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Abstract

In this paper, we propose a novel mobile deep infer-

ence platform, MODI, that delivers good inference per-

formance. MODI improves deep learning powered mo-

bile applications performance with optimizations in three

complementary aspects. First, MODI provides a number

of models and dynamically selects the best one during

runtime. Second, MODI extends the set of models each

mobile application can use by storing high quality mod-

els at the edge servers. Third, MODI manages a central-

ized model repository and periodically updates models

at edge locations, ensuring up-to-date models for mobile

applications without incurring high network latency. Our

evaluation demonstrates the feasibility of trading off in-

ference accuracy for improved inference speed, as well

as the acceptable performance of edge-based inference.

1 Introduction

Resource intensive deep learning models are increas-

ingly used in mobile applications [27, 28] to bring fea-

tures such as object tracking and real-time language

translation to end users. However, the use of deep in-

ference with high accuracy is constrained by limits on

mobile computation and storage and is exacerbated by

the often interactive nature of the workload. To enable

mobile-based deep learning, prior work that focused on

optimizing models [18, 19, 25, 30], frameworks [7, 12]

and hardware [11, 21] has successfully push deep learn-

ing into a wide spectrum of devices including IoT de-

vices. However, much of this prior optimization involves

statically trading off inference accuracy for improved in-

ference time and therefore might not be suitable for dy-

namic application scenarios.

The goal of balancing inference accuracy and speed

requires taking into account multiple factors that are

unique to mobile devices. Mobile deep learning has

dynamic inference requirements including varying input

data, battery limitations and unpredictable network con-

ditions. However, current mobile deep inference is often

executed using static configurations, such as a single on-

device model or a remote server. These static methods

will often lead to sub-optimal performance when faced

with dynamic environments. Instead, it would be prefer-

able to have multiple inference models available to pro-

vide the flexibility to perform dynamic runtime adapta-

tion for inference tasks. Designing a general framework

for mobile deep inference faces the further obstacle of

heterogeneous mobile hardware configuration. There-

fore we would want access to a diverse set of models

to adjust for the capabilities of each device.

Furthermore, selecting the best local model for in-

dividual applications is important given the increasing

number of deep learning backed mobile applications and

the constraints of on-device storage. Currently it is com-

mon for each application to package a single model since

including more fine-tuned models would increase appli-

cation size and worsen user experience. However, this

deployment practice restricts runtime model flexibility.

Instead it would be beneficial for an application to have

access to a diverse set of models that expose tradeoffs

between inference accuracy and speed.

Thus, delivering good mobile inference requires in-

telligent model selection algorithms that can dynami-

cally trade-off among goals of accuracy and time within

the varying constraints of mobile applications. In this

paper, we propose a novel mobile deep inference plat-

form, MODI, that centers on intelligent model manage-

ment across mobile devices, edge servers and centralized

servers. MODI follows a number of key design princi-

ples to increase the flexibility of runtime model selection.

MODI solves the problems of what models to store on-

device and determines what models to use for inference

at runtime. We make the following contributions: (1) De-

sign principles for improving inference time for hetero-

geneous mobile hardware and execution environments.

(2) Preliminary results that demonstrate the feasibility





cloud manager. It consists of five major logical com-

ponents. Inference profilers estimate the requirements

and resources for each inference task, such as preferred

accuracy, battery state and device connectivity. Deci-

sion stubs and decision engines work together to deter-

mine where to perform inference tasks based on the in-

ference profile. Further, decision engines aggregate and

analyze the decisions made by decision stubs and gener-

ate new model distribution plans that could further lead

to changes in decision stubs. Inference engines use ex-

isting deep learning frameworks such as Caffe2 and Ten-

sorFlow [1, 20] and execute inference tasks using stored

models. Centralized Managers are the master model

repository of MODI and aggregate model usage and in-

ference statistics across the system. Additionally, they

push new models to mobile devices and edge servers.

These logical components are running on three phys-

ical entities. Mobile devices host inference profilers, de-

cision stubs and inference engines, in addition to models

as allowed by user-defined storage constraints. MODI

tries to ensure mobile devices always have the most ap-

propriate models, based on their specific resources and

installed apps. Edge servers host inference engines, in-

ference profilers and decision engines, as well as high-

quality models. They use these models for inferences

that cannot be serviced on mobile devices. Additionally

edge servers collect statistics from devices and propa-

gates this metadata to the centralized manager. Central

cloud servers host a centralized manager to aggregate

statistics about model usage. This allows the central-

ized manager to make global decisions regarding model

quality and periodically update models stored elsewhere

throughout MODI.

Assumptions: We assume that there are a diverse set

of pre-trained models that are initially stored in a cen-

tral cloud location, and that each of these models has a

known storage requirement and provides a known infer-

ence accuracy [18]. Also, we assume that these models

can be reused across applications or as smaller units in a

large model. That is, a model mA used in application A

can be reused in other applications or can be combined

with a second model mB to form mC. Previous work on

transfer learning [18, 26, 29] supports this assumption.

3.1 A Motivating Example

As a motivating example consider a translation applica-

tion, similar to Google Translate [9], that scans images

and translates the text found in them. This application

uses two models, the first which performs optical char-

acter recognition (OCR) to isolate the text in the image

and the second to perform translation. These models

each have different requirements and usage statistics. It

is likely that the OCR model requires lower model ac-

curacy as users can easily detect mistakes. Meanwhile,

the translation model may be paired with other forms of

input and thus be widely important.

The role of MODI in this app is twofold. First, MODI

ensures that models for performing both OCR and trans-

lation tasks are available, enabling basic functionality in

all cases and in case of network failure. Second, MODI

can recognize that the translation task is more widely

used and opt for higher accuracy. This application would

run by requesting inference through MODI using a par-

ticular model. This would trigger an inference profile to

be generated which is then passed along to the decision

stub. If the local models are accurate enough and other

resource constraints are met, the inference will be done

locally. If either accuracy or other constraints cannot be

satisfied locally, the inference will be routed to the edge

server instead. The edge server then performs the infer-

ence and records the parameters of the request for anal-

ysis with its decision engine. The results of the decision

engine are passed to the centralized manager who may

decide to push a higher quality model to devices.

3.2 Design Overview

In this section, we explain the key design principles of

MODI and discuss of a number of open questions.

3.2.1 Key principles

To accomplish its goals, MODI needs to be designed

with a few key principles in mind. These are designed

to ensure access to as wide a range of models as possible

and to maximize scalability.

Maximize usage of on-device resource. Due to the rela-

tive unpredictability of network connections and the need

for ensuring the availability of inference, we therefore

aim to store as many models on device as possible. This

manifests itself by exploring different model optimiza-

tion and compression techniques.

Storage and analysis of metadata. To adapt to dynamic

environments in mobile deep inferences, MODI needs to

periodically re-evaluate both the model distribution plan

as well as the runtime model selection algorithms. By

analyzing metadata and usage statistics, MODI can more

accurately determine which models are the most critical.

Dynamic runtime selection. To satisfy dynamic needs

and constraints of mobile deep inference, MODI needs to

decide on inference models at runtime based on current

information and collected metadata.

3.2.2 Key Research Questions

We investigate a number of key questions that contribute

to our vision of efficient mobile deep inference.
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