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Abstract

We extend the work of Carone, Chaurasia and Vasquez on non-supersymmetric models of flavor

based on the double tetrahedral group. Three issues are addressed: (1) the sector of flavor-

symmetry-breaking fields is simplified and their potential studied explicitly, (2) a flavorful axion is

introduced to solve the strong CP problem and (3) the model is extended to include the neutrino

sector. We show how the model can accommodate the strong hierarchies manifest in the charged

fermion Yukawa matrices, while predicting a qualitatively different form for the light neutrino mass

matrix that is consistent with observed neutrino mass squared differences and mixing angles.
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I. INTRODUCTION

The structure of the fermion Yukawa couplings in the standard model may result from the

sequential breaking of a horizontal discrete family symmetry. Long ago, Aranda, Carone and

Lebed [1, 2] showed how the double tetrahedral group T ′ could be used to construct successful

supersymmetric flavor models that are similar to those based on U(2) symmetry [3, 4], with

or without the assumption of conventional supersymmetric grand unification. For other

early work on T ′ as a flavor symmetry, see Ref. [5]. Many other authors have since explored

the use of T ′ symmetry in models that aim to address the flavor structure of the standard

model [6].

Much of the work on T ′ flavor models has assumed weak-scale supersymmetry, to stabi-

lize the hierarchy between the weak scale and the grand unified or Planck scale. Over the

past decade, however, there has been no direct evidence for superpartners at the LHC, nor

indirect evidence in the form of a convincing pattern of deviations from the predictions of the

standard model for some subset of its observables. While one cannot exclude the possibility

that supersymmetry is present and just beyond the reach of current experiments (a state-

ment that applies to any new physics that has a decoupling limit), the current state of affairs

has motivated a greater open-mindedness towards consideration of non-supersymmetric ex-

tensions of the standard model. For example, the possibility that the standard model could

arise consistently from a string theory without supersymmetry has been discussed in Ref. [7].

The hierarchies between mass scales might result from dynamical mechanisms (for example,

cosmic relaxation [8] or Nnaturalness [9]), or anthropic selection [10]. On the other hand,

the fundamental mass scales found in nature may simply be random and fine tuned, for

reasons that are obscure to us at present. In this work, we assume the absence of super-

symmetry and focus on phenomenological issues, while remaining agnostic on the question

of naturalness.

The purpose of the present work is to further explore the possibility of nonsupersym-

metric models of flavor based on T ′ symmetry, following a study by Carone, Chaurasia and

Vasquez [11]. In Ref. [11], a nonsupersymmetric T ′ model was presented in which the flavor

scale MF was treated as a free parameter. (There is less motivation to link the flavor scale to

a grand unified scale in a framework where the gauge couplings don’t automatically unify.)

Global fits were performed to the fermion masses and Cabibbo-Kobayashi-Maskawa (CKM)

2



mixing angles, taking into account the nonsupersymmetric running of the Yukawa matrices

between the scale MF and the weak scale. It was found that the model was viable for a

wide range of MF ; this scale could be as high as the Planck scale or as low as the minimum

allowed by the flavor-changing-neutral-current constraints on the heavy, flavor-sector parti-

cles with masses of order MF . At the lower end of this range, flavor-sector fields, such as

the physical components of the flavon fields that spontaneously break the T ′ symmetry, can

potentially have observable consequences.

Here we go beyond the work of Ref. [11] in a number of ways: (i) we present a simpli-

fication of the model involving a smaller number of flavor-symmetry-breaking fields. While

simplicity may be desirable by itself, the smaller field content allows a less cumbersome

study of the flavon potential that leads to the spontaneous breaking of the flavor symmetry,

so that we can confirm the assumed pattern of symmetry breaking and study the spectrum

of scalar states. (ii) We address the strong CP problem by promoting an Abelian factor

that is required in the model from a Z3 symmetry to an anomalous U(1) symmetry. This

leads to a flavorful axion [12] (also called a flaxion [13], or axi-flavon [14–16], in the recent

literature), which leads to more stringent lower bounds on the flavor scale MF than in our

previous study, as well as new avenues for discovery. (The idea of flavored axions appeared

first in Ref. [17] and was explored subsequently by a number of authors [18].) The possibility

of flavored axions due to a continuous Abelian factor in a T ′ flavor model was considered in

a supersymmetric model in Ref. [19]; the present work gives a simple, nonsupersymmetric

realization of this possibility. (iii) We extend the model to include the neutrino sector. As

we describe later, one model building difficulty that we must overcome is to explain how

the small symmetry-breaking parameters that lead to pronounced hierarchies in the charged

fermion Yukawa matrices lead to much less pronounced hierarchies in the neutrino mass

matrix (as indicated, for example, by the two large mixing angles). Our model will show

how this outcome can be achieved.

Our paper is organized as follows: in Sec. II we present the model and establish our

notation. We study the flavon potential including the vacuum alignment and the spectrum

of scalar states. We also present a global fit of the charged fermion masses and mixing

angles, analogous to the one presented in Ref. [11]. We address the strong CP problem in

Sec. III and identify the flavored axion couplings to SM particles. Bounds on the axion decay

constant from flavor changing decays are given. In Sec. IV we address the neutrino sector
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and introduce a type-I see-saw mechanism with three right-handed neutrinos. In Sec. V, we

summarize our conclusions.

II. THE MODEL

We assume the flavor symmetry GF = T ′×Z3×U(1), where the last factor is anomalous

and will allow for the existence of a flavorful axion. We do not review the group theory of

T ′, which was discussed in some detail in Ref. [2] (including a useful appendix on Clebsch-

Gordan factors), and reviewed again in Ref. [11]. We refer the reader to those references

for details. The flavor-symmetry-breaking sector consists of three complex scalar fields A,

s, and φ, in the 10−, 100, and 20+ representations of T ′ × Z3, using the notation of Ref. [2].

Notably, the triplet flavon S of Ref. [11] has been omitted; the model is nonetheless viable,

as we will discuss below. The complete field content and charge assignments for the model

are shown in Table I.

TABLE I: Charge assignments. The index a = 1, 2 is a generation label. The first four columns

correspond to complex scalar fields, while the remainder are either right-handed standard model

fermion fields or Dirac adjoints of left-handed ones.

A s φ H Q
a
L Q

3
L daR d3R uaR u3R L

a
L
3

eaR e3R

T ′ × Z3 10− 100 20+ 100 20− 100 20− 100 20− 100 20− 100 20− 100

U(1) 0 1 0 0 0 0 0 −1 0 0 0 −1 0 0

Since the standard model fermions are charged under GF , the Yukawa couplings, aside

from that of the top quark, arise via higher-dimension operators involving the flavon fields.

These are suppressed by appropriate powers of the flavor scale MF , the cut off of the low-

energy effective theory. When the flavon fields acquire vevs, these operators depend on the

ratios

〈φ〉 /MF ≡

 ε
0

 , 〈A〉 /MF ≡ ε′ , and 〈s〉 /MF ≡ ρ . (2.1)
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After flavor-symmetry breaking, the following Yukawa textures are generated:

YU ∼


0 u1ε

′ 0

−u1ε′ u2ε2 u3ε

0 u4ε u5

 , (2.2)

YD ∼


0 d1ε

′ 0

−d1ε′ d2ε2 d3ε ρ

0 d4ε d5ρ

 , (2.3)

YE ∼


0 l1ε

′ 0

−l1ε′ l2ε2 l3ε

0 l4ε ρ l5ρ

 . (2.4)

Here the ui, di and li are (in general complex) O(1) parameters and only the leading-order

expressions are presented. The non-zero entries differ in two ways from the textures of

Ref. [11]: the 2-2 entries above are O(ε2), rather than O(ε), due to the absence of the

T ′-triplet flavon. However, the factors of ρ appear in different locations, so that the end

results are qualitatively similar. For example, the suppression of the 1-2 block of Yu in

Ref. [11] by an overall factor of ρ is mimicked here by the higher-order 2-2 entry and the

proportionally smaller numerical value of ε′, as we will see later. We also note that there will

be CP violation in the model even if all the operator coefficients defined at the level of the

Lagrangian are real, due to imaginary numbers in Clebsch-Gordan coefficients; these would

lead, for example, to factors of i in the 2-2 entries of YU , YD and YE. In general, however,

all operator coefficients are themselves complex, and the 10 phase degrees of freedom in YU

and YD can be used to obtain the desired CKM phase rather easily. In light of this, and to

simplify our subsequent numerical analysis, we have chosen all the operator phases so that

the parameters shown in Eqs. (2.2)-(2.4) are real, and omit the CKM phase from our global

fit in Sec. II B.

A. The Flavon Potential

In this subsection, we consider the flavon potential, to confirm that the pattern of vevs

assumed in Eq. (2.1) can be achieved and to study the spectrum of physical scalar states. We

will do this by assuming the desired vev pattern, and imposing the extremization conditions
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on the potential to fix some of its otherwise free parameters. We then check the second-

derivative matrix of the potential for positive definiteness. To simplify the discussion, we

exclude the s field, since it is a trivial singlet under the non-Abelian discrete flavor group

and it is straightforward to write down a potential involving s alone that provides for its

vev. Including terms that couple s to the other fields, e.g., |s|2|φ2|, will not qualitatively

change our results providing that their couplings are not too large, which is good enough

for a proof of principle. We are particularly interested in accidental global symmetries that

arise in the potential as a consequence of the T ′ × Z3 discrete symmetry. These lead to

pseudo-goldstone bosons whose masses arise via higher-dimension operators. We estimate

the masses of these states to confirm that they are not so light that their phenomenological

consequences need to be taken into account. In this case, the only light state that will have

interesting flavor-changing physics will be a single flavorful axion associated with the s field.

The most general scalar potential for a singlet and a doublet transforming as A ∼ 10−,

φ ∼ 20+ under T ′ × Z3, respectively, is given by

V = VA + Vφ + VAφ, (2.5)

where

VA = m2
A|A|2 + µ (A3 + A∗3) + λA |A|4, (2.6)

Vφ = m2
φ |φ|2 + λφ |φ|4, (2.7)

VAφ = λAφ |A|2|φ|2. (2.8)

Note that this potential has an accidental U(2)φ global symmetry as well as an additional

U(1)A symmetry in the limit µ→ 0. We parametrize the fields in terms of their real degrees

of freedom

A =
1√
2

(A1 + iA2) , (2.9)

and

φ =
1√
2

φ11 + iφ12

φ21 + iφ22

 . (2.10)

The Yukawa textures in Eqs. (2.2)-(2.4) are reproduced provided only the following real

fields develop vevs:

〈φ11〉 /
√

2 = εMF and 〈A1〉 /
√

2 = ε′MF . (2.11)
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The location of a local minimum of the potential is determined by six first-derivative equa-

tions, corresponding to the six real scalar fields in Eqs. (2.9) and (2.10). However, for the

assumed vev pattern, only two of these equations are non-vanishing,

∂V

∂A1

∣∣∣∣
vev

=
√

2ε′MF (m2
A + 2ε′2M2

FλA + ε2M2
FλAφ + 3ε′MFµ) = 0 , (2.12)

∂V

∂φ11

∣∣∣∣
vev

=
√

2εMF (m2
φ + ε′2M2

FλAφ + 2ε2M2
Fλφ) = 0 , (2.13)

were the subscript “vev” indicates that the fields have been set to their vevs, those shown

in Eq (2.11) with all others vanishing. For a given choice of the dimensionless couplings,

Eqs. (2.12) and (2.13) allow us to determine the mass parameters

m2
A = −2ε′2M2

FλA − ε2M2
FλAφ − 3ε′MFµ , (2.14)

m2
φ = −ε′2M2

FλAφ − 2ε2M2
Fλφ. (2.15)

To obtain the mass spectrum, we construct the second derivative matrix for the potential in

terms of the six real scalar fields, evaluated with the assumed vevs, and with mass parameters

fixed by Eqs. (2.14) and (2.15). In the basis (φ11, A1, A2, φ12, φ21, φ22) we find

m2
scalar =



4ε2M2
Fλφ 2εε′M2

FλAφ 0 0 0 0

2εε′M2
FλAφ ε′MF (4ε′MFλA + 3µ) 0 0 0 0

0 0 −9ε′MFµ 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(2.16)

The three non-vanishing eigenvalues of the mass squared matrix are positive, provided that

µ < 0 and (assuming ε, ε′ and λφ are positive)

|µ| < ε′MF

3λφ
(4λAλφ − λ2Aφ) and |µ| < 4

3

MF

ε′
(ε2λφ + ε′2λA) , (2.17)

which is easily arranged. The three massless states are expected from Goldstone’s Theorem,

since the U(2)φ symmetry is spontaneously broken to a residual U(1) symmetry that rotates

the second component of the φ column vector by a phase. However, these zero eigenvalues

are lifted when one takes into account corrections to the potential from higher-dimension
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operators that break the accidental U(2)φ global symmetry. We find that the lowest-order

operators that have this effect occur at dimension 6,

Vhd =
1

M2
F

(c61 [(φφ)3(φφ)3]3 (φφ)3 + h.c.) + c62
1

M2
F

[(φ∗ φ∗)3(φφ)3]3 (φ∗ φ)3 + · · · , (2.18)

where the subscript indicates the T ′ representation of the given product, with Clebsch-

Gordan factors left implicit. We have studied the eigenvalues of Eq. (2.16) numerically

after including the additional potential terms in Vhd, and find that all the eigenvalues are

positive and non-vanishing; the masses of the three pseudo-goldstone bosons are of order

ε2MF . We will see later that the numerical values of our symmetry breaking parameters

and our extension to the neutrino sector will imply that this scale corresponds to roughly

1012 GeV. We therefore do not expect meaningful phenomenological bounds on the three

pseudo-goldstone states. We note that there are also dimension-5 operators that one can

write down which correct the potential (e.g., A3|φ|2 and A3|A|2) but these do not break the

accidental U(2)φ symmetry and provide higher-order corrections to the eigenvalues that are

already non-vanishing at lowest order.

B. Fit to quarks and charged leptons

In this subsection, we verify that the Yukawa textures in Eqs. (2.2)-(2.4) reproduce the

correct masses and mixing angles for the charged fermions, by performing a global fit that

takes into account running from a high scale (which we will take to be 4 × 1016 GeV,

to be consistent with our later discussion of the neutrino sector) down to the weak scale.

This is the same analysis that was performed in Ref. [11] for an arbitrary MF scale, but is

now modified to take into account the textures predicted in the present model. We take the

model parameters {ui, di, li, ε, ε′, ρ} to be real as a simplifying assumption since, as discussed

earlier, there is no difficulty in accommodating a CKM phase if one allows an arbitrary phase

parameter for every operator coefficient. The experimental inputs are the quark and lepton

masses and CKM angles, which we associate with the scale mZ (i.e., we ignore weak scale

threshold corrections). We seek solutions in which the order one parameters are in fact

not far from one, while predictions for the observables, renormalized at the weak scale, are

within two standard deviations of experimental values. Employing the same technique as
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Refs. [2] and [11], we construct a function χ̃ whose minimization achieves this goal:

χ̃2 =
9∑
i=1

(
mth
i −m

exp
i

∆mexp
i

)2

+

(
|V th
us | − |V exp

us |
∆V exp

us

)2

+

(
|V th
ub | − |V

exp
ub |

∆V exp
ub

)2

+

(
|V th
cb | − |V

exp
cb |

∆V exp
cb

)2

+
5∑
i=1

(
ln |ui|
ln 3

)2

+
5∑
i=1

(
ln |di|
ln 3

)2

+
5∑
i=1

(
ln |`i|
ln 3

)2

.

(2.19)

The first four terms would be present in a conventional chi-squared function, and place weight

on how close the theoretical predictions for observables are to experimental observations,

relative to the experimental error. The experimental errors are handled as in Refs. [2, 11]:

they are inflated to 1% of the central measured value if the error is smaller that this amount.

This takes into account theoretical uncertainties (for example, two-loop running effects) that

have been omitted. The remaining three terms of Eq. (2.19) place weight on the coefficients

having values that are order one, the expectation of naive dimensional analysis. Including

these terms is equivalent to assuming that the coefficients are distributed with a log-normal

distribution with mean 1 and standard deviation σ = ln (3)/2 such that the absolute value

of an element drawn from the distribution has a 95% probability to lie in the range [0.3, 3].

There are a total of 12 observables (nine masses and three mixing angles) and, given the

stated constraints on the model parameters, the only three genuine free parameters, {ε, ε′, ρ}1

. Thus, we expect a good fit if χ̃2 ≈ 9. The best fit values together with the experimental

and theoretical predictions are presented in Table II. We note that our successful results

might be anticipated from the qualitatively similar Yukawa textures obtained in U(2) flavor

models [15, 20], a further example of the similarities between T ′ models and U(2) models

that was the focus of Refs. [1, 2].

Finally, we note that global symmetries are expected to be broken by quantum gravity

effects [21], but we can assume that there is an ultraviolet completion which allows the U(1)

symmetry to arise as a consequence of the continuous and discrete gauge symmetries that

1 It should be stressed that the number of operator coefficients can exceed the number of observables without

sacrificing predictivity because we work in an effective field theory framework where these coefficients are

not free parameters, but are constrained by the requirement that they remain consistent with naive

dimensional analysis. As in the seminal work of Ref. [2], as well as Ref. [11], this is imposed via the terms

in the χ̃2 function that incorporate a preference for coefficients with magnitudes between 1/3 and 3. This

choice eliminates the consideration of unnatural effective theories, including those that are not consistent

with a perturbative operator expansion.
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are present in a more complete theory. Another concern in the present framework is that the

breaking of discrete symmetries can lead to potential domain-wall problems. However, these

can be rendered harmless it the domain regions are widely separated due to inflation. We

will find later in Sec. III that MF is constrained to be sufficiently high so that any problems

with domain walls may be eliminated via this mechanism.

TABLE II: Fit to the charged fermion masses and mixing angles. All masses are given in GeV.

(Note that mt is the MS mass, not the pole mass.) The value of the quantity χ̃2 defined in the

text is 12.3. Running from the flavor scale MF down to the Z mass is taken into account, with

MF = 4× 1016 GeV, (see Sec. IV) chosen for the purpose of illustration.

Best Fit Parameters

ε = 2.42× 10−2, ε′ = 9.75× 10−5, ρ = −1.38× 10−2

u1 = 1.22 d1 = 0.662 `1 = 0.612

u2 = −0.671 d2 = 1.29 `2 = 0.643

u3 = −2.26 d3 = −1.02 `3 = 0.352

u4 = −0.702 d4 = −0.276 `4 = 2.40

u5 = 0.384 d5 = 0.376 `5 = 0.295

Observable Expt. Value from [22] Fit Value

mu (2.2± 0.45)× 10−3 2.30× 10−3

mc 1.275± 0.03 1.274

mt 160± 4.5 160.0

md (4.7± 0.4)× 10−3 5.42× 10−3

ms (9.5± 0.6)× 10−2 9.16× 10−2

mb 4.18± 0.035 4.17

me (5.11± 1%)× 10−4 5.11× 10−4

mµ 0.106± 1% 0.106

mτ 1.78± 1% 1.78

|Vus| 0.225± 1% 0.223

|Vub| (3.65± 0.12)× 10−3 3.62× 10−3

|Vcb| (4.21± 0.08)× 10−2 4.17× 10−2
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III. THE FLAVORFUL AXION

The model we have presented includes a flavon field s, charged under the U(1) factor of

the flavor group, which assures, for example, the correct values of the bottom quark and

tau lepton Yukawa couplings. This U(1) also serves as a Peccei-Quinn (PQ) symmetry and

its spontaneous breaking leads to a flavorful axion. Only the third generation right-handed

down quark and the third generation left-handed lepton doublet have nontrivial charges

under the U(1) symmetry (see Table I), but rotation to the mass eigenstate basis will induce

axion couplings to fields of the first two generations. The axion is identified via the non-linear

representation

s =
vs + σ√

2
eia/vs . (3.1)

The radial component σ is a heavy degree of freedom and is integrated out of the low-energy

effective field theory. The phase field a is the Goldstone boson of the spontaneously broken

U(1)≡U(1)PQ symmetry and is identified with the QCD axion. Non-perturbative QCD

effects generate a potential for the axion, with the minimum corresponding to vanishing

of the θ parameter of QCD, solving the strong CP problem. For complete reviews on this

subject see Refs. [23, 24].

The axiflavon couplings to fermions originate from the following Yukawa couplings

LY a = −
[
Q
i
Y d
i3Hd

3
R + L

3
Y e
3jHe

j
R

] s

MF

+ h.c. , (3.2)

or more explicitly

LY a = −
[
d3Q

a
εab

(
〈φb〉
MF

)
Hd3R + d5Q

3
Hd3R

+ l4L
3
εab

(
〈φb〉
MF

)
HeaR + l5L

3
He3R

]
vs e

ia/vs

√
2MF

+ h.c. , (3.3)

where εab, a, b = 1, 2 is the Clebsch-Gordan matrix that allows one to combine two 20

representations of T ′ into a 10. Setting the φ flavon to its vev, one obtains

LY a = −
[
−d3εQ

2
Hd3R + d5Q

3
Hd3R − l4ε L

3
He2R + l5L

3
He3R

] vs eia/vs√
2MF

+ h.c. (3.4)

Performing the usual non-linear field redefinition of the third generation fermions

d3R → e−ia/vsd3R, L
3 → e−ia/vsL

3
, (3.5)
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we remove the axion entirely from the Yukawa sector, but instead induce derivative in-

teractions coming from the original fermion kinetic terms. For the charged fermions, one

finds

L ⊇ ∂µa

vs

[
d̄iγ

µ(K†d)i3(Kd)3j
(1 + γ5)

2
dj + ēiγ

µ(U †e )i3(Ue)3j
(1− γ5)

2
ej

]
. (3.6)

Here Kd (Ue) is the right-handed (left-handed) rotation that diagonalize the Yukawa in-

teractions, where in our conventions a generic Yukawa matrix Y would be diagonalized by

Y = ULY
diagU †R. Notice that the axion interactions with the fermion mass eigenstates are

in general not diagonal and therefore induce flavor-changing neutral currents (FCNC) at

tree-level. Flavon FCNCs are very well constrained experimentally [25, 26] and we will dis-

cuss these constraints in the next subsection. See Refs. [27–29] for other axion models with

FCNCs at tree-level.

While our phenomenological bounds will come from the couplings in Eq. (3.6), we give

the axion couplings to two gauge fields here for completeness. After the anomalous chiral

rotation in Eq. (3.5), the axion reappears in an effective interaction with the gluon field

strength and its dual, namely

L =
αs
8π

a

vs
NDWG

a
µνG̃

aµν . (3.7)

With the charge assignments of Table I, we obtain the domain-wall number

NDW =

[
2
∑
i

X i
Q −

∑
i

X i
u −

∑
i

X i
d

]
= 1 , (3.8)

where the Xa represent the U(1) charges for left-handed and the right-handed fermion fields.

Since NDW = 1, there is one minimum of the axion potential. We identify the axion decay

constant as

fa = |vs/NDW | . (3.9)

The PQ charge assignments give rise to U(1)2Y U(1)PQ and SU(2)2U(1)PQ anomalies and

therefore axion couplings to hypercharge and electroweak gauge bosons are induced, namely

L ⊇ g′2

32π2

a

vs
(2NB)BµνB̃

µν +
g2

32π2

a

vs
NWW

a
µνW̃

aµν . (3.10)

Rewriting this piece of the Lagrangian in the gauge boson mass eigenstate basis one obtains

the axion couplings to photons

Lγa =
αEM
8π

a

vs
(2NB +NW )FµνF̃

µν (3.11)
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where in this model one obtains

NB = 3

[
2
∑
i

(
1

6

)2

X i
Q −

∑
i

(
2

3

)2

X i
u −

∑
i

(
−1

3

)2

X i
d

]
(3.12)

+ 2
∑
i

(
−1

2

)2

X i
L −

∑
i

(−1)2X i
e =

5

6
, (3.13)

NW =
∑
i

X i
L + 3

∑
i

X i
Q = 1, (3.14)

and thus the ratio of the electromagnetic to color anomalies is

2NB +NW

NDW

=
8

3
. (3.15)

As noted in other flavored axion models that make the same prediction for this ratio [14],

this is consistent with the predictions of the simplest DFSZ axion models [23, 24].

A. Constraints from meson decays

As can be seen from the axion couplings to fermions in Eq. (3.6), our model predicts

flavor violating processes, e.g., heavy meson decays like K+ → π+a. The branching fraction

for a generic meson two-body decay P → P ′ a is given by [12]

BR(P → P ′a) =
1

64πΓ(P )

|(Kd)
†
i3(Kd)3j|2

f 2
a

m3
P

(
1− m2

P ′

m2
P

)3

|f+(0)|2 (3.16)

where P = (q̄iq), P
′ = (q̄jq) and the indices ij denote the constituent quarks. The function

f+(q2) is the form factor from hadronic physics calculations and q = qP − qP ′ is the mo-

mentum transfer to the axion; one may take q2 ≈ 0 as the axion is very light. The axion

mass is the same as a QCD axion, ma ≈ 6× 10−6 · (1012 GeV/fa) eV [12]; we will see that

the strongest bounds presented later in this section imply ma . 10−4 eV, while the neutrino

model discussed in the next section corresponds to ma ≈ 7× 10−9 eV.

Experimental bounds on different heavy mesons decays are summarized in Ref. [12].

In Table III, we quote the most relevant of these constraints and indicate the relevant

experimental references. The precise numerical bounds that follow from the fit presented in

Sec. II B are displayed in the last column of this table.

To understand our results qualitatively, it is useful to parameterize the rotation matrices

that correspond to the fit in Table II in terms of powers of the Cabibbo angle λ ≈ 0.22. We
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find numerically that Kd and Ue have the qualitative form

Kd ∼


1 λ λ5

λ 1 1

λ 1 1

 and Ue ∼


1 λ λ5

λ2 1 1

λ2 1 1

 . (3.17)

The relevant combinations that determine the results in Tables III and IV are

(K†d)i3(Kd)3j ∼


λ2 λ λ

λ 1 1

λ 1 1

 and (U †e )i3(Ue)3j ∼


λ3 λ2 λ2

λ2 1 λ

λ2 λ 1

 . (3.18)

TABLE III: Experimental constraints on the branching fractions of heavy mesons decays (second

column), derived bounds on the axion decay constant times flavor rotation matrix elements from

Ref. [12] (third column) and lower bound on the axion decay constant using the numerical value

of the matrix element from the fit presented in Sec. II B (fourth column).

Decay Branching Ratio Bound (fa/GeV) Bound from fit

K+ → π+a < 0.73× 10−10[30] > 3.45× 1011|(K†d)23(Kd)31| fa > 6.3× 1010 GeV

K0
L → π0a < 5× 10−8 [31] > 1.35× 1010|(K†d)23(Kd)31| fa > 2.5× 109 GeV

B± → π±a < 4.9× 10−5 [32] > 5.0× 107|(K†d)33(Kd)31| fa > 7.4× 106 GeV

B± → K±a < 4.9× 10−5 [32] > 6.0× 107|(K†d)33(Kd)32| fa > 2.8× 107 GeV

The strongest bound in this model comes from the heavy meson decay K+ → π+a giving

fa > 6.3× 1010 GeV. (3.19)

Given the identification fa = |vs/NDW | =
√

2|ρ|MF , we can translate this to a bound on the

flavor scale

MF > 3.2× 1012 GeV. (3.20)

Axion mixing with neutral hadronic mesons does not lead to competitive bounds and will

not be discussed here. See Ref. [12] for a treatment of these effects.
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TABLE IV: Experimental constraints on the branching fractions of lepton decays (second column),

derived bounds on the axion decay constant times flavor rotation matrix elements from Ref. [12]

(third column) and lower bound on the axion decay constant using the predicted numerical values

from out fit (fourth column).

Decay Branching Ratio Bound (fa/GeV) Bound from fit

µ+ → e+a < 1.0× 10−5[33] > 2.0× 109|(U †e )23(Ue)31| fa > 1.7× 108 GeV

τ+ → e+a < 1.5× 10−2 [34] > 1.3× 106|(U †e )33(Ue)31| fa > 5.3× 104 GeV

τ+ → µ+a < 2.6× 10−2 [34] > 9.9× 105|(U †e )33(Ue)32| fa > 3.9× 105 GeV

B. Constraints from lepton decays

From the axiflavon couplings in Eq. (3.6) one can also compute the branching fraction

for leptonic decays, namely [12]

BR(ei → eja) =
1

32πΓ(ei)

m3
i

f 2
a

|(U †e )i3(Ue)3j|2
(

1−
m2
j

m2
i

)3

. (3.21)

The most stringent bound comes from the decay µ+ → e+a giving fa > 1.7 × 108 GeV,

which is not competitive with our earlier bound from charged kaon decays, Eq. (3.19).

One can also find bounds from lepton decays with a photon in the final state but it turns

out that these are not stronger than the bounds we have already considered.

IV. NEUTRINO SECTOR

In this section, we consider how our model may be extended to explain the observed

neutrino masses and mixing angles. In doing so, we face an immediate challenge: how can

we explain two large neutrino mixing angles in a theory where symmetry breaking is achieved

through two small parameters, ε and ε′, that are of order 10−2 and 10−4, respectively? A

similar problem presents itself when one considers the neutrino mass squared differences. The

smallness of the overall neutrino mass scale can be explained via the see-saw mechanism; we

will implement a type-I see-saw mechanism below, involving three right-handed neutrinos.

Choice of the right-handed neutrino mass scale allows us to fix one of the observed neutrino

mass squared differences, for example, ∆m2
32; what is then determined by the symmetry

breaking parameters is the ratio ∆m2
32/∆m

2
21, which is found experimentally to be 33.3 ±
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1.03 [22], assuming a normal, rather than inverted, neutrino mass hierarchy (which is the

case on our model). One would expect that the theoretical prediction for ∆m2
32/∆m

2
21 is

proportional to ratios of powers of ε and ε′; if this quantity is not O(1), then one finds

typically that the predicted value is either much too large or too small to account for the

experimental value. This is a consequence of the small and distinctly hierarchical values of

ε and ε′. One cannot decouple the problem of the neutrino sector from our results in the

charged fermion sector because the left-handed neutrinos must have the same flavor charge

assignments as their charged partners within each weak SU(2) doublet. As a consequence,

there is a real possibility that the flavor structure of the theory might only be consistent

with neutrino masses and mixing angles that are strongly hierarchical, which would make our

previous findings in the charged fermion sector of dubious value. It is therefore important

to demonstrate explicitly that an extension to the neutrino sector (via appropriate charge

assignments for right-handed neutrinos) is possible that avoids this problem. We present

such a solution in this section.

We note that if the ratio ∆m2
32/∆m

2
21 is approximately independent of ε and ε′, then it

is a function of the order one coefficients in the theory alone. In this case, a value of 33.3

can be obtained for a rather mundane reason: The see-saw formula tells us that the mass

matrix of the light, left-handed neutrino mass eigenstates is given by

MLL ≈MLRM
−1
RRM

†
LR , (4.1)

which implies that the eigenvalues of MLL will typically be of cubic order in quantities of

O(1), either operator coefficients or their inverse. Here, MLR represents the neutrino Dirac

mass matrix, while MRR is the Majorana mass matrix for the right-handed neutrinos. The

numerator and denominator of ∆m2
32/∆m

2
21 then each depend on terms that are of sixth

order in quantities that are O(1), with each typically falling somewhere between 1/3 and 3

in absolute value, given our earlier assumptions. Noting that 1.86 ≈ 34, one can understand

how easy it is to take input matrices with coefficients that are of O(1) and still obtain a mass-

squared-difference ratio that is consistent with the experimental value. This observation is

relevant to our solution below.

We introduce three right-handed neutrinos that are uncharged under the Peccei-Quinn

symmetry and have T ′ × Z3 charges

ν1R ∼ 10−, and ν2,3R ∼ 100 . (4.2)
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The Dirac and Majorana mass matrices have the following T ′ × Z3 × U(1) transformation

properties

MLR ∼

 20− 20+ 20+

10+
+1 100

+1 100
+1

 and MRR ∼


10− 10+ 10+

10+ 100 100

10+ 100 100

 , (4.3)

where we have indicated U(1) charges with a subscript. This leads to the textures

MLR =
v√
2


b1ε 0 0

0 b2ε b3ε

b4ρ ε
′ b5ρ b6ρ

 , and MRR =


c1ε
′MF c2ε

′MF c3ε
′MF

c2ε
′MF M22 M23

c3ε
′MF M23 M33

 . (4.4)

Here the bi and ci are O(1) coefficients. Since the elements labelled M22, M23 and M33 in

MRR are each flavor-group invariant, they don’t necessarily have to be at the same scale as

MF , or as each other. For the purposes of demonstrating the viability of the neutrino sector,

we will take these elements to be at the scale ε′MF , so that MRR takes the form

MRR = ε′MF


c1 c2 c3

c2 c4 c5

c3 c5 c6

 ≡ ε′MFM̃RR. (4.5)

In other words, with this choice, the right-handed Majorana matrix is a complete arbitrary

matrix with O(1) entries, M̃RR, times the scale ε′MF . The Dirac mass matrix also has

considerable freedom. Noting that our earlier fits indicated ρ ≈ O(ε), we can redefine the

coefficients b5 and b6, and drop the 13 entry, which is higher order. Then we see that MLR

is approximately of the form

MLR ≈
v ε√

2


b1 0 0

0 b2 b3

0 b5 b6

 ≡ v ε√
2

 b1 0

0 ỸLR

 , (4.6)

where ỸLR is an arbitrary, two-by-two matrix with O(1) entries. The 10 free parameters

in Eqs. (4.5) and the approximation shown in (4.6) are more than sufficient to obtain the

desired values of ∆m2
32/∆m

2
21, as well as sin2 θ12, sin2 θ13 and sin2 θ23, while maintaining O(1)

operator coefficients. The dependence of the output on products of the coefficients allows

numerical values like 33 (the experimental value of ∆m2
32/∆m

2
21) or 1/33 (very close to θ213)
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to arise without fine tunings. We note that the form of Eq. (4.6), with a non-vanishing

1-1 entry, is a consequence of the different charge assignment for the first-generation right-

handed neutrino field. This entry of MLR originates from a charge conjugated 20+ flavon;

in T ′, as in SU(2), 2 ∼ iσ22∗, which flips the relative location of the doublet vev in the first

two columns of MLR.

TABLE V: Example of a viable parameter choice for the neutrino sector.

Parameters

ε = 2.42× 10−2, ε′ = 9.75× 10−5, ρ = −1.38× 10−2

b1 = 1.66 b2 = 1.07 b3 = 2.10

b4 = 1.11 b5 = −0.891 b6 = 1.61

c1 = 2.91 c2 = 1.04 c3 = 0.662

c4 = 1.21 c5 = 1.37 c6 = 1.44

Observable Expt. Value from [22] Fit Value

4m2
32

4m2
21

33.3± 1.03 33.8

sin2 θ12 0.307± 0.013 0.307

sin2 θ23 0.417± 0.025 0.444

sin2 θ13 (2.12± 0.08)× 10−2 2.11× 10−2

An example of a viable parameter set for the neutrino sector is shown in Table V. The

neutrino mixing angles are defined via a standard parametrization of the PMNS matrix,

which we call U below,

U = U †eUν , (4.7)

where Ue (Uν) is a unitary matrix that diagonalizes the charged lepton (left-handed Majo-

rana) matrix following our earlier convention, i.e., MLL = UνM
diag
LL U †ν . We can extract the

mixing angles via the relations

sin2 θ13 = U2
13 , sin2 θ23 = U2

23/(1− U2
13) and sin2 θ12 = U2

12/(1− U2
13) . (4.8)

For the purpose of illustration, we fix ε, ε′ and ρ, as well as the coefficients li appearing in

the charged lepton Yukawa matrix, to the values that were obtained in our previous global

fit of the charged fermions, Table II. A viable choice of neutrino sector parameters bi and
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ci is presented in Table V. These were obtained by defining a χ̃2
ν for the neutrino sector

that takes into account the neutrino observables listed in the table and also places weight

on the neutrino-sector coefficients being O(1), in analogy to our approach in the charged

fermions. This function can be used to diagnose when a good-enough parameter choice has

been obtained.

Since the right-handed neutrino mass scale is set by ε′MF , the neutrino mass squared

differences (rather than the ratio) can be used to determine the flavor scale. Using either

experimental value [22]

4m2
21 = (7.53± 0.18)× 10−5eV2 or 4m2

32 = (2.51± 0.05)× 10−3eV2, (4.9)

we find that the solution in Table V corresponds to

MF = 4.6× 1016 GeV . (4.10)

This is consistent with our axiflavon constraint in Eq. (3.20).

Finally, it is worth pointing out that the predictions of flavor models with small symmetry-

breaking parameters in the effective field theory approach come in the form of powers of

these small parameters. What is remarkable about the present construction is that we

have arranged the final left-handed neutrino mass matrix to be immune from the effects of

these small parameters which give us the hierarchies of the charged fermions, even though

many of the neutrino fields are nontrivially charged under the flavor group. All that is left

are order-one operator coefficients, which may simply be random (in the spirit of neutrino

anarchy [35]) or fixed by other physics in the ultraviolet.

V. CONCLUSIONS

In this paper, we have studied a nonsupersymmetric flavor model based on the double

tetrahedral group, T ′. Improving on earlier work by Carone, Chaurasia and Vasquez [11], we

formulate a simpler model that dispenses with the triplet flavon S and eliminates some small

numerical coefficients that were assumed in one version of the model to arise from unspecified

physics at higher energy scales. Moreover, by replacing one of the Abelian discrete group

factors by a continuous U(1) flavor symmetry, we endow the theory with a flavorful axion

that solves the strong CP problem. The flavorful axion decay constant fa is related to the
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flavor scale MF (the cut off of the effective theory) and falls roughly two orders of magnitude

beneath it. We present constraints on fa coming from FCNC processes and find that the

strongest lower bound comes from the process K+ → π+a, yielding fa > 1.2×1011 GeV. We

show that the Yukawa matrices predicted by the model provide a good fit to the observed

charged fermion masses and mixing angles, taking into account the running from the flavor

scale down to the weak scale. We then successfully extend the model to the neutrino sector,

by introducing three generations of right-handed neutrinos and employing a Type-I see-saw

mechanism to explain the smallness of the light neutrino masses. By charging only the

first generation right-handed neutrino non-trivially under T ′, we show how the mass matrix

for the light neutrino mass eigenstates, which must account for two large mixing angles and

requires only a modest hierarchy between the neutrino masses, can be predicted by the same

theory that yields the strong hierarchies of the charged fermion Yukawa matrices. For the

particular extension to the neutrino sector presented here, the flavor scale is roughly five

orders of magnitude higher than what is required to satisfy the flavorful axion bounds. This

suggests that flavor-changing signals from the flavorful axion will not be easily observable

unless additional symmetries are introduced to lower the scale associated with the right-

handed neutrinos.
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