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Abstract
A quantum covering group is an algebra with parameters q and π subject to π2 = 1,
and it admits an integral form; it specializes to the usual quantum group at π = 1 and
to a quantum supergroup of anisotropic type at π = −1. In this paper we establish
the Frobenius–Lusztig homomorphism and Lusztig–Steinberg tensor product theorem
in the setting of quantum covering groups at roots of 1. The specialization of these
constructions at π = 1 recovers Lusztig’s constructions for quantum groups at roots
of 1.

Keywords Quantum groups · Quantum covering groups · Roots of 1 ·
Frobenius–Lusztig homomorphism

Mathematics Subject Classification Primary 17B37

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2754

2 The (q, π)-binomials at roots of 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2755

3 Quantum covering groups at roots of 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2759

4 The Frobenius–Lusztig homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2765

5 Small quantum covering groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2772

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2777

B Weiqiang Wang
ww9c@virginia.edu

Christopher Chung
cc2wn@virginia.edu

Thomas Sale
tws2mb@virginia.edu

1 Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11005-019-01209-4&domain=pdf


2754 C. Chung et al.

1 Introduction

1.1.ADrinfeld–Jimboquantumgroupwith the quantumparameterq admits an integral
Z[q, q−1]-form; its specialization at q being a root of 1 was studied by Lusztig in
[15,16], [17, Part V] and also bymany other authors. In these works Lusztig developed
the quantum group version of Frobenius homomorphism and Frobenius kernel (known
as small quantum groups), as a quantum analogue of several classical concepts arising
from algebraic groups in a prime characteristic. The quantum groups at roots of 1 and
their representation theory form a substantial part of Lusztig’s program on modular
representation theory, and they have further impacted other areas including geometric
representation theory and categorification.

A quantum covering group U, which was introduced in [4] (cf. [12]), is an algebra
defined via super Cartan datum, which depends on parameters q and π subject to
π2 = 1. A quantum covering group specializes at π = 1 to a quantum group and
at π = −1 to a quantum supergroup of anisotropic type (see [3]). Half the quantum
covering group with parameter π with π2 = 1 appeared first in [12] in an attempt
to clarify the puzzle why quantum groups are categorified once more by the (spin)
quiver Hecke superalgebras introduced in [14]. There has been much further progress
on odd/spin/super categorification of quantum covering groups; see [2,10,13].

For quantum covering groups, the (q, π)-integer

[n]q,π = (πq)n − q−n

πq − q−1 ∈ N[q, q−1, π ]

and the corresponding (q, π)-binomial coefficients are used, and they help to restore
the positivity which is lost in the quantum supergroup with π = −1. The algebra U
(and its modified form U̇, respectively) admits an integral Z[q, q−1, π ]-formAU (and
AU̇, respectively). In [5] and then in [7] the canonical bases arising from quantum
covering groups à la Lusztig and Kashiwara were constructed, and this provided for
the first time a systematic construction of canonical bases for quantum supergroups.
The braid group action has been constructed in [8] for quantum covering groups, and
the first step toward a geometric realization of quantum covering groups was taken in
[11].
1.2. To date the main parts of the book of Lusztig [17] have been generalized to the
quantum covering group setting, except part V on roots of 1 and part II on geometric
realization in full generality. The goal of this paper is to fill a gap in this direction by
presenting a systematic study of the quantum covering groups at roots of 1; we follow
closely the blueprint in [17, Chapters 33–36].
1.3. We impose a mild bar-consistent assumption on the super Cartan datum in this
paper, following [5,12]. This assumption ensures that the new super Cartan datum
and root datum arising from considerations of roots of 1 work as smoothly as one
hopes. The assumption turns out to be also most appropriate again for the existence
of Frobenius–Lusztig homomorphisms for quantum covering groups.

We expect that the quantum covering groups of finite type at roots of 1 have very
interesting representation theory, which has yet to be developed (compare [1]). The
categorification of the quantum covering group of rank one at roots of 1 is already
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highly nontrivial as shown in the recent work of Egilmez and Lauda [9]. We hope
our work on higher rank quantum covering groups could provide a solid algebraic
foundation for further super categorification and connection to quantum topology.

Specializing at π = −1, we obtain the corresponding results for (half, modified)
quantum supergroups of anisotropic type at roots of 1; this class of quantum super-
groups includes the quantum supergroup of type osp(1|2n) as the only finite type
example. It will be very interesting to develop systematically the quantum super-
groups at roots of 1 associated with the basic Lie superalgebras (i.e., the simple Lie
superalgebras with non-degenerate supersymmetric bilinear forms).
1.4. Belowwe provide somemore detailed descriptions of the results and the organiza-
tion of the paper. In Sect. 2, we establish several basic properties of the (q, π)-binomial
coefficients at roots of 1, generalizing Lusztig [17, Chapter 34].

In Sect. 3, we recall half the quantum covering group Rf and the whole (respec-
tively, the modified) quantum covering groupU (respectively, RU̇) over some ring Rπ ,
associated with a super Cartan datum.We give a presentation of RU̇ and a presentation
of the quasi-classical counterpart Rf� of Rf , generalizing [17, 33.2].

Our Sect. 4 is a generalization of [17, Chapter 35]. We establish in Theorem 4.1 a
Rπ -superalgebra homomorphism Fr′ : Rf� −→ Rf , which sends the generators θ

(n)
i

to θ
(n�i )
i for all i ∈ I , n. This is followed by the Lusztig–Steinberg tensor product

theorem for Rf which we prove in Theorem 4.5. Next we establish in Theorem 4.7 the
Frobenius–Lusztig homomorphism Fr : Rf −→ Rf� which sends the generators θ

(n)
i

to θ
(n/�i )
i if �i divides n, and to 0 otherwise, for all i ∈ I , n. We further extend the

homomorphism Fr to the modified quantum covering group in Theorem 4.8.
Finally in Sect. 5, we formulate the small quantum covering groups and show it is

a Hopf algebra. In case of finite type (i.e., corresponding to osp(1|2n) or so(1+ 2n)),
we show that the small quantum covering group is finite dimensional.

2 The (q,�)-binomials at roots of 1

In this section, we establish several basic formulas of the (q, π)-binomial coefficients
at roots of 1. They specialize to the formulas in [17, Chapter 34] at π = 1.

2.1. Let π and q be formal indeterminants such that π2 = 1. Fix
√

π such that√
π
2 = π . In contrast to earlier papers on the quantum covering groups [4–7], it is

often helpful and sometimes crucial for the ground rings considered in this paper to
contain

√
π , and for the sake of simplicity we choose to do so uniformly from the

outset. For any ring S with 1, define the new ring

Sπ = S ⊗Z Z[√π ].

We shall use often the following two rings:

A = Z[q, q−1], Aπ = Z[q, q−1,
√

π ].
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2756 C. Chung et al.

Let N = {0, 1, 2, . . .}. For a ∈ Z and n ∈ N, we define the (q, π)-integer

[a]q,π = (πq)a − q−a

πq − q−1 ∈ Aπ ,

and then define the corresponding (q, π)-factorials and (q, π)-binomial coefficients
by

[n]!q,π =
n∏

i=1

[i]q,π ,

[
a
n

]

q,π

=
∏n

i=1[a + 1 − i]q,π

[n]!q,π

.

For an indeterminant v, we denote the v-integers

[a]v = va − v−a

v − v−1

and we similarly define the v-factorials [n]!v and v-binomial coefficients

[
a
n

]

v

. We

denote by
(a
n

)
the classical binomial coefficients.

2.2. In this paper, the notation v is auxiliary, and we will identify

v := √
πq,

and hence, for n, t ∈ N,

q,π = √
π
n−1[n]v, [n]!q,π = √

π
n(n−1)/2[n]!v,

[
n
t

]

q,π

= √
π

(n−t)t
[
n
t

]

v

.

(2.1)

2.3. Fix � ∈ Z>0 and let �′ = � or 2� if � is odd and let �′ = 2� if � is even. Let

A′ = A/〈 f (q)〉,

whereA/〈 f (q)〉 denotes the ideal generated by the �′-th cyclotomic polynomial f (q);
we denote by ε ∈ A′ the image of q ∈ A. Take R to be an A′-algebra with 1 (and so
also an A-algebra). Introduce the following root of 1 in Rπ :

q = √
πε ∈ Rπ . (2.2)

Then, the element

v := √
πq ∈ Rπ
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satisfies that

v2� = 1, v2t 
= 1 (∀t ∈ Z, � > t > 0). (2.3)

Consider the specialization homomorphism φ : Aπ → Rπ which sends q to q and
√

π to
√

π . We shall denote by [n]q,π and

[
n
t

]

q,π

the images of [n]q,π and

[
n
t

]

q,π

under φ, respectively, and so on.
The following lemma is an analogue of [17, Lemma 34.1.2], which can be in turn

recovered by setting π = 1 below.

Lemma 2.1 (a) If t ∈ Z>0 is not divisible by � and n ∈ Z is divisible by �, then[
n
t

]

q,π

= 0.

(b) If n1 ∈ Z and t1 ∈ N, then we have

[
�n1
�t1

]

q,π

= π�2t1(n1−(t1−1)/2)q�2t1(n1+1)
(
n1
t1

)
.

(c) Let n ∈ Z and t ∈ N. Write n = n0+�n1 with n0, n1 ∈ Z such that 0 ≤ n0 ≤ �−1
and write t = t0 + �t1 with t0, t1 ∈ N such that 0 ≤ t0 ≤ � − 1. Then, we have

[
n
t

]

q,π

= π�(n0−t0)t1+�2(n1−(t1−1)/2)t1q�(n0t1−n1t0)+�2(n1+1)t1

[
n0
t0

]

q,π

(
n1
t1

)
.

Proof One proof would be by imitating the arguments for [17, Lemma 34.1.2].
Below we shall use an alternative and quicker approach, which is to convert [17,
Lemma 34.1.2] into our current statements using (2.1) via the substitution v = √

πq.
Part (a) immediately follows from [17, Lemma 34.1.2(a)].

(b) By applying [17, Lemma 34.1.2(b)] to

[
�n1
�t1

]

v
and using (2.1), we have

[
�n1
�t1

]

q,π

= √
π

�t1(�n1−�t1)
[
�n1
�t1

]

v
= √

π
�2t1(n1−t1)v�2t1(n1+1)

(
n1
t1

)
,

which can be easily shown to be equal to the formula as stated in the lemma.
(c) Note that

√
π

(n−t)t = √
π

�((n0−t0)t1+(n1−t1)t0)√
π

�2(n1−t1)t1√
π

(n0−t0)t0
. (2.4)

By applying [17, Lemma 34.1.2(c)] to

[
n
t

]

v
and using (2.1)–(2.4), we have
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[
n
t

]

q,π

= √
π

(n−t)t
[
n
t

]

v

= √
π

(n−t)tv�(n0t1−n1t0)+�2(n1+1)t1

[
n0
t0

]

v

(
n1
t1

)

= √
π

�((n0−t0)t1+(n1−t1)t0)√
π

�2(n1−t1)t1√
π

�(n0t1−n1t0)+�2(n1+1)t1

× q�(n0t1−n1t0)+�2(n1+1)t1

(√
π

(n0−t0)t0
[
n0
t0

]

v

) (
n1
t1

)

= π�(n0−t0)t1+�2(n1−(t1−1)/2)t1q�(n0t1−n1t0)+�2(n1+1)t1

[
n0
t0

]

q,π

(
n1
t1

)
.

The lemma is proved. 
�
Note that, due to our choice of q = √

πε, we also have an analogue of equation (e)
in the proof of [17, Lemma 34.1.2]:

v�2+� = π(�+1)�/2q�2+� = (−1)�+1. (2.5)

2.4. The following is an analogue of [17, § 34.1.3(a)].

Lemma 2.2 Let b ≥ 0. Then,

[�b]!q,π

([�]!q,π )b
= b!(πq)�

2b(b−1)/2.

Proof Recall v = √
πq. Using (2.1) and [17, § 34.1.3(a)], we have

[�b]!q,π /([�]!q,π )b = √
π

�b(�b−1)/2−b�(�−1)/2[�b]!v/([�]!v)b

= √
π

�2b(b−1)/2
b!v�2b(b−1)/2 = b!(πq)�

2b(b−1)/2.

The lemma is proved. 
�
Below is a π -enhanced version of [17, Lemma 34.1.4].

Lemma 2.3 Suppose that 0 ≤ r ≤ a < �. Then,

�−a−1∑

s=0

(−1)�−r+1+sπ(s+1
2 )+s(r−�)q−(�−r)(a−�+1+s)+s

[
� − r
s

]

q,π

= π(r2)−(l2)−a(r−l)q�(a−r)
[
a
r

]

q,π

.
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Proof Plugging v = √
πq into [17, Lemma 34.1.4] and using (2.1), we obtain

�−a−1∑

s=0

(−1)�−r+1+s√π
−(�−r)(a−�+1+s)+s+s(s−�+r)q−(�−r)(a−�+1+s)+s

[
� − r
s

]

q,π

= √
π

�(a−r)+r(r−a)q�(a−r)
[
a
r

]

q,π

.

Rearranging the
√

π terms, we have

�−a−1∑

s=0

(−1)�−r+1+s√π
s(s+1)+2s(r−�)q−(�−r)(a−�+1+s)+s

[
� − r
s

]

q,π

= √
π
r(r−1)−�(�−1)−2a(r−l)q�(a−r)

[
a
r

]

q,π

.

from which the desired formula is immediate. 
�

3 Quantum covering groups at roots of 1

In this section we recall the notion of super Cartan/root datum and the quantum cov-
ering groups. Then, we obtain presentations of the modified quantum covering groups
and their quasi-classical counterpart.

3.1. The following is an analogue of [17, §2.2.4–5].
A Cartan datum is a pair (I , ·) consisting of a finite set I and a symmetric bilinear

form ν, ν′ �→ ν · ν′ on the free abelian group Z[I ] with values in Z satisfying

(a) di = i ·i
2 ∈ Z>0;

(b) 2 i · j
i ·i ∈ −N for i 
= j in I .

If the datum can be decomposed as I = I0
∐

I1 such that

(c) I1 
= ∅,
(d) 2 i · j

i ·i ∈ 2Z if i ∈ I1,

then it is called a super Cartan datum; cf. [4]. We denote the parity p(i) = 0 for i ∈ I0
and p(i) = 1 for i ∈ I1.

Following [4], we will always assume a super Cartan datum satisfies the additional
bar-consistent condition:

(e) i ·i
2 ≡ p(i) mod 2, ∀i ∈ I .

A root datum of type (I , ·) consists of 2 finite rank lattices X ,Y with a perfect
bilinear pairing 〈·, ·〉 : Y × X → Z, 2 embeddings I ↪→ X (i �→ i ′) and I ↪→ Y
(i �→ i) such that 〈i, j ′〉 = 2 i · j

i ·i , ∀i, j ∈ I . Moreover, we will assume throughout
the paper that the root datum is X-regular, i.e., that the simple roots are linearly
independent in X .
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Define

�i = min{r ∈ Z>0 | r(i · i)/2 ∈ �Z}.

The next lemma follows by the definition of �i and the bar-consistency condition of
I .

Lemma 3.1 For each i ∈ I1, �i has the same parity as �.

Then, (I ,�) is a new root datum by [17, 2.2.4], where we let

i � j = (i · j)�i� j , ∀i, j ∈ I .

Note that if � is odd, then (I ,�) is a super Cartan datum with the same parity decom-
position I = I0∪ I1 as for (I , ·) by Lemma 3.1; if � is even, then (I ,�) is a (non-super)
Cartan datum with I1 = ∅.

We shall write Y �, X� in this paper what Lusztig [17, 2.2.5] denoted by Y ∗, X∗,
respectively, and we will use superscript � in related notation associated with
(Y �, X�, I ,�) below. More explicitly, we set X� = {ζ ∈ X |〈i, ζ 〉 ∈ �iZ,∀i ∈ I } and
Y � = HomZ(X�,Z) with the obvious pairing. The embedding I ↪→ X� is given by
i �→ i ′� = �i i ′ ∈ X , while embedding I ↪→ Y � is given by i �→ i� ∈ Y � whose
value at any ζ ∈ X� is 〈i, ζ 〉/�i . It follows that 〈i�, j ′�〉 = 2i � j/i � i .

If � is odd, then (Y �, X�, . . .) is a new super root datum satisfying (a)–(d) above and
in addition the bar-consistency condition (e). Indeed, we have 2 i� j

i�i = 2 i · j
i ·i

� j
�i

∈ 2Z by

Lemma 3.1, whence (d), and i�i
2 = i ·i

2 �2i ≡ p(i) mod 2 by Lemma 3.1, whence (e).
If � is even, then (Y �, X�, · · · ) is a new (non-super) root datum just as in [17, 2.2.5].
3.2. By [4, Propositions 1.4.1, 3.4.1], the unitalQ(q)π -superalgebra f is generated by
θi (i ∈ I ) subject to the super Serre relations

∑

n+n′=1−〈i, j ′〉
(−1)n

′
π
n′ p( j)+(n

′
2 )

i θ
(n)
i θ jθ

(n′)
i = 0

for any i 
= j in I ; here a generator θi is even if and only if i ∈ I0. There is anAπ -form
for f , which we call Af . It is generated by the divided powers θ

(n)
i = θni /[n]!qi ,πi

for
all i ∈ I , n ≥ 1. As Rπ is an Aπ -algebra (cf. Sect. 2.3), by a base change we define
Rf = Rπ ⊗Aπ Af . The algebras ′f�, f� and Rf� are defined in the same way using the
Cartan datum (I ,�).

LetU denote the quantumcovering group associatedwith the root datum (Y , X , . . .)

introduced in [4]. By [4, Proposition 3.4.2], U is a unital Q(q)π -superalgebra with
generators

Ei (i ∈ I ), Fi (i ∈ I ), Jμ (μ ∈ Y ), Kμ (μ ∈ Y ),

subject to the relations (a)–(f) below for all i, j ∈ I , μ, μ′ ∈ Y :

K0 = 1, KμKμ′ = Kμ+μ′ , (a)
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J2μ = 1, Jμ Jμ′ = Jμ+μ′ , JμKμ′ = Kμ′ Jμ, (b)

KμEi = q〈μ,i ′〉Ei Kμ, JμEi = π〈μ,i ′〉Ei Jμ,

KμFi = q−〈μ,i ′〉Fi Kμ, JμFi = π−〈μ,i ′〉Fi Jμ, (c)

Ei Fj − π p(i)p( j)Fj Ei = δi, j
J̃i K̃i − K̃−i

πi qi − q−1
i

, (d)

∑

n+n′=1−〈i, j ′〉
(−1)n

′
π
n′ p( j)+(n

′
2 )

i E (n)
i E j E

(n′)
i = 0 (e)

∑

n+n′=1−〈i, j ′〉
(−1)n

′
π
n′ p( j)+(n

′
2 )

i F (n)
i Fj F

(n′)
i = 0 (f)

where for any element ν = ∑
i νi i ∈ Z[I ] we have set K̃ν = ∏

i Kdi νi i , J̃ν =∏
i Jdi νi i . In particular, K̃i = Kdi i , J̃i = Jdi i . (Under the bar-consistent condition (e),

J̃i = 1 for i ∈ I0 while J̃i = Ji for i ∈ I1.) We endow U with a Z[I ]-grading | · |
by setting |Ei | = i, |Fi | = −i, |Jμ| = |Kμ| = 0. The parity on U is given by
p(Ei ) = p(Fi ) = p(i) and p(Kμ) = p(Jμ) = 0,

The algebraU has anAπ -formAU. By a base change,we obtain RU = Rπ ⊗Aπ AU.
Let RU+ (resp. RU−) denote the subalgebra of RUgeneratedby the E (n)

i = En
i /[n]!qi ,πi

(resp. Fi = Fn
i /[n]!qi ,πi

). As a Rπ -algebra, Rf is isomorphic to RU+ (resp. RU−) via
the map x �→ x+ (resp. x �→ x−), where (θ

(n)
i )+ = E (n)

i (resp. (θ(n)
i )− = F (n)

i .

Denote by X+ = {λ ∈ X | 〈i, λ〉 ∈ N,∀i ∈ I }, the set of dominant integral
weights.

For λ ∈ X , let M(λ) be the Verma module of U, and we can naturally identify
M(λ) = f as Q(q)π -modules. The AU-submodule AM(λ) can be identified with
Af as Aπ -free modules. For λ ∈ X+, we define the integrable U-module V (λ) =
M(λ)/Jλ, where Jλ is the left f-module generated by θ

〈i,λ〉+1
i for all i ∈ I . Let

RM(λ) = Rπ ⊗Aπ AM(λ) for λ ∈ X , and RV (λ) = Rπ ⊗Aπ AV (λ) for λ ∈ X+.
The algebraU� is defined in the samewayasUbasedon the root datum (Y �, X�, ...).
Recall from [6, Definition 4.2] that the modified quantum covering group U̇ is a

Q(q)π -algebra without unit which is generated by the symbols 1λ, Ei1λ and Fi1λ, for
λ ∈ X and i ∈ I , subject to the relations:

1λ1λ′ = δλ,λ′1λ,

(Ei1λ)1λ′ = δλ,λ′Ei1λ, 1λ′(Ei1λ) = δλ′,λ+i ′Ei1λ,

(Fi1λ)1λ′ = δλ,λ′Fi1λ, 1λ′(Fi1λ) = δλ′,λ−i ′Fi1λ,

(Ei Fj − π p(i)p( j)Fj Ei )1λ = δi j [〈i, λ〉]vi ,πi
1λ,

∑
n+n′=1−〈i, j ′〉(−1)n

′
π
n′ p( j)+(n

′
2 )

i E (n)
i E j E

(n′)
i 1λ = 0 (i 
= j),

∑
n+n′=1−〈i, j ′〉(−1)n

′
π
n′ p( j)+(n

′
2 )

i F (n)
i Fj F

(n′)
i 1λ = 0 (i 
= j),
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where i, j ∈ I , λ, λ′ ∈ X , and we use the notation xy1λ = (x1λ+|y|)(y1λ) for
x, y ∈ U.

The modified quantum covering group U̇ admits an Aπ -form, AU̇ and so we can
define RU̇ = Rπ ⊗Aπ AU̇. Let us give a presentation for RU̇.

Lemma 3.2 The modified quantum covering group RU̇ is generated as an Rπ -algebra
by x+1λx ′− or equivalently by x−1λx ′+, where x ∈ Rfμ, x ′ ∈ Rfν and λ ∈ X, subject
to the following relations:

(
θ

(N )
i

)+
1λ

(
θ

(M)
i

)−

=
∑

t≥0

π
MN−(t+1

2 )
i

(
θ

(M−t)
i

)− [
M + N + 〈i, λ〉

t

]

qi ,πi

1λ+(M+N−t)i ′
(
θ

(N−t)
i

)+
,

(
θ

(N )
i

)−
1λ

(
θ

(M)
i

)+

=
∑

t≥0

π
MN+t〈i,λ〉−(t2)
i

(
θ

(M−t)
i

)+ [
M + N − 〈i, λ〉

t

]

qi ,πi

1λ−(M+N−t)i ′
(
θ

(N−t)
i

)−
,

(
θ

(N )
i

)+ (
θ

(M)
j

)−
1λ = πMNp(i)p( j)(θ

(M)
j )−

(
θ

(N )
i

)+
1λ, for i 
= j,

x+1λ = 1λ+μx
+, x−1λ = 1λ−μx

−,

(x+1λ)(1λ′x ′−) = δλ,λ′x+1λx
′−, (x−1λ)(1λ′x ′+) = δλ,λ′x−1λx

′+,

(x+1λ)(1λ′x ′−) = δλ,λ′1λ+μx
+x ′−, (x−1λ)(1λ′x ′+) = δλ,λ′1λ−μx

−x ′+,

(r x + r ′x ′)±1λ = r x±1λ + r ′x ′±1λ, where r , r ′ ∈ Rπ .

Proof This is proved in the same way as [17, § 31.1.3]. Let A be the Rπ -algebra with
the above generators and relations. All of these relations are known to hold in RU̇. The
first three are shown to hold in RU̇ by a direct application of [4, Lemma 2.2.3] as in
[7, Lemma 4], while the remaining ones are clear. However, there was an error in the
second relation of [7, Lemma 4], so we derive that relation from [4, Lemma 2.2.3]
here. We have

(
θ

(N )
i

)−
1λ

(
θ

(M)
i

)+

=
(
θ

(N )
i

)−
(θ

(M)
i )+1λ−Mi ′

=
∑

t≥0

(−1)tπ(M−t)(N−t)−t2

i

(
θ

(M−t)
i

)+ [
K̃i ; M + N − (t + 1)

t

]

qi ,πi

(
θ

(N−t)
i

)−
1λ−Mi ′

=
∑

t≥0

(−1)tπ(M−t)(N−t)−t2

i

(
θ

(M−t)
i

)+ [〈i, λ〉 − M − N + t − 1
t

]

qi ,πi

1λ−(M+N−t)i ′
(
θ

(N−t)
i

)−

=
∑

t≥0

π
MN+t〈i,λ〉−(t2)
i

(
θ

(M−t)
i

)+ [
M + N − 〈i, λ〉

t

]

qi ,πi

1λ−(M+N−t)i ′
(
θ

(N−t)
i

)−

where in the last step, we used [4, (1.10)] with a = M+N −〈i, λ〉. Hence, the natural
homomorphism A −→ RU̇ is surjective. Let S be an Rπ -basis of Rf consisting of
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weight vectors. Then, {x+1λx ′−|x, x ′ ∈ S, λ ∈ X} can be seen to be an Rπ -basis for A,
and it is known to be one for RU̇ (cf. [7, Lemma 5]). Thus, the natural homomorphism
is, in fact, an isomorphism. 
�

3.3. The algebra U̇� is defined in the same way using U� and (Y �, X�, . . .), and so it
also has an Aπ -form AU̇� and we can define RU̇� = Rπ ⊗Aπ AU̇�.

Remark 3.3 If � is even, then Rf� is a (non-super) algebra; if � is odd, then the θi in
Rf� and Rf for any given i have the same parity.

For i ∈ I , we denote

q�
i = qi�i/2 = q

�2i
i , q�

i = qi�i/2 = q
�2i
i , π�

i = π i�i/2 = π
�2i
i . (3.1)

Lemma 3.4 Let i ∈ I1.

(a) If � is odd, then π�
i = πi .

(b) If � is even, then π�
i = 1.

Proof Recall from Lemma 3.1 that �i must have the same parity as �. The claim on
π�
i follows now from (3.1). 
�
For each i ∈ I , we have

π�
i q

�2
i = (πiq2i )

�2i = 1. (3.2)

Following Lusztig [17], we will refer to the quantum supergroup Rf� associated with
(Y �, X�, · · · ) as quasi-classical; cf. (3.2).
Proposition 3.5 Let R be the fraction field of A′. The quasi-classical algebra Rf� is
isomorphic to ˜Rf�, the Rπ -algebra generated by θi , i ∈ I , subject to the super Serre
relations:

∑

n+n′=1−〈i, j ′〉�
(−1)n

′
(π�

i )np( j)+(n2)θ
(n)
i θ jθ

(n′)
i = 0 (i 
= j ∈ I ).

Proof When πi = 1 or � is even, π�
i = 1 and q�

i = ±1 for each i ∈ I . Hence, in this
case the lemma reduces to [17, § 33.2].

Now let � be odd andπ = −1.Wemake use of theweight-preserving automorphism
�̇ of RU̇� (called a twistor) given in [6, Theorem 4.3] when the base ring contains√−1. We will only recall the basic property of �̇ which we need, and refer to [6]
for details. Note that for all i ∈ I , q�

i is a power of
√−1 with at least one of the

q�
i = ±√−1. Thus, ±√−1 will play the role played by the v in [6, Theorem 4.3],

which we will denote by ṽ in this proof so as not to confuse it with the v defined in
this paper. Recall �̇ takes π to −π and ṽ to

√−1ṽ. When we specialize π = −1
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and ṽ = ±√−1, we obtain an R-linear isomorphism of that specialization of RU̇�,
denoted by RU̇�|−1, with the (quasi-classical) modified quantum group corresponding
to the specialization π = 1 and q�

j = ±1, denoted by RU̇�|1.
Write
� R−1 f for the half quantum (super)group over R corresponding to the former (i.e.,

π = −1);
� R1f

� for the half (quasi-classical) quantum group over R corresponding to the
latter (i.e., π = 1); cf. [17, 33.2].

Recall that Rf� is a direct sum of finite-dimensional weight spaces Rf�ν , where
ν ∈ Z≥0[I ]. The weight-preserving isomorphism �̇ above implies that

dimRπ (Rf�ν ) = dimR(R−1f
�
ν ) = dimR R1 f

�
ν , ∀ν.

As R1f
� is quasi-classical in the sense of [17, 33.2], we have dimR R1f

�
ν = dimR R1 fν

for all ν, by [17, 33.2.2], where R1 f is the enveloping algebra of the half KM algebra
over R. Hence, we have

dimRπ (Rf�ν ) = dimR(R1 fν), ∀ν. (3.3)

Since the super Serre relations hold in Rf� (cf. [4, Proposition 1.7.3]), we
have a surjective algebra homomorphism ϕ : ˜Rf� −→ Rf� mapping θi �→ θi
for all i . Then, ϕ maps each weight space R f̃�ν onto the corresponding weight
space Rf�ν . As ˜Rf� has a Serre-type presentation by definition, it follows by [5,13]
that dimRπ (R f̃ν) = dimR(R1fν) for each ν. This together with (3.3) implies that
dimRπ (R f̃ν) = dimRπ (Rf�ν ). Therefore, ϕ is a linear isomorphism on each weight
space and thus an isomorphism. 
�

3.4. Below we provide an analogue of [17, 35.1.5].

Lemma 3.6 Assume that both n ∈ Z and t ∈ N are divisible by �i . Then,

[
n
t

]

qi ,πi

=
[
n/�i
t/�i

]

q�
i ,π�

i

.

(Setting π = 1 in the above formula recovers [17, 35.1.5].)

Proof By Lemma 2.1(b), we have

[
n
t

]

qi ,πi

= π
t(n−(t−�i )/2)
i qt(n+�i )

i

(
n/�i

t/�i

)
.

Note that π�
i q

�
i
2 = (πq2)

i ·i
2 �2i . Since (πq2)2� = 1 and � divides i ·i

2 �2i by the definition

of �i , we have (π�
i q

�
i
2
)2 = 1. Hence, by (3.1) and Lemma 2.1(b) with � = 1 we have

[
n/�i
t/�i

]

q�
i ,π�

i

= π
t(n−(t−�i )/2)
i qt(n+�i )

i

(
n/�i

t/�i

)
.
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The lemma follows. 
�

4 The Frobenius–Lusztig homomorphism

In this section we establish the Frobenius–Lusztig homomorphism between the quasi-
classical covering group and the quantum covering group at roots of 1. We also
formulate Lusztig–Steinberg tensor product theorem in this setting.

4.1. Following [17, 35.1.2], in this and following sections we shall assume

(a) for any i 
= j ∈ I with � j ≥ 2, we have �i ≥ −〈i, j ′〉 + 1.
(b) (I , ·) has no odd cycles.

4.2. Below is a generalization of [17, Theorem 35.1.8].

Theorem 4.1 There is a unique Rπ -superalgebra homomorphism

Fr′ : Rf� −→ Rf, Fr′(θ(n)
i ) = θ

(n�i )
i (∀i ∈ I , n ∈ Z>0).

(Be aware that the two θi ’s above belong to different algebras and hence are different.
Theorem 4.1 is consistent with Remark 3.3.)

The rest of the section is devoted to a proof of Theorem 4.1. The same remark as
in [17, 35.1.11] allows us to reduce the proof to the case when R is the quotient field
of A′, which we will assume in the remainder of this and the next section.
4.3. Recall from (2.3) that π�q2� = 1 and π tq2t 
= 1 for 0 < t < �. By the definition
of �i , we have π�

i q
2�
i = 1 and π t

i q
2t
i 
= 1 for 0 < t < �i . Then, [t]πqi ! is invertible in

Rπ , for 0 < t < �i .
The following is an analogue of [17, Lemma 35.2.2] and the proof uses now Lem-

mas 2.1 and 2.2.

Lemma 4.2 The Rπ -superalgebra Rf is generated by the elements θ
(�i )
i for all i ∈ I

and the elements θi for i ∈ I with �i ≥ 2.

Proof By definition the algebra Rf is generated by θ
(n)
i for all i ∈ I and n ≥ 0.We can

write n = a + �i b, for 0 ≤ a < �i and b ∈ N. We note the following three identities
in Rf :

θ
(a+�i b)
i = q�i ab

i θ
(a)
i θ

(�i b)
i , (4.1)

θ
(a)
i = [a]−1

qi ,πi
θai , (4.2)

θ
(�i b)
i = (b!)−1(πiqi )−�2i (

b
2)(θ

(�i )
i )b, (4.3)

where (4.1) follows by Lemma 2.1 and (4.3) follows by Lemma 2.2, respectively.
(Note that a sign in the power of vi in the identity (b) in [17, proof of Lemma 35.2.2]
is optional, but the sign cannot be dropped from the power of qi in (4.3).) The lemma
follows. 
�
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We shall prove Theorem 4.1 in this subsection. The uniqueness is clear.
By Lemma 2.2 (with � = 1), we have

[n]!q�
i ,π�

i
= (πiqi )�

2
i (

n
2)n!. (4.4)

We first observe that the existence of a homomorphism Fr′ such that Fr′(θi ) = θ
(�i )
i

implies that Fr′(θ(n)
i ) = θ

(n�i )
i for all n ≥ 0. Indeed, using (4.3)–(4.4) we have

Fr′(θ(n)
i ) = ([n]q�

i ,π�
i
!)−1Fr′(θi )n = (

(πiqi )�
2
i n(n−1)/2n!)−1Fr′(θi )n = θ

(n�i )
i .

Hence, it remains to show that there exists an algebra homomorphism Fr′ : Rf� →
Rf such that θi → θ

(�i )
i ,∀i ∈ I . By Proposition 3.5 (also cf. [4]), the algebra Rf� has

the following defining relations:

∑

n+n′=1−〈i, j ′〉�
(−1)n

′
(π�

i )np( j)+(n2)θ
(n)
i θ jθ

(n′)
i = 0 (i 
= j ∈ I ).

By (4.4) it suffices to check the following identity in Rf : for i 
= j ∈ I ,

∑

n+n′=1−〈i, j ′〉� j /�i

(−1)n
′
π

�2i (np( j)+n(n−1)/2)
i (πiqi )

−�2i (
n
2)(πiqi )

−�2i (
n′
2 )

(θ
(�i )
i )n

n! θ
(� j )

j

(θ
�i )
i )n

′

n′! = 0,

which, by the identity (4.3), is equivalent to checking the following identity in Rf :

∑

n+n′=1−〈i, j ′〉� j /�i

(−1)n
′
π

�2i (np( j)+n(n−1)/2)
i θ

(�i n)
i θ

(� j )

j θ
(�i n′)
i = 0. (4.5)

It remains to prove (4.5). Set α = − 〈
i, j ′

〉
. For any 0 ≤ t ≤ �i − 1, we set

gt =
∑

r ,s
r+s=� jα+�i−t

(−1)rπ
� j r p( j)+r(r−1)/2
i qr(�i−1−t)

i θ
(r)
i θ

(� j )

j θ
(s)
i ∈ Af .

This is basically f ′
i, j;� j ,� jα+�i−t in [4, 4.1.1(d)] in the notation of θ ’s. By the higher

super Serre relations (see [4, Proposition 4.2.4] and [4, 4.1.1(e)]), we have gt = 0 for
all 0 ≤ t ≤ �i − 1. Set

g =
�i−1∑

t=0

(−1)tπ t(t−1)/2
i q

� jαt+�i t−t
i gtθ

(t)
i ,
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which must be 0. On the other hand, setting s′ = s + t , we have

(0 =) g =
∑

r ,s′
r+s′=� jα+�i

cr ,s′θ
(r)
i θ

(� j )

j θ
(s′)
i , (4.6)

where

cr ,s′ =
�i−1∑

t=0

(−1)r+tπ
� j r p( j)+r(r−1)/2+t(t−1)/2
i q

r(�i−1−t)+� jαt+�i t−t
i

[
s′
t

]

qi ,πi

.

Taking the image of the identity (4.6) under the map Af → Rf , we have

∑

r ,s′
r+s′=� jα+�i

φ(cr ,s′)θ
(r)
i θ

(� j )

j θ
(s′)
i = 0 ∈ Rf .

For a fixed s′, we write s′ = a + �i n, where a, n ∈ Z and 0 ≤ a ≤ �i − 1. Note

by Lemma 2.1(c) that

[
s′
t

]

qi ,πi

= q−�i nt
i

[
a
t

]

qi ,πi

. Now using r + s′ = � jα + �i we

compute

φ(cr ,s′) = (−1)rqr(�i−1)
i

�i−1∑

t=0

(−1)tπ
� j r p( j)+r(r−1)/2+t(t−1)/2
i qt(s

′−1)−�i nt
i

[
a
t

]

qi ,πi

= (−1)rqr(�i−1)
i

a∑

t=0

(−1)tπ
� j r p( j)+r(r−1)/2+t(t−1)/2
i qt(a−1)

i

[
a
t

]

qi ,πi

(a)= δa,0(−1)� jα+�i−�i nπ
� j r p( j)+r(r−1)/2
i q

(�i−1)(� jα+�i−�i n)

i

(b)= δa,0(−1)α� j /�i+1−nπ
� j r p( j)+r(r−1)/2−r(�i−1)/2
i . (4.7)

The identity (a) above follows by the identity
∑a

t=0(−1)tπ t(t−1)/2
i qt(a−1)

i

[
a
t

]

qi ,πi

=

δa,0 (see [4, 1.4.4]), and (b) follows by the identity π
(�i−1)�i /2
i q

�2i −�i
i = (−1)�i+1

(which is an i-version of (2.5) with the help of π
�i
i q2�ii = 1).

Inserting (4.7) into (4.6) and comparing with (4.5), we reduce the proof of (4.5) to

verify that π
�2i (np( j)+n(n−1)/2)
i = π

� j �i np( j)+�i n(�i n−1)/2−�i n(�i−1)/2
i , which is equiva-

lent to verifying π
�2i np( j)
i = π

� j �i np( j)
i . The latter identity is trivial unless both i and j

are in I1; when both i and j are in I1, the identity follows from Lemma 3.1. Therefore,
we have proved (4.5) and hence Theorem 4.1.

4.5.We develop in this subsection the analogue of [17, 35.3]; recall we are still working
under the assumption that R is the quotient field of A′.
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Proposition 4.3 Let λ ∈ X�, i.e., 〈i, λ〉 ∈ �iZ for all i ∈ I . Let M denote the simple
highest weight module with highest weight λ in the category of Rπ -free weight U-
modules, and let η be a highest weight vector of Mλ.

(a) If ζ ∈ X satisfies Mζ 
= 0, then ζ = λ − ∑
i �i ni i

′, where ni ∈ N. In particular,
〈i, ζ 〉 ∈ �iZ for all i ∈ I .

(b) If i ∈ I is such that �i ≥ 2, then Ei , Fi act as zero on M.

(c) For any r ≥ 0, let M ′
r be the subspace of M spanned by F

(�i1 )

i1
F

(�i2 )

i2
. . . F

(�ir )

ir
η

for various sequences i1, i2, . . . , ir in I . Let M ′ = ∑
r M

′
r . Then, M

′ = M.

Proof The proof is completely analogous to [17]. All computations are similar except
that we are nowworking over Rπ instead of R; and the results follow fromLemma 2.1,
[4, (4.1) and Proposition 4.2.4], and Lemma 4.2.

First, we show that
(d) Ei M ′

r = 0, Fi M ′
r = 0 for any i ∈ I such that �i ≥ 2,

which is similarly proved by induction on r ≥ 0. The base case r = 0 follows from

the fact that

[〈i, λ〉
t

]

qi ,πi

= 0 since λ ∈ X� (using Lemma 2.1) and the fact that

E (n)
j Fiη is an Rπ -linear combination of Fi E

(n)
j and E (n−1)

j . For the inductive step,

we want to show that Ei F
(� j )

j m = 0 and Fi F
(� j )

j m = 0 for any i, j ∈ I such that

�i ≥ 2 and any m ∈ M ′
r−1ζ . For the first one we use the fact that Ei F

(� j )

j m is an

Rπ -linear combination of F
(� j )

j Eim and F
� j−1
j in the case � j ≥ 2, and for � j = 1

we again use

[〈i, λ〉
t

]

qi ,πi

= 0 from Lemma 2.1. For the second one, we may use

[4, (4.1) and Proposition 4.2.4] to write Fi F
(� j )

j m as a Rπ -linear combination of

F
(� j−r)
j Fi F

(r)
j m for various r with 0 ≤ r < � j , and for such r we have Fi F

(r)
j m = 0

by the induction hypothesis.
Next, we may show by induction on r ≥ 0 that

(e) E (li )
i M ′

r ⊂ M ′
r−1 for any i ∈ I ,

(by convention M ′−1 = 0); again for m′ ∈ M ′
r−1 we can use the fact that E

(li )
i F

(� j )

j m′

is an Rπ -linear combination of F
(� j )

j E (�i )
i m′ (which is in M ′

r−1 by the induction

hypothesis), and elements of the form F
(� j−t)
j E (�i−t)

i m′ with t > 0 and t ≤ �i , t ≤ � j

(which as before are zero if t < �i or if t = �i and t < � j , by (d), and are in M ′
r−1 if

t = �i = � j ).
The statements (d), (e) together with Lemma 4.2 show that

∑
r M

′
r is an RU̇-

submodules of M , and by simplicity of M it follows that M = ∑
r M

′
r , from which

(a) and (b) also follow. 
�
Corollary 4.4 There is a unique weight RU̇�-module structure on M (as in Proposi-
tion 4.3) in which the ζ -weight space is the same as that in the RU̇�-modules M, for
any ζ ∈ X� ⊂ X, and such that Ei , Fi ∈ Rf� act as E (�i )

i , F (�i )
i ∈ Rf . Moreover, this

is a simple (Rπ -free) highest weight module for RU̇� with highest weight λ ∈ X�.
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Proof We define operators ei , fi : M → M for i ∈ I by ei = E (�i )
i , fi = F (�i )

i .
Using Theorem 4.1 we see that ei and fi satisfy the Serre-type relations of Rf�.

If ζ ∈ X\X�, we have Mζ = 0 by Proposition 4.3(a) above. If ζ ∈ X� and

m ∈ Mζ , then we have that (ei f j − f j ei )(m) is equal to δi, j

[〈i, λ〉
�i

]

qi ,πi

· m plus an

Rπ -linear combination of elements of the form F�i−t
i E�i−t

i (m) with 0 < t < �i (this
follows by [7, Lemma 4]) which are zero by Proposition 4.3(b). Since 〈i, ζ 〉 ∈ �iZ,
we see from Lemma 3.6 that

[〈i, λ〉
�i

]

qi ,πi

=
[〈i, λ〉/�i

1

]

q�
i ,π�

i

and so (ei f j − f j ei )m = δi, j [〈i, λ〉/�i ]q�
i ,π�

i
·m. We also have that ei (Mζ ) ⊂ Mζ+�i i ′

and fi (Mζ ) ⊂ Mζ−�i i ′ . Thus, we have a unital RU̇�-module structure on M , and by
Proposition 4.3(c) this is a highest weight module of RU̇� with highest weight λ and
simplicity also follows using Lemma 4.2 in the same argument as in [17]. 
�
4.6. Now we are ready to state our analogue of the main result of [17, 35.4] on a tensor
product decomposition. Let f be the R-subalgebra of Rf generated by the elements θi
for various i such that �i ≥ 2. We have f = ⊕νfν where f = Rfν ∩ f.

Theorem 4.5 (Lusztig–Steinberg tensor product theorem) The Rπ -linear map

χ : Rf� ⊗R f → Rf, x ⊗ y �→ Fr′(x)y

is an isomorphism of Rπ -modules.

Proof First, we make the following statement which is similar to (but slightly less
precise than) [17, 35.4.2(a)].

Claim. For any i ∈ I and y ∈ fν , there exists some a(y), b(y) ∈ Z such that the
difference θ

(�i )
i y − π

a(y)
i qb(y)i yθ(�i )

i belongs to f.
For y = y′y′′ one easily reduces the claim to the same type of claim for y′ and y′′.

Hence, it suffices to show this claim when y is a generator of f, i.e., y = θ j where
� j ≥ 2. Recall our assumption (a) in Sect. 4.1 that �i ≥ −〈i, j ′〉 + 1. Hence, we may
use the higher Serre relation in [4, (4.1) and Proposition 4.2.4] (but with θi ’s instead
of Fi ’s) to show that for some a( j), b( j), the difference θ

(�i )
i θ j − π

a( j)
i qb( j)i θ jθ

(�i )
i

is an Rπ -linear combination of products of the form θ
(r)
i θ jθ

(�i−r)
i with 0 < r < �i ,

which are contained in f by definition. The claim is proved.
By Lemma 4.2, Rf is generated by θ

(�i )
i and θ j with � j ≥ 2. The surjectivity of χ

follows as the claim allows us to move factors θ j to the right which produces lower
terms in f.

The injectivity is proved by exactly the same argument as in [17, 35.4.2] using now
Proposition 4.3 and Corollary 4.4; the details will be skipped. 
�

The following is an analogue of [17, Proposition 35.4.4], which follows by the same
argument now using the anti-involution σ of Rf which fixes each θi (cf. [4, § 1.4]).
We omit the detail to avoid much repetition.
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Proposition 4.6 Assume that the root datum is simply connected. Then, there is a
unique λ ∈ X+ such that 〈i, λ〉 = �i − 1 for all i . Let η be the canonical generator of
RV (λ). The map x �→ x−η is an Rπ -linear isomorphism f −→ RV (λ).

4.7. The following is a generalization of [17, Theorem 35.1.7]. As with Theorem 4.1,
we may reduce the proof to the case when R is the quotient field of A′ (cf. [17,
35.1.11]).

Theorem 4.7 There is a unique Rπ -superalgebra homomorphism Fr : Rf −→ Rf�
such that, for all i ∈ I , n ∈ N,

Fr(θ(n)
i ) =

{
θ

(n/�i )
i , if �i divides n,

0, otherwise.

(We call Fr the Frobenius–Lusztig homomorphism.)

Proof The proof proceeds essentially like that of [17, Theorem 35.1.7]. Uniqueness is
clear; we need only prove the existence. By Theorem 4.5, there is an Rπ -linear map
P : Rf −→ Rf�, such that for all ik ∈ I and for jp ∈ I where � jp ≥ 2

P(θ
(�i1 )

i1
· · · θ(�in )

in
θ j1 · · · θ jr ) =

{
θi1 · · · θin , if r = 0,

0, otherwise.

We now check that P is a homomorphism of Rπ -algebras. Because Rf is generated as

an Rπ -module by elements of the form x = θ
(�i1 )

i1
...θ

(�in )

in
θ j1 · · · θ jr , we need to check

that for any such x,

P(xθ j ) = P(x)P(θ j ) (4.8)

for j ∈ I such that � j ≥ 2 and

P(xθ(�i )
i ) = P(x)P

(
θ

(�i )
i

)
(4.9)

for all i ∈ I . As (4.8) is obvious, we will concern ourselves with (4.9). Note that (4.9)

is clear when r = 0. Assume now r > 0. Let us write x ′ = θ
(�i1 )

i1
...θ

(�in )

in
θ j1 · · · θ jr−1

and θ j = θ jr so that x = x ′θ j . For i = j , we have P(x)P
(
θ

(�i )
i

)
= 0 and

P(xθ(�i )
i ) = P(x ′θiθ(�i )

i ) = P(x ′θ(�i )
i θi ) = P(x ′θ(�i )

i )P(θi ) = 0,

where the third equality is due to (4.8). Now suppose that i 
= j . As �i > −〈i, j ′〉,
we may use the higher-order Serre relations for quantum covering groups (cf. [4,
(4.1) and Proposition 4.2.4]) to write θ jθ

(�i )
i as a linear combination of terms of

the form θ
(m)
i θ jθ

(n)
i where m + n = �i and m ≥ 1. Because of (4.2) and (4.8),

P(x ′θ(m)
i θ jθ

(n)
i ) = 0 for 1 ≤ m < �i , and P(x ′θ(�i )

i θ j ) = 0.
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Now that we know that P is an Rπ -algebra homomorphism, and it remains to
compute P(θ

(n)
i ) for all n ∈ Z≥0.Write n = b�i +a,where 0 ≤ a < �i and b ∈ Z≥0.

Using (4.1), (4.2) and (4.3), for a > 0 we have

P(θ(b�i+a)) = q�i ab
i P(θ

(a)
i )P(θ

(b�i )
i ) = q�i ab

i ([a]!qi ,πi
)−1P

(
θai

)
P(θ

(b�i )
i ) = 0.

Similarly, for a = 0 we have

P
(
θ

(b�i )
i

)
= (b!)−1(πiqi )−�2i (

b
2)P

(
θ

(�i )
i

)b

= (b!)−1(π�
i q

�
i )

−(b2)θbi = ([b]!q�
i ,π�

i
)−1θbi = θ

(b)
i ,

where, in the third equality we used Lemma 2.2, with � = 1. Hence, P is the desired
homomorphism Fr. 
�
4.8. We extend the Frobenius–Lusztig homomorphism Fr : Rf −→ Rf� in Theo-
rem 4.7 to RU̇. In contrast to the quantum group setting, we have to twist Fr slightly
on one half of the quantum covering group.

Theorem 4.8 There is a unique Rπ -superalgebra homomorphism Fr : RU̇ −→ RU̇�
such that for all i ∈ I , n ∈ Z, λ ∈ X,

Fr(E (n)
i 1λ) =

⎧
⎨

⎩
π

(
�i
2 )n/�i

i E (n/�i )
i 1λ, if �i divides n and λ ∈ X�,

0, otherwise
(4.10)

and

Fr(F (n)
i 1λ) =

{
F (n/�i )
i 1λ, if �i divides n and λ ∈ X�,

0, otherwise.

(We also call Fr in this theorem the Frobenius–Lusztig homomorphism.)

Proof Let Fr : Rf −→ Rf� be the homomorphism from Theorem 4.7. Consider the
homomorphism F̃r = ψ ◦ Fr, where ψ : Rf� −→ Rf� is the algebra automorphism
such that θ(n)

i �→ πn
i θ

(n)
i . The proof, much like that of [17, Theorem 35.1.9], amounts

to checking that for x, x ′ ∈ Rf the assignment

x+1λx
′− �→ F̃r(x+)1λFr(x

′−), x−1λx
′+ �→ Fr(x−)1λF̃r(x

′+),

for λ ∈ X�, and

x+1λx
′− �→ 0, x−1λx

′+ �→ 0,

for λ ∈ X\X� satisfies the appropriate relations. These are the relations of Lemma 3.2
for RU̇ and for RU̇�, using Lemma 3.6 to deal with the (q, π)-binomial coefficients.
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The use of the homomorphism F̃r (in place of Fr) on U+ is necessitated by the first
and second relations in Lemma 3.2. Both sides of the first relation are mapped to zero
by Fr unless N , M ∈ �iZ and λ ∈ X�, so we focus on this case. Recalling q�

i , π
�
i

from (3.1), we have

Fr

⎛

⎝
∑

t≥0

π
MN−(t+1

2 )
i F (M−t)

i

[
M + N + 〈i, λ〉

t

]

qi ,πi

1λ+(M+N−t)i ′ E
(N−t)
i

⎞

⎠

=
∑

t≥0

π
MN−(t+1

2 )
i Fr

(
F (M−t)
i

) [
M + N + 〈i, λ〉

t

]

qi ,πi

1λ+(M+N−t)i ′ Fr
(
E (N−t)
i

)

=
∑

t≥0,t∈�iZ

(π�
i )(M/�i )(N/�i )−(

t/�i+1
2 )π

t/�i(
�i
2 )

i F ((M−t)/�i )
i

[
(M + N + 〈i, λ〉)/�i

t/�i

]

q�
i ,π�

i

· 1λ+(M+N−t)i ′π
(N−t)/�i(

�i
2 )

i E ((N−t)/�i )
i

= π
N/�i(

�i
2 )

i

∑

t≥0,t∈�iZ

(π�
i )(M/�i )(N/�i )−(

t/�i+1
2 )F ((M−t)/�i )

i

[
(M + N + 〈i, λ〉)/�i

t/�i

]

q�
i ,π�

i

· 1λ+(M+N−t)i ′ E
((N−t)/�i )
i

= π
N/�i(

�i
2 )

i E (N/�i )
i 1λF

(M/�i )
i

= Fr
(
E (N )
i 1λF

(M)
i

)
,

where we have used π
−(t+1

2 )
i = (π�

i )−(
t/�i+1

2 )π
t/�i(

�i
2 )

i and Lemma 3.6 in the second
equality above.

The verification of the second relation of Lemma 3.2 is entirely similar, and the
other relations therein are straightforward. 
�

5 Small quantum covering groups

In this section, we construct and study the small quantum covering groups. We take
Rπ = Q(q)π , where q is as in (2.2).

5.1. Let R u̇ be the subalgebra of RU̇ generated by Ei1λ and Fi1λ for all i ∈ I with
�i ≥ 2 and λ ∈ X . It is clear then that R u̇ is spanned by terms of the form x+1λx ′−
where x, x ′ ∈ f.We follow the construction of [17, § 36.2.3] in extending RU̇ to a new
algebra RÛ. Any element of RU̇ can bewritten as a sumof the form

∑
λ,μ∈X xλ,μ where

xλ,μ ∈ 1λRU̇1μ is zero for all but finitely many pairs λ,μ. We relax this condition
in RÛ by allowing such sums to have infinitely many nonzero terms provided that the
corresponding λ−μ are contained in a finite subset of X . The algebra structure extends
in the obvious way. We define R û to be the subalgebra of RÛ with xλ,μ ∈ 1λR u̇1μ.

Let 2�̃ be the smallest positive integer such that q2�̃ = 1. Hence, �̃ = 2� for � odd
and �̃ = � for � even. We define the cosets
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ca = {λ ∈ X | 〈i, λ〉 ≡ ai (mod 2�̃), ∀i ∈ I }, (5.1)

for a = (ai |i ∈ I ) with 0 ≤ ai ≤ 2�̃ − 1. Note that there are at most (2�̃)|I | such
cosets and they partition X . Moreover, for each coset c, 1c := ∑

λ∈c 1λ is an element
of R û.

Let Ru (resp. Ru′) be the Rπ -submodule of R û generated by the elements x+1cx ′−
(resp. x−1cx ′+) where x, x ′ ∈ f. The following is an analogue of [17, Lemma 36.2.4].

Lemma 5.1 (1) For any u ∈ Ru and 0 ≤ M ≤ �i − 1, F (M)
i u lies in Ru.

(2) We have Ru = Ru
′, and Ru is a subalgebra of R û.

The algebra Ru is called the small quantum covering group.

Proof We follow the proof in [17]. We prove the first statement by induction on p,

where our u = E (n1)
i1

...E
(n p)

i p
x ′−. The result is obvious for p = 0, so we now consider

p ≥ 1 and rewrite u as

u = 1c′E (n1)
i1

x+
1 x ′−

where x1 = θ
(n2)
i2

...θ
(n p)

i p
.When i 
= i1, the result is immediate, so we consider i = i1.

In that case, using the relations of Lemma 3.2, we have

F (M)
i u =

∑

λ∈c′

∑

t≤n1,t≤M

π
MN+t〈i,λ〉−(t2)
i

[
n1 + M − 〈i, λ〉

t

]

qi ,πi

· E (a1−t)
i 1λ−(n1+M−t)i ′F

(M−t)
i x+

1 x ′−.

Fix μ ∈ c′. Then for any λ ∈ c′, n1 + M − 〈i, λ〉 ≡ n1 + M − 〈i, μ〉 mod(�i ).
Using Lemma 2.1 and noting that t < �i , we have that

[
n1 + M − 〈i, λ〉

t

]

qi ,πi

= q−�i t(〈i,λ〉−〈i,μ〉)
i

[
n1 + M − 〈i, μ〉

t

]

qi ,πi

=
[
n1 + M − 〈i, μ〉

t

]

qi ,πi

,

where we used in the second equality the condition that 〈i, λ〉 − 〈i, μ〉 ≡ 0 mod(2�̃).
Hence, F (M)

i u is equal to

∑

t≤n1,t≤M

π
MN+t〈i,μ〉−(t2)
i

[
n1 + M − 〈i, μ〉

t

]

qi ,πi

E (a1−t)
i

(
∑

λ∈c′
1λ−(n1+M−t)i ′

)
F (M−t)
i x+

1 x ′−

=
∑

t≤n1,t≤M

π
MN+t〈i,μ〉−(t2)
i

[
n1 + M − 〈i, μ〉

t

]

qi ,πi

E (a1−t)
i 1c′′ F (M−t)

i x+
1 x ′−,

for some other c′′. Hence, F (M)
i u ∈ Ru by induction. Finally, the second statement is

shown by repeated application of this result as in [17, Lemma 36.2.4]. 
�
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5.2. Recall there are a comultiplication � and an antipode S on U as defined in [4,
Lemmas 2.2.1, 2.4.1]. Write λUμ for the subspace of RU̇ spanned by elements of the
form 1λx1μ, where x ∈ RU and write pλ,μ for the canonical projection RU → λUμ.
As in [17, 23.1.5, 23.1.6], � and S induce Rπ -linear maps

�λ,μ,λ′,μ′ : λ+λ′Uμ+μ′ −→ λUμ ⊗ λ′Uμ′

given by �λ,μ,λ′,μ′(pλ+λ′,μ+μ′(x)) = (pλ,μ ⊗ pλ′,μ′)(�(x)), for λ,μ, λ′, μ′ ∈ X ,
and

Ṡ : RU̇ −→ RU̇

defined by Ṡ(1λx1μ) = 1−μS(x)1−λ for x ∈ RU. For example, �(Ei ) = Ei ⊗ 1 +
J̃i K̃i ⊗ Ei in RU, and hence, we obtain

�λ−ν+i ′,λ−ν,ν,ν(Ei1λ) = pλ−ν+i ′,λ−ν ⊗ pν,ν(Ei ⊗ 1 + J̃i K̃i ⊗ Ei ) = Ei1λ−ν ⊗ 1ν .

This collection of maps is called the comultiplication on RU̇, and it can be formally
regarded as a single linear map

�̇ =
∏

λ,μ,λ′,μ′∈X
�̂λ,μ,λ′,μ′ : RU̇ −→

∏

λ,μ,λ′,μ′∈X
λUμ ⊗ λ′Uμ′ .

A comultiplication �̇� on RU̇� can be defined in the same way.

Proposition 5.2 The Frobenius–Lusztig homomorphism Fr is compatible with the
comultiplications on RU̇ and RU̇�, i.e., �̇� ◦ Fr = (Fr ⊗ Fr) ◦ �̇.

(In the usual quantum group setting this was noted by [17, 35.1.10].)

Proof It suffices to check on the generators E (n)
i 1λ and F (n)

i 1λ. Let n = m�i ∈ �iZ,

and recall that Fr(E (m�i )
i 1λ) = π

(
�i
2 )m

i E (m)
i 1λ in RU̇�. Using the formula (above [4,

Proposition 2.2.2])

�(E (m)
i ) =

∑

p+r=m

(πi qi )
pr E (p)

i ( J̃i K̃i )
r ⊗ E (r)

i

we see that the nonzero parts in �̇�(Fr(E (m�i )
i 1λ)) computed via (4.10) are of the form

π
(
�i
2 )m

i (π�
i q

�
i )(p+〈i,ν〉�)r E (p)

i 1ν ⊗ E (r)
i 1λ−ν, p + r = m

for various ν ∈ X�, which coincides with Fr ⊗ Fr applied to terms in �̇(E (m�i )
i 1λ))

of the form

(πi qi )
(p�i+〈i,ν〉)(r�i )E (p�i )

i 1ν ⊗ E (r�i )
i 1λ−ν, p + r = m,
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where we note there is a factor contributing from (4.10) which matches up with the

previous part thanks to π
(
�i
2 )p+(

�i
2 )r

i = π
(
�i
2 )m

i ; the remaining terms are zero under
Fr⊗Fr since at least one of the divided powers of Ei appearing in either tensor factor
must be not divisible by �i .

On the other hand, if n is not divisible by �i , then the right-hand side will also be
zero, since all the nonzero parts of �̇(E (n)

i 1λ)) will have a tensor factor containing
some divided power of Ei not divisible by �i .

A similar verification takes care of F (n)
i 1λ. 
�

5.3. The maps �̇ and Ṡ restrict to maps on R u̇, which extend to Rπ -linear maps �̂

and Ŝ on R û in the obvious way. Henceforth, when we refer to �̂ and Ŝ, we mean the
restrictions to Ru.

Additionally, for any basis B of f consisting of weight vectors, with unique zero
weight element equal to 1, we define an Rπ -linear map ê : Ru → Rπ by:

ê(rb+b′−1ca) =
{
r , if b, b′ = 1 and a = 0,
0, otherwise.

where b, b′ ∈ B, r ∈ Rπ , and ca in (5.1).
Define the following elements:

Ki =
∑

λ∈X
q〈i,λ〉1λ, Ji =

∑

λ∈X
π 〈i,λ〉1λ, 1 =

∑

λ∈X
1λ. (5.2)

Proposition 5.3 (1) The Rπ -algebra Ru has a generating set {Ei , Fi (∀i with �i ≥
2), Ki , Ji (∀i ∈ I )}.

(2) (Ru, �̂, ê, Ŝ) forms a Hopf superalgebra.

Proof The elements in (5.2) can be written as

Ki =
∑

c

qc,i1c, Ji =
∑

c

πc,i1c, 1 =
∑

c

1c,

where we have defined qc,i = q〈i,λ〉 and πc,i = π 〈i,λ〉 for any λ ∈ c. This implies that
these elements are also in Ru. Moreover, we have

1c =
∏

i∈I
(2�̃)−1(1 + πc,i Ji )(1 + q−1

c,i Ki + q−2
c,i K

2
i + · · · + q1−�̃

c,i K �̃−1
i ).

This proves (1).
A direct computation using these generators shows that �̂, ê and Ŝ are given

by the same formulas as �, e and S; the former maps inherit the following prop-
erties of the latter: �̂ is a homomorphism which satisfies the coassociativity (cf.
[4, Lemmas 2.2.1 and 2.2.3]), ê is a homomorphism (cf. [4, Lemma 2.2.3]), and
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Ŝ(xy) = π p(x)p(y) Ŝ(y)Ŝ(x) (cf. [4, Lemma2.4.1]).Moreover, the image of �̂ (respec-
tively, Ŝ) lies in Ru ⊗ Ru (respectively, Ru). Hence, (2) holds. 
�
5.4. We consider the Cartan datum associated with the Lie superalgebra osp(1|2n),
where n = |I |, with the following Dynkin diagram:

© © . . . © © . . . © > •
1 2 n − 1 n

The black node denotes the (only) odd simple root. We set

i · i =
{
2, if i is odd,

4, if i is even.

The above Cartan datum on I is a super Cartan datum satisfying the bar-consistent
condition in the sense of Sect. 3.1.

Proposition 5.4 The small quantum covering group Ru of type osp(1|2n) is a finite-
dimensional Rπ -module. In particular,

dimRπ (Ru) = �2n
2

gcd(2, �)2n2−2n
(2�̃)n =

⎧
⎪⎨

⎪⎩

�2n
2
(4�)n, for � odd,

�2n
2

22n2−2n
(2�)n, for � even,

when X is the weight lattice, and similarly,

dimRπ (Ru) = �2n
2

gcd(2, �)2n2−2n
2n−1�̃n =

⎧
⎪⎨

⎪⎩

�2n
2
22n−1�n, for � odd,

�2n
2

22n2−2n
2n−1�n, for � even,

when X is the root lattice.

Proof Note that Ru is a f ⊗ fopp module with basis given by the 1c defined above.
This basis has at most (2�̃)n elements for any X . In particular, it has (2�̃)n elements
when X is the weight lattice, and 2n−1�̃n elements when X is the root lattice, as the
root lattice is index 2 in the weight lattice. Moreover, by Proposition 4.6, we have
that dimRπ (f±) = dimRπ (RV (λ)), where λ is the unique weight such that 〈i, λ〉 =
�i − 1 for each i ∈ I . Let V (λ)1 (respectively, V (λ)−1) be the quotient of the Verma
module of highest weight λ by its maximal ideal for the quantum group (resp. quantum
supergroup) to which the quantum covering group specializes at π = 1 (respectively,
π = −1) with base field R = Q(ε) (recall from Sect. 2.3 that ε is an �′-th root of
unity). Because

RV (λ) = (π + 1)RV (λ) ⊕ (π − 1)RV (λ) ∼= V (λ)1 ⊕ V (λ)−1
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and the characters of V (λ)1 and V (λ)−1 coincide for dominant weights (cf. [13], [5,
Remark 2.5]), we have

dimRπ f± = dimRπ RV (λ) = dimR V (λ)1 = dimR f
±
1 = �n

2

gcd(2, �)n2−n

where f1 is the (non-super) half small quantum group, i.e., f specialized at π = 1. The
last equality is due to [16, Theorem 8.3(iv)]. 
�
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