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Abstract

In this paper, we propose a novel mobile deep infer-
ence platform, MODI, that delivers good inference per-
formance. MODI improves deep learning powered mo-
bile applications performance with optimizations in three
complementary aspects. First, MODI provides a number
of models and dynamically selects the best one during
runtime. Second, MODI extends the set of models each
mobile application can use by storing high quality mod-
els at the edge servers. Third, MODI manages a central-
ized model repository and periodically updates models
at edge locations, ensuring up-to-date models for mobile
applications without incurring high network latency. Our
evaluation demonstrates the feasibility of trading off in-
ference accuracy for improved inference speed, as well
as the acceptable performance of edge-based inference.

1 Introduction

Resource intensive deep learning models are increas-
ingly used in mobile applications [27, 28] to bring fea-
tures such as object tracking and real-time language
translation to end users. However, the use of deep in-
ference with high accuracy is constrained by limits on
mobile computation and storage and is exacerbated by
the often interactive nature of the workload. To enable
mobile-based deep learning, prior work that focused on
optimizing models [18, 19, 25, 30], frameworks [7, 12]
and hardware [11, 21] has successfully push deep learn-
ing into a wide spectrum of devices including IoT de-
vices. However, much of this prior optimization involves
statically trading off inference accuracy for improved in-
ference time and therefore might not be suitable for dy-
namic application scenarios.

The goal of balancing inference accuracy and speed
requires taking into account multiple factors that are
unique to mobile devices. Mobile deep learning has
dynamic inference requirements including varying input

data, battery limitations and unpredictable network con-
ditions. However, current mobile deep inference is often
executed using static configurations, such as a single on-
device model or a remote server. These static methods
will often lead to sub-optimal performance when faced
with dynamic environments. Instead, it would be prefer-
able to have multiple inference models available to pro-
vide the flexibility to perform dynamic runtime adapta-
tion for inference tasks. Designing a general framework
for mobile deep inference faces the further obstacle of
heterogeneous mobile hardware configuration. There-
fore we would want access to a diverse set of models
to adjust for the capabilities of each device.

Furthermore, selecting the best local model for in-
dividual applications is important given the increasing
number of deep learning backed mobile applications and
the constraints of on-device storage. Currently it is com-
mon for each application to package a single model since
including more fine-tuned models would increase appli-
cation size and worsen user experience. However, this
deployment practice restricts runtime model flexibility.
Instead it would be beneficial for an application to have
access to a diverse set of models that expose tradeoffs
between inference accuracy and speed.

Thus, delivering good mobile inference requires in-
telligent model selection algorithms that can dynami-
cally trade-off among goals of accuracy and time within
the varying constraints of mobile applications. In this
paper, we propose a novel mobile deep inference plat-
form, MODI, that centers on intelligent model manage-
ment across mobile devices, edge servers and centralized
servers. MODI follows a number of key design princi-
ples to increase the flexibility of runtime model selection.
MODI solves the problems of what models to store on-
device and determines what models to use for inference
at runtime. We make the following contributions: (1) De-
sign principles for improving inference time for hetero-
geneous mobile hardware and execution environments.
(2) Preliminary results that demonstrate the feasibility



of proposed model management and dynamic adaptation
solutions. (3) Open research questions that complement
or further improve inference performance.

2 Background and Related Work

In recent years the use of deep learning models on mo-
bile devices has exploded in popularity. A plethora of
applications ranging from personal assistants [2] to ap-
plications such as Google Translate [9, 10] are lever-
aging deep inference, i.e., executing inference tasks via
deep learning models,, to provide key application fea-
tures. However, a major barrier for use of these models is
their inherent complexity. Mobile devices have strong re-
source constraints such as processing power, battery life
and network connectivity which are not present for tra-
ditional server-based inference engines. Below we dis-
cuss prior efforts to improve mobile deep inference per-
formance and provide context.

Deep Inference Executions. There has been some de-
velopment of moving existing deep learning frameworks
to mobile devices [13, 20, 24]. However, these frame-
works are generally too cumbersome to run efficiently
on average devices [14] and thus lead to poor user experi-
ence. Instead, moving inference tasks off mobile devices
to cloud-based inference engines [4, 5] means they are no
longer limited by mobile hardware. This also makes the
same inference feasible across all mobile devices regard-
less of hardware constraints [2]. However, this approach
requires a fast and stable internet connection.

Model Optimizations. Another focus of previous work
has been the redesign of models to use less powerful
hardware. Compressing existing models through quanti-
zation [16] has decreased the memory footprints of mod-
els. Similarly, there have been moves towards new mo-
bile focused model architectures [18, 19, 25]. These
improvements generally come with some loss of accu-
racy [18]. MODI is designed to leverage these advance-
ments in model optimizations by supporting dynamically
chosen models at execution time. The details of our al-
gorithm for dynamically choosing models is left to future
work as the tradeoffs are complex.

Framework Redesign. Parallel to the redesign of mod-
els, frameworks are reworking their basic structure in or-
der to improve mobile inference [7, 12] by moving away
from GPU-only features and introducing mobile CPU
optimizations. Our work builds on top of the existing
mobile-specific frameworks by providing a thin layer of
API that enables flexible inference executions.
Hardware Acceleration. Some modern mobile de-
vices are equipped with specialized hardware [3, 17] that
makes it possible to run powerful models on them. But
they are the exception rather than the rule. Therefore,
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Figure 1: MODI system model. We depict the control
and data flow between the mobile device and its edge server
(Edge-1). Note that when the mobile user moves to a new
location a different edge server Edge-i may be used.

only a small subset of mobile users can benefit from the
resulting accuracy and performance gains.

On-device vs. edge server trade-offs. Previous stud-
ies [4, 6, 15] have proposed to offload computation in-
tensive tasks to remote servers with the goals of im-
proving response time and saving energy for resource-
constrained devices. While utilizing edge servers can re-
duce the energy footprint and latency in many cases, spe-
cialized mobile hardware [14, 22, 23] has begun to close
this gap. Such improvement in mobile hardwares makes
it feasible to run on-device inference and necessitates the
dynamic inference engine selection.

3 MODI: Mobile Deep Inference Platform

In this paper we propose a novel mobile deep inference
platform, MODI, that is shown in Figure 1. MODI takes
advantage of the diverse set of deep learning models
across mobile devices and edge servers to dynamically
deliver the best possible inferences. By ensuring that
models are available locally, MODI can ensure critical
functionality under network constraints while enabling
fast, high quality inference on edge servers when needed.

To support this dynamic decision making, MODI fol-
lows three key design principles: (1) maximize local
model storage to enable on-device inference for all pos-
sible cases, (2) monitor model metadata to enable intel-
ligent model selection, and (3) dynamically select infer-
ence models based on environmental conditions. We dis-
cuss the implications of these principles in detail in Sec-
tion 3.2 and present our preliminary results in Section 4.
System architecture: MODI is designed to be deployed
across mobile devices, edge servers and a centralized



cloud manager. It consists of five major logical com-
ponents. Inference profilers estimate the requirements
and resources for each inference task, such as preferred
accuracy, battery state and device connectivity. Deci-
sion stubs and decision engines work together to deter-
mine where to perform inference tasks based on the in-
ference profile. Further, decision engines aggregate and
analyze the decisions made by decision stubs and gener-
ate new model distribution plans that could further lead
to changes in decision stubs. Inference engines use ex-
isting deep learning frameworks such as Caffe2 and Ten-
sorFlow [1, 20] and execute inference tasks using stored
models. Centralized Managers are the master model
repository of MODI and aggregate model usage and in-
ference statistics across the system. Additionally, they
push new models to mobile devices and edge servers.
These logical components are running on three phys-
ical entities. Mobile devices host inference profilers, de-
cision stubs and inference engines, in addition to models
as allowed by user-defined storage constraints. MODI
tries to ensure mobile devices always have the most ap-
propriate models, based on their specific resources and
installed apps. Edge servers host inference engines, in-
ference profilers and decision engines, as well as high-
quality models. They use these models for inferences
that cannot be serviced on mobile devices. Additionally
edge servers collect statistics from devices and propa-
gates this metadata to the centralized manager. Central
cloud servers host a centralized manager to aggregate
statistics about model usage. This allows the central-
ized manager to make global decisions regarding model
quality and periodically update models stored elsewhere
throughout MODI.
Assumptions: We assume that there are a diverse set
of pre-trained models that are initially stored in a cen-
tral cloud location, and that each of these models has a
known storage requirement and provides a known infer-
ence accuracy [18]. Also, we assume that these models
can be reused across applications or as smaller units in a
large model. That is, a model my4 used in application A
can be reused in other applications or can be combined
with a second model mp to form m¢. Previous work on
transfer learning [18, 26, 29] supports this assumption.

3.1 A Motivating Example

As a motivating example consider a translation applica-
tion, similar to Google Translate [9], that scans images
and translates the text found in them. This application
uses two models, the first which performs optical char-
acter recognition (OCR) to isolate the text in the image
and the second to perform translation. These models
each have different requirements and usage statistics. It
is likely that the OCR model requires lower model ac-

curacy as users can easily detect mistakes. Meanwhile,
the translation model may be paired with other forms of
input and thus be widely important.

The role of MODI in this app is twofold. First, MODI
ensures that models for performing both OCR and trans-
lation tasks are available, enabling basic functionality in
all cases and in case of network failure. Second, MODI
can recognize that the translation task is more widely
used and opt for higher accuracy. This application would
run by requesting inference through MODI using a par-
ticular model. This would trigger an inference profile to
be generated which is then passed along to the decision
stub. If the local models are accurate enough and other
resource constraints are met, the inference will be done
locally. If either accuracy or other constraints cannot be
satisfied locally, the inference will be routed to the edge
server instead. The edge server then performs the infer-
ence and records the parameters of the request for anal-
ysis with its decision engine. The results of the decision
engine are passed to the centralized manager who may
decide to push a higher quality model to devices.

3.2 Design Overview

In this section, we explain the key design principles of
MODI and discuss of a number of open questions.

3.2.1 Key principles

To accomplish its goals, MODI needs to be designed
with a few key principles in mind. These are designed
to ensure access to as wide a range of models as possible
and to maximize scalability.

Maximize usage of on-device resource. Due to the rela-
tive unpredictability of network connections and the need
for ensuring the availability of inference, we therefore
aim to store as many models on device as possible. This
manifests itself by exploring different model optimiza-
tion and compression techniques.

Storage and analysis of metadata. To adapt to dynamic
environments in mobile deep inferences, MODI needs to
periodically re-evaluate both the model distribution plan
as well as the runtime model selection algorithms. By
analyzing metadata and usage statistics, MODI can more
accurately determine which models are the most critical.
Dynamic runtime selection. To satisfy dynamic needs
and constraints of mobile deep inference, MODI needs to
decide on inference models at runtime based on current
information and collected metadata.

3.2.2 Key Research Questions

We investigate a number of key questions that contribute
to our vision of efficient mobile deep inference.



Which compression techniques are useful? Sec-
tion 4.1 shows that there are variations in accuracy be-
tween compression methods. Therefore further study of
compression and optimization techniques for reducing
storage and their impact on performance is needed.
How to dynamically choose model for local inference?
Different devices have different characteristics and pre-
dicting the most appropriate model is non-trivial. In Sec-
tion 4.2 we examine inference differences between mo-
bile devices of varying capacities.

When to leverage edge servers? MODI needs to ensure
it is beneficial to offload inferences to edge servers when
required. We analyze the feasibility of edge servers in
Section 4.3

Which versions of models to store on a mobile device?
Due to storage constraints and hardware heterogeneity,
an exhaustive selection of models cannot be stored on
device. We plan to develop an algorithm that accounts
for accuracy, speed and energy requirements of models
and determines which to store on-device.

4 Evaluation

We present our preliminary results of MODI relating
to on-device models and edge server hosted inference.
In particular, we examine different model compression
techniques and their impact on inference time and accu-
racy as well as the benefits of executing inference tasks
on an edge server under varied network conditions.

Experiment Setup. Our inference experiments were
conducted using the following Android mobile devices:
a Google Pixel 2 (late 2017), a Moto G5 Plus (2016),
a LG G3 (2014) and a Nexus 5 (2013), all running at
least Android API 23 (Android Marshmallow). Our in-
ference edge server was a t2.medium Amazon EC2 in-
stance, located in Virginia data center I Mobile devices
are connected to this edge server through different net-
works including university WiFi, free public WiFi, resi-
dential WiFi and LTE. We developed an Android app for
these devices to perform image classification tasks using
a specified model and report the relevant metrics. For
our model we used an InceptionV3 model [26] that had
been retrained using a set of 3684 flower images [8]. We
used a test dataset of 381 images for evaluating accuracy,
defined as the number of correctly classified images. We
then took the retrained model and optimized it for in-
ference by removing training-only layers [8]. Finally,
we applied quantization in the form of grouped weight-
rounding and 8-bit quantization. These techniques fo-
cus on reducing model size, allowing the model to load
faster. Note that efficient model loading is more useful
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Figure 2: Comparisons of model compression tech-
niques. Different models exhibit different requirements on
mobile storage and experience various inference speed and
accuracy. Overall, the 8-bit quantized model is superior in
storage saving and inference speed with a slight 6% accu-
racy decrease. The retrained model is excluded from Fig-
ure 2(b) due to unsupported operations on mobile devices.

for one-off mobile inference tasks than streaming infer-
ences, such as video analysis, where longer model load-
ing time can be amortized.

4.1 Impact of Model Compression

Compactly storing deep learning models is key to our vi-
sion of supporting a wide selection of on-device models.
However, compression techniques generally trade-off in-
ference accuracy for compression effectiveness. In this
section, we first quantify the storage savings of four post-
training compression techniques and then compare each
technique’s impact on inference performance.

Figure 2(a) compares the uncompressed and com-
pressed model sizes. For each model, we plot the base-
line uncompressed size (left bar) and the gzip version
(right bar). As we can see, the 8-bit quantized model
leads to the most storage saving of 75% regardless of
gzip compression. In addition, the unquantized mod-
els (retrained and optimized) see only about 7% savings
while the rounding quantized model sees a 72.6% storage
reduction after being gzipped. Our observations suggest
that both quantization and gzip compression can lead to
significant storage savings, especially when combined.

Next, we compare the inference speed and accuracy
of each model. Figure 2(b) shows the time taken by each
model and its accuracy. It is important to note that ma-
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Figure 3: Comparisons of inference speed with the op-
timized model. Different mobile devices exhibit different
time breakdown. The high-end Pixel 2 improves on-device
inference speed by 2.3x compared to other devices.

jority of the inference time is in loading the model into
memory and thus could be amortized over sequential mo-
bile inferences. However, for one-off mobile inferences,
the model loading time dominates the end-to-end infer-
ence time. The small 8-bit quantized model provides the
fastest end-to-end response time with the lowest model
loading time, but a slightly increased inference time. In
our results, we do see a small accuracy increase for the
rounding quantized model. But such observations are not
common. This shows a case that would be very fortuitous
in a mobile model and would be detected by the MODI
through metadata tracking.

Summary: Model compression techniques have differ-
ent impacts on model storage, inference speed and accu-
racy. MODI could leverage these observations to care-
fully select techniques that provide different tradeoffs.

4.2 Comparisons of Mobile Inferences

It is an important vision of MODI to support mobile de-
vices with heterogeneous hardware capabilities by aug-
menting on-device models with edge-based hosting. To
understand the capabilities of different devices in utiliz-
ing on-device models, in this section we compare the av-
erage end-to-end classification time that consists of im-
age loading time, model loading time and inference time,
as seen in Figure 3. As we can see, older or less ca-
pable devices (left three bars) take up to 3.5 seconds to
present classification results to mobile users. However,
the nearly 2 seconds of model load time could be amor-
tized across multiple runs or reduced by using models
with a smaller footprint.

Summary: Although newer mobile hardware is able
to deliver acceptable user performance, other hardware
would benefit from dynamically chosen inference models.

4.3 Benefits of Edge Model Hosting

As shown in Section 4.2, mobile-based inference does
not always deliver good performance. Moreover, mobile-
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Figure 4: Comparisons of edge-server based inference
under different mobile network conditions. Large varia-
tions are seen due to network conditions. Under poor net-
work connectivity when using cellular hotspot, the transfer
time almost doubled when compared to university WiFi.

based inference is also constrained by the availability of
on-device models and therefore is less flexible in making
trade-offs between accuracy and speed. MODI supports
an alternative inference option with edge-based model
hosting. In this section, we evaluate the end-to-end clas-
sification time when using models hosted in edge servers
with the optimized model pre-loaded. Figure 4 shows
the average classification time using an edge server in a
variety of network conditions. The majority of the clas-
sification time is network transfer time with up to 66.7%
in the cellular hotspot case. Overall, the edge-server
based classification ranges from 375ms to 600ms in a
well-provisioned cloud server. When running the same
classification task, Pixel 2 takes 536ms when the model
is loaded which is on par with edge based inference.
Summary: Mobile-based inference only delivers ac-
ceptable performance for newer and high-end mobile de-
vices while edge-based inference is a viable option even
under poor network condition. MODI can leverage this
observation to dynamically select inference locations.

5 Conclusion and Future Work

We introduced MODI, a platform for enabling efficient
mobile deep inference through dynamic model selec-
tions. We demonstrated its feasibility through a number
of experiments and explored open research questions.

Our future work will focus on designing model man-
agement and selection algorithms that are central to
MODI. We plan to explore the impact of factors such as
mobile device characteristics and network connectivity
when making inference accuracy-speed tradeoffs.
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