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Abstract
We extend the work of Carone, Chaurasia and Vasquez on non-supersymmetric models of flavor
based on the double tetrahedral group. Three issues are addressed: (1) the sector of flavor-
symmetry-breaking fields is simplified and their potential studied explicitly, (2) a flavorful axion is
introduced to solve the strong CP problem and (3) the model is extended to include the neutrino
sector. We show how the model can accommodate the strong hierarchies manifest in the charged
fermion Yukawa matrices, while predicting a qualitatively different form for the light neutrino mass

matrix that is consistent with observed neutrino mass squared differences and mixing angles.
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I. INTRODUCTION

The structure of the fermion Yukawa couplings in the standard model may result from the
sequential breaking of a horizontal discrete family symmetry. Long ago, Aranda, Carone and
Lebed [1, 2] showed how the double tetrahedral group 7" could be used to construct successful
supersymmetric flavor models that are similar to those based on U(2) symmetry [3, 4], with
or without the assumption of conventional supersymmetric grand unification. For other
early work on T” as a flavor symmetry, see Ref. [5]. Many other authors have since explored
the use of 7" symmetry in models that aim to address the flavor structure of the standard
model [6].

Much of the work on 7" flavor models has assumed weak-scale supersymmetry, to stabi-
lize the hierarchy between the weak scale and the grand unified or Planck scale. Over the
past decade, however, there has been no direct evidence for superpartners at the LHC, nor
indirect evidence in the form of a convincing pattern of deviations from the predictions of the
standard model for some subset of its observables. While one cannot exclude the possibility
that supersymmetry is present and just beyond the reach of current experiments (a state-
ment that applies to any new physics that has a decoupling limit), the current state of affairs
has motivated a greater open-mindedness towards consideration of non-supersymmetric ex-
tensions of the standard model. For example, the possibility that the standard model could
arise consistently from a string theory without supersymmetry has been discussed in Ref. [7].
The hierarchies between mass scales might result from dynamical mechanisms (for example,
cosmic relaxation [8] or Nnaturalness [9]), or anthropic selection [10]. On the other hand,
the fundamental mass scales found in nature may simply be random and fine tuned, for
reasons that are obscure to us at present. In this work, we assume the absence of super-
symmetry and focus on phenomenological issues, while remaining agnostic on the question
of naturalness.

The purpose of the present work is to further explore the possibility of nonsupersym-
metric models of flavor based on T symmetry, following a study by Carone, Chaurasia and
Vasquez [11]. In Ref. [11], a nonsupersymmetric 7" model was presented in which the flavor
scale Mg was treated as a free parameter. (There is less motivation to link the flavor scale to
a grand unified scale in a framework where the gauge couplings don’t automatically unify.)

Global fits were performed to the fermion masses and Cabibbo-Kobayashi-Maskawa (CKM)



mixing angles, taking into account the nonsupersymmetric running of the Yukawa matrices
between the scale My and the weak scale. It was found that the model was viable for a
wide range of Mp; this scale could be as high as the Planck scale or as low as the minimum
allowed by the flavor-changing-neutral-current constraints on the heavy, flavor-sector parti-
cles with masses of order Mp. At the lower end of this range, flavor-sector fields, such as
the physical components of the flavon fields that spontaneously break the 77 symmetry, can
potentially have observable consequences.

Here we go beyond the work of Ref. [11] in a number of ways: (i) we present a simpli-
fication of the model involving a smaller number of flavor-symmetry-breaking fields. While
simplicity may be desirable by itself, the smaller field content allows a less cumbersome
study of the flavon potential that leads to the spontaneous breaking of the flavor symmetry,
so that we can confirm the assumed pattern of symmetry breaking and study the spectrum
of scalar states. (i1) We address the strong CP problem by promoting an Abelian factor
that is required in the model from a Z3 symmetry to an anomalous U(1) symmetry. This
leads to a flavorful axion [12] (also called a flaxion [13], or axi-flavon [14-16], in the recent
literature), which leads to more stringent lower bounds on the flavor scale My than in our
previous study, as well as new avenues for discovery. (The idea of flavored axions appeared
first in Ref. [17] and was explored subsequently by a number of authors [18].) The possibility
of flavored axions due to a continuous Abelian factor in a 7" flavor model was considered in
a supersymmetric model in Ref. [19]; the present work gives a simple, nonsupersymmetric
realization of this possibility. (i) We extend the model to include the neutrino sector. As
we describe later, one model building difficulty that we must overcome is to explain how
the small symmetry-breaking parameters that lead to pronounced hierarchies in the charged
fermion Yukawa matrices lead to much less pronounced hierarchies in the neutrino mass
matrix (as indicated, for example, by the two large mixing angles). Our model will show
how this outcome can be achieved.

Our paper is organized as follows: in Sec. II we present the model and establish our
notation. We study the flavon potential including the vacuum alignment and the spectrum
of scalar states. We also present a global fit of the charged fermion masses and mixing
angles, analogous to the one presented in Ref. [11]. We address the strong CP problem in
Sec. III and identify the flavored axion couplings to SM particles. Bounds on the axion decay

constant from flavor changing decays are given. In Sec. IV we address the neutrino sector



and introduce a type-I see-saw mechanism with three right-handed neutrinos. In Sec. V, we

summarize our conclusions.

II. THE MODEL

We assume the flavor symmetry Gp = T" x Z3 x U(1), where the last factor is anomalous
and will allow for the existence of a flavorful axion. We do not review the group theory of
T', which was discussed in some detail in Ref. [2] (including a useful appendix on Clebsch-
Gordan factors), and reviewed again in Ref. [11]. We refer the reader to those references
for details. The flavor-symmetry-breaking sector consists of three complex scalar fields A,
s, and ¢, in the 197, 19 and 2°F representations of T" x Z3, using the notation of Ref. [2].
Notably, the triplet flavon S of Ref. [11] has been omitted; the model is nonetheless viable,
as we will discuss below. The complete field content and charge assignments for the model

are shown in Table 1.

TABLE I: Charge assignments. The index a = 1,2 is a generation label. The first four columns
correspond to complex scalar fields, while the remainder are either right-handed standard model

fermion fields or Dirac adjoints of left-handed ones.

A |s |¢ |H ||Q |QL |d%y |d% |u% |uh |L

T/XZ3 10— 100 20+ 100 20— 100 20— 100 20— 100 20— 100 20— 100

Since the standard model fermions are charged under G, the Yukawa couplings, aside
from that of the top quark, arise via higher-dimension operators involving the flavon fields.
These are suppressed by appropriate powers of the flavor scale Mg, the cut off of the low-
energy effective theory. When the flavon fields acquire vevs, these operators depend on the

ratios

(¢) [Mp = ; , (A)/Mp=¢, and (s)/Mp=p . (2.1)



After flavor-symmetry breaking, the following Yukawa textures are generated:

Yo~ | —ur€ use? uge |, (2.2)

0 wuge us

0 die€ 0

Yp ~ | —die dye* dzep |, (2.3)
0 dye dsp
0 L€ 0

Yo~ | —li€ lye® Ize | - (2.4)
0 lyep lsp

Here the u;, d; and [; are (in general complex) O(1) parameters and only the leading-order
expressions are presented. The non-zero entries differ in two ways from the textures of
Ref. [11]: the 2-2 entries above are O(e?), rather than O(e), due to the absence of the
T’'-triplet flavon. However, the factors of p appear in different locations, so that the end
results are qualitatively similar. For example, the suppression of the 1-2 block of Y, in
Ref. [11] by an overall factor of p is mimicked here by the higher-order 2-2 entry and the
proportionally smaller numerical value of €, as we will see later. We also note that there will
be CP violation in the model even if all the operator coefficients defined at the level of the
Lagrangian are real, due to imaginary numbers in Clebsch-Gordan coefficients; these would
lead, for example, to factors of ¢ in the 2-2 entries of Yy, Yp and Yg. In general, however,
all operator coeflicients are themselves complex, and the 10 phase degrees of freedom in Y;;
and Yp can be used to obtain the desired CKM phase rather easily. In light of this, and to
simplify our subsequent numerical analysis, we have chosen all the operator phases so that
the parameters shown in Egs. (2.2)-(2.4) are real, and omit the CKM phase from our global
fit in Sec. II B.

A. The Flavon Potential

In this subsection, we consider the flavon potential, to confirm that the pattern of vevs
assumed in Eq. (2.1) can be achieved and to study the spectrum of physical scalar states. We

will do this by assuming the desired vev pattern, and imposing the extremization conditions
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on the potential to fix some of its otherwise free parameters. We then check the second-
derivative matrix of the potential for positive definiteness. To simplify the discussion, we
exclude the s field, since it is a trivial singlet under the non-Abelian discrete flavor group
and it is straightforward to write down a potential involving s alone that provides for its
vev. Including terms that couple s to the other fields, e.g., |s|*|¢?|, will not qualitatively
change our results providing that their couplings are not too large, which is good enough
for a proof of principle. We are particularly interested in accidental global symmetries that
arise in the potential as a consequence of the T” x Z3 discrete symmetry. These lead to
pseudo-goldstone bosons whose masses arise via higher-dimension operators. We estimate
the masses of these states to confirm that they are not so light that their phenomenological
consequences need to be taken into account. In this case, the only light state that will have
interesting flavor-changing physics will be a single flavorful axion associated with the s field.

The most general scalar potential for a singlet and a doublet transforming as A ~ 19—,

¢ ~ 2°F under T x Zs, respectively, is given by

V=Vi+ V¢ + VA¢, (25)
where
Vi = m AP + p (A% + A%) + A ALY (2.6)
Vi =mi[8]* + g |9, (2.7)
Vag = Aag [AP[0]. (2.8)

Note that this potential has an accidental U(2), global symmetry as well as an additional
U(1)a symmetry in the limit ¢ — 0. We parametrize the fields in terms of their real degrees
of freedom

1
A= oA tid) (2.9)

and

1 [ P11+ 1912
6= — . (2.10)
V2 P21 + 1P

The Yukawa textures in Eqs. (2.2)-(2.4) are reproduced provided only the following real

fields develop vevs:

(p11) /V2=eMp and (A1) /V2=¢€ My . (2.11)
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The location of a local minimum of the potential is determined by six first-derivative equa-
tions, corresponding to the six real scalar fields in Egs. (2.9) and (2.10). However, for the
assumed vev pattern, only two of these equations are non-vanishing,

= V26 Mp(m?% + 2€* M2\ 4 + EMEN g + 3¢ Mpp) =0 (2.12)

vev

ov
P11

were the subscript “vev” indicates that the fields have been set to their vevs, those shown

A,

= V2eMp(m3 + €*MENag + 22 MENy) = 0 (2.13)

vev

in Eq (2.11) with all others vanishing. For a given choice of the dimensionless couplings,

Egs. (2.12) and (2.13) allow us to determine the mass parameters
m?% = —2*Mi g — EMaday — 3¢ Mpp (2.14)

my = —*MiXagy — 26 MjNg. (2.15)

To obtain the mass spectrum, we construct the second derivative matrix for the potential in
terms of the six real scalar fields, evaluated with the assumed vevs, and with mass parameters

fixed by Eqgs. (2.14) and (2.15). In the basis (¢11, A1, Aa, P12, P21, Pa2) we find

42 MEN, 2e€' ME A ag 0 0 0 O
2e€' MENay € Mp(4€ MpAa + 31) 0 0 0 0
o 0 0 9¢Mppu 0 0 0 210
0 0 0 0O 0 O
0 0 0 0O 0 0
0 0 0 0 0 O

The three non-vanishing eigenvalues of the mass squared matrix are positive, provided that

p < 0 and (assuming €, € and A\, are positive)

"M 4 M
€3A¢F(4AAA¢—A?4¢) and || < 3= (A + €*Aa) (2.17)

| <

which is easily arranged. The three massless states are expected from Goldstone’s Theorem,
since the U(2), symmetry is spontaneously broken to a residual U(1) symmetry that rotates
the second component of the ¢ column vector by a phase. However, these zero eigenvalues

are lifted when one takes into account corrections to the potential from higher-dimension



operators that break the accidental U(2), global symmetry. We find that the lowest-order
operators that have this effect occur at dimension 6,

Via = ML% (co1[(¢ )3(¢ @)35 (¢ &) +huc.) + C62ML% [(¢" ¢")3(dP)sl3 (¢" P)s+ -+, (2.18)
where the subscript indicates the 7" representation of the given product, with Clebsch-
Gordan factors left implicit. We have studied the eigenvalues of Eq. (2.16) numerically
after including the additional potential terms in V}4, and find that all the eigenvalues are
positive and non-vanishing; the masses of the three pseudo-goldstone bosons are of order
e2Mp. We will see later that the numerical values of our symmetry breaking parameters
and our extension to the neutrino sector will imply that this scale corresponds to roughly
10'2 GeV. We therefore do not expect meaningful phenomenological bounds on the three
pseudo-goldstone states. We note that there are also dimension-5 operators that one can
write down which correct the potential (e.g., A%|¢|> and A3 A|?) but these do not break the
accidental U(2), symmetry and provide higher-order corrections to the eigenvalues that are

already non-vanishing at lowest order.

B. Fit to quarks and charged leptons

In this subsection, we verify that the Yukawa textures in Eqgs. (2.2)-(2.4) reproduce the
correct masses and mixing angles for the charged fermions, by performing a global fit that
takes into account running from a high scale (which we will take to be 4 x 10'°® GeV,
to be consistent with our later discussion of the neutrino sector) down to the weak scale.
This is the same analysis that was performed in Ref. [11] for an arbitrary M scale, but is
now modified to take into account the textures predicted in the present model. We take the
model parameters {u;, d;, l;, €, €, p} to be real as a simplifying assumption since, as discussed
earlier, there is no difficulty in accommodating a CKM phase if one allows an arbitrary phase
parameter for every operator coefficient. The experimental inputs are the quark and lepton
masses and CKM angles, which we associate with the scale my (i.e., we ignore weak scale
threshold corrections). We seek solutions in which the order one parameters are in fact
not far from one, while predictions for the observables, renormalized at the weak scale, are

within two standard deviations of experimental values. Employing the same technique as



Refs. [2] and [11], we construct a function Y whose minimization achieves this goal:

O it Wl e L i R L el LA
e Ami™ N AV NG

)

+Z5: In Ju,| 2+25: In|d;| 2+Z5: |6\
In3 — In3 — In3

(2.19)
The first four terms would be present in a conventional chi-squared function, and place weight
on how close the theoretical predictions for observables are to experimental observations,
relative to the experimental error. The experimental errors are handled as in Refs. [2, 11]:
they are inflated to 1% of the central measured value if the error is smaller that this amount.
This takes into account theoretical uncertainties (for example, two-loop running effects) that
have been omitted. The remaining three terms of Eq. (2.19) place weight on the coefficients
having values that are order one, the expectation of naive dimensional analysis. Including
these terms is equivalent to assuming that the coefficients are distributed with a log-normal
distribution with mean 1 and standard deviation ¢ = In (3)/2 such that the absolute value
of an element drawn from the distribution has a 95% probability to lie in the range [0.3, 3].
There are a total of 12 observables (nine masses and three mixing angles) and, given the
stated constraints on the model parameters, the only three genuine free parameters, {e, ¢, p}!
. Thus, we expect a good fit if Y2 ~ 9. The best fit values together with the experimental
and theoretical predictions are presented in Table II. We note that our successful results
might be anticipated from the qualitatively similar Yukawa textures obtained in U(2) flavor
models [15, 20|, a further example of the similarities between 7" models and U(2) models
that was the focus of Refs. [1, 2].
Finally, we note that global symmetries are expected to be broken by quantum gravity
effects [21], but we can assume that there is an ultraviolet completion which allows the U(1)

symmetry to arise as a consequence of the continuous and discrete gauge symmetries that

I Tt should be stressed that the number of operator coefficients can exceed the number of observables without
sacrificing predictivity because we work in an effective field theory framework where these coefficients are
not free parameters, but are constrained by the requirement that they remain consistent with naive
dimensional analysis. As in the seminal work of Ref. [2], as well as Ref. [11], this is imposed via the terms
in the Y2 function that incorporate a preference for coefficients with magnitudes between 1/3 and 3. This
choice eliminates the consideration of unnatural effective theories, including those that are not consistent

with a perturbative operator expansion.



are present in a more complete theory. Another concern in the present framework is that the
breaking of discrete symmetries can lead to potential domain-wall problems. However, these
can be rendered harmless it the domain regions are widely separated due to inflation. We
will find later in Sec. III that My is constrained to be sufficiently high so that any problems

with domain walls may be eliminated via this mechanism.

TABLE II: Fit to the charged fermion masses and mixing angles. All masses are given in GeV.
(Note that my is the MS mass, not the pole mass.) The value of the quantity x? defined in the
text is 12.3. Running from the flavor scale M down to the Z mass is taken into account, with

MFp = 4 x 10'% GeV, (see Sec. IV) chosen for the purpose of illustration.

Best Fit Parameters

€=242x1072, ¢ =9.75 x 107°, p= —1.38 x 1072

up = 1.22 dy = 0.662 {1 =0.612
ug = —0.671 dy =1.29 o = 0.643
uz = —2.26 ds = —1.02 {3 = 0.352
uy = —0.702 dy = —0.276 0y = 2.40
us = 0.384 ds = 0.376 {5 = 0.295
Observable Expt. Value from [22] Fit Value
My (2.2 4 0.45) x 1073 2.30 x 1073
me 1.275 +0.03 1.274
my 160 + 4.5 160.0
mq (4.7+04) x 1073 5.42 x 1073
ms (9.540.6) x 1072 9.16 x 1072
my, 4.18 +0.035 4.17
Me (511 £1%) x 1074 5.11 x 1074
my, 0.106 + 1% 0.106
m, 1.78 + 1% 1.78
|Vius| 0.225 4+ 1% 0.223
| Vol (3.65+£0.12) x 1073 3.62 x 1073
Ve (4.21 4 0.08) x 1072 4.17 x 1072
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III. THE FLAVORFUL AXION

The model we have presented includes a flavon field s, charged under the U(1) factor of
the flavor group, which assures, for example, the correct values of the bottom quark and
tau lepton Yukawa couplings. This U(1) also serves as a Peccei-Quinn (PQ) symmetry and
its spontaneous breaking leads to a flavorful axion. Only the third generation right-handed
down quark and the third generation left-handed lepton doublet have nontrivial charges
under the U(1) symmetry (see Table I), but rotation to the mass eigenstate basis will induce
axion couplings to fields of the first two generations. The axion is identified via the non-linear
representation

s = Meia/vs . (3.1)

V2

The radial component o is a heavy degree of freedom and is integrated out of the low-energy
effective field theory. The phase field a is the Goldstone boson of the spontaneously broken
U(1)=U(1)pg symmetry and is identified with the QCD axion. Non-perturbative QCD
effects generate a potential for the axion, with the minimum corresponding to vanishing
of the § parameter of QCD, solving the strong CP problem. For complete reviews on this
subject see Refs. [23, 24].

The axiflavon couplings to fermions originate from the following Yukawa couplings

—i B e i1 S
Lyo=— [Q YAHE + T ngﬁeg} a0+ e (3.2)
or more explicitly
b
Ly, = — {d?@aﬂw (—<¢ >> Hd + dsQ Hd,
Mp
3 <¢b>) 3 3} Vs ez’a/vs

+ LL ey | — | He}% +IsL He + h.c., 3.3
e <MF R R ] AMy (33)

where €4, a,b = 1,2 is the Clebsch-Gordan matrix that allows one to combine two 2°

representations of 7" into a 1°. Setting the ¢ flavon to its vev, one obtains

Vg eia/vs

“—— 4
V2Mp

Performing the usual non-linear field redefinition of the third generation fermions

Lyo=—|~dse Q" Hdly + dsQ Hdly — Lie I Hey + 15T Hey | heo  (34)

&, — emialvs @ TP s el (3.5)
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we remove the axion entirely from the Yukawa sector, but instead induce derivative in-

teractions coming from the original fermion kinetic terms. For the charged fermions, one

finds

d,a | - 1+ 3 1—
: diV“(Ki)i3(Kd)3j( 75)053' + eﬂ“(Ug)iS(Ue)sj%

Here K, (U,) is the right-handed (left-handed) rotation that diagonalize the Yukawa in-

teractions, where in our conventions a generic Yukawa matrix ¥ would be diagonalized by
Y = U Y s U;. Notice that the axion interactions with the fermion mass eigenstates are
in general not diagonal and therefore induce flavor-changing neutral currents (FCNC) at
tree-level. Flavon FCNCs are very well constrained experimentally [25, 26] and we will dis-
cuss these constraints in the next subsection. See Refs. [27-29] for other axion models with
FCNCs at tree-level.

While our phenomenological bounds will come from the couplings in Eq. (3.6), we give
the axion couplings to two gauge fields here for completeness. After the anomalous chiral
rotation in Eq. (3.5), the axion reappears in an effective interaction with the gluon field
strength and its dual, namely

L= g—;%NDwGZV@aW. (3.7)

With the charge assignments of Table I, we obtain the domain-wall number

Npw = 2> Xh=> Xi-> Xl =1, (3.8)

where the X, represent the U(1) charges for left-handed and the right-handed fermion fields.
Since Npy = 1, there is one minimum of the axion potential. We identify the axion decay

constant as
fa = |US/NDW| . (39)

The PQ charge assignments give rise to U(1); U(1)pg and SU(2)*U(1)pqg anomalies and

therefore axion couplings to hypercharge and electroweak gauge bosons are induced, namely

2 2

a ~ a -
£ L2 oNg)B,,B" + T LNy we e, (3.10)

— 32712 v, 3272 vy

Rewriting this piece of the Lagrangian in the gauge boson mass eigenstate basis one obtains

the axion couplings to photons

Oy Q ~
o = ———(2Np+ Nw)E,, F*" 11
Lo = 2L @Ns + M), (3.11)
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where in this model one obtains
1\?%__ 2\? 1\?__
Ng=3 [22 (6) Xh - Z (§> Xi->y <—§> X;] (3.12)
+2) (—1)2)(;—2(—1)2)(;: > (3.13)
Z, 2 6

Nw =) Xj+3) X,=1, (3.14)
and thus the ratio of the electromagnetic to color anomalies is

2Np + Nw _ 8 (3.15)
Npw 3 '

As noted in other flavored axion models that make the same prediction for this ratio [14],

this is consistent with the predictions of the simplest DFSZ axion models [23, 24].

A. Constraints from meson decays

As can be seen from the axion couplings to fermions in Eq. (3.6), our model predicts
flavor violating processes, e.g., heavy meson decays like K* — 7+a. The branching fraction

for a generic meson two-body decay P — P'a is given by [12]

)
BR(P = Pla) = 64ﬂ1£(P) ’(Kd)igﬁfd)gj|2m% (1

m%:;/

) LOP (316)

2
where P = (g;q), P’ = (¢;q) and the indices ij denote the constituent quarks. The function
f+(q?) is the form factor from hadronic physics calculations and ¢ = gp — ¢pr is the mo-
mentum transfer to the axion; one may take ¢? ~ 0 as the axion is very light. The axion
mass is the same as a QCD axion, m, =~ 6 x 107°- (10" GeV/f,) eV [12]; we will see that
the strongest bounds presented later in this section imply m, < 10~% eV, while the neutrino
model discussed in the next section corresponds to m, ~ 7 x 1072 eV.

Experimental bounds on different heavy mesons decays are summarized in Ref. [12].
In Table III, we quote the most relevant of these constraints and indicate the relevant
experimental references. The precise numerical bounds that follow from the fit presented in
Sec. II B are displayed in the last column of this table.

To understand our results qualitatively, it is useful to parameterize the rotation matrices

that correspond to the fit in Table II in terms of powers of the Cabibbo angle A ~ 0.22. We
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find numerically that K, and U, have the qualitative form

1 AN 1L AN
Koy~ |X1 1| and U~ X1 1| . (3.17)
Al A1

The relevant combinations that determine the results in Tables III and IV are

A2\ A3 A2 )2
(KDis(Ka)sj~ | A 1 1] and (UDaU)s ~ [ A2 1 A . (3.18)
A 11 AN 1

TABLE III: Experimental constraints on the branching fractions of heavy mesons decays (second
column), derived bounds on the axion decay constant times flavor rotation matrix elements from
Ref. [12] (third column) and lower bound on the axion decay constant using the numerical value

of the matrix element from the fit presented in Sec. II B (fourth column).

Decay Branching Ratio Bound (f,/GeV) Bound from fit

Kt — 7wta < 0.73 x 10719[30]|> 3.45 x 10" |(K)a3(Ka)31|| fa > 6.3 x 1010 GeV

K9 = 1% [<5x1078[31] |> 1.35 x 10"0|(K1)o3(Ka)a1|| fa > 2.5 x 107 GeV

BE = 1ta |<4.9x107° [32] |> 5.0 x 107[(K))33(Ka)a1| | fa > 7.4 x 105 GeV

BE o K*a|< 4.9 x 1075 [32] |> 6.0 x 107|(K))33(Ka)s2| |fa > 2.8 x 107 GeV

The strongest bound in this model comes from the heavy meson decay K™ — 7w a giving
fa > 6.3 x 10" GeV. (3.19)

Given the identification f, = [v,/Npw| = v/2|p|Mp, we can translate this to a bound on the
flavor scale

Mp > 3.2 x 10'? GeV. (3.20)

Axion mixing with neutral hadronic mesons does not lead to competitive bounds and will

not be discussed here. See Ref. [12] for a treatment of these effects.
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TABLE IV: Experimental constraints on the branching fractions of lepton decays (second column),
derived bounds on the axion decay constant times flavor rotation matrix elements from Ref. [12]
(third column) and lower bound on the axion decay constant using the predicted numerical values

from out fit (fourth column).

Decay | Branching Ratio Bound (f,/GeV) Bound from fit

pt = etal< 1.0 x 1075[33] |> 2.0 x 10°|(Ud)23(Ue)s1|| fa > 1.7 x 108 GeV

T = eTal< 1.5 x 1072 [34]|> 1.3 x 105|(Ud)33(Ue)s1|| fa > 5.3 x 10* GeV

T o ptal< 2.6 x 1072 [34] > 9.9 x 105|(Ud)33(Ue)sa|| fa > 3.9 x 10° GeV

B. Constraints from lepton decays

From the axiflavon couplings in Eq. (3.6) one can also compute the branching fraction
for leptonic decays, namely [12]

1 omf o 2 m; ’
BR(‘SZ — €j(1) = ?QW—IWF (Ue)i3(Ue>3j| 1-— W . (321)

The most stringent bound comes from the decay ut — eta giving f, > 1.7 x 108 GeV,
which is not competitive with our earlier bound from charged kaon decays, Eq. (3.19).

One can also find bounds from lepton decays with a photon in the final state but it turns

out that these are not stronger than the bounds we have already considered.

IV. NEUTRINO SECTOR

In this section, we consider how our model may be extended to explain the observed
neutrino masses and mixing angles. In doing so, we face an immediate challenge: how can
we explain two large neutrino mixing angles in a theory where symmetry breaking is achieved
through two small parameters, € and €, that are of order 1072 and 10~*, respectively? A
similar problem presents itself when one considers the neutrino mass squared differences. The
smallness of the overall neutrino mass scale can be explained via the see-saw mechanism; we
will implement a type-I see-saw mechanism below, involving three right-handed neutrinos.
Choice of the right-handed neutrino mass scale allows us to fix one of the observed neutrino
mass squared differences, for example, Am3,; what is then determined by the symmetry

breaking parameters is the ratio Am3,/Am2,, which is found experimentally to be 33.3 &
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1.03 [22], assuming a normal, rather than inverted, neutrino mass hierarchy (which is the
case on our model). One would expect that the theoretical prediction for Am3,/Ams3; is
proportional to ratios of powers of € and €’; if this quantity is not O(1), then one finds
typically that the predicted value is either much too large or too small to account for the
experimental value. This is a consequence of the small and distinctly hierarchical values of
€ and €. One cannot decouple the problem of the neutrino sector from our results in the
charged fermion sector because the left-handed neutrinos must have the same flavor charge
assignments as their charged partners within each weak SU(2) doublet. As a consequence,
there is a real possibility that the flavor structure of the theory might only be consistent
with neutrino masses and mixing angles that are strongly hierarchical, which would make our
previous findings in the charged fermion sector of dubious value. It is therefore important
to demonstrate explicitly that an extension to the neutrino sector (via appropriate charge
assignments for right-handed neutrinos) is possible that avoids this problem. We present
such a solution in this section.

We note that if the ratio Am32,/Am3, is approximately independent of ¢ and €', then it
is a function of the order one coefficients in the theory alone. In this case, a value of 33.3
can be obtained for a rather mundane reason: The see-saw formula tells us that the mass

matrix of the light, left-handed neutrino mass eigenstates is given by
Mpy ~ MypMppMf,, (4.1)

which implies that the eigenvalues of My, will typically be of cubic order in quantities of
O(1), either operator coefficients or their inverse. Here, M g represents the neutrino Dirac
mass matrix, while Mgzg is the Majorana mass matrix for the right-handed neutrinos. The
numerator and denominator of Am3,/Am3, then each depend on terms that are of sizth
order in quantities that are O(1), with each typically falling somewhere between 1/3 and 3
in absolute value, given our earlier assumptions. Noting that 1.8% ~ 34, one can understand
how easy it is to take input matrices with coefficients that are of O(1) and still obtain a mass-
squared-difference ratio that is consistent with the experimental value. This observation is
relevant to our solution below.

We introduce three right-handed neutrinos that are uncharged under the Peccei-Quinn

symmetry and have T x Z3 charges
v ~1°7 and 13’ ~ 1% (4.2)
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The Dirac and Majorana mass matrices have the following 7" x Z3 x U(1) transformation

properties

10— 10+ 10+
207 20+‘20+

0+ 400 00
1+1 1+1 ‘ 1+1

MLR ~ and MRR ~ ]_O+ ]_00 ]_00 y (43)

10+ 100 100

where we have indicated U(1) charges with a subscript. This leads to the textures

b1€ 0 0 cle’MF CQG’MF CgEIMF
v
Mg = E 0 bye ng ) and Mpgp = CQEIMF Ms, M3 : (44>
bup€ bsp bgp cs€ Mp My Mas

Here the b; and ¢; are O(1) coefficients. Since the elements labelled My, Ms3 and Mss in
MRprpR are each flavor-group invariant, they don’t necessarily have to be at the same scale as
M, or as each other. For the purposes of demonstrating the viability of the neutrino sector,

we will take these elements to be at the scale € My, so that Mppr takes the form

C1 Co C3
MRR = E/MF Cy C4 Cy = 6/MF]/\\4/RR- (45)

C3 C5 Cg

In other words, with this choice, the right-handed Majorana matrix is a complete arbitrary
matrix with O(1) entries, M, rR, times the scale € Mp. The Dirac mass matrix also has
considerable freedom. Noting that our earlier fits indicated p ~ O(¢), we can redefine the
coefficients b5 and bg, and drop the 13 entry, which is higher order. Then we see that M r

is approximately of the form

by 0 O -
ve ve [ b
Mip~=—7=10 by b3 | =—= - , (4.6)
V2| P V2 o v
0 b5 bs

where ?LR is an arbitrary, two-by-two matrix with O(1) entries. The 10 free parameters
in Eqgs. (4.5) and the approximation shown in (4.6) are more than sufficient to obtain the
desired values of Am2,/Am2,, as well as sin? f}, sin? §13 and sin® fy3, while maintaining O(1)
operator coefficients. The dependence of the output on products of the coefficients allows

numerical values like 33 (the experimental value of Am3,/Am3,) or 1/33 (very close to 63;)

17



to arise without fine tunings. We note that the form of Eq. (4.6), with a non-vanishing
1-1 entry, is a consequence of the different charge assignment for the first-generation right-
handed neutrino field. This entry of M} originates from a charge conjugated 2°* flavon;
in 7", as in SU(2), 2 ~ i0?2*, which flips the relative location of the doublet vev in the first

two columns of Mrg.

TABLE V: Example of a viable parameter choice for the neutrino sector.

Parameters

€=242x1072, ¢ =9.75 x 1072, p = —1.38 x 1072

by = 1.66 by = 1.07 by = 2.10
by = 1.11 bs = —0.891 b = 1.61
c1 =291 co =1.04 c3 = 0.662
cy =1.21 cs = 1.37 ce = 1.44
Observable Expt. Value from [22] Fit Value
o 33.3 + 1.03 33.8
sin? 619 0.307 £ 0.013 0.307
sin? 03 0.417 4 0.025 0.444
sin? 013 (2.1240.08) x 1072 2.11 x 1072

An example of a viable parameter set for the neutrino sector is shown in Table V. The
neutrino mixing angles are defined via a standard parametrization of the PMNS matrix,
which we call U below,

U=Ulu,, (4.7)

where U, (U,) is a unitary matrix that diagonalizes the charged lepton (left-handed Majo-
rana) matrix following our earlier convention, i.e., My, = UVM‘LﬁLag Uj . We can extract the

mixing angles via the relations
sin?03 = U , sin?fys = Uy /(1 —UZ) and  sin?6, = UL /(1 - UY) . (4.8)

For the purpose of illustration, we fix €, ¢ and p, as well as the coefficients [; appearing in
the charged lepton Yukawa matrix, to the values that were obtained in our previous global

fit of the charged fermions, Table II. A viable choice of neutrino sector parameters b; and
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c; is presented in Table V. These were obtained by defining a Y2 for the neutrino sector
that takes into account the neutrino observables listed in the table and also places weight
on the neutrino-sector coefficients being O(1), in analogy to our approach in the charged
fermions. This function can be used to diagnose when a good-enough parameter choice has
been obtained.

Since the right-handed neutrino mass scale is set by € My, the neutrino mass squared
differences (rather than the ratio) can be used to determine the flavor scale. Using either

experimental value [22]
Am3; = (753 £0.18) x 107%eV* or Amj, = (2.51 £0.05) x 10 %eV?, (4.9)
we find that the solution in Table V corresponds to
Mp = 4.6 x 10'% GeV . (4.10)

This is consistent with our axiflavon constraint in Eq. (3.20).

Finally, it is worth pointing out that the predictions of flavor models with small symmetry-
breaking parameters in the effective field theory approach come in the form of powers of
these small parameters. What is remarkable about the present construction is that we
have arranged the final left-handed neutrino mass matrix to be immune from the effects of
these small parameters which give us the hierarchies of the charged fermions, even though
many of the neutrino fields are nontrivially charged under the flavor group. All that is left
are order-one operator coefficients, which may simply be random (in the spirit of neutrino

anarchy [35]) or fixed by other physics in the ultraviolet.

V. CONCLUSIONS

In this paper, we have studied a nonsupersymmetric flavor model based on the double
tetrahedral group, 7". Improving on earlier work by Carone, Chaurasia and Vasquez [11], we
formulate a simpler model that dispenses with the triplet flavon S and eliminates some small
numerical coefficients that were assumed in one version of the model to arise from unspecified
physics at higher energy scales. Moreover, by replacing one of the Abelian discrete group
factors by a continuous U(1) flavor symmetry, we endow the theory with a flavorful axion

that solves the strong CP problem. The flavorful axion decay constant f, is related to the
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flavor scale M (the cut off of the effective theory) and falls roughly two orders of magnitude
beneath it. We present constraints on f, coming from FCNC processes and find that the
strongest lower bound comes from the process K+ — 7ta, yielding f, > 1.2 x 101! GeV. We
show that the Yukawa matrices predicted by the model provide a good fit to the observed
charged fermion masses and mixing angles, taking into account the running from the flavor
scale down to the weak scale. We then successfully extend the model to the neutrino sector,
by introducing three generations of right-handed neutrinos and employing a Type-I see-saw
mechanism to explain the smallness of the light neutrino masses. By charging only the
first generation right-handed neutrino non-trivially under 7", we show how the mass matrix
for the light neutrino mass eigenstates, which must account for two large mixing angles and
requires only a modest hierarchy between the neutrino masses, can be predicted by the same
theory that yields the strong hierarchies of the charged fermion Yukawa matrices. For the
particular extension to the neutrino sector presented here, the flavor scale is roughly five
orders of magnitude higher than what is required to satisfy the flavorful axion bounds. This
suggests that flavor-changing signals from the flavorful axion will not be easily observable
unless additional symmetries are introduced to lower the scale associated with the right-

handed neutrinos.
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