 0 such that E[τ1+ε] < ∞ and apply

Theorem 2. The following is an upper bound for P(τ = n) when n ≥ 2:
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P(τ = n) =

[

n
∏

k=2

(

k

k + 1
− δ

)

]

(

1

n+ 2
+ δ

)

=

(

2

3
− δ

)(

3

4
− δ

)

...

(

n

n+ 1
− δ

)(

1

n+ 2
+ δ

)

=
2(1− 3δ

2 )3(1− 4δ
3 )...n(1−

(n+1)δ
n )

3 · 4... · (n+ 1)

(

1

n+ 2
+ δ

)

≤ 2

n+ 1
e−

3δ
2 e−

4δ
3 ...e−

(n+1)δ
n

(

1

n+ 2
+ δ

)

=
2

n+ 1
exp

{

−
n
∑

k=2

δ

(

1 +
1

k

)

}

(

1

n+ 2
+ δ

)

≤ 2

n+ 1
exp {δ(−n+ 1− log n+ 1)}

(

1

n+ 2
+ δ

)

=
2e2δ(1 + (n+ 2)δ)

(n+ 1)(n+ 2)eδnnδ

where the first inequality follows since 1− x ≤ e−x for all x, and the second

inequality since log n ≤
∑n

k=1
1
n . Letting ε = δ, we have

E[τ1+δ] =
∞
∑

n=1

n1+δ
P(τ = n)

=
1

3
+ δ +

∞
∑

n=2

2e2δn(1 + (n+ 2)δ)

eδn(n+ 1)(n+ 2)
< ∞

Thus by Theorem 2, the walk is diffusive.

In the second part of this proof, we will show ν → 0 as δ → 0+. By Theorem

2, the diffusion constant simplifies to

ν =
P(τ odd)

P(τ even)E[τ ]
.

It suffices to show E[τ ] → ∞ as δ → 0+. To that end, it is more convenient

to use the formula E[τ ] =
∑∞

n=1 P(τ ≥ n). We have

P(τ ≥ 1) = 1 and P(τ ≥ n) =

n
∏

k=2

(

k

k + 1
− δ

)
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for n ≥ 2. The following computation gives a lower bound for P(τ ≥ n)

when n ≥ 2:

P(τ ≥ n) =

n
∏

k=2

(

k

k + 1
− δ

)

=
2(1− 3δ

2 )3(1− 4δ
3 )...n(1−

(n+1)δ
n )

3 · 4... · (n+ 1)

≥ 2

n+ 1
e−2( 3δ

2
)e−2( 4δ

3
)...e−2(

(n+1)δ
n

)

=
2

n+ 1
exp

{

−2
n
∑

k=2

δ

(

1 +
1

k

)

}

≥ 2

n+ 1
exp {−2δ(n− 2 + log n+ γ)}

=
2e4δ

(n+ 1)e2δγe2δnn2δ

≥ 2e4δ

2ne2δγe2δnn2δ

where the first inequality follows since 1 − x ≥ e−2x holds for small x ≥ 0,

and the second equality since
∑n

k=1
1
k ≤ log n + γ, where γ is the Euler

constant.

It remains to show
∑∞

n=1
2e4δ

(n+1)e2δγe2δnn2δ → ∞ as δ → 0+. Since the terms

in the summation are positive and decreasing, we can use the integral test

for convergence. After multiplying by a constant, it suffices to compute

∫ ∞

1

e−2δx

x1+2δ
dx.

Letting t = −2δ, we have

∫ ∞

1

e−2δx

x1+2δ
dx =

∫ ∞

2δ

e−t

(

t
2δ

)1+δ

dt

2δ
= (2δ)δ

∫ ∞

2δ

e−t

t1+2δ
dt = (2δ)δΓ(−2δ, 2δ)

where Γ(·, ·) is the Incomplete Upper Gamma function [1]. It is straightfor-

ward to verify that (2δ)δ → 1 as δ → 0+. By [1], Γ(−2δ, 2δ) → ∞ as δ → 0+.

Thus, we have shown that a lower bound for E[τ ] diverges as δ tends to 0. By

Theorem 2, ν converges to 0. Therefore the perturbed model is not strong

enough to sustain a residual diffusivity.

11



5.2 Rate of convergence

Since a residual diffusion is not achievable, it is natural to ask how fast ν is

decreasing as δ tends to 0. In this section, we will verify that in the perturbed

model, the diffusivity converges to 0 at a rate of 1
| log δ| .

Let k = 2δ and consider the integral above as a function of k, i.e.,

f(k) =

∫ ∞

1

e−kx

x1+k
dx (7)

Then

f ′(k) = −
∫ ∞

1

e−kx

x1+k
(x+ log x)dx

Since x � log x as x → ∞, f ′(k) is dominantly determined by the term with

x, namely

f ′(k) ∼ −
∫ ∞

1

e−kx

xk
dx

let u = x1−k, so du = (1− k)x−kdx, we have

f ′(k) ∼ − 1

1− k

∫ ∞

1
e−ku

1
1−k

du = − 1

1− k

∫ ∞

1
e−(k1−ku)

1
1−k

du

let v = k1−ku, the integral becomes

f ′(k) ∼ −k−1+k

1− k

∫ ∞

k1−k

e−v
1

1−k
dv

as k → 0+,
∫ ∞

k1−k

e−v
1

1−k
dv →

∫ ∞

0
e−vdv = 1

thus f ′(k) ∼ −k−1+k

1−k as k → 0+. Finally,

lim
k→0+

−f(k)

log(δ)
= lim

k→0+

−f(k)

log k − log 2

L’H
= lim

k→0+

−f ′(k)

1/k
= lim

k→0+

k−1+kk

1− k
= 1

An identical computation shows limk→0+
f(δ)

− log δ = 1. Since

∞
∑

n=1

2e4δ

(n+ 1)e2δγe2δnn2δ
≤ E[τ ] ≤

∞
∑

n=1

2e2δ

(n+ 1)eδγeδnnδ
,

after multiplying by a constant, we have E[τ ] ∼ C1 | log δ|. Applying the

formula of Theorem 2, we have νδ = O
(

1
| log δ|

)

.
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5.3 Theorem 4: Existence of positive diffusion constant

The formula for the diffusion constant ν follows directly from Theorem 2.

The proof of Theorem 2 is based on the formula for the Green’s function,

and a standard Tauberian theorem. It utilized the following functions and

quantities:

Gz(x) =

∞
∑

n=0

znP(Sn = x), for z ∈ [0, 1]























az =
∞
∑

n=2

znP(τ ≥ n)1{n even}

bz =

∞
∑

n=2

znP(τ ≥ n)1{n odd}























pz =

∞
∑

n=1

znP(τ = n)1{n even}

qz =

∞
∑

n=1

znP(τ = n)1{n odd}

and other variables built up from az, bz, pz, and qz. We will show below that,

even though the model is stochastic, P(τ ≥ n) is still deterministic. Thus

the proof of Theorem 2 still applies and gives the formula for ν.

Given that an edge has been traversed n times, let Pn denote the total

probability of breaking out of this edge on the (n + 1)th turn, and let Qn

denote the probability of traversing this edge again on the (n + 1)th turn.

Then Pn is the sum of all the terms of the form n+1
n+2 − δξ, given that ξn =

ξ ≤ n+1
δ(n+2) . Formally,

Pn =

∫ n+1
δ(n+2)

0

(

n+ 1

n+ 2
− δx

)

f(x)dx

and

Qn =

(

∫ n+1
δ(n+2)

0

(

1

n+ 2
− δx

)

f(x)dx

)

+ P

(

ξn >
n+ 1

δ(n+ 2)

)

Similar to the previous result, for n ≥ 2, we have

P(τ = n) =

(

n−1
∏

i=1

Pi

)

Qn and P(τ ≥ n) =

n−1
∏

i=1

Pi.
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An upper bound for P(τ ≥ n) is

P(τ ≥ n) =
n−1
∏

i=1

(

∫ i+1
δ(i+2)

0

(

i+ 1

i+ 2
− δx

)

f(x)dx

)

≤
n−1
∏

i=1

(

i+ 1

i+ 2
− δ

∫ i+1
δ(i+2)

0
xf(x)dx

)

≤
n−1
∏

i=1

(

i+ 1

i+ 2
− δ

∫ 2
3δ

0
xf(x)dx

)

.

Let µ := δ
∫

2
3δ
0 xf(x)dx. Then µ is a constant for each fixed δ. Thus

P(τ ≥ n) =
∏n−1

i=1

(

i+1
i+2 − µ

)

, which has the same form as in the determinis-

tic case. By a similar computation, there exists ε > 0 such that E[τ1+ε] < ∞,

and the walk is diffusive.

Recall Theorem 2, the diffusion constant is

ν =
P(τ odd)

P(τ even)

1

E[τ ]

In order to sustain residual diffusivity, we need E[τ ] 6→ ∞ as δ → 0+. Using

the formula E[τ ] =
∑∞

n=1 P(τ ≥ n), we get

E[τ ] = 1 +

∞
∑

n=2

n−1
∏

i=1

(

∫ i+1
δ(i+2)

0

(

i+ 1

i+ 2
− δx

)

f(x)dx

)

. (8)
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Suppose E[ξn] < ∞. Then by Fatou’s lemma,

lim inf
δ→0+

E[τ ] = lim inf
δ→0+

(

1 +
∞
∑

n=2

[

n−1
∏

i=1

∫ i+1
δ(i+2)

0

(

i+ 1

i+ 2
− δx

)

f(x)dx

])

≥ 1 +
∞
∑

n=2

lim inf
δ→0+

n−1
∏

i=1

[

(

i+ 1

i+ 2

)
∫ i+1

δ(i+2)

0
f(x)dx− δ

∫ i+1
δ(i+2)

0
xf(x)dx

]

= 1 +

∞
∑

n=2

lim inf
δ→0+

[

n−1
∏

i=1

(

i+ 1

i+ 2
− δE[ξn]

)

]

= 1 +

∞
∑

n=2

(

n−1
∏

i=1

i+ 1

i+ 2

)

= 1 +

∞
∑

n=2

2

n+ 1
= ∞.

Since a lower bound for E[τ ] diverges to ∞, the corresponding upper bound

for ν converges to 0. Thus ν → 0 as δ → 0+. Moreover, since E[ξn] is a

finite constant, the computation from Section 5.2 shows ν(δ) = O( 1
| log δ|) as

δ → 0+.

5.4 Random variables with infinite expectation

5.4.1 Necessary asymptotic behavior of the pdf of ξn

Suppose ξn is a random variable with support in [0,∞) and E[ξn] = +∞.

Let f = fξn be the probability density function (pdf) of ξn, we have

∫ ∞

0
f(x)dx = 1 and

∫ ∞

0
xf(x)dx = ∞.

We will study the asymptotic behavior of such f . Since
∫∞
0 f(x)dx = 1, we

require f(x) ≤ O(x−n), for some n > 1.

On the other hand,
∫∞
0 xf(x)dx = ∞ implies xf(x) ≥ O(x−1). Thus, the

necessary asymptotic behavior for f is

O

(

1

x2

)

≤ f(x) < O

(

1

x

)

.
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Example 5.1. A random variable ξn with f(x) = O
(

1
x2

)

.

Let ξn be non-negative Cauchy random variables with x0 = 0 and pdf

fξn(x) =
2

πγ

[

1 +
(

x
γ

)2
] =

2γ

π(x2 + γ2)
.

Then

P(τ ≥ n) =
n−1
∏

i=1

[

(

i+ 1

i+ 2

)
∫ i+1

δ(i+2)

0

2γ

π(x2 + γ2)
dx− δ

∫ i+1
δ(i+2)

0

2γx

π(x2 + γ2)
dx

]

=
n−1
∏

i=1

[

(

i+ 1

i+ 2

)
∫ i+1

δ(i+2)

0

2γ

π(x2 + γ2)
dx− δ

(

γ log(x2 + γ2)

π

) ∣

∣

∣

∣

x= i+1
δ(i+2)

x=0

]

=

n−1
∏

i=1

[

(

i+ 1

i+ 2

)
∫ i+1

δ(i+2)

0

2γ

π(x2 + γ2)
dx−O

(

δ log
1

δ

)

]

and by Fatou’s lemma,

lim inf
δ→0+

E[τ ] ≥ 1 +
∞
∑

n=2

lim inf
δ→0+

P(τ ≥ n)

= 1 +

∞
∑

n=2

lim inf
δ→0+

n−1
∏

i=1

[

(

i+ 1

i+ 2

)
∫ i+1

δ(i+2)

0

2γ

π(x2 + γ2)
dx−O

(

δ log
1

δ

)

.

]

= 1 +
∞
∑

n=2

2

n+ 1
= ∞.

Similar to the above result, since a lower bound for E[τ ] diverges to ∞,

we have ν → 0 as δ → 0+. Thus, even though the non-negative Cauchy

distribution has a "fat” tail, the growth rate of
∫

i+1
δ(i+2)

0 xf(x)dx is still not

fast enough to produce residual diffusivity.

5.4.2 Non-existence of residual diffusivity, rate of convergence

The case where f(x) = O(x−2) was covered in example 5.1. In general, if

O

(

1

x2

)

< f(x) < O

(

1

x

)

16



then

O

(

1

x

)

< xf(x) < O(1)

which implies

δO

(

log
1

δ

)

< δ

∫ i+1
δ(i+2)

0
xf(x) < δO

(

1

δ

)

.

Taking the limit as δ → 0+, we have δ
∫

i+1
δ(i+2)

0 xf(x) → 0, which implies

P(τ ≥ n) =
n−1
∏

i=1

(

∫ i+1
δ(i+2)

0

(

i+ 1

i+ 2
− δx

)

f(x)dx

)

→ 1

n
as δ → 0+.

Therefore E[τ ] → ∞ and, subsequently, ν → 0.

For the asymptotic behavior of ν(δ), we study 3 cases:

Case 1, f(x) = O(x−2) :

By example 5.1, as δ → 0+,

P(τ ≥ n) =

n−1
∏

i=1

(

i+ 1

i+ 2
− Cδ log

(

1

δ

))

A similar computation to the last part of section 5.1 shows that, after mul-

tiplying by a constant, to compute E[τ ], it suffices to compute

g(δ log(1/δ)) =

∫ ∞

1

e−δ log(1/δ)

x1+δ log(1/δ)
.

And by the computation of section 5.2, which shows limδ→0+
g(k)
log k = 1, we

have

lim
δ→0

g(δ log(1/δ))

log(δ log(1/δ))
= 1.

This implies

E[τ ] ∼ C1 log(|δ log δ|)

and therefore

ν ∼ C2

log(|δ log δ|) ∼ C3

log δ
.

17



Case 2, f(x) = O(x−(1+j)), for 0 < j < 1 :

A similar calculation to example 5.1 shows, as δ → 0+,

P(τ ≥ n) =
n−1
∏

i=1

(

i+ 1

i+ 2
− Cδj

)

and a calculation similar to Case 1 shows

E[τ ] ∼ C1 | log(δj)| = C2 | log(δ)|.

So in this case,

ν ∼ C3

| log(δ)|
which is the same result as the deterministic case.

Case 3, f(x) < O(x−(1+j)), for any 0 < j < 1 and f(x) > O(x−2) :

One such example is f(x) = O
(

1
x(log x)2

)

. Then

∫ i+1
δ(i+2)

0
xf(x)dx =

∫ i+1
δ(i+2)

0

C

log2 x
dx

which is a well known logarithm integral with asymptotic behavior:
∫

1

log2 x
dx = li(x)− x

log x
= O

(

x

log2 x

)

therefore

δ

∫ i+1
δ(i+2)

0
xf(x)dx = δO

(

1

δ log2
(

C1
δ

)

)

= O

(

1

log2(δ)

)

as δ → 0+. This implies

P(τ ≥ n) =

n−1
∏

i=1

(

i+ 1

i+ 2
− C2

log2 δ

)

and a similar calculation to Case 1 shows

E[τ ] ∼ C3 log(log
2 δ) = C4 log | log δ|.

Thus, we have constructed a random variable ξn such that ν converges to

zero at a rate of

ν ∼ C

log | log δ| .
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5.5 Proof of Theorem 5

Theorem 5 is a consequence of Theorem 4. The fact that the model is

diffusive for any δ > 0 follows directly. For the rate at which ν tends to 0,

let fn be the p.d.f. of ξn and recall that

P(τ ≥ n) =
n−1
∏

i=1

(

∫ i+1
δ(i+2)

0

(

i+ 1

i+ 2
− δx

)

fn(x)dx

)

.

Since E[ξn] < ∞ for all n, one can find a random variable Y with E[Y ] = ∞
with p.d.f. fY such that, for sufficiently small δ,

δ

∫ i+1
δ(i+2)

0
xfn(x)dx ≤ δ

∫ i+1
δ(i+2)

0
yfY (y)dy

so as δ → 0+,

P(τ ≥ n) ≥
n−1
∏

i=1

(

i+ 1

i+ 2
− δ

∫ i+1
δ(i+2)

0
yfY (y)dy

)

.

Notice the expression on the RHS matches the case of infinite expectation of

the Theorem 4. Therefore E[τ ] grows at least as fast as the previous case, and

hence so is the decay rate of νδ. One can choose Y so that fY (y) = O(y−2)

(Similar to Case 1 of section 5.4.2), so that νY (δ) ∼ O(| log δ|). Then νδ

decays at a rate of at most O(| log δ|) (by section 5.3), and at least O(log δ),

from the previous case. It follows that νδ = O(log δ).

5.6 Theorem 6: Results in higher dimensions

5.6.1 Perturbation under model I:

For d ≥ 2, the model becomes

P(Sn+1 = Sn + x|Fn) =







max{ 1+n
2d+n − δ, 0}, if {Sn, Sn + x} = en,

min{ 1
2d+n + δ, 1}, if {Sn, Sn + x} 6= en.
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A similar computation to that of the one-dimensional case shows, for n ≥ 2d,

P(τ ≥ n) =

n
∏

k=2

(

1 + k

2d+ k
− δ

)

=
(2d)!

(n+ 2)(n+ 3)...(n+ 2d)

(

1− 2d+ 1

2
δ

)

...

(

1− 2d+ n

n+ 1
δ

)

→ (2d)!

(n+ 2)(n+ 3)...(n+ 2d)
exp

{

−δ
n
∑

k=2

(

1 +
2d− 1

k

)

}

∼ (2d)!

(n+ 2)(n+ 3)...(n+ 2d)
exp {−δ(n− 1 + (2d− 1) log n− (2d− 1))}

=
(2d)!

(n+ 2)(n+ 3)...(n+ 2d)

e−δne2δd

nδ(2d−1)

which has the same form as in the one-dimensional case. For d ≥ 2, the

unperturbed walk is diffusive, as
∑∞

n=1 P(τ ≥ n) < ∞. Let τδ denote the

model perturbed by δ. By Dominated Convergence Theorem

lim
δ→0+

E[τδ] = lim
δ→0+

∞
∑

n=1

P(τ ≥ n) =

∞
∑

n=1

lim
δ→0+

P(τ ≥ n) = E[τ0].

Thus νδ → ν as δ → 0+. For the enhanced diffusivity, by the integral test,

it suffices to consider the integral

∫ ∞

1

e−kx

x(2d−1)(1+k)
dx =: f(k)

we have

∂

∂k
f(k) =

∫ ∞

1

e−kx

x(2d−1)k+2d−2
(x+ (2d− 1) log x)dx.

Since d ≥ 2, the integral converges for any non-negative value of k. By the

Dominated Convergence Theorem,

lim
k→0+

∂

∂k
f(k) =

∫ ∞

1
lim

k→0+

e−kx

x(2d−1)k+2d−2
(x+ (2d− 1) log x)dx < ∞,

which implies that E[τδ] grows at a linear rate near δ = 0, and therefore

νδ = ν0 +O(δ).
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5.6.2 Perturbation under model II and III:

Consider the model

P(Sn+1 = Sn + x|Fn) =







max{ 1+n
2d+n − δξn, 0}, if {Sn, Sn + x} = en,

min{ 1
2d+n + δξn, 1}, if {Sn, Sn + x} 6= en.

If (ξn)n∈N is a sequence of random variables such that E[ξn] < ∞, for all n,

one can use an analogous argument to that of section 5.3 to show νδ → ν0

at the same rate as model I. When E[ξn] = ∞, let f = fξn . The proof of all

three cases are identical. We present the proof of the second case below:

Case 2: f(x) = O(x−(1+j)), for 0 < j < 1 :

Using a similar computation to section 5.4.2, we have

P(τ ≥ n) =
n
∏

k=2

(

∫ 1+k
δ(2d+k)

0

(

1 + k

2d+ k
− δx

)

f(x)dx

)

→
n
∏

k=2

(

1 + k

2d+ k
− C1δ

j

)

→ C2

(n+ 2)(n+ 3)...(n+ 2d)

e−δjne2δ
jd

nδj(2d−1)

and the Dominated Convergence Theorem guarantees convergence of νδ. For

the enhanced diffusivity, it suffices to consider the integral

∫ ∞

1

e−kjx

x(2d−1)(1+kj)
dx =: f(kj)

and
∂

∂kj
f(kj) =

∫ ∞

1

e−kjx

x(2d−1)(1+kj)
(x+ (2d− 1) log x)dx < ∞

the integral converges for any non-negative value of k. This implies E[τδ]

grows at a rate of δj near δ = 0. Therefore

νδ = ν0 +O(δj).

Using an analogous argument, one gets the result for Cases 1 and 3, where

the construction for Case 3 is the same as in section 5.4.2.
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6 Conclusions

The SeRW model in one dimension with identity reinforcement function was

found to be diffusive when perturbed with a small probability δ of breaking

out of the last traversed edge, no matter how small δ is. The enhanced

diffusivity is logarithmically close to residual diffusivity as δ tends to zero.

We studied a few variations of the perturbed models, where the perturbation

δ ξn is stochastic, and the distribution of ξn may or may not depend on n.

These models intend to create a "fat tail" as n increases so it is more likely

for the walk to break out of the last traversed edge. For most cases, the

enhanced diffusivity is νδ = O
(

1
| log δ|

)

. The highest enhanced diffusivity is

νδ = O
(

1
log | log δ|

)

. This was achieved when ξn has a very fat tail, fξn(x) =

O
(

1
x(log x)2

)

, which is much fatter than that of the Cauchy distribution. In

higher dimensions, the baseline SeRW with identity reinforcement function

is already diffusive and the enhanced diffusivity reaches a rate as high as

O(log−2 δ).

In future work, we plan to explore dissimilar random walk models with

memory mechanism and study enhanced diffusivities.
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