Graphite: A NUMA-aware HPC System for Graph Analytics
Based on a new MPI x« X Parallelism Model

Mohammad Hasanzadeh Mofrad
Rami Melhem
University of Pittsburgh
Pittsburgh, USA

moh18, melhem@pitt.edu

ABSTRACT

In this paper, we propose a new parallelism model denoted
as MPI x X and suggest a linear algebra-based graph ana-
lytics system, namely, Graphite, which effectively employs
it. MPI % X promotes thread-based partitioning to distribute
computation and communication across threads on a clus-
ter of machines, while eliminating the need for unneces-
sary thread synchronizations. Consequently, it contrasts
with the traditional MPI + X parallelism model, which uti-
lizes process-based partitioning to distribute data among pro-
cesses as a way to scale out on a cluster of machines (the MPI
part), then splits each partition into subpartitions among
the threads of each process as a method to scale up within a
machine (the X part). Besides adopting MPI * X, Graphite
is NUMA-aware. In particular, it assigns threads to par-
titions in a way that exploits CPU and memory affinity,
alongside leveraging faster MPI shared memory transport.
Moreover, it adopts a variant of the popular GAS (Gather,
Apply, and Scatter) computing model, thus decoupling the
computation of partitions from the communication of partial
results. Lastly, it supports thread-level asynchrony, which
does not only overlap the computation with communication,
but further interleaves multiple communications. We com-
pared Graphite against GraphPad, Gemini, and LA3 graph
analytics systems in an HPC environment using different
graph applications. Results show that Graphite is roughly
up to 3x faster than these state-of-the-art systems.
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1. INTRODUCTION

High Performance Computing (HPC) and cloud comput-
ing are inherently and increasingly geared towards meeting
the demands of Big Data and big graph analytics. As data
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grows, its analysis necessitates scaling HPC and cloud re-
sources. The conventional MPI 4 X parallelism model
[4, 52, 59] is a hybrid scheme with: (1) a Message Pass-
ing Interface (MPI) [26, 46] used for horizontal scaling (or
scaling out) across cluster nodes, and (2) a shared mem-
ory paradigm, provided typically by a multithreaded library
such as OpenMP [45] or Pthread [36], utilized for vertical
scaling (or scaling up) across the cores of a node. More pre-
cisely, the MPI+X model employs process-based partitioning,
whereby data is first partitioned across MPI processes (or
scaled out), then each partition is further divided among the
number of threads in each process (or scaled up). As such,
it can be argued that the units of computation and commu-
nication in MPI4+X are MPI processes. Moreover, the two
scaling directions are orthogonal, where the out direction is
dictated by the number of processes and the up direction is
defined by the number of threads per process.

We propose MPI x X parallelism that leverages thread-
based partitioning, wherein data is partitioned directly based
on the total number of threads (with =* indicating that
threads are able to call MPI primitives). The MPI « X model
reduces the boundaries between threads and processes via
considering threads as direct units of computation and com-
munication. Specifically, it combines data partitioning and
scaling directions in a unique way, providing a new paradigm
of scaling, which we denote as diagonal scaling (or scaling
over). With diagonal scaling, the load is distributed across
all threads directly and equally, rather than scaling hori-
zontally then vertically. In addition, since the code that is
written for computation is inherently tailored for threads,
a symmetric code path (control flow) is executed by all
threads. Consequently, an MPI * X system yields identical
computation and communication patterns, while avoiding
unnecessary synchronization points across threads. After-
wards, grouping threads into processes becomes simply an
implementation issue, which should exploit the distributed
and non-uniform memory access (NUMA) properties of the
underlying architecture.

The conventional MPI + X model suggests launching one
process per machine, after which shared memory is used for
communication across threads inside a process (machine)
and MPI over TCP/IP is used for communication across
processes [4, 52, 59, 69]. In this paper, we show that with
the MPI * X model, grouping threads into a process on each
NUMA socket gives superior performance because it allows
threads to use the fast MPI shared memory transport for
inter-socket communication [33], while avoiding the ineffi-
ciency resulting when two threads on different sockets of
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Figure 1: Matrix and vector 2D layouts (p = 4). (a) 2D-process-based partitioning of matrix and vector, (b)
2D-Cyclic process placement (e.g. the shaded tiles are assigned to P), (c) 2D-Staggered process placement,
and (d) 2D-Staggered leader/follower configuration for distributed SpMV y = As.ex.

the same machine share data (shared memory in a machine
is physically distributed among sockets).

The MPI 4+ X model has been widely used in graph an-
alytics [1, 2, 11, 39]. In this paper, we focus on linear
algebra-based graph analytics systems, especially that they
emerged recently as efficient and scalable systems. In partic-
ular, we propose Graphite, a new linear algebra-based graph
analytics system that adopts MPI * X. It utilizes new 2D-
thread-based matrix partitioning and placement approaches
to slice the adjacency matrix of a graph into tiles and as-
sign threads to them. Besides, it employs a GAS (Gather,
Apply, and Scatter)-like matrix computing model [22], offer-
ing thereby a matrix-parallel abstraction for the computa-
tion and communication of threads. We compared Graphite
against two linear algebra-based graph analytics systems,
namely, GraphPad [2] and LA3 [1], and a graph theory-
based system, namely, Gemini [69], using four different ap-
plications on 10 standard datasets. In short, Graphite is
roughly up to 3x faster than these state-of-the-art systems.

The rest of this paper is organized as follows. Section
2 presents the related work. Section 3 discusses the clas-
sical 2D-process-based matrix partitioning and placement
approaches. In Section 4, we propose our 2D-thread-based
matrix partitioning and placement paradigms. Section 5 dis-
cusses NUMA-aware thread placement and Section 6 sum-
marizes features of the MPI % X model. Section 7 puts it
altogether and introduces Graphite. Results are reported in
Section 8 and Section 9 concludes with some remarks.

2. RELATED WORK

Graph algorithms are traditionally solved over central-
ized and distributed graph analytics systems, which pur-
sue a combination of fan-in/fan-out operations over vertices
and their neighborhoods. Examples of conventional cen-
tralized shared memory graph analytics systems are Ligra
[51], Galois [44], GraphLab [39], Julienne [18], Graphlt [67],
Grazelle [24], TuFast [50], PnP [62], and Radar [3]. Also,
examples of traditional distributed shared memory graph
analytics systems are Pregel [42], PowerGraph [22], Dis-
tributed GraphLab [38], Mizan [29], Presto [60], GraphX
[23], Pregelix [9], PowerLyra [14], PowerSwitch [61], Gira-
phUC [25], ShenTu [34], SHMEMGraph [19], TopoX [32],
and Phoenix [16].

Linear algebra primitives such as Sparse Matrix - dense
Vector (SpMV) can be used to solve graph algorithms via op-
erating on adjacency matrices that represent input graphs.
This powerful form of computation yielded linear algebra-
based systems like Pegasus [28], KDT [40], CombBLAS [11],
GraphPad [56, 2], Graphulo [20], GraphBLAS [12, 63, 65],
SuiteSparse [17], LA3 [1], and GraphTap [43], among others.

A different line of work, denoted as out-of-core graph an-
alytics systems, attempted to utilize external storage like
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disks. Examples of these systems are GraphChi [31], Grid-
Graph [70], FlashGraph [68], Graphene [37], Mosaic [41],
and RealGraph [27]. In addition, various scalable array-
based NoSQL (Not Only SQL) database systems suggested
storing 2D adjacency matrices and nD tensors on disks and
running complex analytics atop them. Examples of these
systems are SciDB [54, 55] and TileDB [47]. Lastly, in the
context of graph analytics, cache [5, 6, 66], memory [30], and
NUMA optimizations [64, 69] were studied; with NUMA op-
timizations mostly focusing on CPU/memory affinity.

3. 2D-PROCESS-BASED MATRIX TILING
& PLACEMENT

A graph can be represented by an adjacency matrix, in
which an edge is denoted by a non-zero element in the ma-
trix. Many real-world graphs consist of billions of vertices
and tens of billions of edges. Typical linear-algebra based
systems use 2D-process-based partitioning (tiling) to decom-
pose a matrix into a 2D grid of tiles and achieve load bal-
ancing among processes [1, 2, 11, 56]. Having p processes,
2D tiling partitions the adjacency matrix of a graph G (say,
A) with n vertices into a 2D p by p grid of tiles, produc-
ing p? tiles where each tile covers n/p rows and columns.
This tiling creates a 2D layout of p Row Groups (RGs) and
Column Groups (CGs) of tiles, where A;; denotes the tile
placed at i*" row group (RG;) and j** column group (CG,).
Similarly, a vector that can be involved in computation with
the matrix (more on this shortly) is also partitioned into p
segments, where each segment contains n/p elements.

Figure 1a shows the 2D-process-based partitioning of an
exemplified matrix and a vector using p = 4. After partition-
ing, a process placement is pursued. To assign p processes
to the 2D grid, many 2D-process-based placements put /p
processes per row/column group to limit the communica-
tion between processes [11]. Examples of this are 2D-Cyclic
[2], which assigns processes in a cyclic order (Figure 1b),
and 2D-Staggered [1], which further reorders row groups of
the 2D-Cyclic to guarantee that each diagonal tile is as-
signed to a unique process, and thus aligns the assignment
of row/column groups to processes (Figure 1lc).

Many graph operations can be converted into simple lin-
ear algebra primitives. A common linear algebra primitive is
SpMYV operation y = A®.®x, where A is the n x n adjacency
matrix of G, x and y are n x 1 input and output vectors, and
®.® is a semiring equipped with (4, X) operators. Overload-
ing the semiring with operators specific to the application
allows SpMV to run different graph applications. The iter-
ative SpMV algorithm repeatedly uses the result vector, y,
from one iteration to compute the input vector, x, for the
next iteration until convergence. Often, y is transformed to
an intermediate vector v, which is then used to compute z.
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Figure 2: GraphPad tile processing (MPI 4+ X) [2]
with p = 4 processes and ¢t = 2 threads. Tiles are pro-
cessed in a row-wise order where each tile is split
into m smaller sub-tiles where m >> t for balanc-
ing load among threads. (a) Steps taken to pro-
cess tiles/segments by Py: (1) and (2) are row group
SpMVs followed by their communication episodes,
(3) is the accumulation of results for the row group
owned by P, and (4) is Py’s synchronization with
other processes. (b) Compulsory forks/joins of ¢
threads while processing each tile.

Figure 1d shows the assignment of tiles to processes in the
2D-Staggered placement. Processes are classified into two
distinct categories, leaders and followers. The leaders (or
processes assigned to diagonal tiles) are responsible for ag-
gregating/broadcasting data from/to followers (or processes
assigned to off-diagonal tiles) of their row/column group of
tiles. In other words, leaders are the owners of their cor-
responding row/column group of tiles. Also, the leader of
a row/column group of tile is the owner of the associated
x and y vector segments and is responsible for maintain-
ing/updating those segments.

2D-Cyclic and 2D-Staggered are classified as 2D-process-
based placements, which can be used by the MPI 4+ X model.
Hence, systems relying on this parallelism model such as
GraphPad [2], LA3 [1], Gemini [69], and CombBLAS [11] are
not well suited for multithreading. As an example, Figure 2
shows how tiles are processed in GraphPad [2]. Specifically,
Figure 2a is the sequence of processing tiles executing SpMV
and accumulating the results for Py instructed by 2D-Cyclic
(Figure 1b), while Figure 2b shows the steps taken by Py for
tile processing. As illustrated in these figures, we identify
multiple caveats with this scheme, namely (1) tiles have to
be further split based on m which is a multiple of number
of threads per process t (m sub-tiles in Figure 2b), (2) there
are unnecessary compulsory thread forks and joins before
and after the processing of each tile, (3) the main MPI pro-
cess is responsible for the entire row group communication,
(4) there are mandatory thread forks and joins for partial
accumulation of results, and (5) the final synchronization
point for checking the convergence is offloaded to the main
process. These issues are potential sources of performance
bottleneck and are applicable to other state-of-the-art graph
processing systems such as Gemini [69] and LA3 [1]. In the
next section, we show how thread-based tiling can fix them.

785

4. 2D-THREAD-BASED MATRIX TILING &
PLACEMENT

To address the problems of process-based partitioning and
placement, including compulsory synchronization points for
threads and heavy communication load for MPI processes,
we propose 2D-thread-based matrix partitioning and
placement, a scheme implied by MPI % X parallelism, which
intrinsically deems threads as the basic units of computation
and communication and reduces synchronization points.

Let A be the n by n adjacency matrix of a graph G
with n vertices. To distribute the computation of A to p
processes each with t threads, 2D-thread-based partition-
ing divides A into a grid of (p-t) by (p - t) tiles, each with
height /width of n/(p - t). Afterwards, it assigns p - ¢ tiles to
each thread and, subsequently, p - t2 tiles to each process.
To this end, each row group has /p threads/processes and

each column group has /p -t threads and \/p/t processes.
Also, each thread/process has tiles in /p row groups and

each thread has tiles in \/m column groups. Alongside,
each process has tiles in y/p - £ column groups. These values
only hold when both p and p.t are square numbers. In gen-
eral, however, an integer factorization method [2] shall be
used to determine the number of processes and threads per
row/column group of tiles (p,/p. and ¢, /t.) (Algorithm 1).

Partitioning and placement are two intertwined concepts,
whereby partitioning produces the tiles, and placement as-
signs threads (or processes) to tiles. In this paper, the
process-based 2D-Staggered placement [1] is extended to a
thread-based 2D-Staggered (2DT-Staggered) place-
ment. The input to the 2DT-Staggered is the 2D grid of
(p-t)? tiles produced by 2D-thread-based partitioning.

In 2DT-Staggered, if a diagonal tile, A;;, i = 0,...,(p -
t) — 1, is assigned to a thread, then that thread becomes the
leader of the it" row group RG; and i*" column group CG;.
Also, that thread renders the owner of the i'* segments of
the input and output vectors, y; and x;. So, before executing
the iterative SpMV y; = A;j@.@z; (in a right-multiplication
fashion), the leader thread of CG; sends x; to its follower
threads (threads that have tile(s) in CG;). Later, after ex-
ecuting the SpMV of RG; by all threads, the leader thread
of RG; receives partial results from the follower threads of
that row group and accumulates them in y;. Next, y; is used
to produce z; via v; (a segment of an intermediate vector v
that stores results permanently) for the next iteration.

Figure 3a shows the 2DT-Staggered placement for eight
global threads (p = 4, t = 2). From Algorithm 1: line
7 - 8, the 2DT-Staggered is materialized in two steps: (1)
p -t thread ids are cyclically assigned to tiles, and (2) these
ids are shifted so that each global thread Ty is assigned to
exactly one diagonal tile. Figure 3b shows the process ids
and local thread ids derived from Algorithm 1: lines 9 - 10.
Each process Py is assigned to exactly ¢ diagonal tiles, and
each local thread in Py receives one diagonal tile. RGs are
distributed among processes in a staggered way, and then
among their local threads in a row-wise way. The staggered
property balances the computation/communication among
threads, while the row-wise property eliminates the concur-
rent writes into segments of y by multiple threads.*

!The uniqueness of diagonal processes/threads ids can be
proved by derangement, which is a permutation of elements
of a set 1.e. no element appears in its original position [21]
(Algorithm 1: lines 7-8 creates deranged id permutations).
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per process. In (b), P,/T; denotes thread j of process i. Leader threads are at diagonal tiles, and follower
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and 1 segment processed by thread Py7T; are shaded in (b)).

Algorithm 1: 2D-thread-based Staggered tile to process/thread assignment (See Table 1 for notation).

1: Input: # of processes p and # of threads per process t

2: Output: Assignment of Tiles[p - t][p - t] to global thread ids Tk, k =0, ..., (p - t) — 1 (Figure 3a)

3: Derivation of process id Py, k € [0,p — 1], and local thread id Tk, k € [0,¢ — 1] from global thread id (Figure 3b).
4: ged = GCD(tr,tc)

5: for i =0 to p.t do

6 for j =0 to p.t do

7 Tiles[i][5].7 = ((¢ mod tc)-t,)+ (j mod t,)

8: Tiles[][j].T+ = (|i/(p-t/gcd)| - ) mod (p-t) > Assignment of tiles to global threads
9: Tiles[i][j].P = Tiles[i][j].T mod p > Grouping of threads into processes
10: Tiles[i][j].T = Tiles[i][j].T'/p > Derivation of local thread ids

Table 1: 2D-process-based tiling versus 2D-thread-based tiling. The function Factorize(p) returns p, and p.
such that p, - p. = p and |p. — pr| is minimized.

2D-process-based 2D-thread-based

# of row/ column group of tiles p p-t

# of tiles p-p=p (p-t)-(p-t)=(p-t)?

Tile height/ width n/p n/(p-t)

Tile area (n/p)? (n/(p-t))?

# of processes per row/column group (pr / pc) (pr,pc) = Factorize(p) (pr,pc) = Factorize(p)

# of threads per row/column group (¢,/ t.) tr =pr, te=(p-t)/tr

# of row/column groups per process (rp/ cp) Tp =P/Pe;  Cp =Dp/Pr o= (p-t)/pe; cp=(p-t)/pr,

# of row/column groups per thread (r¢/ ct) re={@-t)/te, rTe=(p-t)/ts

Generally, quick bursts of computation are interleaved Vertices
with bursts of communication as a result of overlapping n/(p.t) gl gl S v 7]

. . . . . . . = rer eyl e CEi gl elle

computation with communication and, accordingly, achiev- Ago | | Ags BRI HP 8 e
ing scalability. As summarized in Table 1, the area of tiles e I == I%
in 2D-thread-based partitioning is ¢* times smaller than ‘}'@ \Q;&Q’ 6;“‘ Q@ ,;{@} ,4‘\@’ Iteration
in 2D-process-based partitioning (which is reasonably small v & & N &
and suitable for overlapping). Moreover, the MPI + X Figure 4: Tiles processed by thread PyTy; shaded
model, which uses 2D-process-based partitioning, considers tiles in Figure 3b (MPI x X). Py7p has a single
p processes for carrying out communication. Conversely, fork/join, and the synchronization is delayed till the
MPI * X, which uses 2D-thread-based partitioning, utilizes end of an iteration to maximize the overlapping of
p.t threads to pursue communication. Hence, the MPI x X computation and communication.
has ¢ times more communication endpoints and, as such, a Figure 4 demonstrates the advantages of 2D-thread-based
better degree of overlapping computation with communica- over 2D-process-based: (1) 2D-thread-based inherently dis-
tion. In summary, MPI * X is a scalable parallelism since tributes the computation of tiles among threads, resulting
it overlaps the computation of reasonably smaller tiles with in each thread being only forked/joined before/after the
the communication of fairly smaller messages per thread. first/last iteration. Clearly, this avoids the overhead of fre-
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Table 2: The traditional MPI + X versus the new MPI x X parallelism models.

MPI + X parallelism

MPI * X parallelism

MPI * X advantages

Partitioning &

placement Process-based

Thread-based

More overlapping of computation
and communication

Computation &

.. .. Processes
communication units

Threads

Front-loading the computation
and communication patterns

Synchronization Process-based barriers

Thread-based barriers

Avoids compulsory forks and joins,
and minimizes synchronization

Process layout

One process per machine One process per socket

Enabling NUMA-aware computation
and communication, and cache locality

Thread-based inter-socket

Communication Process-based MPI using shared memory/ Enabling faster MPI shared memory

among multiple inter-machine Thread-based inter-machine transport via Q/UPI interconnect
rocesses MPI TCP/IP 3 B

P over TCP/ MPI over TCP/IP

Communication

Intra- /Inter-socket

among threads
6] & shared memory

within a process

Intra-socket shared memory Avoid inter-socket communication

- Horizontal then
@ Scaling vertical scaling

Horizontal and vertical
(diagonal) scaling

Removing the unnecessary boundaries
between processes and threads

quent thread creation/termination and enables cooperative
thread synchronization at the end of each iteration. (2)
2D-thread-based evenly splits the row/column group com-
munication among threads, eliminating thereby the commu-
nication bottleneck caused by offloading communication to
only MPI processes in the process-based variant. (3) 2D-
thread-based offers a higher degree of overlapping between
computation and communication because of its smaller tiles
and larger number of MPI endpoints.

S. NUMA-AWARE PLACEMENT IN
2D-THREAD-BASED TILING

The 2DT-Staggered placement assigns Fo, ..., P,—1 pro-
cess ids to tiles in a staggered way. Also, it assigns lo-
cal thread ids of a process, e.g., PoTy, ..., PoTi—1 for Py to
different rows. In Figure 3b, threads placed in the same
row/column group, but belong to different processes (e.g.,
PyTy and PiTy), use MPI to communicate with each other.
Also, threads placed in the same row/column group, but be-
long to the same process (e.g., PoTo and PyTy in Fp), use
shared memory to communicate. MPI has two transports,
TCP/IP transport with 4 GB/s speed [48] used for inter-
machine communication, and shared memory transport with
60 GB/s speed [48] used for intra-machine communication.
Thus, a NUMA-aware assignment of MPI endpoints to tiles
will benefit from the faster shared memory transport.

The linear order of process/thread ids does not necessarily
imply assignments of processes to machines/NUMA sock-
ets and threads to cores. These assignments are done by
the MPI/threading environments before launching an MPI
application and do not necessarily follow an expected or-
der such as a sequential assignment order. However, know-
ing these assignments, processes/threads can be reordered
before populating the 2D grid to efficiently exploit MPI’s
shared memory transports. To reorder processes, we first
gather five pieces of information, namely, the topology of
the cluster (using MPI [26]), the microarchitecture of ma-
chines (using NUMACctl [35]), the number of processes per
machine (using MPI [26]), the number of threads per process
(using OpenMP [45]), and the number of processes/threads
per row/column group of tiles (using the integer factorize
method [2]). Finally, tapping into these, we reorder pro-
cesses to maximize the MPI shared memory communication.

rm MM Ml
| [ |
I ram | [ ram ||| || ram | [ ram |
/ /
: 5,_-, l(JlPI Sl -;IC: Sn SPI 1 : } UPI 1 -;ICPP UPI :
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Figure 5: (a) A cluster with two dual-core dual-
socket NUMA machines, and (b) NUMA-aware as-
signment of threads to cores with p =4 and ¢t = 2.

For instance, consider a simple cluster consisting of two
NUMA machines as shown in Figure 5a, and its NUMA-
aware assignment of processes/threads to machines/sockets/
cores as shown in Figure 5b. Combining the information of
thread assignment to tiles (from Figure 3b) with the infor-
mation of thread assignment to cores from Figure 5b), a
NUMA-aware assignment of threads to cores can maximize
the usage of the MPI shared memory transport for inter-
socket communication among different MPI endpoints. Fur-
thermore, from our experiments, we found out that assign-
ing one MPI process per socket provides faster MPI com-
munication as the usage of integrated memory controller of
NUMA sockets like Intel’s QuickPath Interconnect (QPI) or
Ultra Path Interconnect (UPI) with 16 GB/s speed [48] is
only limited to the threads of the two processes placed in
different sockets of a machine. Alongside, the controller is
not used for shared memory accesses of threads inside the
same process (because the shared memory communication
of threads inside each process is limited to a single socket.)

6. SUMMARY OF MPI « X FEATURES

In Table 2 we outlined the main characteristics of the
MPI % X parallelism model and contrast them with those
of the classical MPI 4+ X model. The key advantages of
MPI % X stem from the 2D-thread-based partitioning which
elevates threads to first-class citizens across the computa-
tion, communication, and synchronization. Specifically par-
titioning the input matrix into smaller tiles based on the
total number of threads, thus evenly balancing the computa-
tion load among threads in a fine-granular way (@ in Table
2). Moreover, threads are communicating endpoints which



provides a finer degree of computation and communication
overlapping when using MPI asynchronous primitives (@) in
Table 2). In addition, in MPI % X, threads are persistent
throughout computation, and synchronization is performed
directly among threads at the end of each iteration. Thus,
MPI * X has less synchronization overhead (€) in Table
2). Conversely, in MPI + X, threads are forked and joined
at every iteration and synchronization is applied between
threads in each MPI process then among MPI processes.
MPI * X leverages NUMA where this micro-architectural
property provides the following benefits (@ through @ in
Table 2). Specifically, by launching one process per socket,
MPI % X’s threads enjoy processor/memory affinity where
threads are bound to unique processors and, subsequently
exploit L1 cache locality. Also, threads’ memory accesses
are local to their host sockets, restricting the shared memory
communication of threads to those sockets which also avoids
overloading the QPI/UPI interconnect. Moreover, combin-
ing the 2D-thread-based tiling with the micro-architectural
information allows MPI % X to take advantage of the MPI
shared memory transport for inter-socket communication
within a machine. Accordingly, MPI % X offers fast inter-
socket communication using the QPI/UPI interconnect.
Finally, MPI * X incorporates diagonal scaling (@ in Ta-
ble 2), which blurs the boundaries between processes and
threads, and front-loads computation, communication, and
synchronization among threads. The diagonal scaling is pos-
sible because the abstraction model, the library specifica-
tion, and hardware properties are seamlessly integrated.

7. THE GRAPHITE

In this section, we discuss Graphite, a new linear algebra-
based distributed graph analytics system that employs the
MPI % X parallelism model. Graphite uses 2D-thread-based
partitioning and placement (,i.e., 2DT-Staggered placement)
to equally break the computation and communication of a
sparse matrix among threads, while avoiding non-compulsory
synchronizations. It scales diagonally and treats threads
as basic units of computation and communication. Inter-
nally, Graphite utilizes MPI’s MPI_THREAD MULTIPLE option
in conjunction with splitting the MPI communicator to en-
able collective and point-to-point communication between
computing threads.

7.1 Multithreaded MPI Input Processing

Graphite supports distributed reading of plaintext and bi-
nary unweighted /weighted edge lists (which represent input
graphs). For unweighted edge lists, it only stores the source
and destination of each edge without a weight. Graphite
has a built-in graph converter to manipulate an input graph
based on problem constraints such as transposing it, making
it acyclic, removing self-loops, or removing parallel edges.
The 2D-thread-based partitioning used in Graphite instructs
threads to collectively read edges from an edge list and in-
sert them in their associated tiles. Tiles are compressed us-
ing Triply Compressed Sparse Column (TCSC) [43], a new
sparse matrix compression format offering a compact repre-
sentation of given sparse matrix and vectors. In addition,
TCSC supports a new optimized variant of the SpMV prim-
itive that takes advantage of the sparsity distribution of the
matrix and vectors. This variant is called SpMSpV? (Sparse
Matrix - Sparse input and output Vectors) which filters the
empty rows and columns of a sparse matrix and vector.
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7.2 Distributed SpMSpV? using
2D-thread-based Tiling & Placement

As pointed out earlier, in Graphite, tiles are compressed
using TCSC [43], which enables distributed execution of
SpMSpV? at scale. Rendering an n by n matrix A that rep-
resents a graph G with n vertices, a graph operation can be
translated into an SpMSpV? primitive § = A ©.© Z; where
A is a nzr x nzc compressed matrix holding no empty rows
and columns, and ¥ and § are nzc X 1 and nzr x 1 com-
pressed input and output vectors, with nzc and nzr stand-
ing for the numbers of nonzero columns and rows, respec-
tively. Graphite is a wvertex-centric system that abstracts
the iterative computation of a large graph from the stand-
point of a vertex. A vertex has a value (or state) containing
some information about the problem being solved. Hence,
there is a value (state) vector v of length n, which is divided
into multiple segments like the £ and gy vectors. To run
an application, first, v is interpolated to construct the new
compressed input vector Z. Second, the SpMSpV? primi-
tive § = A ©.® T is executed to produce the compressed
vector §. Finally, ¢ is expanded to an uncompressed value
vector v to interpolate and store the results permanently; as
it will be used to construct the new = in the next iteration.
We next formalize this sequence as an iterative matrix com-
puting model where this model closely works with the new
2D-thread-based partitioning and placement.

7.3 Matrix Computing Model

Many Vertex-centric systems [1, 2, 15, 39, 42] assume
graph-parallel abstractions such as verter programs for en-
capsulating the operations executed on vertices of a graph.
To collect and disseminate information, the GAS (Gather,
Apply, and Scatter) model [22] adds fan-in/fan-out opera-
tions to a vertex program and characterizes the differences
between vertex and edge computations. The Gather opera-
tion collects information about adjacent vertices and edges
via a centralized sum. The Scatter operation propagates
the new value of a central vertex through its adjacent edges.
Finally, the Apply operation updates the value of the cen-
tral vertex. Graphite adopts a similar model and iterates
through Broadcast (Scatter in GAS), Combine (Gather in
GAS), and Apply operations.

Graphite’s computing model suggests a vertex program
that can be overloaded with the desired code for the Broad-
cast, Combine, and Apply operations. Before running the
vertex program, tiles of A and segments of Z, § and v are
distributed among threads using 2DT-Staggered, where A;;
is the tile placed at the intersection of i** and j'* row and
column groups of tiles. In 2DT-Staggered, each thread is the
leader of a unique row/column group of tiles and their cor-
responding segments of §/Z vectors (although it may have
tiles in multiple row/column groups). Therefore, the Eth
thread Ty | k € [0,¢t — 1] of a process is the leader of the
k" uniquely owned row/column group and the associated
vectors segments.

Algorithm 2 demonstrates the pseudocode of Graphite’s
GAS-like matrix computing model. Also, Figure 6 sketches
the operations of the matrix computing model of Graphite
which is used in conjunction with 2D-thread-based parti-
tioning and placement for matrix parallel computations. In
the following, we delve deeper into Graphite’s computing
model and discuss Broadcast, Combine, and Apply opera-
tions in details.



Algorithm 2: Matrix Computing Model

1: Input: Tiles of matrix A and Z, y and v vectors
2: Input: Overloaded functions to implement the operators
for combine (®,®), apply (+) and broadcast (+)

3: Temporary vector: y

4: for k =0 to t do fork(T%x) © Pin T} to a unique core
5: Initialize vy > Every thread T} executes the following:
6: do

7: Tk b Uk > Broadcast
8: for Vj € CG do

9: MPI_Ibcast(Z;, leader;, MPI_COMM_COL;)

10: B

11: for i, j € Ado > Combine
12: Ui @ = (4i; ®7;)

13: if RG; tiles are processed then

14: if T} is leader; then

15: for T; € RG,; followers do

16: MPI_Trecv(§i, Ti, MPI_COMM_ROW;)

17: else

18: MPI_Tsend(7i, Tk, MPT_COMM_ROW;)

190 5i®=3,9u

20:

21 vk a Yk > Apply

22: while Not CONVERGED(7;) > Check convergence

7.3.1 Broadcast Operation

At the beginning of each iteration, each k‘" leader thread
(the leader of the kt" owned column group) calls the Broad-
cast operation (Algorithm 2: lines 7 - 9, where < is the
broadcast operator) to produce the new input segment Ty
from an interpolation of vy, values (e.g., new ranks in PageR-
ank). This transformation is marked by arrow 0 in Figure 6.
Later, as signified by arrow 1, each T}, thread broadcasts the
new input segment Zj to its followers in its column group,
which enables every thread to receive new inputs required
for the Combine operation. This is equivalent to the GAS’s
Scatter operation, which is utilized to fan-out on outgoing
edges and send new inputs to neighboring vertices.

In systems like GraphPad [2] and LA3 [1], GAS’s Scat-
ter operation is implemented using point-to-point primitives
(MPI_Isend() /MPI_Irecv()) on the global MPI communi-
cator. In Graphite, the two exemplified MPI primitives
are merged into a single MPI_Ibcast() function (which is
faster than point-to-point primitives due to using a tree-
based communication algorithm [33]) via splitting the MPI
communicator. To enable broadcasting messages inside a
column group, we first create independent MPI column group
communicators MPI_COMM_COL; for the threads in the same
column group, C'Gj, of tiles. While MPI_COMM_WORLD enables
broadcast and collective communication among all processes,
splitting the communicator into subgroups enables broad-
cast and collective communication among threads hosted
by the same column group. As a matter of fact, broad-
casting across column group communicators mitigates the
pressure on the global communicator and avoids potential
delays and contentions. Also, since each thread T} is the
leader in only one of its column groups (the root process of
the MPI_Ibcast()) and a follower in the rest, a nonblocking
broadcast can overlap communication among threads. As
such, threads can simultaneously send/receive different in-
put segments associated with different column groups and
interleave the communication of sends with receives.
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Figure 6: Integrating the matrix computing model
(Broadcast, Combine, and Apply) with 2D-thread-
based tiling to run SpMSpV? (p =4 and t = 2).

7.3.2  Combine Operation

As marked by arrow 2 in Figure 6, after broadcasting the
new input Z, the Combine operation runs the SpMSpV?
kernel. This is similar to GAS’s Gather operation, which
fan-ins and calculates a generalized sum over a neighbor-
hood of a vertex. In the Combine operation (Algorithm
2: lines 11 - 19), each thread T} iterates over its tiles in a
row order fashion and executes the SpMSpV? kernel on its
edges (i.e., 7; ® = (A;; ® T;), where i and j are the indices
of i*" /§*" row/column group of tiles, or i*" /" segments of
Ui/%;). After consuming tiles related to it" row group, fol-
lower threads post their sends to the leader thread of the
i row group, while leader threads post receives for par-
tial output segments ¢;’s from their followers. Afterwards,
all threads move on to their next row group of tiles asyn-
chronously. Once, all tiles are consumed, each T} adds the
partial result segments of #; to its 7; segment, which later
will be used to update the i*" segment of value vector v;.

To expedite the communication of the Combine operation,
we split the global communicator into row group communi-
cators, whereby threads inside the same row group of tiles,
RG,, use the same row group communicator MPI_COMM_ROW;
for sending/receiving partial results. Combine uses the row
group communicator to send/receive partial accumulation
results. Moreover, for row group communication, the num-
ber of communicators is set equal to the number of row
groups per process in order to provide concurrent race-free
communication for all threads. Furthermore, Combine uses
the MPI asynchronous communication routines, including
MPI_Isend() and MPI_Irecv() to overlap the computation of
tiles with the communication of partial § segments. Hence,
at the end of each row group, follower threads post their
sends and leader threads post their receives. Subsequently,
all threads carry on independently with processing their
next row group of tiles, while MPI buffers are still being
sent /received in the background. Since the communication
is only performed when the last tile of a row group is con-
sumed, only a single pair of send/receive is required to trans-
fer the partial results from a follower to the leader thread
of that row group. Lastly, the accumulation of the segment
owned by each leader, Tk, is done when all receives are com-
pleted as T}’s receives are sufficient for accumulation.



7.3.3 Apply Operation

Marked by arrow 3 in Figure 6, in the Apply operation,
each leader thread T} interpolates its owned output segment
g, and constructs the new vertex values vy (Algorithm 2:
line 21, where <, is the apply operator). This is similar to
the GAS’s Apply operation, which updates the state of the
central vertex.

Finally, our matrix computing model operations, includ-
ing Broadcast, Combine, and Apply are followed by a check

for convergence, which is also run concurrently by all threads.

Depending on the application requirements, this sequence
repeats until executing a certain number of iterations or
reaching convergence.

7.4 Leveraging NUMA in Graphite

7.4.1 NUMA-aware Shared Memory Communication

As discussed in Section 7.3.2, our computing model re-
lies on point-to-point primitives for the Combine operation,
which can be effectively accelerated using the MPI shared
memory transport. Guided by the MPI % X model, which
suggests launching one MPI process per socket, we place
threads that belong to two processes launched at the same
machine in the same row group of tiles in the 2D grid of tiles.
Therefore, the inter-socket communication can be highly op-
timized using the MPI shared memory transport (see Sec-
tion 5). Having this setting, the communication of the Com-
bine operation is overlapped with its computation of tiles,
which further alleviates the use of point-to-point MPI primi-
tives. Contrarily, column group communication cannot ben-
efit from the MPI shared memory transport because column
group processes run mostly on different machines. In this
case, however, MPI_Ibcast() already offers swift TCP/IP
communication which mitigates the lack of having a better
transport.

7.4.2  Processor & Memory Affinity

Processor/memory affinity avoids excessive migrations of
processes/threads, thus allowing them to benefit from hot
caches and NUMA. GraphPad [2] and Gemini [69] leverage
MPI [26, 46] and OpenMP [45] to control CPU and memory
affinity at runtime. In contrast, Graphite explicitly controls
affinity by launching one MPI process per socket and pin-
ning threads to cores. In particular, the processor affinity
forces threads to be launched at the same NUMA socket as
the MPI process. This translates to fewer context switches,
TLB flushes, and L1 cache invalidations. Also, it offers effi-
cient L2/L3 cache accesses because an access to L2 is limited
to the working thread pinned on a core and an access to L3 is
limited to the working threads running on that cores’ socket.
Moreover, memory affinity enforces contiguous allocation of
memory for matrix tiles and vector segments on a NUMA
node when the MPI process uses numa_alloc_onnode [35].
Memory affinity avoids overloading the memory intercon-
nect across sockets such as QPI/UPT and offers faster main
memory accesses. Also, binding a core to a thread allows
all data structures of tiles and segments to be allocated at
the same NUMA socket of the core. All in all, threads can
subsequently enjoy hot caches while running SpMSpV?s on
T and § segments. Moreover, within a process, there is only
one T segment per column group from which all threads can
safely read in parallel.
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7.5 Enabling Compiler Optimization

Based on our experience with multithreaded program-
ming, compiler optimizations are not fully supported (or are
degraded- e.g., from -03 to -02) while developing programs
with cross-function and/or cross-file invocations by threads.
The loss from the absence of compiler optimizations and
the presence of sandboxing (where programs are sandboxed
in multithreading runtimes, thus inducing overhead) may
completely offset the gain from multithreaded programming
[7, 57, 58]. As such, we keep the iterative compute-intensive
SpMSpV? kernels concise and overload them locally with ba-
sic mathematical operators instead of using expensive cross-
function calls. In addition, we avoid using virtual methods
because they enforce each function call to go through a vir-
tual table to look up and invoke the callee method. To this
end, we utilize inline methods, which allow the compiler to
see the majority of code in advance and, accordingly, exploit
vectorization and loop unrolling. Lastly, to effectively break
the code and computation among threads, we use Pthread
instead of OpenMP, which is about 20% faster [53].

7.6 Activity & Computation Filtering

Graph applications are divided into stationary applica-
tions, where all vertices remain active during execution, and
non-stationary applications, where the number of active ver-
tices varies during runtime.

Activity filtering is a technique used in non-stationary ap-
plications to remove unnecessary computation and commu-
nication of inactive vertices [1, 2, 69]. In Graphite, if less
than 60% of vertices render inactive, only a list of (index,
value) pairs representing active vertices are used for commu-
nication, precluding thereby any traffic data that pertains to
inactive vertices. Otherwise, Graphite falls back to sending
the original arrays of nonzero elements, which encompass ac-
tual values for active vertices and dummy values for inactive
ones. When activity filtering is enabled, a SpMSpV? kernel
only executes the received list of (index, value) pairs, skip-
ping naturally the computations of inactive vertices. When
activity filtering is disabled (i.e., when Graphite falls back to
sending original arrays), a SpMSpV? kernel skips the com-
putations of inactive vertices using the dummy placeholders.

Besides activity filtering, computation filtering is used in
stationary applications [1] to skip the computation of unnec-
essary edges of a sparse matrix. First, computation filtering
classifies vertices into four categories: 1) regular vertices,
which are vertices with both ingoing and outgoing edges, 2)
source vertices, which are vertices with only outgoing edges,
3) sink vertices, which are vertices with only ingoing edges,
and 4) isolated vertices, which are vertices with no edges.
Next, it leverages these types of vertices to avert unneces-
sary computations as follows: 1) regular vertices are exe-
cuted in all iterations because their values are used by other
vertices via the input vector, 2) source vertices are only ex-
ecuted in the first iteration because their values will not be
changed afterwards, 3) sink vertices are only executed in the
last iteration because their values are not used in earlier it-
erations, and 4) isolated vertices are discarded completely
from the execution loop because their values are never used
in any iteration. Graphite adopts computation filtering for
directed graphs, only since these four types of vertices exist
only in them. For undirected graphs, all vertices are regular
or isolated, rendering computation filtering less effective.



8. RESULTS
8.1 Experimental Settings

8.1.1 Cluster Configuration

Experiments are conducted on a HPC cluster of 20 nodes,
each with 28-core (14 cores per socket) Broadwell Processor
(2.60GHz) and 192GB RAM. The cluster has Intel Omni-
path interconnect (10 Gb/s speed) and all nodes are con-
nected to an OFA network fabric. Nodes run Red Hat En-
terprise Linux Server 7.6. The cluster uses Slurm workload
manager for batch job queuing [49]. We use Intel MPI [26]
with multithreading support for communication across ma-
chines and Pthread [36] for launching threads inside an MPI
process. We utilize OpenMP [45] to collect information of
allocated cores within a process, Pthread to provide CPU
affinity, NUMActl [35] to enable memory affinity, and Linux
sysconf to get the cache information at runtime.

Experiments on the cluster follow two settings. Weak scal-
ing where the number of machines (and cores) used for pro-
cessing is proportional to the size of the graphs and Strong
scaling where the graph size is fixed and the number of ma-
chines (cores) is varied. At scale, we use all 20 nodes of
the cluster (560 cores). Finally, any reported number is the
average of multiple individual runs.

8.1.2 Counterpart Systems

Graphite? has been tested against two linear algebra-based
systems GraphPad [2] and LA3 [1], and one graph theory-
based system Gemini [69]. For all systems, we fine-tune
the number of processes per machine 7 and the number
of threads per process ¢, and pick the configuration that
demonstrates the best runtime. Thus, we run GraphPad
with 7 = 2 and ¢t = 14, LA3 with 7 = 14 and ¢t = 2, and
Gemini with 7 = 1 and ¢ = 28. Similarly, we run Graphite
with different combinations of 7 and ¢ and use m = 2 and
t = 14 as it delivers the best results. Note that GraphPad,
LA3, and Gemini crashed for some experimental settings be-
cause of limitation on memory size or number of processes.

8.1.3  Graph Datasets

Table 3 shows graphs used in the experiments includ-
ing six real-world graphs (web crawls and social network
from LAW [8]), and four synthesized graphs (RMAT 26 -
30 graphs from the Graph 500 challenge [13].%). In Table
3, the last column, Node reports the number of nodes used
to process a graph dataset in our experiments (unless oth-
erwise stated). Last, in order to provide the weak scaling
property, starting from four nodes up to 20 (our custer size),
the number of nodes are increased relative to the graph size.

8.1.4 Graph Applications

Graphite system has an extensible API supporting differ-
ent graph analytics applications. We implemented PageR-
ank (PR) for unweighted directed graphs as a prime station-
ary application. PR includes degree application as well. In
addition, we implemented three well-known non-stationary
applications including Single Source Shortest Path (SSSP)
for weighted directed graphs, Breadth First Search (BFS)

2Graphite’s source code: https://github.com/hmofrad/Graphite
3SRMATS follow power of two growth rate, i.e., RMATnR has
2" vertices and 2"** edges.
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Table 3: Datasets used for experiments (including
web crawl, social network and synthetic types), and
the number of nodes used to process them.

Graph V] |[E|]  Type Nodes
UK05 (UK5) [8] 304M 093B Web 4
IT04 (IT4) [§] 412M 115B Web 4
Twitter (TWT) [§] 416 M 146 B Soc 8
GSH’15 (G15) [8] 68.6 M 1.80B Web 8
UK’06 (UK6) [8] 80.6 M 248B Web 16
UK Union (UKU) [8] 133 M 5.50 B Web 20
Rmat26 (R26) [13] 671 M 1.07B Syn 4
Rmat27 (R27) [13]  134M 2.14B Syn 8
Rmat28 (R28) [13] 268 M 429B Syn 16
Rmat29 (R29) [13] 536 M 858B Syn 20

and Connected Component (CC) for unweighted undirected
graphs. Similar to the setting used in GraphPad [2], LA3
[1], and Gemini [69] we ran PR for 20 iterations and SSSP,
BFS, and CC until convergence.

8.2 Multithreading Spectrum

In this experiment, we show how the number of processes
per machine 7 and the number of threads per process t affect
the scalability of GraphPad [2] and LA3 [1] (two MPI + X
systems), and Graphite (an MPI % X system). Figure 7
shows the results of GraphPad, LA3, and Graphite with
different configurations of 7 and ¢ (z-axis), i.e., -t = 28
(total number of cores per machine) using PageRank (PR)
and Connected Component (CC). For Graphite, certain ob-
servations can be made from its Double-u (W) shaped trends
of Figure 7. The optimal configuration for Graphite is 7 = 2
and t = 14 where we launch one process per socket and lever-
age faster inter-socket communication. Also, there is a spike
at runtime for m = 7 which is due to having an odd num-
ber of processes; with this configuration there is a process
in each machine that has threads on both sockets, there-
fore stressing the QPI/UPI interconnect for shared mem-
ory communication among threads. Moreover, neither the
pure multithreading (7w = 1) nor the pure multi-processing
(m = 28) per machine produces good results. We believe
from the viewpoint of a single machine, pure multithreading
imposes communication overhead on QPI/UPI for access-
ing input vector segments across sockets, and pure multi-
processing imposes communication overhead on QPI/UPI
for inter-process communication.

From Figure 7, GraphPad has comparable performance
when launched with one or two processes per machine and
its performance drops as it moves to more processes per
machine (perfect multiprocessing). Also, LA3 cannot uti-
lize threads effectively, and therefore as it utilizes more pro-
cesses than threads its performance first improves (up to
14 processes per machine) and then drops (for 28 processes)
which roots in LA3’s poor work distribution among threads.
Comparing with GraphPad and LA3, Graphite has a decent
runtime difference across the majority of configurations.

8.3 Sensitivity to Different Optimizations

Graphite offers a set of features for scalable graph process-
ing including NUMA-aware shared memory MPI commu-
nication (NUMA), compiler optimization (COMP-OPTI),
computation filtering (CMPT-FLTR), and activity filtering
(ACTY-FLTR). From Figure 8a, on PageRank (PR) (a sta-
tionary application), NUMA, compiler optimization, com-
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putation filtering, and the combination of these features give
27%, 43%, 2x, and 3.3x speedups, respectively. From this
figure, smaller graphs benefit more from compiler optimiza-
tion whereas larger graphs benefit more from NUMA and
computation filtering. Also, from Figure 8b, on Connected
Component (CC) (a non-stationary application), NUMA,
compiler optimization, activity filtering, and the combina-
tion of them give 53%, 62%, 2x, and 3.3x speedups, re-
spectively. From this figure, NUMA and compiler optimiza-
tion are more effective in synthetic graphs (which has uni-
form distribution with constant edge factor), whereas ac-
tivity filtering is more effective in real-world graphs (which
follows power-law distribution with high variance in number
of edges per vertex). From the last bars of each dataset of
Figure 8, enabling all features results in a better speedup
which shows the effect of these features are cumulative.

Figure 8 shows that NUMA is more effective for larger
graphs which stems from leveraging memory and processor
architecture to maximize the usage of MPI shared memory
transport. Also, enabling the compiler optimization to
its fullest extent is vital for running an iterative compute-
intensive SpMSpV? kernel, because this kernel includes the
bulk of computation done by threads, and any optimiza-
tion that can slightly improve on this kernel, will largely
improve the overall runtime. Finally, the computation fil-
tering advantage comes from passing over the computation
of subsets of unnecessary vertices in stationary applications
like PR, and the activity filtering advantage comes from
skipping the communication and computation of inactive
vertices in non-stationary applications like CC.

8.4 Execution Time Analysis

Graphite’s matrix computing model iterates over Broad-
cast, Combine, and Apply operations. In addition, Graphite
checks for convergence and enforces synchronization among
threads at the end of each iteration. Figure 9 shows the
breakdown of execution time of 20 iterations of PR on R28.
It is clear that Broadcast and Combine operations are both
computation and communication intensive, and constitutes
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Figure 9: Graphite Execution time breakdown in
seconds from running PR on R28 using 16 machines.

about 90% of the runtime. Broadcast time (46%) consists
of the time for preparing the new input segments (Bcast-
comp), plus the overlapped communication time (Bcast-
comm). Combine time (41%) constitutes the time spent
for running the SpMSpV? (Combine-SpMSpV?+4-comm), and
the accumulation time of the partial output segments which
is overlapped with background communication (Combine-
accut+comm). Apply time is the time for interpolating
and updating the values of the vertices. Note Combine-
accu+comm and Apply times are roughly equal as both
are operating on similar vector segments. Finally, Con-
vergence time represents the total synchronization time
of threads at the end of each iteration which also includes
the time for checking the convergence.

Apply
7%

8.5 Comparisons with other Systems

8.5.1 Weak Scaling Comparison

Weak scaling of Graphite versus GraphPad, Gemini, and
LA3 are reported in Figure 10. Based on the grand geo-
metric mean of results (geometric mean of geometric mean
of each subfigure), Graphite is 2.9x, 60%, 80%, and 2.1x
faster than these systems in PR, SSSP, BF'S, and CC.

From Figure 10a, in PageRank (PR), Graphite is on
average (geometric mean) 81%, 91%, and 7.1x faster than
GraphPad, Gemini, and LA3. PR is a computation- and
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Figure 10: Runtime of Graphite and others (weak Scaling). GM is the grand geometric mean over all datasets.

communication-intensive non-stationary application which
needs to visit all vertices and their associated edges in order
to rank them. For PR, computation filtering helps Graphite
to skip the computation of subsets of vertices*. Also, com-
pared to others, LA3 does not perform good on PR because
it has rigorous communication optimizations which are not
effective in an HPC cluster with fast interconnect.

Having a look at Figure 10b, Graphite is 18%, 2x, and
73% faster than GraphPad, Gemini, and LA3 on average in
Single Source Shortest Path (SSSP). Running SSSP on
a directed graph, the source vertex is an important factor
regardless of the size of graph. Starting from the source,
SSSP traverses all vertices connected to the source with an
incoming link from the source. So, if source is sampled from
a small connected component, all vertices of that component
will be visited quickly and that is why for some graphs like
UKS5 or R26 the runtime is small compared to other graphs.
Graphite performs the best in SSSP except for TWT be-
cause the complex structure of the largest component of
TWT causes a huge load imbalance among threads®. In
addition, GraphPad outperforms Gemini and LA3 because
of its better communication and compression optimizations.

On BFS (Figure 10c), Graphite outperforms GraphPad,
Gemini, and LA3 with 33%, 2.3x, and 90% better runtime
on average. Given Breadth First Search (BFS) uses
undirected graphs, unlike SSSP, it eventually visits all ver-
tices of the connected component where the source is chosen
from. Therefore, BFS deals with more communication and
computation than SSSP. Gemini is relatively slow because it
does not have a good communication strategy and relies on a
single thread per process to communicate messages of a row
of tiles which works fine only for small number of nodes e.g.
8 nodes. LA3’s communication optimizations work better
in BFS (and SSSP) because communication pattern of BFS
(and SSSP) include(s) small bursts of data transfer which
can quickly be compressed per destination process in LA3.

As shown in Figure 10d, on average Graphite performs
7%, 31%, and 3.7x faster than GraphPad, Gemini, and
LA3 for Connected Component (CC). CC tries to find
a set of vertices that are connected to each other by paths (a

4In R29, computation filtering skips 5% of SpMSpV? ops.
®The largest component of TWT includes 80% of its edges.

strongly connected subgraph) and accomplishes this task by
iteratively visiting all vertices inside components. Gemini
outperforms GraphPad and LA3 because it uses NUMA-
aware partitioning which offers faster local memory access
and higher cache utilization. Both GraphPad and Gemini
use a pair of dense vectors accompanied by a bitvector for
fast random access of compressed vectors. However, Graph-
Pad is slower than Gemini in CC because for this application
Gemini can effectively switches between its sparse and dense
representations using its push/pull model, whereas, Graph-
Pad compression threshold is ineffective here. On the other
hand, Graphite’s decision for switching between sparse and
dense representations is made in Broadcast operation and
reused in Combine operation. Although this approach poses
a small overhead to the Broadcast operation, altogether it
results in a better performance for CC as it skips the com-
putation of activities in the Combine operation.

From Figure 10, Graphite outperforms GraphPad, Gem-
ini, and LA3 systems, where this outperformance is largely
due to the usage of MPI % X parallelism model and 2D-
thread-based partitioning and placement. Conversely, other
systems follow MPI 4 X parallelism and process-based parti-
tioning that underperform in iterative applications. For ex-
ample, GraphPad and Gemini use process-based 2D-Cyclic
and 1D-Row placements, which are less scalable than thread-
based 2D-Staggered placement used in Graphite.

8.5.2 Strong Cluster Scaling Comparison

Figure 11 shows the runtime of different systems for differ-
ent number of machines for PR and CC on TWT and R28.
Overall, Graphite scales very well on both TWT (real-world)
and R28 (synthetic). It can effectively leverage the added
processing power and improve the runtime. This scalability
is highly due to MPI % X parallelism model which balances
the computation and communication of tiles among threads.
Moreover, GraphPad which follows the MPI + X parallelism
model exhibits comparable scalability on TWT and poorer
scalability on R28. Next, Gemini starts with a good perfor-
mance, but fails to scale for larger clusters due to the lim-
itations of MPI 4+ X parallelism, e.g., only MPI processes
carry out communication. Last, LA3 does not scale well as
its communication strategy is not suitable for HPC clusters.
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Figure 12: Strong data scaling (R26-28 with 16 nodes).
8.5.3 Strong Data Scaling Comparison

Figure 12 shows the runtimes of different systems on R26
- R28 using 16 machines for PR and CC. From Figure 12a,
Graphite, which follows MPI * X exhibits a better data scal-
ing with minimal changes in the runtime for PR. In this
figure, Graphite outperforms GraphPad, Gemini and LA3
which all follow MPI + X. Additionally, a similar trend for
CC can also be seen in Figure 12b.

8.5.4 Discussion of Evaluated Systems

Table 4 thoroughly reports different features of the studied
systems. From this table, GraphPad [2], Gemini [69], and
LA3 [1] use MPI + X model with processes being the basic
units of computation and communication, whereas Graphite
uses MPI * X model where threads are the basic units of
computation and communication. GraphPad, Gemini, and
LA3 use process-based 2D-Staggered, 2D-Cyclic, and 1D-
Row placements, whereas Graphite uses 2DT-Staggered that
is devised for threads. Moreover, although all these sys-
tems utilize GAS-like computing models, Graphite carefully
incorporates asynchronous collective MPI primitives in its
model enabling faster communication. Also, Graphite lever-
ages NUMA for both computation (CPU/memory affinity)
and communication (MPI shared memory communication)
purposes, whereas Gemini internally supports memory affin-
ity but relies on OpenMP for processor affinity. In addition,
Graphite carefully follows strict programming guidelines to
completely enable compiler optimizations for multithreaded
SpMSpV? kernels. Last, all systems use activity filtering,
but only Graphite and LA3 use computation filtering.

The performance difference between Graphite and LA3 is
due to three design decisions made in LA3: (1) Communica-
tion strategy: LA3 is designed for cloud environments (not
HPC) with low-bandwidth and high-latency interconnection
networks. It has an extensive communication optimization
that tailors input messages per tile to reduce the communi-
cation volume at the expense of more computation overhead.
In a cloud environment, this strategy works well because the
communication delay is more expensive than the time spent
for constructing the optimized messages. In contrast, in an
HPC environment, this strategy is not productive because of
fast interconnects. (2) Parallelism model: LA3 follows the
MPI 4+ X model. It relies on OpenMP runtime to distribute
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Table 4: Summary of features of the studied sys-
tems (parallelism model (PARA-MDL), compiler
optimization (COMP-OPTI), computation filter-
ing (CMPT-FLTR), and activity filtering (ACTY-
FLTR). GP stands for GraphPad. S and C in 2DT-S
and 2D-C stand for staggered and cyclic.

# Feature Graphite GP [2] LA3 [1] Gemini [69]
1 Model MPI«X MP+X MP+X MP+X

2 Unit Thread Process Process Process

3 Tiling 2DT-S 2D-C  2D-S  1D-Row

4 PARA-MDL GAS GAS GAS  Push/pull
5 NUMA Full No No Mem

6 COMP-OPTI Targeted Default Default Default

7 CMPT-FLTR Yes No Yes No

8 ACTY-FLTR Yes Yes Yes Yes

the computation of tiles across threads while bounding the
communication to only MPI processes. Thus, compared to
an MPI * X system like Graphite, LA3 has less MPI com-
munication endpoints and larger tiles, which reduces the
overlapping of computation with communication. (3) Ma-
trix compression: LA3 uses Doubly Compressed Sparse Col-
umn (DCSC) [10], whereas Graphite uses Triply Compressed
Sparse Column (TCSC) [43], which is more cache friendly.

9. CONCLUSIONS

In this paper, we introduced Graphite, a new linear alge-
bra based graph analytics system that uses the MPI % X
parallelism model with 2D-thread-based partitioning and
placement. In Graphite, threads are treated as first-class
citizens of a distributed system where computation and com-
munication are fairly distributed among all threads while
minimizing the synchronization points. Graphite utilizes
a GAS-like matrix computing model for fast execution of
iterative analytics that takes advantage of MPI and dis-
tributed shared memory capabilities. It exploits NUMA for
both computation (CPU/memory affinity) and communi-
cation (MPI shared memory communication). Compared
against GraphPad, Gemini and LA3 analytics systems, the
proposed Graphite achieves a speedup of roughly up to 3x
due to its thread-level asynchronous communication and
computation, high degree of concurrent communications,
and NUMA-ware computation and communication.
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