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Abstract. We give a quantum version of the Danilov-Jurkiewicz presentation of the
cohomology of a compact toric orbifold with projective coarse moduli space. More pre-
cisely, we construct a canonical isomorphism from a formal version of the Batyrev ring
from [4] to the quantum orbifold cohomology at a canonical bulk deformation. This iso-
morphism generalizes results of Givental [23], Iritani [34] and Fukaya-Oh-Ohta-Ono [21]
for toric manifolds and Coates-Lee-Corti-Tseng [11] for weighted projective spaces. The
proof uses a quantum version of Kirwan surjectivity (Theorem 2.6 below) and an equal-
ity of dimensions (Theorem 4.19 below) deduced using a toric minimal model program
(tmmp). We show that there is a natural decomposition of the quantum cohomology
where summands correspond to singularities in the tmmp, each of which gives rise to a
collection of Hamiltonian non-displaceable Lagrangian tori.
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1. Introduction

According to results of Danilov and Jurkiewicz [16, 35, 36], the rational cohomology
ring of a complete rationally-smooth toric variety is the quotient of a polynomial ring
generated by prime invariant divisors by the Stanley-Reisner ideal. In addition to relations
corresponding to linear equivalence of invariant divisors, there are higher degree relations
corresponding to collections of divisors whose intersection is empty.
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One can reformulate this presentation of the cohomology ring in terms of equivariant
cohomology as follows. Let G be a complex reductive group acting on a smooth polar-
ized projective variety X. If the action on the semistable locus Xss is locally free then
the geometric invariant theory (git) quotient X//G = Xss/G, by which we mean the
stack-theoretic quotient of the semistable locus by the group action, is a smooth proper
Deligne-Mumford stack with projective coarse moduli space. A result of Kirwan [38] says
that the natural map HG(X,Q) → H(X//G,Q) is surjective. Under suitable properness
assumptions the same holds for quasi-projective X.

In particular, let G be a torus acting on a finite-dimensional vector spaceX with weights
contained in an open half-space. The quotient X//G is a smooth proper Deligne-Mumford
toric stack as in Borisov-Chen-Smith [7] and any such toric stack with projective coarse
moduli space arises in this way. The equivariant cohomology HG(X) may be identified
with the ring of polynomial functions on g and each weight maps to a divisor class in
H(X//G) under the Kirwan map. The Stanley-Reisner ideal SRG

X is precisely the kernel

of the Kirwan map. For example, if G =× acts by scalar multiplication on X =k, then
HG(X) = Q[ξ] is a polynomial ring in a single generator ξ, the git quotient isX//G = Pk−1,
and the intersection of the k prime invariant divisors is empty. The Stanley-Reisner ideal
is the ideal ⟨ξk⟩ generated by ξk. This gives the standard description of the cohomology
ring of projective space H(Pk−1) = HG(X)/SRG

X = Q[ξ]/⟨ξk⟩.

In this paper we give a similar presentation of the quantum cohomology of compact toric
orbifolds with projective coarse moduli spaces, via the quantum version of the Kirwan map
introduced in [50, 51, 52]. The results here generalize those of Batyrev [4], Givental [23],
Iritani [32, 33, 34], and Fukaya-Oh-Ohta-Ono [21], who use results of McDuff-Tolman [43].
In particular, Iritani [34] computed the quantum cohomology of toric manifolds using lo-
calization arguments for toric varieties that appear as certain complete intersections, while
Fukaya et al [21] gave a computation using open-closed Gromov-Witten invariants defined
via Kuranishi structures. The orbifold quantum cohomology of weighted projective spaces
is computed in Coates-Lee-Corti-Tseng [11]. After the first version of this manuscript ap-
peared a mirror theorem for toric stacks was proved by Coates, Corti, Iritani, and Tseng
[12] and applied to give a Batyrev-style presentation in [13, Theorem 5.13].

A novel feature of the approach here is the appearance of minimal model programs,
which are used to prove injectivity of the quantum Kirwan map modulo the quantum
Stanley-Reisner ideal. The critical values of the Givental-Hori-Vafa potential acquire a
natural geometric meaning in our approach: their logarithms are the transition times in
the minimal model program, see Theorem 5.5 below, and the dimension of the orbifold
cohomology and the logarithm of the lowest eigenvalue of quantum multiplication by
the first Chern class decrease under each transition. We also obtain a more conceptual
understanding of the appearance of open families of non-displaceable Lagrangians in toric
orbifolds, as a consequence of the existence of infinitely many minimal model programs,
see Remark 5.3.

We introduce the following notations.



QUANTUM COHOMOLOGY AND TORIC MINIMAL MODEL PROGRAMS 3

Notation 1.1. (a) (Novikov coefficients) Let Λ denote the universal Novikov field of
formal power series of q with rational exponents

Λ =

{∑
ρ

cρq
ρ

⏐⏐⏐⏐⏐ cρ ∈, ρ ∈ Q
∀e > 0,#{ρ|cρ < e} < ∞

}
.

We denote by Λ0 ⊂ Λ the subring with only non-negative powers of q.
(b) (Equivariant quantum cohomology) Let

QHG(X) := HG(X, )⊗Λ

denote the (ungraded) equivariant quantum cohomology of X. We denote by
QHG(X,Q) := HG(X,Q)⊗QΛ the subspace with rational coefficients. Equivariant
enumeration of stable maps to X defines a family of products

⋆α : TαQHG(X,Q)2 → TαQHG(X,Q)

forming (part of) the structure of a Frobenius manifold on QHG(X,Q) [23] for α in
a formal neighborhood of a symplectic class ω ∈ HG

2 (X,Q). Explicitly the product
β ⋆α+ω γ is defined by

(1) ⟨β ⋆α+ω γ, δ⟩ =
∑

d∈H2(X,Z),n≥0

q⟨d,ω⟩

n!

∫
[M0,n+3(X,d)G]

ev∗(α, . . . , α, β, γ, δ∨)

where the integral denotes push-forward to BG using the equivariant virtual fun-
damental class described in [28].

(c) (Inertia stacks) The inertia stack of X//G is

IX//G =
⋃
r>0

Homrep(P(r), X//G) =
⋃
[g]

Xg,ss/Zg.

In the first union, Homrep(P(r), ·) denotes representable morphisms from P(r) =
BZr and the second union is over conjugacy classes [g] of elements g ∈ G, with
Zg ⊂ G the centralizer of g and Xg,ss the intersection of the semistable locus Xss

with the fixed point set

Xg := {x ∈ X | gx = x}.

The rigidified inertia stack is

IX//G =
⋃
r>0

Homrep(P(r), X/G)/P(r) =
⋃
[g]

Xg,ss/(Zg/⟨g⟩)

where ⟨g⟩ denotes the subgroup generated by g, as in Abramovich-Graber-Vistoli
[1], Chen-Ruan [10].

(d) (Orbifold quantum cohomology of a git quotient) Let

QH(X//G) := H(IX//G, )⊗ Λ

denote the orbifold quantum cohomology of X//G, or QH(X//G,Q) the version
with rational coefficients. Enumeration of twisted stable maps to X//G (repre-
sentable maps from orbifold curves to X//G) defines a Frobenius manifold structure
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on QH(X//G) [1], [10] given by a family of products

⋆α : TαQH(X//G,Q)2 → TαQH(X//G,Q).

These products are defined in a formal neighborhood of an equivariant symplectic
class ω ∈ H2(X//G,Q) by

(2) ⟨β ⋆ω+α γ, δ⟩ :=
∑

d∈H2(X//G,Q)
n≥0

q⟨d,ω⟩

n!

∫
[M0,n+3(X//G,d)]

ev∗(α, . . . , α, β, γ, δ∨)

for α, β, γ ∈ H(IX//G), extended by linearity over Λ. The pairing on the left-hand-
side is a certain re-scaled Poincaré pairing on the inertia stack IX//G, see [1].

Example 1.2. To connect with the notation in [1], [10] (where one works with different
Novikov fields) consider the following examples.

(a) (Stacky half-point) Let G =× act on X = with weight two so that X//G = P(2).
The inertia stack IX//G is the union of two copies of P(2) corresponding to the
elements ±1 of Z2. Thus

QH(X//G) = Λ⊕ Λθ−

the sum of two copies of Λ, where θ− is the additive generator of the twisted sector.
Representable morphisms from a stacky curve C to X//G = P(2) correspond to
double covers of the coarse moduli space C, with ramification at the stacky points.
Since there is a unique double cover of the projective line with two ramification
points (up to isomorphism) multiplication is given by θ− ⋆ω θ− = 1.

(b) (Teardrop orbifold) Suppose that G =× acts on X =2 with weights 1, 2. Then
X//G = P(1, 2) is a weighted projective line, QHG(X) ∼= Λ[ξ] is a polynomial ring
in a single generator, while

QH(X//G) = Λ⊕ Λθ+ ⊕ Λθ−

where θ+ is the point class in H(X//G) ⊂ H(IX//G) and θ− is the class of the

fixed point set X−1/⟨−1⟩ = P(2) in the twisted sector. Identify HG
2 (X,Q) ∼= Q

corresponding to the dual of the Euler class of the representation with weight
one. The fundamental class in H2(X//G,Q) ∼= HG

2 (X,Q) then maps to 1/2. The
moduli space of twisted stable maps u : C → P(1, 2) of genus and class zero is
either isomorphic to P(1, 2) for no stacky points in the domain C, or isomorphic
to P(2), for two stacky points in the domain C. Furthermore there is a unique
(up to isomorphism) homology class 1/2 twisted map with two smooth marked
points and one stacky marked point with Z2 automorphism group. It follows that
if the symplectic class ω has area 1/2 on the fundamental class of P(1, 2) then the
quantum product is defined by

θ+ ⋆ω θ+ = q1/2θ−/2, θ− ⋆ω θ+ = q1/2/2, θ− ⋆ω θ− = θ+.

Thus after inverting q1/2, the orbifold quantum cohomology is generated by θ+
with the relation θ3+ = q/4.
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Remark 1.3. (Alternative power series rings) Some confusion may be caused by the
multitude of formal power series rings that one can work over; unfortunately almost every
set of authors has a different convention.

(a) The equivariant quantum cohomology QHG(X) can be defined over the larger
equivariant Novikov field ΛG

X ⊂ Map(HG
2 (X,Z),Q) consisting of infinite sums∑∞

i=1 ciq
di with ⟨di, ω⟩ → ∞, where qdi is the delta function at di ∈ HG

2 (X,Z). Sim-
ilarly, the quantum cohomology of the quotient QH(X//G) can be defined over the
Novikov field ΛX//G ⊂ Map(H(X//G,Q),Q) consisting of infinite sums

∑∞
i=1 ciq

di

with ⟨di, ω⟩ → ∞, where qdi is the delta function at di ∈ H2(X//G,Q). The advan-
tage of these rings is that the equivariant quantum cohomology QHG(X) becomes
Z-graded.

(b) QHG(X) is also defined over the universal Novikov ring Λ0. If ω is integral, then
QHG(X) is defined over Q[[q]]. Similarly, QH(X//G) is defined over the Novikov

ring Λ0, and if ω is integral, over Q[[q1/n]] for n equal to the least common multiple
of the orders of the automorphism groups in X//G. However, it is convenient to
work over the field Λ. Invariance under Hamiltonian perturbation only holds for
Floer/quantum cohomology over the Novikov field Λ, and so working over Λ is
more natural for the purposes of symplectic geometry.

(c) Unfortunately, Λ and Λ0 are not finitely generated over and so some care is required
when talking about intersection multiplicities. In practice, when we wish to talk
about intersection multiplicities we assume that the symplectic form is integral in
which case our algebras are defined over [q, q−1].

(d) In algebraic geometry, one often uses the monoid-algebra of effective curve classes,
but we prefer Novikov fields because of the better invariance properties. In fact,
the cone of effective curve classes is not any more explicit than working over the
Novikov field since it is the classes of connected curves that appear in the Gromov-
Witten potentials, and these are rather hard to determine.

In [50, 51, 52] the second author studied the relationship betweenQHG(X) andQH(X//G)
given by virtual enumeration of affine gauged maps, called the quantum Kirwan map. An
n-marked affine gauged map is a representable morphism from a weighted projective line
P(1, r) for some r > 0 to the quotient stack X/G mapping P(r) ⊂ P(1, r) to the semistable
locus X//G. Some of the results of [50, 51, 52] are:

Theorem 1.4. (Definition and properties of the quantum Kirwan map)

(a) The stack MG
n,1(A, X, d) of n-marked affine gauged maps of class d ∈ HG

2 (X,Q)

has a natural compactification MG
n,1(A, X, d). Denote by ev, ev∞ the evaluation

maps

MG
n,1(A, X)

(X/G)n IX//G

�
ev

j
ev∞
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and evd, evd,∞ their restrictions to maps of class d. The moduli stack MG
n,1(A, X, d)

has a perfect relative obstruction theory over Mn,1(A) (the case of X and G trivial)

where Mn,1(A) is the complexification of Stasheff’s multiplihedron.
(b) For any n ≥ 0, the map defined by virtual enumeration of stable n-marked affine

gauged maps

(3) κG,n
X : QHG(X,Q) → QH(X//G,Q)

α ↦→
∑

d∈HG
2 (X,Q)

q⟨d,ω⟩ evd,∞,∗ ev
∗
d(α, . . . , α)

is well-defined.
(c) The sum

κGX : QHG(X,Q) → QH(X//G,Q), α ↦→
∑
n≥0

κG,n
X (α)

n!

defines a formal map from QHG(X,Q) to QH(X//G,Q) in a neighborhood of the
symplectic class ω ∈ H2

G(X,Q) with the property that each linearization

Dακ
G
X : TαQHG(X,Q) → TκG

X(α)QH(X//G,Q)

is a ⋆-homomorphism with respect to the quantum products.

By analogy with the classical case one hopes to obtain a presentation of the quantum
cohomology algebra TκG

X(α)QH(X//G,Q) by showing that Dακ
G
X is surjective and com-

puting its kernel. This hope leads to the following strong and weak quantum version of
Kirwan surjectivity. In the strong form, one might hope that κGX has infinite radius of
convergence, κGX is surjective, and Dακ

G
X is surjective for any α ∈ QHG(X,Q). More

modestly, one might hope that Dακ
G
X is surjective for α in a formal neighborhood of a

rational symplectic class ω ∈ HG
2 (X,Q).

We now specialize to the toric case. Suppose that G is a complex torus with Lie algebra
g acting on a finite-dimensional complex vector space X.

Notation 1.5. (a) (Weights) Let X1, . . . , Xk ⊂ X be the weight spaces of X where
dim(Xj) = 1 and G acts on Xj with weight µj ∈ g∨ in the sense that for x ∈ Xj

and ξ ∈ g we have exp(ξ)x = exp(i⟨ξ, µj⟩), j = 1, . . . , k. We assume that the
weights µj ∈ g∨ are contained in an open half-space, that is, for some ν ∈ g we
have ⟨ν, µi⟩ ∈ R>0, i = 1, . . . , k. We also assume that the weights µi span g∨, so
that G acts generically locally free on X.

(b) (Polarization and semistable locus) We assume that X is equipped with a polariza-
tion, that is, an ample G-line bundle L → X, which we may allow to be rational,
that is, an integer root of an honest G-line bundle. Let ω ∈ g∨Q be the vector

representing the first Chern class of the polarization cG1 (L) ∈ HG
2 (X,Q) under the

isomorphism g∨Q
∼= H2

G(X,Q). The point ω determines a rational polarization on



QUANTUM COHOMOLOGY AND TORIC MINIMAL MODEL PROGRAMS 7

X with semistable locus given as follows. Let

(4) I(ω) =

{
I ⊂ {1, . . . , k} | ω /∈

∑
i∈I

R≥0µi

}
be the set of subsets so that ω is not in the span of the corresponding weights. Let
XI be the intersection of coordinate hyperplanes

XI = {(x1, . . . , xk)|xi = 0, ∀i /∈ I} .

Then

Xss = X\
⋃

I∈I(ω)

XI .

The stable=semistable condition assumption translates to the condition for each
I /∈ I(ω) the weights µi, i ∈ I span g∨. In this case the quotient X//G = Xss/G is
then a smooth (possibly empty) proper Deligne-Mumford stack. We suppose that
X//G is non-empty.

(c) (Quantum Stanley-Reisner ideal) The quantum Stanley-Reisner ideal is

QSRX,G(α) := ⟨QSRX,G(d, α), d ∈ HG
2 (X,Z)⟩ ⊂ QHG(X,Q)

where

QSRX,G(d, α) :=
∏

⟨µj ,d⟩≥0

µ
⟨µj ,d⟩
j − q⟨d,α⟩

∏
⟨µj ,d⟩≤0

µ
−⟨µj ,d⟩
j .

If α is the given symplectic class ω, we write QSRX,G := QSRX,G(ω). The quotient
TωQHG(X,Q)/QSRX,G is the quantum Stanley-Reisner a.k.a Batyrev ring.

Example 1.6. (a) (Batyrev ring for projective space) Let G =× act on X =k by
scalar multiplication. All weights µ1, . . . , µk are equal to 1 ∈ g∨Z

∼= Z and the
polarization vector ω = 1 ∈ g∨Q

∼= H2
G(X,Q). There is a unique subset I = ∅ in

I(ω) and XI = {0} ⊂ X. Thus the semistable locus is Xss = X −X∅ = X − {0}
and the git quotient is X//G = Xss/G = Pk−1. The quantum Stanley-Reisner
ideal is generated by the single element QSRX,G(1) = ξk − q. The Batyrev ring is

Λ[ξ]/⟨ξk − q⟩.
(b) (Batyrev ring for the teardrop orbifold) Continuing Example 1.2 (b), suppose that

G =× acts onX =2 with weights 1, 2 so thatX//G = P(1, 2) is a weighted projective
line. The Batyrev ring is Λ[ξ]/⟨(ξ)(2ξ)2 − q⟩.

(c) (Batyrev ring for the BZ2) Continuing Example 1.2 (b), suppose that G =× acts on
X = with weights 2 so that X//G = P(2) ∼= BZ2. The Batyrev ring is Λ[ξ]/⟨(2ξ)2−
q⟩. After specializing q, the Batyrev ring is isomorphic to the group ring of Z2.

Our main result says that Batyrev’s original suggestion [4] for the quantum cohomol-
ogy is true, after passing to a suitable formal version of the equivariant cohomology and
“quantizing” the divisor classes:



8 EDUARDO GONZÁLEZ AND CHRIS T. WOODWARD

Theorem 1.7. For a suitable formal version Q̂HG(X) of the equivariant quantum coho-
mology QHG(X) (see Section 2) the linearized quantum Kirwan map Dωκ

G
X induces an

isomorphism

TαQ̂HG(X,Q)/Q̂SRX,G(ω) → TκG
X(ω)QH(X//G,Q).

at the tangent space to the rational symplectic class ω ∈ H2
G(X,Q).

Remark 1.8. (a) Many earlier cases of this theorem were known. Batyrev [4] proved
a similar presentation in the case of convex toric manifolds, that is, in the case
that the deformations of any stable map are un-obstructed. In the semi-Fano case
(that is, c1(X//G) is non-negative on any curve class) a presentation was given by
Givental [24]. For non-weak-Fano toric manifolds, Iritani [34, 5.11] gave an iso-
morphism with the Batyrev ring, see also Brown [8]. From the symplectic point of
view a presentation for the quantum cohomology of toric manifolds was given in
Fukaya et al [21], using results of McDuff-Tolman [43] on the Seidel representation.
The latter approach uses open-closed Gromov-Witten invariants to define a poten-
tial counting holomorphic disks whose leading order terms are the potential above.
The quantum Stanley-Reisner relations were proved by Coates, Corti, Iritani, and
Tseng [13, Theorem 5.13], see also Woodward [50, 51, 52], in papers that appeared
after the first version of this manuscript. That these relations generate the ideal
was expected for some time, see Iritani [33]. Thus the main content of this paper is
that these relations suffice. A quantization of the Borisov-Chen-Smith presentation
of the orbifold cohomology [7] was given in Tseng-Wang [48]. The latter is not a
presentation in terms of divisor classes; for example, for weighted projective spaces
the typical number of generators is much larger than one, while the Batyrev ring
has a single generator.

(b) For the result above to hold the quantum cohomology must be defined over the
Novikov field, or at least, that a suitable rational power of the formal parameter
q has been inverted: over a polynomial ring such as [q], one does not obtain an
surjection because certain elements in twisted sectors are not contained in the image
for q = 0. Thus one sees a Batyrev presentation of the quantum cohomology only
for non-zero q. The necessity of corrections to Batyrev’s original conjecture, which
involved the divisor classes as generators, was noted in Cox-Katz [14, Example
11.2.5.2] for the second Hirzebruch surface and Spielberg [46] for a toric three-
fold. The fact that the change of coordinates restores the original presentation
was noted in Guest [30] for semi-Fano toric varieties, and Iritani [34, Section 5], for
not-necessarily-Fano toric varieties in general, after passing to a formal completion.
See Iritani [34, Example 5.5] and González-Iritani [26, Example 3.5] for examples
in the toric manifold case.

(c) Note that Danilov’s results [16] do not require projectivity of the coarse moduli
space. It seems possible that quantum cohomology might also be defined for non-
projective toric varieties. Namely certain convergence conditions would remove the
necessity of working over a Novikov ring, and one might have a theorem similar to
1.7, but we lack any results in this direction.
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