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Abstract

A quantum covering group is an algebra with parameters ¢ and 7 subject to 72 = 1,
and it admits an integral form; it specializes to the usual quantum group at 7 = 1 and
to a quantum supergroup of anisotropic type at w = —1. In this paper we establish
the Frobenius—Lusztig homomorphism and Lusztig—Steinberg tensor product theorem
in the setting of quantum covering groups at roots of 1. The specialization of these
constructions at w = 1 recovers Lusztig’s constructions for quantum groups at roots
of 1.
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1 Introduction

1.1. A Drinfeld-Jimbo quantum group with the quantum parameter ¢ admits an integral
Zlq, g~ ')-form; its specialization at ¢ being a root of 1 was studied by Lusztig in
[15,16], [17, Part V] and also by many other authors. In these works Lusztig developed
the quantum group version of Frobenius homomorphism and Frobenius kernel (known
as small quantum groups), as a quantum analogue of several classical concepts arising
from algebraic groups in a prime characteristic. The quantum groups at roots of 1 and
their representation theory form a substantial part of Lusztig’s program on modular
representation theory, and they have further impacted other areas including geometric
representation theory and categorification.

A quantum covering group U, which was introduced in [4] (cf. [12]), is an algebra
defined via super Cartan datum, which depends on parameters ¢ and m subject to
7% = 1. A quantum covering group specializes at 7 = 1 to a quantum group and
at 1 = —1 to a quantum supergroup of anisotropic type (see [3]). Half the quantum
covering group with parameter 7 with 72 = 1 appeared first in [12] in an attempt
to clarify the puzzle why quantum groups are categorified once more by the (spin)
quiver Hecke superalgebras introduced in [14]. There has been much further progress
on odd/spin/super categorification of quantum covering groups; see [2,10,13].

For quantum covering groups, the (g, 7 )-integer
()" —q™"
- mg—q7!

Ll

[n]q,ﬂ e Nlg,q~

and the corresponding (g, r)-binomial coefficients are used, and they help to restore
the positivity which is lost in the quantum supergroup with w = —1. The algebra U
(and its modified form U, respectively) admits an integral Z[q, ¢~ ', w]-form 4U (and
AU, respectively). In [5] and then in [7] the canonical bases arising from quantum
covering groups a la Lusztig and Kashiwara were constructed, and this provided for
the first time a systematic construction of canonical bases for quantum supergroups.
The braid group action has been constructed in [8] for quantum covering groups, and
the first step toward a geometric realization of quantum covering groups was taken in
[11].
1.2. To date the main parts of the book of Lusztig [17] have been generalized to the
quantum covering group setting, except part V on roots of 1 and part II on geometric
realization in full generality. The goal of this paper is to fill a gap in this direction by
presenting a systematic study of the quantum covering groups at roots of 1; we follow
closely the blueprint in [17, Chapters 33-36].
1.3. We impose a mild bar-consistent assumption on the super Cartan datum in this
paper, following [5,12]. This assumption ensures that the new super Cartan datum
and root datum arising from considerations of roots of 1 work as smoothly as one
hopes. The assumption turns out to be also most appropriate again for the existence
of Frobenius—Lusztig homomorphisms for quantum covering groups.

We expect that the quantum covering groups of finite type at roots of 1 have very
interesting representation theory, which has yet to be developed (compare [1]). The
categorification of the quantum covering group of rank one at roots of 1 is already
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highly nontrivial as shown in the recent work of Egilmez and Lauda [9]. We hope
our work on higher rank quantum covering groups could provide a solid algebraic
foundation for further super categorification and connection to quantum topology.

Specializing at = = —1, we obtain the corresponding results for (half, modified)
quantum supergroups of anisotropic type at roots of 1; this class of quantum super-
groups includes the quantum supergroup of type osp(1|2n) as the only finite type
example. It will be very interesting to develop systematically the quantum super-
groups at roots of 1 associated with the basic Lie superalgebras (i.e., the simple Lie
superalgebras with non-degenerate supersymmetric bilinear forms).

1.4. Below we provide some more detailed descriptions of the results and the organiza-
tion of the paper. In Sect. 2, we establish several basic properties of the (g, 77)-binomial
coefficients at roots of 1, generalizing Lusztig [17, Chapter 34].

In Sect. 3, we recall half the quantum covering group gf and the whole (respec-
tively, the modified) quantum covering group U (respectively, zU) over some ring R™,
associated with a super Cartan datum. We give a presentation of grUand a presentation
of the quasi-classical counterpart gf° of gf, generalizing [17, 33.2].

Our Sect. 4 is a generalization of [17, Chapter 35]. We establish in Theorem 4.1 a
R™ -superalgebra homomorphism Fr’ : xf® —> gf, which sends the generators 91-(")

to Gi("[i ) for all i € I,n. This is followed by the Lusztig—Steinberg tensor product
theorem for gf which we prove in Theorem 4.5. Next we establish in Theorem 4.7 the
Frobenius-Lusztig homomorphism Fr : xf —> gf° which sends the generators Qi(")
to Gi("/ &) if £; divides n, and to O otherwise, for all i € I, n. We further extend the
homomorphism Fr to the modified quantum covering group in Theorem 4.8.

Finally in Sect. 5, we formulate the small quantum covering groups and show it is
a Hopf algebra. In case of finite type (i.e., corresponding to osp(1|2n) or so(1 + 2n)),
we show that the small quantum covering group is finite dimensional.

2 The (q, )-binomials at roots of 1

In this section, we establish several basic formulas of the (¢, r)-binomial coefficients
at roots of 1. They specialize to the formulas in [17, Chapter 34] at w = 1.

2.1. Let 7 and ¢ be formal indeterminants such that 72> = 1. Fix /7 such that

ﬁz = 7. In contrast to earlier papers on the quantum covering groups [4—7], it is
often helpful and sometimes crucial for the ground rings considered in this paper to
contain /7, and for the sake of simplicity we choose to do so uniformly from the
outset. For any ring S with 1, define the new ring

ST =S ®z ZIJ7].
We shall use often the following two rings:

A=7Zlqg,q7", A" =1Zlq,q" ", V7).
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2756 C.Chungetal.

LetN={0,1,2,...}. Fora € Z and n € N, we define the (g, 7 )-integer

(rq)* —q ™
[alg,n = — 1 € A,
Tqg —¢q

and then define the corresponding (¢q, 7)-factorials and (g, 7)-binomial coefficients
by

! i " a4 1—ilgn
[n]qn = n[l]q,ﬂ, [a] — H —la ' ilg, '
q.7

n .
i=1 [y

For an indeterminant v, we denote the v-integers

vt —v7¢

[al, = m

and we similarly define the v-factorials [n]i) and v-binomial coefficients |:Z:| . We
v
denote by () the classical binomial coefficients.

2.2. In this paper, the notation v is auxiliary, and we will identify
vi=/7q,

and hence, forn,t € N,

-1 —-1)/2
or =T e Il = VATl

[, =]

2.3.Fix £ € Z-q and let £/ = £ or 2£ if £ is odd and let ' = 2¢ if £ is even. Let

2.1)

A = A/(f (@),
where A/(f (q)) denotes the ideal generated by the ¢’-th cyclotomic polynomial f(g);

we denote by ¢ € A’ the image of ¢ € A. Take R to be an A’-algebra with 1 (and so
also an A-algebra). Introduce the following root of 1 in R™:

q=+meeR". (2.2)
Then, the element

v:=+mqeR"
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satisfies that
20 _ 2t
v© =1, vi#£1 (VteZ,l>1t>0). 2.3)

Consider the specialization homomorphism ¢ : A" — R”™ which sends ¢ to q and
V7 to /7. We shall denote by [n]q - and [’Z:| the images of [n]y > and |:’tl:|
q,7T

under ¢, respectively, and so on.
The following lemma is an analogue of [17, Lemma 34.1.2], which can be in turn
recovered by setting w = 1 below.

q,7

Lemma 2.1 (a) If t € Z-g is not divisible by € and n € Z is divisible by ¢, then

n
=0.
t
q,7

®) If m; ’e Z and t; € N, then we have

tn, :nezfl(’11—(11—1)/2)(15211(7114-1) n .
1451 q.7 1

(c) Letn € Zandt € N. Writen = ng+4€ny withng, ny € Z suchthat0 <ng < £—1
and write t = ty + £t with tg, 11 € N such that 0 < ty < £ — 1. Then, we have

[n] = n@(no—to)fl-i-lz(nl—(11—1)/2)11 qe(nofl—ﬂlfo)+l2(ﬂ1+1)11 |:n0i| <n1>
t q.7 t() q.7 [1

Proof One proof would be by imitating the arguments for [17, Lemma 34.1.2].
Below we shall use an alternative and quicker approach, which is to convert [17,
Lemma 34.1.2] into our current statements using (2.1) via the substitution v = /7 q.
Part (a) immediately follows from [17, Lemma 34.1.2(a)].

(b) By applying [17, Lemma 34.1.2(b)] to [5”1

o j|v and using (2.1), we have

tny _ Jrthm=t) tny :ﬁezn<n1—t1>vz2n(m+1) .
n aw n v

13|

which can be easily shown to be equal to the formula as stated in the lemma.
(c) Note that

ﬁ(n—t)t:ﬁf((no—to)tl+(n1—t1)l‘0)ﬁ432(n1—t1)11ﬁ(’lo—to)to_ (2.4)

By applying [17, Lemma 34.1.2(c)] to [’;] and using (2.1)—(2.4), we have
v
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2758 C.Chungetal.

.=l

:ﬁ("—f)fve(non7nlto)+52(n1+l)t| [no} (”1)
v

Ty H

= S+ =m0 ﬁez(m—nm ﬁf(notl—nlto)%z(nﬁl)tl

L(not1 —n110)+E2(n1+ 1)1y (no—to)to | 1O ni
xq (ﬁ ol ) s

— o=+ ==/ qEton —niio)+E(m+Dn | 10 ny
To q.7 51

The lemma is proved. O

Note that, due to our choice of q = /e, we also have an analogue of equation (e)
in the proof of [17, Lemma 34.1.2]:

vOH — n(€+1)€/2q£2+£ = (=), 2.5)

2.4. The following is an analogue of [17, § 34.1.3(a)].

Lemma2.2 Letb > 0. Then,

!
[Kb]q,n — b!(j‘[q)ezh(b_l)/z.
(€T, )

Proof Recall v = /mq. Using (2.1) and [17, § 34.1.3(a)], we have
(b1 /(€1 )" = V"D R e
= St OO -1/2 (7 q)PPO-D/2,
The lemma is proved. O
Below is a r-enhanced version of [17, Lemma 34.1.4].
Lemma 2.3 Suppose that 0 <r <a < £. Then,
{—a—1

Z (_l)e—r+1+sn(“51)+s(r—13)q—(e—r)(a—e+1+s)+s I:E - r]
s=0 § q,m

— 7O~ -at-Dgta-r [a] '
r O
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Proof Plugging v = /mq into [17, Lemma 34.1.4] and using (2.1), we obtain

L—a—1
— — (- - S —— - Z_
S (e (E=r) @) s 684 (=) l+1+s)+s|: ) r}
q,7

s=0

_ \/Eé(afr)Jrr(rfa)qg(a,r) |:a:| )
q,7

r

Rearranging the /7 terms, we have
! 1)+25(r—¢ L—r
Z (_l)l—r+l+sﬁs(s+ )+2s(r— )q—(z—r)(a—l+1+s)+s [ }
q.7

S
s=0
(r=1)—£—1)=2a(r-1) _ a
e ]
q,m

from which the desired formula is immediate. O

3 Quantum covering groups at roots of 1

In this section we recall the notion of super Cartan/root datum and the quantum cov-
ering groups. Then, we obtain presentations of the modified quantum covering groups
and their quasi-classical counterpart.

3.1. The following is an analogue of [17, §2.2.4-5].
A Cartan datum is a pair (I, -) consisting of a finite set / and a symmetric bilinear
form v, v’ > v - v’ on the free abelian group Z[I] with values in Z satisfying

@ d; =4 € Z.g;
(b) 2%+ € —Nfori # jin I.
If the datum can be decomposed as I = Iy | | 1 such that

() I #9,
() 2% e2zifi e Iy,

then it is called a super Cartan datum; cf. [4]. We denote the parity p(i) = Ofori € Iy
and p(i) = 1fori € I;.

Following [4], we will always assume a super Cartan datum satisfies the additional
bar-consistent condition:

(&) 4 =p(i) mod2, Viel.

A root datum of type (/, -) consists of 2 finite rank lattices X, Y with a perfect
bilinear pairing (-,-) : ¥ x X — Z, 2 embeddings / < X (i = i’)and [ — Y
(i = i) such that (i, j/) = 2%, Vi, j € I. Moreover, we will assume throughout
the paper that the root datum is X-regular, i.e., that the simple roots are linearly
independent in X.

@ Springer



2760 C.Chungetal.

Define
£ =min{r € Z~o | r(i -i)/2 € LZ}.

The next lemma follows by the definition of ¢; and the bar-consistency condition of
I.

Lemma 3.1 Foreachi € Iy, £; has the same parity as .

Then, (I, ¢) is a new root datum by [17, 2.2.4], where we let
ioj=0-)tt;, Vi,jel.

Note that if £ is odd, then (1, ¢) is a super Cartan datum with the same parity decom-
position I = IpUI asfor (/, -) by Lemma 3.1; if £ is even, then (/, ¢) is a (non-super)
Cartan datum with 11 = @.

We shall write Y°, X° in this paper what Lusztig [17, 2.2.5] denoted by Y*, X*,
respectively, and we will use superscript  in related notation associated with
(Y°, X°, 1, ©) below. More explicitly, we set X® = {¢ € X|{i, ¢) € £;Z,Vi € I} and
Y° = Homgz(X?, Z) with the obvious pairing. The embedding I <> X is given by
i — i’ = ¢;i’ € X, while embedding I < Y° is given by i — i® € Y° whose
value at any ¢ € X is (i, ¢)/¢;. It follows that (i°®, j°) =2i ¢ j/i oi.

If £is odd, then (Y°, X°, ...) is a new super root datum satisfying (a)-(d) above and
in addition the bar-consistency condition (e). Indeed, we have 2% = 2% i—f € 2Z by
Lemma 3.1, whence (d), and % = %612 = p(i) mod 2 by Lemma 3.1, whence (e).
If £ is even, then (Y, X°, - - +) is a new (non-super) root datum just as in [17, 2.2.5].
3.2. By [4, Propositions 1.4.1, 3.4.1], the unital Q(g)” -superalgebra f is generated by
6; (i € I) subject to the super Serre relations

Z (—1)”,711." P(/)+(2)0i(n)9j9i(n/) —0
n+n'=1-{i,j’)

foranyi # jin I;here a generator 6; is even if and only if i € Iy. There is an A" -form
for f, which we call 4f. It is generated by the divided powers Gi(") =0/ [n]iﬁ’m for
alli € I,n > 1. As R™ is an A" -algebra (cf. Sect. 2.3), by a base change we define
rf = R™ ® 4= 4f. The algebras 'f°, £¢ and f° are defined in the same way using the
Cartan datum (Z, ©).

Let U denote the quantum covering group associated with the rootdatum (Y, X, ...)
introduced in [4]. By [4, Proposition 3.4.2], U is a unital Q(g)”" -superalgebra with
generators

Ei Gel), Fi (el), Ju (neY), K, (pev),
subject to the relations (a)—(f) below for alli, j € I, u, / € Y:

Ko =1, KKy =K, (@)
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Sy =1 Jpdy =T, JuKy =Ky, (b)
K. E; = ‘I(M’i/)EiK;u JuEi = JT(MJ,>E1'J/A,

KuFi=q WO FK, JF=r""0F, ©
- JiKi—K_
EF;— ﬂp(l)p(j)EiEi — 5[.’./;_1” (d)
Tiqi —q;

Y T g e <o ©
n+n'=1-(i,j’)

NG A AT (®
n+n'=1-(i,j")

where for any element v = ), v;i € Z[I] we have set K, = [l Kaviis J, =
I—[i Ja;v,i- In particular, K; = Ky,;, Ji = Jg.;. (Under the bar-consistent condition (e),

j; = 1fori € Ij while .7; = J; fori € I7.) We endow U with a Z[I]-grading | - |
by setting |E;| = i, |F;j| = —i, [Ju| = |Ky,| = 0. The parity on U is given by
P(Ei) = p(Fi) = p(i) and p(K,,) = p(J,) =0,

The algebra U has an . A™ -form 4U. By abase change, we obtain gU = R" ® 4= 4U.
Let U™ (resp. gU™) denote the subalgebra of g U generated by the El-(") =E]/ [n]ili o
(resp. F; = Iﬂ”/[n]i]l_’m). As a R™-algebra, gf is isomorphic to gUT (resp. RU™) via
the map x — x* (resp. x — x7), where (Qi("))+ = Ei(") (resp. (Qi("))_ = Fi(n).

Denote by XT = {, € X | (i,A) € N,Vi € I}, the set of dominant integral
weights.

For A € X, let M(A) be the Verma module of U, and we can naturally identify
M) = f as Q(g)"-modules. The 4U-submodule 4M (L) can be identified with
Af as A" -free modules. For A € X, we define the integrable U-module V (L) =
ML)/ Jy, where J, is the left f-module generated by 91.(1’)‘)Jrl foralli € I. Let
RM() = R™ @47 AM(\) for A € X,and gV (L) = R @ 4= 4V () for A € X™.

The algebra U® is defined in the same way as U based on the root datum (Y, X°, ...).

Recall from [6, Definition 4.2] that the modified quantum covering group Uisa
Q(g)™ -algebra without unit which is generated by the symbols 1,, E; 1, and F;1,, for
A € X andi € I, subject to the relations:

Ly =801y,
(EiL) Ly =0 wEily, Lu(Eil)) =8y Eily,
(Fi L)Ly =8 w ki, Ly (Fily) =8y Fils,
(EiFj — mPOPDFEN T = 8 [, My 1o

() (h / o
Ziz-i-zz’:l—(i,/’)(_l)n n? ry (Z)El»(n)EjEi(n)lx —0 (i %)),

DB o) () o
Zn—i—n/:l—(i,j’)(_l)n T PFUFFT1,=0 (G # ),
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2762 C.Chungetal.

where i, j € I, A,/ € X, and we use the notation xyl; = (xLygy(y1,) for
x,yel.

The modified quantum covering group U admits an A" -form, Aﬁ and so we can
define U = R™ ® A AU. Let us give a presentation for rU.

Lemma 3.2 The modified quantum covering group rUis generated as an R™ -algebra
by xT1;,x'~ or equivalently by x 1, x'T, where x € gf,, x' € gf, and . € X, subject
to the following relations:

(6) 12 (o)

MN—('H! o\N" |[M4+N+3, A o\t
=Z”i (z) (Qi(M t)) |: t ( >] 1)\+(M+N—t)i’ (Qi(N t)> s
>0 qi,7i
M\~ an\*
(™) 1 (")
MN+t(i,2)—( N\t |M+N-—(,Ar —H\~
=) -G (ei(M t>> [ ; v q L—M+N—n)i7 (9,'(N t)) ,
t>0 qi,7i
+ - L +
(Qi(N)) (9;M>) 1, anzvpo)p(n(@j(my (el(N)) 1, fori # j,
o= Lguxt, xTLi = Lo,
CTL)@ux ™) = 8T L™, T L) Qux™) = & vx L',
L) Mx' ™) =8 v hiuxTx'™, T L) Mx™) =8 o ux X,

(rx + r'x)F1, = rx® 1, + r'x'*1,, wherer,r' € R”.

X

Proof This is proved in the same way as [17, § 31.1.3]. Let A be the R™ -algebra with
the above generators and relations. All of these relations are known to hold in rU. The
first three are shown to hold in RU by a direct application of [4, Lemma 2.2.3] as in
[7, Lemma 4], while the remaining ones are clear. However, there was an error in the
second relation of [7, Lemma 4], so we derive that relation from [4, Lemma 2.2.3]
here. We have

(6%) 1 (67)

— (GZ(N)> (Gi(M))-FIX*Mi’

2 +[K:- — -
= Z(—l)’nl_(M—t)(N—z)—t (Gi(M_;)> [K,, M +A;/ (t+ 1)] <9i(N—[)> L
>0 qi,7i

M—(N=t)—12 (M=) T [((,A) =M =N +1—1 N-0\~
= Z(—l)tﬂi( DN=n)~t (9; t)) |:< ) ; :| L mN-ni' (01.( [))
t>0 QT

MN+t(i,2)—( M-\t | M+ N —{(i,r N=)\~
Ly 6 <9l_< t)) [ t ( )] L n o (0[( :))
>0 q4i 7

where in the last step, we us_ed [4, (1.10)] witha = M + N — (i, A). Hence, the natural
homomorphism A — gU is surjective. Let S be an R™-basis of gf consisting of
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weight vectors. Then, {x*lpc”_ |x,x” €S, L € X}canbe seentobe an R™ -basis for A,
and it is known to be one for gU (cf. [7, Lemma 5]). Thus, the natural homomorphism
is, in fact, an isomorphism. O

3.3. The algebra U° is defined in the same way using U® and (Y°, X°,...), and so it
also has an A" -form 4U° and we can define gU® = R™ ® 4= 4U°.

Remark 3.3 If £ is even, then gf® is a (non-super) algebra; if £ is odd, then the 6; in
rf¢ and gf for any given i have the same parity.

Fori € I, we denote

i 02 o 2 i 02
qio — q1<>1/2 — qil , q;> — qt<>t/2 — qii , jTi<> — T[l<>l/2 — TL’il. 3.1

Lemma3.4 Leti € 1.

(@) If L is odd, then 7 = m;.
(b) If L is even, then w? = 1.

Proof Recall from Lemma 3.1 that £; must have the same parity as £. The claim on
7 follows now from (3.1). O

For eachi € I, we have

o 02

70q% = ()l = 1. (3.2)

Following Lusztig [17], we will refer to the quantum supergroup gf¢ associated with
(Y°, X°, --+) as quasi-classical; cf. (3.2).

Proposition 3.5 Let R be the fraction field of A'. The quasi-classical algebra gf® is
isomorphic to gf°, the R™ -algebra generated by 6;, i € I, subject to the super Serre
relations:

o Y Eyr OO0 =0 (i #je .
n4n'=1—(i,j)°

Proof When 7r; = 1 or £ is even, 77 = 1 and q7 = &1 for each i € I. Hence, in this
case the lemma reduces to [17, § 33.2].

Now let£ be oddand 1 = —1. We make use of the weight-preserving automorphism
U of RI'Jo (called a twistor) given in [6, Theorem 4.3] when the base ring contains
/—1. We will only recall the basic property of W which we need, and refer to [6]
for details. Note that for all i € 1, qf is a power of +/—1 with at least one of the

= 4+/—1. Thus, £+/—1 will play the role played by the v in [6, Theorem 4.3],
which we will denote by v in this proof so as not to confuse it with the v defined in
this paper. Recall W takes 7 to — and 7 to ~/—19. When we specialize 7 = —1
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2764 C.Chungetal.

and § = +4/—1, we obtain an R-linear isomorphism of that specialization of RUO,
denoted by gU°|_1, with the (quasi-classical) modified quantum group corresponding
to the specialization & = 1 and q}? = +1, denoted by gU°|;.

Write

> g_, I for the half quantum (super)group over R corresponding to the former (i.e.,
T =-1)

> g,£° for the half (quasi-classical) quantum group over R corresponding to the
latter (i.e., m = 1); cf. [17, 33.2].

Recall that gf® is a direct sum of finite-dimensional weight spaces Rff,) , Where
v € Z=o[I]. The weight-preserving isomorphism W above implies that

dimRn (Rf]?) = dimR(Rflf]f) = dimR le‘?, Yv.

As g, f¢ is quasi-classical in the sense of [17, 33.2], we have dimpg g, f{ = dimg g,f,
for all v, by [17, 33.2.2], where g, f is the enveloping algebra of the half KM algebra
over R. Hence, we have

dimRn (Rfj) = dimR(le\,), Yv. (33)

Since the super Serre relations hold in gf® (cf. [4, Proposition 1.7.3]), we
have a surjective algebra homomorphism ¢ : rfe — gf° mapping 6; +— 6;
for all i. Then, ¢ maps each weight space Rf"ﬁ onto the corresponding weight
space gfS. As rf° has a Serre-type presentation by definition, it follows by [5,13]
that dim g~ (Rf'v) = dimg(g,f,) for each v. This together with (3.3) implies that
dim g~ (Rf',,) = dimg~ (gfy). Therefore, ¢ is a linear isomorphism on each weight
space and thus an isomorphism. O
3.4. Below we provide an analogue of [17, 35.1.5].

Lemma 3.6 Assume that bothn € Z and t € N are divisible by £;. Then,

i, =]
! qi,Ti t/ti q;.7f

(Setting 7 = 1 in the above formula recovers [17, 35.1.5].)

Proof By Lemma 2.1(b), we have

|:ni| = nt(”_([_gi)/z)qt(n+[l-) <I’l/€l)
Mg l ! 1/

Note that nlf>qf2 = (nqz)%eiz. Since (rq%)?¢ = 1 and ¢ divides %E% by the definition
of £;, we have (7rl.<>qf2)2 = 1. Hence, by (3.1) and Lemma 2.1(b) with £ = 1 we have

n/t; ==t /)ttty (1 i
t/0; =T 4 0. )
g g 1/t
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The lemma follows. O

4 The Frobenius-Lusztig homomorphism

In this section we establish the Frobenius—Lusztig homomorphism between the quasi-
classical covering group and the quantum covering group at roots of 1. We also
formulate Lusztig—Steinberg tensor product theorem in this setting.

4.1. Following [17, 35.1.2], in this and following sections we shall assume

(a) forany i # j € I with€; > 2, we have ¢; > —(i, j') + L.
(b) (1, ) has no odd cycles.

4.2. Below is a generalization of [17, Theorem 35.1.8].

Theorem 4.1 There is a unique R™-superalgebra homomorphism
Fr' : gf® — gf, Fr'0™) = 6" (Vi € I,n € Z-y).

(Be aware that the two 6;’s above belong to different algebras and hence are different.
Theorem 4.1 is consistent with Remark 3.3.)

The rest of the section is devoted to a proof of Theorem 4.1. The same remark as
in [17, 35.1.11] allows us to reduce the proof to the case when R is the quotient field
of A’, which we will assume in the remainder of this and the next section.

4.3. Recall from (2.3) that 7¢q** = 1 and 7q* # 1 for 0 < ¢ < £. By the definition
of ¢;, we have 7/q?* = 1 and 7/ q* # 1for0 <t < ¢;. Then, [1]g,! is invertible in
R™, for0 <t < ¥;.

The following is an analogue of [17, Lemma 35.2.2] and the proof uses now Lem-

mas 2.1 and 2.2.

Lemma 4.2 The R™-superalgebra rf is generated by the elements 91.((") foralli €1
and the elements 0; fori € I with {; > 2.

Proof By definition the algebra gf is generated by 49[(") foralli € I andn > 0. We can
write n = a + {;b, for 0 < a < ¢; and b € N. We note the following three identities
in gf:

ei(aJr&b) _ qfiubei(a)gi((ib), 4.1)
ei(a) _ [a](;,-%mgia’ 4.2)

) _ _p2(b .
ei(flb) — (b') 1(7!'1‘(]i) e[ (2) (01‘(&))})7 (43)

where (4.1) follows by Lemma 2.1 and (4.3) follows by Lemma 2.2, respectively.
(Note that a sign in the power of v; in the identity (b) in [17, proof of Lemma 35.2.2]
is optional, but the sign cannot be dropped from the power of q; in (4.3).) The lemma
follows. O
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We shall prove Theorem 4.1 in this subsection. The uniqueness is clear.
By Lemma 2.2 (with £ = 1), we have

[l’l];?’no = (JTiCIi)Z"Z(;)”!- @.4)

1

We first observe that the existence of a homomorphism Fr’ such that Fr'(6;) = Ql.(e")
implies that Fr' (")) = 6" for all n > 0. Indeed, using (4.3)~(4.4) we have

Fr'(0") = (Inlgp ) "B 6)" = (Griq) "= D/2n1) 'R 6)" = 6"

Hence, it remains to show that there exists an algebra homomorphism Fr’ : zf¢ —

rf such that 6; — Gi(zi), Vi € I. By Proposition 3.5 (also cf. [4]), the algebra gf° has
the following defining relations:

Yoo )y @™o e =0 (i #j e,
ntn'=1-(i,j’)°

By (4.4) it suffices to check the following identity in gf: fori # j € I,

/ 2 i —
Z (—1)" JT-Z’ (np(j)+n(n—1)/2)

1

(Niqz')_g"z(g)(ﬂiqz')_g"z(nz)
nbn'=1—i, j')€; /¢
[ I 4
O Jen 6
J

n'!

0,
n!

which, by the identity (4.3), is equivalent to checking the following identity in gf:

102 i -1)/2) (¢: 0 '
Z (—1)" ﬂi,(np(./)+n(n )/ )9i<z,n)9; ,)ei(z,n) -0 (4.5)
ntn'=1—(i,j')¢; /{;

It remains to prove (4.5). Set o = — (i, j’). Forany 0 <t < ¢; — 1, we set
Lirp()+r(r=1)/2 r;—1— ()]
g = Z (—1)r7Tl~ jrpJ)rrir / qlr( t)el(r)gl J 9[(5) e .Af
r+s:£?¢§z+£i—t

This is basically fi/,j-ef,ijaM,-ft in [4, 4.1.1(d)] in the notation of 8’s. By the higher
super Serre relations (see [4, Proposition 4.2.4] and [4, 4.1.1(e)]), we have g; = 0 for

all0 <t <¥¢; — 1. Set
£i—1 ' '
—1)/2 Ljar+lit—t
8= E ( 1)t7rl't(t )/ qij gtel’(t)a

=0
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which must be 0. On the other hand, setting s" = s + 7, we have

) (s’
0=)g= > c,,sfel.(”ej 790, (4.6)

r.s
r+s'=Lja+¢;

where

i—1 ,

Lirp()+r(r—1)/24t(t—1)/2 rli—1—t)+Ljat+Lit—t | S

Cr,s’ — Z(_l)r+lni J p(j)+r( )/ ( )/ ql( i ) J i [ } )
qi,Ti

t=0

Taking the image of the identity (4.6) under the map 4f — gf, we have

> 0Enf076 =0 e

r,s
r+s’:Zjot+(Z,-

For a fixed s/, we write s’ = a + ¢;n, where a,n € Z and 0 < a < ¢; — 1. Note

/
by Lemma 2.1(c) that |:st:| L .Now using r + 5" = £ + ¢; we
qi,7i

qi,7i

! t
compute

£i—1
4i—1 Crp(DH+rr=1)/24+1G=1)/2 1(s'—1)—t;nt | @
$(ere) = (1 g Y (T g mH
q;,7i

t=0
a
— (_1)rq;’(£i—1) Z(_1)tn,iljrp(J)‘H’(r*l)/z‘i’t(t*1)/2qlt_(a—1) |:Ctli|
t=0 qi, 7
(a:) 8a’0(_1)ljoH_e’,_g[nni[jrp(j)-i-r(r—l)/ZqEEi—1)(fj0t+ei—£i")
iy, ; j —1)/2—r;—1)/2
®) sa,o(—1)“‘1/6’“*”nf"”’(’)”(r )/2=r&i=D/2 4.7

The identity (a) above follows by the identity Y 7_,(—1)" nit =1/ qut.(“_l) |:a:| =
q;,7;

2_y.
84,0 (see [4, 1.4.4]), and (b) follows by the identity 7~ D%/2q/ ™% = (—1)ti+!
(which is an i-version of (2.5) with the help of 7 g = 1).
Inserting (4.7) into (4.6) and comparing with (4.5), we reduce the proof of (4.5) to

) Cmp(j —1)/2 £itinp()+Lin(€in—1)/2—Lin(€;—1)/2
verify that ni,(np(1)+n(n )/2) =l np(j)+tin(€in—1)/2—Lin(¢;—1)/

- Cnp(j £itinp(j . o ; ;
lent to verifying 7; iP0) _ AN G ). The latter identity is trivial unless both i and j

arein I1; when both i and j are in I1, the identity follows from Lemma 3.1. Therefore,
we have proved (4.5) and hence Theorem 4.1.

, which is equiva-

4.5. We develop in this subsection the analogue of [ 17, 35.3]; recall we are still working
under the assumption that R is the quotient field of A’.
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Proposition4.3 Let A € X®, i.e., (i, A) € {;Z foralli € I. Let M denote the simple
highest weight module with highest weight A in the category of R™-free weight U-
modules, and let n be a highest weight vector of M*.

(@) If¢ € X satisfies M® # 0, then ¢ = A — Y_; {;n;i’, where n; € N. In particular,
(i,¢) € biZ foralli € 1.

(b) Ifi € I is such that £; > 2, then E;, F; act as zero on M.

(c) Foranyr > 0, let M| be the subspace of M spanned by Fi(lt’z]) Fl_(zlzz) ... Fi(riir)n
for various sequences iy, iz, ... i, inI.Let M' =Y M. Then, M' = M.

Proof The proof is completely analogous to [17]. All computations are similar except
that we are now working over R” instead of R; and the results follow from Lemma 2.1,
[4, (4.1) and Proposition 4.2.4], and Lemma 4.2.

First, we show that
(d) EiM] =0, F;M] =0 for any i € I suchthat ¢; > 2,
which is similarly proved by induction on r > 0. The base case » = 0 follows from

the fact that |:<l’t)h> ] = 0 since . € X° (using Lemma 2.1) and the fact that
qi,7i

E;")Fm is an R™-linear combination of F; E ™ and EY . For the inductive step,
we want to show that E; F;Zj)m = 0 and EF;zj)m = 0 for any i, j € I such that
£; > 2 and any m € M;_lg. For the first one we use the fact that E; F;Zj)m is an

R7 -linear combination of F;Kj)E,-m and Ffj_l in the case £; > 2, and for £; =1

. [, A
we again use |:(l )] = 0 from Lemma 2.1. For the second one, we may use
qi,7i
[4, (4.1) and Proposition 4.2.4] to write F; F ;Zj )m as a R”-linear combination of
F@j_r)FiF@m for various r with 0 < r < €}, and for such r we have F; F;r)m =0
by the induction hypothesis.
Next, we may show by induction on r > 0 that
(e) El.([")M; C M/_, foranyiel,
. . R 0

(by convention M’ | = 0); again for m" € M, _, we can use the fact that El.(l’)F; D!

is an R”-linear combination of F; ’)E,.(E’)m’ (which is in M;_, by the induction

hypothesis), and elements of the form F;E"_I)Ei(ei_t)m’ withr > Oandr < ¢;, 1 < ¢;

(which as before are zero if t < £; orif r = ¢; and r < £, by (d), and are in M| _, if
t=4;=4¢ j).

The statements (d), (e) together with Lemma 4.2 show that ) . M/ is an zU-
submodules of M, and by simplicity of M it follows that M = >, M/, from which
(a) and (b) also follow. O

Corollary 4.4 There is a unique weight rU®-module structure on M (as in Proposi-
tion 4.3) in which the {-weight space is the same as that in the gU®-modules M, for
any ¢ € X° C X, and such that E;, F; € gf° act as Ei(m, Fi(zi) € rf. Moreover, this

is a simple (R™ -free) highest weight module for gU® with highest weight % € X°.
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Proof We define operators ¢;, f; : M — M fori € I by ¢; = E[.(Ei), fi = Fl.(gi).
Using Theorem 4.1 we see that ¢; and f; satisfy the Serre-type relations of gf°.

If ¢ € X\X°, we have M® = 0 by Proposition 4.3(a) above. If ¢ € X° and
m € MY, then we have that (ei fj — fjei)(m) is equal to §; ; [Oé_)”)} -m plus an

bodgm

R” -linear combination of elements of the form F; Limtpli=t (m) with 0 < t < ¢; (this
follows by [7, Lemma 4]) which are zero by Proposition 4.3(b). Since (i, ¢) € ¢;7Z,
we see from Lemma 3.6 that

[(i,l)] _ |:<l', K)/Ez}
£ o 1 o o
q;,7i q;.7;

and so (e; fj — fjerym = 8 j[{i, 1) /€i1ge no -m. We also have that e; (M®) ¢ MST4l’

and fi(M HcM c=bii’, Thus, we have a unital RUQ—module structure on M, and by
Proposition 4.3(c) this is a highest weight module of gU® with highest weight A and
simplicity also follows using Lemma 4.2 in the same argument as in [17]. O

4.6. Now we are ready to state our analogue of the main result of [17, 35.4] on a tensor
product decomposition. Let f be the R-subalgebra of gf generated by the elements 6;
for various i such that £; > 2. We have f = &,f, where f = rf, N §.

Theorem 4.5 (Lusztig—Steinberg tensor product theorem) The R” -linear map
x rRECQrf— rf, x®@yr F'(x)y

is an isomorphism of R™ -modules.

Proof First, we make the following statement which is similar to (but slightly less
precise than) [17, 35.4.2(a)].

Claim. For any i € [ and y € f,, there exists some a(y), b(y) € Z such that the

difference 9([ a(‘)qf’(‘) Oi(g" ) belongs to f.

Fory = y’y/ " one easily reduces the claim to the same type of claim for y" and y”.
Hence, it suffices to show this claim when y is a generator of f, i.e., y = 6; where
£; > 2. Recall our assumption (a) in Sect. 4.1 that ¢; > —(i, J') + 1. Hence, we may
use the higher Serre relation in [4, (4.1) and Proposition 4.2.4] (but with 6;’s instead

of F;’s) to show that for some a(j), b(j), the difference 9( )9 la(j)qf(j)GjGi(gi)

is an R™-linear combination of products of the form 9(’)9 0“’ )

which are contained in f by definition. The claim is proved
By Lemma 4.2, gf is generated by 91.“") and 6; with £; > 2. The surjectivity of x
follows as the claim allows us to move factors 6; to the right which produces lower
terms in f.

The injectivity is proved by exactly the same argument as in [17, 35.4.2] using now

Proposition 4.3 and Corollary 4.4; the details will be skipped. O

with 0 < r < ¥;,

The following is an analogue of [17, Proposition 35.4.4], which follows by the same
argument now using the anti-involution o of rf which fixes each 6; (cf. [4, § 1.4]).
We omit the detail to avoid much repetition.
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Proposition 4.6 Assume that the root datum is simply connected. Then, there is a
unique A € XV such that (i, \) = £; — 1 for all i. Let n be the canonical generator of
RV (X). The map x — x~n is an R™ -linear isomorphism f — gV (}).

4.7. The following is a generalization of [17, Theorem 35.1.7]. As with Theorem 4.1,
we may reduce the proof to the case when R is the quotient field of A’ (cf. [17,
35.1.11)).

Theorem 4.7 There is a unique R™-superalgebra homomorphism Fr : pf —> gf®
such that, foralli € I,n € N,

Qi("/li), if ¢; divides n,

0, otherwise.

Fr(o™) = {

(We call Fr the Frobenius—Lusztig homomorphism.)

Proof The proof proceeds essentially like that of [17, Theorem 35.1.7]. Uniqueness is
clear; we need only prove the existence. By Theorem 4.5, there is an R” -linear map
P : pf — gf°, such that for all iy € I and for Jp € I where ij >2

6, -6, ifr=0,

0, otherwise.

in»

) t,
P@®;" ...gi(n )gj] 0),) = {

We now check that P is a homomorphism of R™-algebras. Because gf is generated as

an R™-module by elements of the form x = Qi(lgi' ) ...Ql.(rl[i" ' i -+ -0}, we need to check
that for any such x,
P(x6;) = P(x)P(6;) (4.8)
for j € I such that £; > 2 and
P(x0) = P(x)P (91.“”) (4.9)

foralli € I. As (4.8) is obvious, we will concern ourselves with (4.9). Note that (4.9)
i Ci
i(l 1)---91‘(” ")91'1 0

and 0; = 0;, sothatx = x’Oj. Fori = j, we have P(x)P (91.(6[)) = 0and

is clear when r = 0. Assume now r > 0. Let us write x’ = 0

Px6") = P(x'6;61") = P(x'6!6;) = P(x'6/)P(6;) =0,

where the third equality is due to (4.8). Now suppose that i # j. As £; > —{i, j’),
we may use the higher-order Serre relations for quantum covering groups (cf. [4,
(4.1) and Proposition 4.2.4]) to write 0]'91.(@") as a linear combination of terms of
the form 9}"”9,»9}”) where m +n = £; and m > 1. Because of (4.2) and (4.8),
P(x'6™6;6") = 0for 1 <m < £;, and P(x'6{6;) = 0.
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Now that we know that P is an R”-algebra homomorphism, and it remains to
compute P(Qi(")) foralln € Z>o. Writen = b{; +a, where 0 < a < {; andb € Z>o.
Using (4.1), (4.2) and (4.3), for a > 0 we have

P(@(b@ri—a)) — qlezabP(el(a))P(el(bet)) — qfiab([a]!q,-,ﬂ,')_lp (Gia) P(ei(bzi)) =0.

Similarly, for a = 0 we have

. b A\ P
P (91‘(})&)) — (b!)—l(niqi)—liz(z)P (Gi(l1)>
_ _(? — b
= o))" O8) = (W1 0 =6
where, in the third equality we used Lemma 2.2, with £ = 1. Hence, P is the desired
homomorphism Fr. O

4.8. We extend the Frobenius—Lusztig homomorphism Fr : pf —> rf°¢ in Theo-
rem 4.7 to gU. In contrast to the quantum group setting, we have to twist Fr slightly
on one half of the quantum covering group.

Theorem 4.8 There is a unique R™-superalgebra homomorphism Fr : RU — RU°
such that foralli € I,n € Z, A € X,

D/t /e oo g
Fr(El-(")l;L) I A E; 1,, if¥¢; dividesn and ) € X°, (4.10)
0, otherwise
and
F™%1,,  if¢; divides n and » € X°
FI'(F<(n) IA) _ i Ao i s
1

0, otherwise.

(We also call Fr in this theorem the Frobenius—Lusztig homomorphism.)

Proof Let Fr : Ri: —> gf® be the homomorphism from Theorem 4.7. Consider the
homomorphism Fr = i o Fr, where v : gf® — gf® is the algebra automorphism
such that Qi(") — ni" Oi(n). The proof, much like that of [17, Theorem 35.1.9], amounts
to checking that for x, x” € gf the assignment

T L = B DL Fr(x™), x Lix'T = Fr(x )L Fr(x'"),
for A € X°, and

L~ =0, x LxTH0,

fora € X\X ¢ satisfies the appropriate relations. These are the relations of Lemma 3.2
for gU and for xU®, using Lemma 3.6 to deal with the (q, 7r)-binomial coefficients.
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The use of the homomorphism Fr (in place of Fr) on Ut is necessitated by the first
and second relations in Lemma 3.2. Both sides of the first relation are mapped to zero
by Fr unless N, M € ¢;Z and 1 € X°, so we focus on this case. Recalling q7, 7/
from (3.1), we have

_ :
Fr( S (Z)Fiw—z)[MJrNJr(t,A) )

(N—t
; ; } Lt m+N-0i' E;
q;,7i

>0

MN—("F! M— M+ N+ (i, A N—
= Z”i g (Fi( l)) [ / 4 Lrn—nirFr (El( 0)
t>0 q;,T;

t/¢;

3 ()M~ (15 116D =) [(M + N+, k))/ﬁi]
l l l
t>0,tel;7Z q; .

WN=0/8: () _(N=1)/t;
‘L mN—1iTT; G El-(( 0/
Ny (G ) (Tt M—1)/¢; M+ N+ (i, )/
=) S ()M~ R0/ >[( r/é N/ l]
l < <o
t>0,tel; 7 q;,7;
N—1)/¢;
'1A+(M+th)i’E,‘(( 0/
N/EG(E) LNJE) g (M)
S g,

1

= Fe(EM1, ),

=7

_(tt! 1/€;+1 0; (4 )
where we have used 7; ) _ (JTI-Q)_( 2 )nit/ ) and Lemma 3.6 in the second
equality above.

The verification of the second relation of Lemma 3.2 is entirely similar, and the

other relations therein are straightforward. O

5 Small quantum covering groups

In this section, we construct and study the small quantum covering groups. We take
R™ = Q(q)™, where q is as in (2.2).

5.1. Let gu be the subalgebra of rU generated by E;1, and F;jl, for all i € I with
£; > 2 and A € X. Itis clear then that g1t is spanned by terms of the form x*1; x'~
where x, x” € f. We follow the construction of [17, § 36.2.3] in extending RU to a new
algebra Rf]. Any element of RU can be written as a sum of the form hopeX Xau where
X € 1y RUIM is zero for all but finitely many pairs A, w. We relax this condition
in gU by allowing such sums to have infinitely many nonzero terms provided that the
corresponding A — p are contained in a finite subset of X. The algebra structure extends
in the obvious way. We define gil to be the subalgebra of RfJ with x; ,, € Ly gul,.

Let 27 be the smallest positive integer such that q>¢ = 1. Hence, ¢ = 2¢ for £ odd
and ¢ = ¢ for ¢ even. We define the cosets
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Ca={reX|({i,\)=a (mod20), Viell, 5.1)

fora = (q;|i € I) with 0 < a; < 2 — 1. Note that there are at most (2¢)!/! such
cosets and they partition X. Moreover, for each coset ¢, 1o := ), .. 1, is an element
of Rfl.

Let gu (resp. gut’) be the R™-submodule of g1l generated by the elements x ™ 1¢x'~
(resp. x ~1cx'T) where x, x’ € f. The following is an analogue of [17, Lemma 36.2.4].

Lemma5.1 (1) Foranyu € puand0 <M < ¥¢; — 1, Fi(M)u lies in pu.
(2) We have gu = g\, and gu is a subalgebra of gi.

The algebra ru is called the small quantum covering group.

Proof We follow the proof in [17]. We prove the first statement by induction on p,
(np) ,—
E.

where our u = El.(”‘)...
1 lp

p > 1 and rewrite u as

. The result is obvious for p = 0, so we now consider

(n) + 7—
u= lc/Eil x| x

where x| = 01.(2”2)...91("”) When i # iy, the result is immediate, so we consider i = ij.

In that case, using the relations of Lemma 3.2, we have

FOD MN+1(i,2) =G) [n1+M — (i, A)
zM”_Z Z 2|:1 t i|

rec t<ni,t<M q;,7;

_ M— _
CETO i FM T a

Fix u € ¢/. Thenforany A € ¢/, ny + M — (i, A) = n; + M — (i, 1) mod(¥;).
Using Lemma 2.1 and noting that < ¢;, we have that

ny+M—{i,\) (i)t |+ M — (i, @)
t =4 t
q;,7T;

qi, 7

9
qi,7i

t

where we used in the second equality the condition that (i, A) — (i, u) =0 mod(2l7).
Hence, Fi(M) u is equal to

MN+t (i,1) n+M— — M— _
e ] D s A
qi,7i

t<ny,t<M rec

= Y gMVHEO-Q) ["1+Mt t. *”] E@ 010 FM0 by

t<nj,t<M qiTi

for some other ¢”. Hence, F[(M)u € gu by induction. Finally, the second statement is
shown by repeated application of this result as in [17, Lemma 36.2.4]. O
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5.2. Recall there are a comultiplication A and an antipode S on U as defined in [4,
Lemmas 2.2.1, 2.4.1]. Write , U, for the subspace of zU spanned by elements of the
form 1,x1,, where x € gU and write p, , for the canonical projection gU — ,U,.
Asin[17,23.1.5,23.1.6], A and S induce R”-linear maps

A)\»ﬂa)‘/»ﬂ/ : )»+)L/U;L+ll./ — )LUI‘« [ NUM/

given by A)\,[l.,)n/,[l./(p)n+)u/,ﬂ+ll«/(‘x)) = (p)n,,l,L ® p)J,,u’)(A(x))’ for )\'? I'La )"/a I’L/ € X7
and

S:RU—>RU

defined by S‘(lkxlu) =1_,8(x)1_, for x € grU. For example, A(E;) = E; ® 1 +
J~,~I€,~ ® E; in rU, and hence, we obtain

A)\—U—H’,A—v,v,v(Eilk) = Pr—vtila—v ® pv,v(Ei ®1+ ‘ilkl ®E)=E1_,®1,.

This collection of maps is called the comultiplication on &U, and it can be formally
regarded as a single linear map

A= T Bpww:rU— J] U@l
YNTIVANTICD ¢ YNTIVSNTIESD ¢

A comultiplication A® on gU® can be defined in the same way.

Proposition 5.2 The Frobenius—Lusztig homomorphism Fr is compatible with the
comultiplications on gU and grU?°, i.e., A° o Fr = (Fr ® Fr) o A.

(In the usual quantum group setting this was noted by [17, 35.1.10].)

Proof 1t suffices to check on the generators Ef")l,\ and Fi(")l ,.Letn = mét; € 7,

4; .
and recall that Fr(El.(mé" )IA) = nl.(z)m El.(’")lk in gU°. Using the formula (above [4,
Proposition 2.2.2])

AE™) = > (mig)" EP JK) ® E”
p+r=m

we see that the nonzero parts in A°(Fr(E [(me" 1 »)) computed via (4.10) are of the form
¢ RPN
2" oqo)PH T EPY @ EOL L pir=m

for various v € X°, which coincides with Fr ® Fr applied to terms in A(E l_(me,- )ll))
of the form

(mig) PUHEDCD EPDYL, @ EFOL, o ptr=m,
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where we note there is a factor contributing from (4.10) which matches up with the

Dreyr _ Com

previous part thanks to 7, ; the remaining terms are zero under
Fr ® Fr since at least one of the divided powers of E; appearing in either tensor factor
must be not divisible by ¢;.

On the other hand, if 7 is not divisible by ¢;, then the right-hand side will also be
zero, since all the nonzero parts of A(Ei(")lk)) will have a tensor factor containing
some divided power of E; not divisible by ;.

A similar verification takes care of Fi(") 1;. O

5.3. The maps A and § restrict to maps on gii, which extend to R™ -linear maps A
and S on gl in the obvious way. Henceforth, when we refer to A and §, we mean the
restrictions to guL.

Additionally, for any basis B of f consisting of weight vectors, with unique zero
weight element equal to 1, we define an R” -linear map ¢ : gu — R” by:

r, ifb,b’ =1anda =0,

Srbh 1e,) =
( a) 0, otherwise.

where b, b’ € B,r € R, and ¢, in (5.1).
Define the following elements:

K=Y q",, =) a1, 1=>"1,. (5.2)

reX reX reX

Proposition 5.3 (1) The R™-algebra ru has a generating set {E;, F; (Ni with £; >
2), Ky, Ji (¥i € D).
(2) (ru, A, e, S) forms a Hopf superalgebra.

Proof The elements in (5.2) can be written as
K, = ch,i1C1 Ji = Zﬂc,ilm 1= Zlc»
C 4 C

where we have defined qc; = q"** and 7. ; = 7%* for any A € ¢. This implies that
these elements are also in gu. Moreover, we have

1e=[]@D '+ mei )1+ a K + a2 K + -+ a K.

iel

This proves (1).

A direct computation using these generators shows that A, é and § are given
by the same formulas as A, e and S; the former maps inherit the following prop-
erties of the latter: A is a homomorphism which satisfies the coassociativity (cf.
[4, Lemmas 2.2.1 and 2.2.3]), ¢ is a homomorphism (cf. [4, Lemma 2.2.3]), and
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S’(xy) = nP(X)P(Y)S(y)S(x) (cf. [4,Lemma2.4.1]). Moreover, the image of A (respec-
tively, S) lies in pu ® gu (respectively, gu). Hence, (2) holds. O

5.4. We consider the Cartan datum associated with the Lie superalgebra osp(1|2n),
where n = ||, with the following Dynkin diagram:

1 2 n—1 n

The black node denotes the (only) odd simple root. We set

2, ifiis odd,
4, if i is even.

i-i=
The above Cartan datum on / is a super Cartan datum satisfying the bar-consistent
condition in the sense of Sect. 3.1.

Proposition 5.4 The small quantum covering group pu of type osp(1|2n) is a finite-
dimensional R™-module. In particular,

o2 ) 2 4oy, for € odd,
dimgr (gU) = —————— 20" = g2’
ged(2, £)2=2n 2 QO for £ even,

when X is the weight lattice, and similarly,

o2 g2 pn—lgn, for £ odd,
: _ n—1,n __ 2
dim = (ry) = gcd(2, £)2n2—2_n2 = an

pn—lgn or £ even,
22n2—2n ’ f

when X is the root lattice.

Proof Note that pu is a f ® f°PP module with basis given by the 1. defined above.
This basis has at most (2)" elements for any X. In particular, it has (20)" elements
when X is the weight lattice, and 2"~ !¢" elements when X is the root lattice, as the
root lattice is index 2 in the weight lattice. Moreover, by Proposition 4.6, we have
that dim g~ (f£) = dimg= (g V (1)), where A is the unique weight such that (i, ) =
£; — 1 foreachi € I.Let V(1)1 (respectively, V(1)_1) be the quotient of the Verma
module of highest weight A by its maximal ideal for the quantum group (resp. quantum
supergroup) to which the quantum covering group specializes at 1 = 1 (respectively,
7 = —1) with base field R = Q(g) (recall from Sect. 2.3 that ¢ is an ¢’-th root of
unity). Because

RV =@+ DrVQ) @& (@ — DrV(R) = V()1 @ V(M)
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and the characters of V(1); and V(1)_; coincide for dominant weights (cf. [13], [S5,
Remark 2.5]), we have

2

gn

. + . . . +
dlmRTr f = dlmRﬂ RV(}\,) = dlmR V(}\,)l = dlmR fl = W

where f is the (non-super) half small quantum group, i.e., f specialized at w = 1. The
last equality is due to [16, Theorem 8.3(iv)]. m]
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