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I. INTRODUCTION

Fueled with recent advances in deep neural networks, reinforcement learning (RL) has been in the
limelight for many recent breakthroughs in artificial intelligence, including defeating humans in games
(e.g., chess, Go, StarCraft), self-driving cars, smart home automation, service robots, among many others.
Despite these remarkable achievements, many basic tasks can still elude a single RL agent. Examples
abound from multi-player games, multi-robots, cellular antenna tilt control, traffic control systems, smart
power grids to network management.

Often, cooperation among multiple RL agents is much more critical: multiple agents must collaborate
to complete a common goal, expedite learning, protect privacy, offer resiliency against failures and
adversarial attacks, and overcome the physical limitations of a single RL. agent behaving alone. These tasks
are studied under the umbrella of cooperative multi-agent RL (MARL), where agents seek to learn optimal
policies to maximize a shared team reward, while interacting with an unknown stochastic environment
and with each other. Cooperative MARL is far more challenging than the single-agent case due to: i)
the exponentially growing search space, ii) the non-stationary and unpredictable environment caused by
the agents’ concurrent yet heterogeneous behaviors, and iii) the lack of central coordinators in many
applications. These difficulties can be alleviated by appropriate coordination among agents.

The cooperative MARL can be further categorized into subclasses depending on the information
structure and types of coordination, such as how much information (e.g., state, action, reward, etc.)
is available for each agent, what kinds of information can be shared among the agents, and what kinds
of protocols (e.g., communication networks, etc.) are used for coordination. When only local partial
state observation is available for each agent, the corresponding multi-agent systems are often described

through decentralized partially observable Markov decision processes (MDP), or DEC-POMDP for short,



for which the decision problem is known to be extremely challenging. In fact, even the planning problem of
DEC-POMDPs (with known models) is known to be NEXT-complete [1]. Despite some recent empirical
successes [2]-[4], finding an exact solution of DEC-POMDPs using RLs with theoretical guarantees
remains an open question.

When full state information is available for each agent, we call agents joint action learners (JALs)
if they also know the joint actions of other agents, and independent learners (ILs) if agents only know
their own actions. Learning tasks for ILs are still very challenging, since each agent sees other agents
as parts of the environment, so without observing the internal states, including other agents actions, the
problem essentially becomes non-Markovian [5] and a partially observable MDP (POMDP). It turns out
that optimal policy can be found under restricted assumptions such as deterministic MDP [6], and for
general stochastic MDPs, several attempts have demonstrated empirical successes [7]-[9]. For a more
comprehensive survey on independent MARLS, the reader is referred to the survey [6].

The form of rewards, either centralized or decentralized, also makes a huge difference in multi-agent
systems. If every agent receives a common reward, the situation becomes relatively easy to deal with.
For instance, JALs can perfectly learn exact optimal policies of the underlying decision problem even
without coordination among agents [10]. The more interesting and practical scenario is when rewards
are decentralized, i.e., each agent receives its own local reward while the global reward to be maximized
is the sum of local rewards. This decentralization is especially important when taking into account the
privacy and resiliency of the system.

Clearly, learning without coordination among agents is impossible under decentralized rewards. This
article focuses on this important subclass of cooperative MARL with decentralized rewards, assuming
the full state and action information is available to each agent. In particular, we consider decentralized
coordination through network communications characterized by graphs, where each node in the graph
represents each agent and edges connecting nodes represent communication between them.

Distributed optimization rises to the challenge by achieving global consensus on the optimal policy
through only local computation and communication with neighboring agents. Recently, several important
advances have been made in this direction such as the distributed temporal difference (TD) learning [11],
distributed Q-learning [12], distributed actor-critic algorithm [13], and other important results [14]-
[17]. These works largely benefit from the synergistic connection between RLs and the core idea of
averaging consensus-based distributed optimization [18], which leverages averaging consensus protocols
for information propagation over networks and rich theory established in this field during the last decade.

In this survey, we provide an overview of this emerging field with an emphasis on optimization within

the decentralized setting (decentralized rewards and decentralized communication protocols). For this



purpose, we highlight the evolution of RL algorithms from single-agent to multi-agent systems, from
a distributed optimization perspective, in the hope to catalyze the growing synergy among distributed
optimization, signal processing, and RL. communities.

In the sequel, we first revisit the basics of single-agent RL in Section II and extend to multi-agent RL.
in Section III. In Section IV, we provide preliminaries of distributed optimization as well as consensus
algorithms. In Section V, we discuss several important consensus-based MARL algorithms with decen-
tralized network communication protocols. Finally, in Section VI, we conclude with future directions and
open issues. Note that our review is not exhaustive given the magazine limits; we suggest the interested

reader to further read [6], [19], [20].

II. SINGLE-AGENT RL BASICS

To understand MARL, it is imperative that we briefly review the basics of single-agent RL setting,
where only a single agent interacts with an unknown stochastic environment. Such environments are
classically represented by a Markov decision process: M := (S, A, P,r,), where the state-space S :=
{1,2,...,|S|} and action-space A := {1,2,...,|A|}, upon selecting an action a € A with the current
state s € S, the state transits to s’ € S according to the state transition probability P(s’|s,a), and the
transition incurs a random reward r(s,a). For simplicity, we consider the infinite-horizon (discounted)
Markov decision problem (MDP), where the agent sequentially takes actions to maximize cumulative
discounted rewards. The goal is to find a deterministic policy n* : & — A, or a stochastic policy
w* : 8 — A, optimal policy, where A 4 is the set of all probability distributions over A, such that the
cumulative discounted rewards over infinite time horizons is maximized, i.e.,

7" 1= arg max, g B lz 'ykr(sk,?r(sk})] , (1
k=0

where v € [0,1) is the discount factor, © is the set of all admissible deterministic policies, and
(so,ao,81,a1,...) is a state-action trajectory generated by the Markov chain under policy n. Solving
MDPs involves two key concepts associated with the expected return:

D V™(s):=E [}, ~Yer(sk, w(sk))|so = s| is called the (state) value function for a given policy m,
which encodes the expected cumulative reward when starting in the state s, and then, following the
policy 7 thereafter.

2) Q(s,a) :=E [3 320 v r(sk, m(sk))|so = s,a0 = a] is called the state-action value function or Q-
function for a given policy w, which measures the expected cumulative reward when starting from

state s, taking the action a, and then, following the policy .



Their optima over all possible policies are defined by V*(s) := max;.s,4 V™ (s) = max, Q*(s,a)
and Q*(s,a) = max;.s_,4 Q™ (s,a), respectively. Given the optimal value functions Q* or V*, the
optimal policy 7* can be obtained by picking an action a that is greedy with respect to V* or Q*,
i.e., 7(s) = argmax, By, p(.(sq)[7(s, a) + 7V *(s')] or 7*(s) = arg max, Q*(s, a), respectively. When
the MDP instance, M, is known, then it can be solved efficiently via dynamic programming (DP)
algorithms. Based on the Markov property, the value function V™ for a given policy , satisfies the
Bellman equation: V™(s) = Ey.p(.|sx(s)) [7(s,7(s)) +yV™(s')]. The similar property holds for Q™
as well. Moreover, the optimal Q-function Q*, satisfies the Bellman optimality equation, Q*(s,a) =
Eg~p(|sa) [r(s,a) + maxe yQ*(s’, a’)]. Various DP algorithms, such as the policy and value iterations,

are obtained by turning the Bellman equations into different update rules.

A. Classical RL Algorithms

RLs can be categorized into two main groups, the policy evaluation algorithms and the policy opti-
mization algorithms. The former group addresses the problem of evaluating the value function given a
policy m, while the latter group deals with finding an optimal policy. For both groups, many classical
RL algorithms can be viewed as stochastic variants of DPs. This insight will be key for scaling MARL
in the sequel. In particular, the temporal-difference (TD) learning falls into the policy evaluation group

and is one of the most fundamental policy evaluation RL algorithm:

Vit (sk) = Vie(sk) + an(r(sk, m(sk)) + YVi(sk41) — Vi(si)), (2)

where si ~ d™, sp41 ~ P(:|sg, m(sk)), au is the learning rate (or step-size), and d™ denotes the stationary
state distribution under policy 7, namely, d"(s) = limy_,, P[sx = s|n]. For any fixed policy w, TD update
converges to V'™ almost surely if the step-size satisfies the so-called Robbins-Monro rule, Y po oy = 0o,
Y 2o @i < oo [21]. Although theoretically sound, the naive TD learning is only applicable to small-scale
problems as it needs to store and enumerate values of all states. However, most practical problems we face
in the real-world have large state-space. In such cases, enumerating all values in a table is numerically
inefficient or even intractable.

Using function approximations resolves this problem by encoding the value function with a param-
eterized function class, V(-) = V(-;6). The simplest example is the linear function approximation,
V(;0) = ®9, where ® = [p(1);---;0(|S|)]T € RIS*™ is a feature matrix, and ¢ : S — R is a

pre-selected feature mapping. With the linear function approximation, TD learning can be written as

Okr1 = Ok + ar(r(sk, m(sk)) + Y0 (k1) Ok — (k)T Ok) (sk)- (3)



The above update is known to converge to #* almost surely [22], where 6* is the solution to the projected
Bellman equation, ®0 = II( R, + aP,®60), where R, is the expected reward vector under policy 7 and
PT is the state transition probability matrix under policy 7, and IT := ®(®T D®)~1®T D is the projection
onto the range space of ®, provided that the Markov chain with transition matrix P™ is ergodic and the
step-size satisfies the Robbins-Monro rule. Note that the projection corrects the mismatch between the
linear value function approximation on the left-hand side and the Bellman operator on the right-hand
side which may lie outside of the linear span of columns of the feature matrix .

Finite sample analysis of the TD learning algorithm is only recently established in [23]-[25]. Besides
the standard TD, there also exists a wide spectrum of TD variants in the literature [26]-[29]. Note that
when a nonlinear function approximation, such as neural networks, is used, these algorithms are not
guaranteed to converge.

The policy optimization methods aim to find the optimal policy n* and broadly fall under two camps,
with one focusing on value-based updates, and the other focusing on direct policy-based updates. There
is also a class of algorithms that belong to both camps, called actor-critic algorithms. Q-learning is one

of the most representative valued-based algorithms, which obeys the update rule

Qr+1(sk> ar) = Qr(sk, ar) + on(r(sg, ar) + ymax Qk(Sk+1,a) — Qr(sk, ar)), (4)

where s ~ d™, d™ is the stationary distribution vector under 7°, s 1 ~ P(:|sg, 7°(sz)). ax ~ 7%, and
7% is called the behavior policy, which refers to the policy used to collect observations for learning. The
algorithm converges to Q* almost surely [30] provided that the step-size satisfies the Robbins-Monro
rule, and every state is visited infinitely often. Unlike value-based methods, direct policy search methods
optimize a parameterized policy mg from trajectories of the state, action, reward, (s, a,r) without any

value function evaluation steps, using the following (stochastic) gradient steps:

R oo
Ok+1 = O + axVeJ (Ok), where J(0) :=E lz Vo (sk)] , 5)

k=0
where %J (0r) s a stochastic estimate of the gradient evaluated at 6. The gradient of the value function
has the simple analytical form VJ(0) = Eg.q,, a~m, [V l0og me(a|s)Q™ (s, @)], which, however, needs an
estimate of the Q-function, Q™ (s, a). The simple policy gradient method replaces Q™ (s, a) with a Monte
Carlo estimate, which is called REINFORCE [31]. However, the high variance of the stochastic gradient
estimates due to the Monte Carlo procedure often leads to slow and sometimes unstable convergence. The

actor-critic methods combine the advantages of the value-based and direct policy search methods [32]



to reduce the variance. These algorithms parameterize both the policy and the value functions, and

simultaneously update both in training

Critic update : wy1 = wi + ag(r(sk, ar) + YQ(Sk+1, Ar41; W) — Q(Sk, ag; wi)) Vo Q(sk, ar; wi,)

(6)
Actor update : 01 = O + BrQ(sk, ar; wr) Vg log m(agk|sk; Ok), D

where wy and 6 are parameters of the value and policy, respectively, ax ~ =(-|sk;0k), ary1 ~
7(+|Sk41; Ok ), and the next state si4 is sampled under the current policy 7(-|-; 6% ). Roughly speaking, it
consists of two simultaneous and independent iterations, the value evaluation in (6), which tries to evaluate
the value of the current policy through the TD steps, and the policy improvement, which tries to find a
policy that improves the value through gradient steps. They often exhibit better empirical performance than
value-based or direct policy-based methods alone. Nonetheless, when (nonlinear) function approximation

is used, the convergence guarantees of all these algorithms remain rather elusive.

B. Modern Optimization-based RL Algorithms

Although the MDP given in (1) is itself a multistage stochastic optimization problem, most classical
RLs introduced in the previous subsection, except for the policy gradient methods, are based on solving the
Bellman equation and fixed point algorithms, which are rather different from standard gradient-based opti-
mization algorithms. In this paper, we especially focus on the newly developed class of optimization-based
RLs in the literature that hinges upon alternative (static and mostly convex) optimization reformulations
and stochastic-gradient-type of methods.

Leveraging these optimization reformulations of RLs, recent works (see, e.g., [26], [28], [29], [33]-
[35]) generate new principles for solving RL problems as we transition from linear towards nonlinear
function approximations as well as establish theoretical guarantees based on rich theory in mathematical
optimization literature.

Compared to the classical RL approaches, these optimization-based RLs exhibit several key advantages.
First, in many applications such as robot control, the agents’ behaviors are required to mediate among
multiple different objectives. Sometimes, those objectives can be formulated as constraints, e.g., safety
constraints. In this respect, optimization-based approaches are more extensible than the traditional dynamic
programming-based approaches when dealing with policy constraints. Second, existing optimization
theory provides ample opportunities in developing convergence analysis for RLs with and without function
approximations; see, e.g., [33], [34]. More importantly, these methods are highly generalizable to the
multi-agent RL setup with decentralized rewards, when integrated with recent fruitful advances made in

distributed optimization. This last aspect is our main focus in this survey.



To build up an understanding, we first recall the linear programming (LP) formulation of the planning

problem [36]
min Es[V(s)] subject to E,u[r(s,a) +~V(s)|s] <V(s), VseS, acdA,
or equivalently,
m"‘i’n pTV  subject to R, +~P,V <V, Vae A, (8)

where y is the initial state distribution, R, € RIS! is the expected reward vector given action a, and
P, € RISI¥IS| is the state transition probability matrix given action a. It is known that the solution to (8)
is the optimal state-value function V*, while the optimal policy can be recovered from V* provided
that the model is known. Another interesting relation between the optimal value function and policy can
be derived from the concept of the duality. From the fundamental theory of convex optimization, the
formulation (8) can be equivalently converted to another form, called the (Lagrangian) dual problem.

In particular, the optimal value function and optimal policy can be found through solving the min-max

problem:
i L(V,\) =TV AR PV -V
%%:(E}aﬂia\ (V,A) ==p +§4 o (Ra +7F, )s 9
=B V()| + Y. Aa(s)Espelr(s,a) +7V(s) — V(s)]
seS,acA

where L is called the Lagrangian function, and sets VV and A are properly chosen domains that restrict
on the optimal value function and policy. Here, the variable V' from the original optimization is called
the primal variable, while the newly introduced variable, A := (\;)qe4, is called the dual variable
(or Lagrangian multiplier). The optimal solutions, V* and A*, of the min-max problem are called the
optimal primal and dual solutions, respectively, and the primal optimal solution V* of the min-max
problem is identical to the original optimization (8). Here, the optimal dual solution is key to the planning

problem [36]. In particular, the dual optimal solution yields the optimal policy from the identity

Aa(s)
Lwearu(s)’

where 7*(a, s) is the probability of taking action a at the state s under the optimal stochastic policy.

m*(a,s) =

Building on this min-max formulation, several recent works introduce efficient RL algorithms for
finding the optimal policy. For instance, the stochastic primal-dual RL. (SPD-RL) in [33] solves the

min-max problem (9) with the stochastic primal-dual algorithm

Virr = y(Vi — Vv L(Vi, Ak))s - Aern = Ta (g + % VaL(Vi, Mx)),



where VL and VL are unbiased stochastic estimations of the gradients

VVL(VA) =p+ Y (Po—Da, VaL(V,N) =Y (Ra+ PV — V),
acA acA

which are obtained by using samples of (s,a,r,s), IIy, and II, stand for the projection operators onto
the sets V and A. The main idea of the primal-dual algorithm is to take the stochastic gradient descent
step with respect to the primal variable V', while taking the stochastic gradient ascent step with respect
to the dual variable A. Under mild conditions such as convexity and concavity, the stochastic primal-dual
algorithm for general min-max problems is known to converge to an optimal solution.

Since these gradients are obtained based on the samples, the updates can be executed without the
model knowledge. The SPD Q-learning in [35] extends it to the @-learning framework with off-policy
learning, where the sample observations are collected from some time-varying behavior policies. The
dual actor-critic in [37] generalizes the setup to continuous state-action MDP and exploits nonlinear
function approximations for both value function and the dual policy. The primal-dual algorithm to solve
the min-max optimization (9) is closely related to the classical actor-critic algorithm in the sense that
both approaches simultaneously update the parameters of the value function and policy. However, these
algorithms are apparently different because the classical actor-critic algorithm does not try to solve the
min-max problem (9). In particular, the classical actor-critic algorithm consists of two simultaneous and
independent iterations, the value evaluation in (6), which tries to evaluate the value of the current policy
through the TD steps, and the policy improvement, which tries to find a policy which improves the value
through gradient steps.

Apart from the LP formulation, alternative nonlinear optimization frameworks based on the fixed
point interpretation of Bellman equations have also been explored, both for policy evaluation and policy
optimization. To name a few, Baird’s residual gradient algorithm [38], designed for policy evaluation,

aims for minimizing the mean-squared Bellman error, i.e.,
min MSBE(0) := Es[(Es [r(s, 7(s)) + ¢ ()0] — ¢" (s)0)] = min | Rx + vPr®0 — 0]},  (10)

where R; and P; are the expected reward vector and state transition probability matrix under policy T,
respectively, ® is the feature matrix, D is a diagonal matrix with diagonal entries being the stationary state
distributions, and ||z||p := V2T Dz. However, directly minimizing the optimization objective (10) can
be challenging due to the double sampling issue. Here, the double sampling issue means the requirement
of double samples of the next stats from the current state to obtain an unbiased stochastic estimate of

gradients of the objective mainly due to its quadratic nonlinearity.



The gradient TD (GTD) [26] solves the projected Bellman equation by minimizing the mean-square

projected Bellman error,
min MSPBE(0) := ||TI(Ry + yPr®0) — 9|3, (11)

where II is the projection onto the range of the feature matrix ®. This is driven by the fact that most TD
learning algorithms converge to the minimum of MSPBE. To avoid the double sampling issue, GTD uses

a stochastic primal-dual algorithm [39] for solving the corresponding min-max problem of the Lagrangian
1
minmax L(}, 6) := T’ D (5@/\ + (I — yPr)®6 — R,r) . (12)

Alternatively, [28], [40] get around this difficulty by resorting to min-max reformulations of the MSBE
and MSBPE and introduce primal-dual type methods for policy evaluation with finite sample analysis.
Similar ideas have also been employed for policy optimization based on the (softmax) Bellman optimality

equation; see, e.g., [34] (called Smoothed Bellman Error Embedding (SBEED) algorithm).

III. FROM SINGLE-AGENT TO MULTI-AGENT RLS

Cooperative MARL extends the single-agent RL to N agents, V = {1,2,..., N}, where the system’s
behavior is influenced by the whole team of simultaneously and independently acting agents in a common
environment. This can be further classified into MARLs with centralized rewards and decentralized

rewards.

A. MARL with Centralized Rewards

We start with MARLSs with centralized rewards, where all agents have access to a central reward.
In this setting, a multi-agent MDP can be characterized by the tuple, (S, {A'}Y, P,r,7v), where A’
is a discrete action-space of agent ¢. Each agent ¢ observes the common state s and executes action
a' € A" inside its own action set A’ according to its local policy ©* : S — A" The joint action
a:=(a',a? ...,a") e A:= A x--- x AV causes the state s € S to transit to s’ € S with probability
P(s'|s,a), and the agent receives the common reward r(s, a). The goal for each agent is to learn a local
policy 7t : & — A% i € V such that (x},72,...,7N) =: 7* is an optimal central policy.

The MARL in this scenario heavily depends on the degree of coordination, information structure, and
various assumptions, such as how much information is available for each agent, what kinds of information
can be shared among the agents, and what kinds of protocols are used for coordination.

The main information structure is the availability of the joint action a for each agent. If the joint action

is available, the agents are called the joint action learners (JAL), i.e., each agent has access to (s,a,r).



Otherwise, the agents are called the independent learners (IL), i.e., each agent has access to (s,a’,r).
In the JAL case, MA-MDP can be regarded as a variant of the standard MDP under a special action set.
The IL case hence is much more challenging because the joint action information is unavailable.
Suppose each agent ¢ € V receives the central reward » and knows the joint state and action pair
(s,a) € § x A (ie., agents are JALs). Cooperative MARL, in this case, is straightforward because
all agents have full information to find an optimal solution. As an example, a naive application of the

Q-learning [41] to multi-agent settings is

Qby1(5k ar) = Qf(sk, ar) + ak {T(Sk, ar) + 7 max Ql(sk+1,a) — Qh(sk, ﬂk}} )

where each agent keeps its local Q-function Q* : S x A — R. In particular, it is equivalent to the single-
agent Q-learning executed by each agent in parallel, and Q%, — Q* as k — oo almost surely for all i € V;
thereby 7l (-) = argmax, Q%(-,a) — w(-) as k — oo. Similarly, the policy search methods and actor-
critic methods can be easily generalized to MARL with JALs [42]. In such a case, coordination among
agents is unnecessary to learn the optimal policy. However, in practice, each agent may not have access
to the global rewards due to limitations of communication or privacy issues; as a result, coordination

protocols are essential for achieving the optimal policy corresponding to the global reward.

B. Networked MARL with Decentralized Reward

The main focus of this survey is on MARLs with decentralized rewards, where each agent only receives
a local reward, and the central reward function is characterized as the average of all local rewards. The
goal of each agent is to cooperatively find an optimal policy corresponding to the central reward by
sharing local learning parameters over a communication network.

More formally, a coordinated multi-agent MDP with a communication network (i.e., networked MA-
MDP) is given as the tuple, (S, {A}Y,, P, {r'}}¥,,~,G), where r%(s,a) is the random reward of agent
i given action a and the current state s, and G = (V,€) is an undirected graph (possibly time-varying
or stochastic) characterizing the communication network. Each agent ¢ observes the common state s,
executes its local action a* € A according to its local policy 7t : S — A?, receives the local reward
ri(s,a), and the joint action a := (a',a?,...,a") causes the state s € S to transit to s’ € S with
probability P(s’|s,a). The central reward is defined as r = %Ef‘; ' In the course of learning, each
agent receives learning parameters {#’};cn; from its neighbors of the communication network. The

overall model is illustrated as in Figure 1.
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Fig. 1. Coordinated multi-agent MDP with communication network

For an illustrative example, we consider a wireless sensor network (WSN) [43], where data packets are
routed to the destination node through multi-hop communications. The WSN is represented by a graph
with N nodes (routers), and edges connecting nodes whenever two nodes are within the communication
range of each other. The route’s QoS performance (quality of service) depends on the decisions of all

nodes. Below we formulate the WSN as a networked MA-MDP.

Example 1 (WSN as a networked MA-MDP). The WSN is a multi-agent system, where sensor nodes are
agents. Each agent takes action a* € A, which consists of forwarding a packet to one of its neighboring
node j € N and sending the receipt acknowledgement message (ACK) to the predecessor to indicate that
it is operating normally, or dropping the data packet and sending the error acknowledgment message
(NAK) to the predecessor to indicate an error condition, where N is the set of neighbors of the node
M)

i. The global state s = (s',s%,...,sN) is a tuple of local states s', which consists of the set of is

neighboring nodes, and the set of packets encapsulated with QoS requirement. A simple example of the

N

reward is (s,a) ==Y ;. r'(s',a’), where

o 1 if ACK received
r'(s',a’) == (13)

0 otherwise
The central reward measures the quality of overall local routing decisions by counting the total number of
receipt acknowledgements of messages over the network. Each agent only has access to its own reward,
which measures the quality of its own routing decisions based on ACK received from its successor, while
the efficiency of overall tasks depends on a sum of local rewards, the total ACKs received by all agents.
If each node knows the global state and action (s, a), then the overall system is a networked MA-MDP.

Suppose that there exists a central coordinator who knows the full state, joint action, and global reward,
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Fig. 2. Routing protocol for wireless sensor networks

(s,a,r). To operate JALs, the information, (s,a,r), should be broadcasted to all agents during the
learning process. In the IL case, the centralized coordinator only needs to broadcast (s,r) since each
agent i knows its own action a'. The underlying setting might be difference, due to the communication
constraints and limits imposed by the infrastructure. In general, each agent can take its local action

following its local policy, and do not need to optimize over the all set of actions.

Finding the optimal policy for networked MA-MDPs naturally relates to one of the most fundamental
problems in decentralized coordination and control, called the consensus problem. In the sequel, we first
review the recent advances in distributed optimization and consensus algorithms, and then march forward

to the discussions of recent developments for cooperative MARL based on consensus algorithms.

IV. DISTRIBUTED OPTIMIZATION AND CONSENSUS ALGORITHMS

In this section, we briefly introduce several fundamental concepts in distributed optimization, which

are the backbone of distributed MARL algorithms to be discussed.

A. Consensus

Consider a set of agents, V = {1,2,..., N}, each with some initial values, ::ci((}) € R™. The agents are
interconnected over an underlying communication network characterized by a graph G = (V, £), where
£ C V xVis a set of undirected edges, and each agent has a local view of the network, i.e., each agent
i € V is aware of its immediate neighbors, A, in the network, and communicates with them only.

The goal of the consensus problem is to design a distributed algorithm that the agents can execute

locally to agree on a common value as they refine their estimates. The algorithm must be local in the



sense that each agent performs its own computations and communicates with its immediate neighbors

only. Formally speaking, the agents are said to reach a consensus if

lim z'(k) =¢, VieV, (14)

k—o0
for some ¢ € R™ and for every set of initial values z?(0) € R™. For ease of notation, we consider the
scalar case, n = 1, from now on.

A popular approach to the consensus problem is the distributed averaging consensus algorithm [44]

ik +1) = Y d(k), VE>o. (15)

|M| +1 JEN:U{i}

The averaging update is executed by local agent 7, as it only receives values of its neighbors, 27 (k), j € N,
and is known to ensure consensus provided that the graph is connected. Note that an undirected graph
G is connected if there is a path connecting every pair of two distinct nodes. Using matrix notations, we

can compactly represent (15) as follows
z(k+1)=Waz(k), Vk>0, (16)

where z(k) is a column vector with entries, z*(k),i = 1,2,..., N, and W is the weight matrix associated
with (15) such that [W];; := WII? if 7 € N; U {:} and zero otherwise. Here, [W];; means the element
in the i-th row and j-th column of the matrix W.

The matrix W is a stochastic matrix, i.e., it is nonnegative, and its row sums are one. Hence, Wk
converges to a rank one stochastic matrix, i.e., limg— o Wk = 1,07, where v is the unique (normalized)
left-eigenvector of W for eigenvalue 1 with |jv|; = 1 and 1, is an n-dimensional vector with all
entries equal to one. Since x(k) = Wkz(0),Vk > 0, we have limy_, o, z(k) = (vT2(0))1,,, implying the

consensus.

B. Distributed optimization with averaging consensus

Consider a multi-agent system connected over a network, where each agent 7 has its own (convex) cost
function, f; : R® — R. Let F(x) := ), .y, fi(x) be the system objective that the agents want to minimize

collectively. The distributed optimization problem is to solve the following optimization problem:

;Ielﬁ{n F(z):= z;ft(x} subject to z € X, (17
1=
where X C R™ represents additional constraints on the variable z. By introducing local copies z!, 2?2, ..., z",
it is equivalently expressed as
Ilexl:gig”exﬁ’(m) = Z fi(z') subject to z'=ga%=-...=2N. (18)



The distributed averaging consensus algorithm can be generalized to solve the distributed optimization.
An example is the consensus-based distributed subgradient method [45], where each agent ¢ updates its

local variable z*(k) according to

. 1 .
Consensus step : w}cﬂ = W Z :cfc,
! JEN,U{i}

Subgradient descent step : ;t:iﬂ = Hx[wiﬂ - ak()‘f@(wiﬂ}],

where 9f; is any subgradient of f; and Il y is the Euclidean projection onto the constraint set A

The algorithm is a simple combination of the averaging consensus and the classical subgradient method.
As in the averaging consensus, the update is executed by local agent ¢, and it only receives the values of
its neighbors, :ci, j € N;. When all cost functions are convex, it is known that local variables, ::c}c reach
a consensus and converge to a solution to (18), z* € X, under properly chosen step-sizes.

Other distributed optimization algorithms include the EXTRA [46] (exact first-order algorithm for
decentralized consensus optimization), push-sum algorithm [47] for directed graph models, gossip-based

algorithm [48], and etc. A comprehensive and detailed summary of the distributed optimization can be

found in the monograph [18].

C. Distributed min-max optimization with averaging consensus
To put it one step further, distributed averaging consensus algorithm can also be generalized to solve
the min-max problem in a distributed fashion. The distributed min-max optimization problem deals with

the zero-sum game:

N
i Lz, ) = Li(z, A 1

RPN = 2 e, "
j=—

where L : R®" xR™ — R is a convex-concave function and L is separable, i.e., [, = Ef‘; 1 L. Introducing

local copies z!,... ;2™ and AL, .-+, AN, the min-max problem is equivalent to
N
min max Li(z',\Y)  s.t. l=22=...=2N, Al=A2=...=)\N, (20)

2, 2N EX AL, AN EA
Similar to the distributed subgradient method, the distributed primal-dual algorithm works by performing
averaging consensus and sugradient descent for the local variable z*(k) and A\*(k) of each agent:
, 1 . , 1 ,
Consensus step : a’}c+1f2 - Z z7,, A}c+1/2 . Z A,
Vil +1 jeNsu{i} Vil +1 JEN:U{i}

Primal-dual step : :1:};.“ =1y [miﬂﬂ - akarLi(xi,_Hﬁ, )\i+1/2}],

/\};+1 =T [/\iﬂﬂ - 5k6ALi($§c+1;2= /\i+1;2)]a



where oy and S, are step-sizes, 9, L; and 8y L; are any subgradients of L;(x, A) with respect to = and A,
respectively, and I1y and II, are the Euclidean projection onto the constraint sets X and A, respectively.

The distributed primal-dual algorithm and other variants have been well studied in [49]-[51].

V. NETWORKED MARL WITH DECENTRALIZED REWARDS

In this section, we focus on networked MARL with decentralized rewards, where the networked MA-
MDP is described by the tuple, (S, {A}Y,, P, {r'}},,~,G). The goal of each agent is to cooperatively
find an optimal policy corresponding to the central (or global) reward, r = (r! + 72 + .. + V) /N, by
sharing local learning parameters over a communication network characterized by graph G = (V, £).

Decentralized rewards are common in practice when multiple agents cooperate to learn under sensing
and physical limitations. They are also particularly useful when MARL agents cooperate to learn an
optimal policy securely due to privacy considerations. For instance, if we do not want to reveal full
information about the policy design criterion to an RL agent to protect privacy, a plausible approach is
to operate multiple RL. agents, and provide each agent with only partial information about the reward
function. In this case, no single agent alone can learn the optimal policy corresponding to the whole
environment, without information exchange among other agents.

Most recent algorithms to be discussed in this section, including [11]-[17], [39], [52], apply the
distributed averaging consensus algorithm introduced in Section IV in one way or another. We now

discuss these algorithms in details below, with a brief summary provided in Table L

A. Distributed Policy Evaluation

The goal of distributed policy evaluation is to evaluate the central value function

V(s) = !237 i (st)

i=1

Sﬂ:S] 20

in a distributed manner. The information available to each agent is (s, 7", {#7}jen;), where {#7}jen;
represents the set of learning parameters agent ¢ receives from its neighbors over the communication
network, and A; is the set of all neighbors of node i over the graph G. Note that for policy evaluation
with state value function V, the information a or a* is not necessary, thereby it is not indicated in the
information set (s, 7%, {67 };en).

The distributed TD-leaming [11] executes the following local updates of agent i:

v |N1 T2 P Har(r(sm(s) +9()10 — 6(9)T0)9(s),

JeNiu{i} ., TD update

Mlxmg term



TABLE I
COOPERATIVE MARL WITH DECENTRALIZED REWARDS AND COMMUNICATION NETWORKS (LFA: LINEAR FUNCTION

APPROXIMATION; NFA: NONLINEAR FUNCTION APPROXIMATION; N/A: NOT APPLICABLE

Papers Availability | Reward Function Convergence
of actions Approx.
Doan et al. [11] LFA Yes
Wai et al. [16] N/A Decentralized | LFA Yes
Policy Evaluation Lee [17] LFA Yes
Macua et al. [39] LFA Yes
N/A Centralized
Stankovic et al. [52] LFA Yes
Kar et al. [12] JAL Tabular Yes
Zhang et al. [13] JAL LFA, NFA | Yes
Policy Optimization Decentralized
Zhang et al. [14] JAL LFA, NFA | Local
Qu et al. [15] JAL NFA Local

where each agent i keeps its local parameter §° and ay is the step-size. The algorithm resembles
the consensus-based distributed subgradient method in Section IV-B. The first term, dubbed as the
mixing term, is an average of local copies of the learning parameter of neighbors, N, received from
communication over networks, and controls local parameters to reach a consensus. The second term,
referred to as the TD update, follows the standard TD updates. Under suitable conditions such as the
graph connectivity, each local copy, §%, converges to §* in expectation and almost surely [11], where 6*

is the optimal solution found by the single-agent TD learning acting on the central reward.

Example 2. Consider the WSN in Example 1. Suppose each agent has its own fixed policy (routing
protocol), m;, according to which the agent forwards a packet encoded in the state s to one of its
neighboring node j € N; sends ACKs to the predecessor when it receives a packet without error
conditions or drops the data packet and sends NAKs to the predecessor otherwise. Each agent receives a
local reward according to (13) based on ACK received from its successors, knows the global state s, and
keeps its local parameter 0. During the learning, each agent i receives the local parameters Gf;, jEN;
from its neighbors, and its parameter 9}; converges to 8% which best approximate the optimal value
function. By doing so, each agent can learn the optimal solution, 8%, for the value function estimation

without knowing the global reward.



B. Distributed Policy Optimization

The goal of distributed policy optimization is to cooperatively find an optimal central policy corre-
sponding to the central reward, ». Note that the distributed TD-learning in the previous section only
finds the state value function under a given policy. The averaging consensus idea can also be extended
to Q-learning and actor-critic algorithms for finding the optimal policy for networked MARL.

The distributed Q-learning in [12] locally updates the Q-function according to

Q'(s,a) +Q'(s,a) —n(s,a) Y (Q(s,a) — Q(s,a))
geM-U{i}

"

Mixing term

+a(s,0) (r'(s,@) + Y max Qs ') — Q(s,a))

Q-learning update
where ¢ is the agent index, 7(s, a) and (s, a) are learning rates (or step-sizes) depending on the number of
instances when (s, a) is encountered. The information available to each agent is (s, a,r?, {Qj}jeMU{z’})-
The overall diagram of the distributed Q-learning algorithm is given in Figure 3. Each agent i keeps
the local Q-function, Q%, and the mixing term consists of Q-functions of neighbors received from
communication networks. It has been shown that each local Q' reaches a consensus and converges
to Q* almost surely [12] with suitable step-size rules and under assumptions such as the connectivity of

the graph and an infinite number of state-action visits.

ap ~ Ty —>\ Sk (841, {"5.-}i€[;\7]]

‘ Environment

|

i

Fig. 3. Diagram of distributed Q-learning algorithm in [12]. Here the joint-action a; is chosen by a behavior policy .



The distributed actor-critic algorithm in [13] generalizes the single-agent actor-critic to networked

MA-MDP settings where the averaging consensus steps are taken for the value function parameters

Critic update : 9};+1;2 = 0}, + ar(r'(sk, ag) + YQ(Sk+1, ak+1: 0)) — Q(Sks ax; 0}))VoQ(sk, ax; 0

Actor update : w}’;.ﬂ = wh + BrA(sk, ax; 0%) Vs log T (ak |sk; wh)

; 1
Consensus step : ] = ———— E A
, +1/2
|M| +1 JeN:U{i}

where w? and @ are parameters of nonlinear function approximations for the local actor and local critic,
respectively, and aj, ~ 7'(:[sg;wy), apy ~ 7(|spy1;wy). Here, A(sg,ar;0},) = Q(sk,ar;0}) —

i

Y gicA :rr""(a""|sk;w}'c)Q(sk, (a}c, R L ,akN); 9};) is the advantage function evaluated at (sg,ax). The
overall diagram of the distributed actor-critic is given in Figure 4. Each agent 7 keeps its local parameters
{6*,w'}, and in the mixing step, it only receives local parameters of the critic from neighbors. The
actor and critic updates are similar to those of typical actor-critic algorithms with local parameters. The
information available to each agent is (s, a, ", w", {607} jenru(iy)-

The results in [14] study a MARL generalization of the fitted Q-learning with the information structure
(s,a,rt, {Oj }jennugi}). Compared to the tabular distributed Q-learning in [12], the distributed actor-critic

and fitted Q-learning may not converge to an exact optimal solution mainly due to the use of function

approximations.
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Fig. 4. Diagram of distributed actor-critic algorithm in [13]. Here the joint-action ay is taken in on-policy manner.



C. Optimization Frameworks for Networked MA-MDP

Recall that in Section II-B, we discussed optimization frameworks of single-agent RL problem. By
integrating them with consensus-based distributed optimization, they can be naturally adapted to solve net-
worked MA-MDPs. In this subsection, we introduce some recent work in this direction, such as the value
propagation [15], primal-dual distributed incremental aggregated gradient [16], distributed GTD [17].
The main idea of these algorithms is essentially rooted in formulating the overall MDP into a min-max
optimization problem, mingcy maxyep L(z, A), with separable function L(z,\) = Ef‘;l Li(x, \), and
solving the distributed min-max optimization problem (20). For MARL tasks, the distributed min-max
problem can be solved using stochastic variants of the distributed saddle-point algorithms in Section IV-C.

The multi-agent policy evaluation algorithms in [16] and [17] are multi-agent variants of the GTD [26]
based on the consensus-based distributed saddle-point framework for solving the mean-squared projected
Bellman error in (11), which can be equivalently converted into an optimization problem with separable

objectives:
N

1 '
min Z} ITI(RE + aP™®6) — ®4)|%. (22)
To alleviate the double sampling issues in GTD, the approach in [16] applies the Fenchel duality with

an additional proximal term to each objective, arriving at the reformulation:

N
min di(0') st. 01 =0*=...=6", (23)
{o'Hs,

where the local objectives are expressed as max-forms
d'(9) = max{J;(0, ws) := w] (8T D((1/N) Ry, + aP"®0) — ®0) — (1/2)w] &" D®w; + (p/2)||6"||3}-
wl

The resulting problem can be solved by using stochastic variants of the consensus-based distributed
subgradient method akin to [53]. In particular, the algorithm introduces gradient surrogates of the objective
function with respect to the local primal and dual variables, and the mixing steps for consensus are applied
to both the local parameters and local gradient surrogates. The main idea of the primal-dual algorithm
used in [53] is briefly (with some simplifications) written by

, 1 . ,
Primal update : 0}, = W Z 01, —agy,
! JEN:U{i}

'

mixing term
Dual update : w};.H =wk + ﬁfﬁc
where « and f3 are step-sizes, g}, and fzfc are surrogates of the gradients, Vg: J; (0%, wi) and V: J; (6%, w?,),

respectively, from through some basic gradient tracking steps.
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The multi-agent policy evaluation in [17] approaches in a different way to solve (22). Assuming each

parameter @ is scalar for simplicity, the distributed optimization (22) can be converted into

1 N

i > II(RE + aP™®6%) — 06*||3 +6TLTL st LO=0, (24)

i=1
where @ is the vector enumerating the local parameters, {6 f‘; ;- and L = LT € RY is the graph
Laplacian matrix. Note that if the underlying graph is connected, then L§ = 0 if and only if ! = 92 =
... = V. By constructing the Lagrangian dual of the above constrained optimization, we obtain the
corresponding single min-max problem. Thanks to the Laplacian matrix, the corresponding stochastic
primal-dual algorithm is automatically decentralized. Compared to [53], it only needs to share local
parameters with neighbors rather than the gradient surrogates.

The MARL in [15] combines the averaging consensus and SBEED [34] (Smoothed Bellman Error
Embedding), which is called distributed SBEED here. In particular, the distributed SBEED aims to solve
the so-called smoothed Bellman equation

N N
Vals) = 3 D0 Ro(s) + 1B pgna V()] = XD Inr (s, ),
i=1

i=1

by minimizing the corresponding mean squared smoothed Bellman error:

IE'SG

min ;
0, {wHl,

N N 2
(% > Ri(s) +1Eep(isa)[Va(s)] = XD In(ml(s,a’)) — Ve(S)) , (29
i=1

i=1
where A is a positive real number capturing the smoothness level, # and w are deep neural network
parameters for the value and policy, respectively. Directly applying the stochastic gradient to the above
objective using samples leads to biases due to the nonlinearity of the objective (or double sampling
issue). To alleviate this difficulty, the distributed SBEED introduces the primal-dual form as in [34],
which results in a distributed saddle-point problem similar to (20) and is processed with a stochastic

variants of the distributed proximal primal-dual algorithm in [50].

D. Special Case: Networked MARL with Centralized Rewards

Lastly, we remark that the algorithms in this section can be directly applied to MA-MDPs with central
rewards. As in Section III, we consider an MDP, (S, { A"} |, P,r,~), with an additional network com-
munication model G, while each agent 7 receives the common reward r(s, a) instead of the local reward

ri(s,a). One may imagine reinforcement learning algorithms running in N identical and independent
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simulated environments. Under this assumption, a distributed policy evaluation was studied in [52]. It

combines GTD [26] with the distributed averaging consensus algorithm as follows:
{v1n = O+ () — 79(s")((s)Tu

Why 1o = wh + k(8 — &(s)Tw})é(s)

GTD update :

Consensus step : QEH N ﬁ EjEN‘U{é} 9%+1; 2
Wieyy = ﬁ D jeN,ufi} wiﬂﬂ
where 6. = 7(s,7(s)) + vo(s") 70 — ¢(s)ThL, is the local TD-error. Each agent has access to the
information (s, a, r, {67 }jen;,). while the action a is not used in the updates. The first update is equivalent
to the GTD in [26] with a local parameter (%, w") and the second term is equivalent to the distributed
averaging consensus update in (15). Since the GTD update rule is equivalent to a stochastic primal-
dual algorithm, the above update rule is equivalent to a distributed algorithm for solving the distributed
saddle-point problem in (20). In the same vein, the multi-agent policy evaluation [39] generalizes the
GQ learning to distributed settings, which is more general than GTD in the sense that it incorporates an

importance weight of agent 7 that measures the dissimilarity between the target and behavior policy for

the off-policy learning.

VI. FUTURE DIRECTIONS

Until now, we mainly focused on networked MARL and recent advances which combine tools in
consensus-based distributed optimization with MARL under decentralized rewards. There remain much
more challenging agendas to be studied. By bridging two domains in a synergistic way, these research
topics are expected to generate new results and enrich both fields.

a) Robustness of networked MARL: Communication networks in real world, oftentimes, suffer
from communication delays, noises, link failures, or packet drops. Moreover, network topologies may
vary as time goes by, and the information exchange over the networks may not be bidirectional in
general. Extensive results on distributed optimization algorithms over time-varying, directed graphs, w/o
communication delays have been actively studied in the distributed optimization community, yet mostly in
deterministic and convex settings. The study of networked MARLSs under aforementioned communication
limitations is an open and challenging topic.

b) Resilience of networked MARL: Building resilient networked MARL under adversarial attacks is
another important topic. A resilient consensus-based distributed optimization algorithm under adversarial
attacks has been studied in [54], which considers scenarios where adversarial agents exist among net-

worked agents and send arbitrary parameters to their neighboring agents to disrupt the solution search.
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In such cases, analysis of fundamental limitations on distributed optimization algorithms and protocols
resilient against such adversarial behaviors are available. For networked MARL, such issues remain
largely unexplored.

c) Development of deep networked MARL algorithms: Another interesting direction is the appli-
cation of consensus-based distributed optimizations to recent deep RL algorithms, such as deep Q-
learning [55], trust region policy optimization (TRPO) [56], proximal policy optimization (PPO) [57], deep
deterministic policy gradient (DDPG) [58], twin delayed DDPG (TD3) [59]. Most of these algorithms
are variants of policy search algorithm and involve optimization procedures in certain stages. Ideas of
distributed optimizations can potentially be applied to these deep RL algorithms as well.

d) Theoretical understanding of networked MARL with deep neural nets: Fundamental analysis of
networked MARL with nonlinear function approximation is still an open question. For the optimization-
based MARLs, when the value function or policy are parameterized by deep neural networks, the resulting
distributed min-max problems discussed eventually become nonconvex-nonconcave. Solving this class of
distributed optimization problems in a principled manner remains an intriguing research topic.

e) MARL for parallel computing: Lastly, networked MARLs can be used to reduce memory and
computational cost, and accelerate the training by exploiting parallel computation. Most RL algorithms
require enormous experiences to find a reasonably good policy, which may not be easily collected by a
single agent. Instead, a large number of cooperative RL agents over networks can more effectively collect
experiences using their own sensors such as crowd sources. Moreover, these agents can learn different
parts of learning parameters and features with lower dimensions compared to the state-space, which could
greatly reduce the memory and computational cost. There exist several works in this direction, such as
the distributed gossiping TD learning in [60], the distributed policy search algorithm [42], etc. In this
case, the design of network topology and infrastructures becomes quite critical in improving the learning

efficiency and balancing the tradeoff between communication and computation cost.
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