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Atmospheric water has a complex behavior partly due to the influence of precipitation. Consequently, it is
challenging to explain properties of water such as the scale-dependence of its variance, for which a range of
spectral exponents has been identified in observational data. Here, a precipitating quasi-geostrophic (PQG)
model is explored as a possible prototype for contributing to understanding of water spectra, in an idealized
setting. Geostrophic turbulence is examined in numerical simulations, where precipitation is included to
explore its effect on the water spectrum, but where phase changes are neglected to allow corresponding
theoretical analysis. The water spectral exponent is seen to range from approximately -1.4 to approximately
-5 depending on the rainfall speed parameter, V., which indicates a significant influence of precipitation
on the water spectrum. The limiting values of this range are explained through asymptotic analyses for
large and small values of V;.. To obtain this theoretical understanding of the model, a key observation is
that water can be written as a linear combination of two other tracers (equivalent potential temperature
and a moist variable M), which themselves have theoretically tractable spectra. These two other tracers are
linked to distinct modes of the PQG equations—the vortical mode and a moist mode—and the analysis here
highlights the usefulness of wave or mode decompositions for understanding water in a saturated domain.
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1. Introduction

Atmospheric water is notoriously difficult to model, predict, and understand. This is in part
due to the multitude of physical processes involved in the dynamics of water, such as precip-
itation and related processes.

The power spectrum of water—i.e., the scale dependence of its variance—seems to reflect
water’s complex physics and dynamics. In particular, a range of spectral exponents has been
reported in observations of water, as widely as a range of —1.3 to —2.7 (see, e.g., section 3.1
of Fischer et al. 2012), but more commonly in terms of simpler fractions, in part motivated
by turbulence theory, as a range of —5/3 to —2 (Nastrom et al. 1986, Cho et al. 2000, Kahn
and Teixeira 2009, Kahn et al. 2011, Fischer et al. 2012, Pressel and Collins 2012). A variety
of factors could influence the spectrum of water, such as, e.g., precipitation and meridional
and vertical gradients of the background state, and by investigating the influence of different
factors, a better understanding of the physics and dynamics of water could be obtained.

In the present paper, the overarching question is: Can some theoretical insight be gained for
the spectrum of water, at least in an idealized setup? To carry out the investigation here, a
quasi-geostrophic (QG) framework is used. The great advantage of the QG framework is that
it is simple enough to allow theoretical understanding. In the past, for instance, some of the
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achievements of the QG equations include, but are not limited to, explaining baroclinic insta-
bility (Charney 1947, 1948, Phillips 1954) and geostrophic turbulence (Rhines 1979, Salmon
1980). In particular, the QG framework allows theoretical explanations. Despite the benefits
that come from QG theory, one must also keep in mind the limitations of the QG framework,
since it assumes that the Froude and Rossby numbers are asymptotically small, and therefore
the QG framework is an idealization of nature. With such a background, it is reasonable to
hope that the behavior of water could also be amenable to some theoretical analysis, within
the idealized QG framework. Here it is shown that, in a simple moist QG framework, the
spectral exponent of water can take a range of values, and the spectrum can change signif-
icantly due to the influence of precipitation. Facilitating the analysis of QG water is a key
observation that the water can be decomposed into contributions from two eigenmodes: the
vortical mode and a moist mode.

As a quasi-geostrophic model with water, the recently derived precipitating quasi-
geostrophic (PQG) equations will be used (Smith and Stechmann 2017). For comparison,
there have been other variations/adaptations of the dry QG equations to include moisture
and moisture effects via latent heat release, etc. (e.g., Mak 1982, Bannon 1986, Lapeyre and
Held 2004, Monteiro and Sukhatme 2015); these and other models (e.g., Brennan and Lack-
mann 2005, Lambaerts et al. 2012) have provided insight into moisture dynamics and the
role of latent heat release in the atmosphere. One distinguishing and advantageous prop-
erty of the PQG equations is that they are asymptotic limiting equations. Specifically, the
PQG equations arise in the limit of rapid rotation and strong (moist) stratification, starting
from the equations for midlatitude dynamics with moisture, phase changes, and precipitation
(Hernandez-Duenas et al. 2013).

It is worth noting some of the complicating factors that are either neglected here, or not
accessible with the framework of the present paper, especially keeping in mind that the QG
framework itself is asymptotic and idealized. For example, phase changes of water will be ne-
glected, and the model here will use a crude vertical structure. While phase changes of water
are undoubtedly important, it is possible to include some aspects of precipitation without
including the nonlinear switch associated with phase changes; for instance, it is still possible
to have coherent filamentary structures that resemble atmospheric rivers, which we analyze in
a separate work (Edwards et al. 2019). Other studies have used more comprehensive versions
of the dynamics, without neglecting some or all of the factors listed above, and are there-
fore able to provide a more precise connection to observational data (Spyksma and Bartello
2008, Sukhatme et al. 2012, Schemann et al. 2013, Mellado 2017). On the other hand, more
comprehensive dynamics comes at the expense of complicating the possibility of a theoretical
analysis like the one considered here.

The organization of the paper is as follows. In section 2, the precipitating quasigeostrophic
(PQG) model is described, as well as details of the numerical method used to solve the system
projected onto two vertical levels. The results from the numerical simulations of 2-level PQG
are presented in section 3. section 4 provides a theoretical explanation for the exponent of the
water spectra seen in the simulations. The effect of adding a meridional background gradient
of water is investigated in section 5. The final section 6 contains discussion and conclusions
of the main results.

2. PQG Model Description

The PQG equations can be considered as a moist version of the QG equations. The dry QG
equations describe the slow evolution of synoptic-scale flows under assumptions of rapid rota-
tion and strong stratification. Derivations for the dry QG equations can be found in Salmon
(1998), Read (2007), Pedlosky (1979), Dolaptchiev and Klein (2013). Beyond the assumptions
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of the dry QG framework (rapid rotation and strong dry stratification), an additional assump-
tion in the PQG framework is a strong moist stratification of equivalent potential temperature
(Smith and Stechmann 2017, Wetzel et al. 2017). Furthermore, in PQG, phase changes of wa-
ter can be included, and the boundaries between unsaturated and saturated flow regions are
represented by Heaviside nonlinear switches.

PQG is derived starting from a cloud resolving model. In principle, while any cloud micro-
physics scheme could be used (Smith and Stechmann 2017, Wetzel et al. 2019b), we focus here
on warm-rain microphysics, and on a limiting case for simplicity. In brief, conversions between
water vapor q,, cloud water q., and rain water ¢, can be modeled at macroscopic scales, and
each conversion process is associated with a time scale. For evolution of mid-latitude flows on
length scales of many kilometers and time scales of hours to days, the time scales for conver-
sions of water substance are relatively short, on the order of seconds to minutes, compared
to the characteristic times associated with rotation, buoyancy effects, and advection (Rogers
and Yau 1989, Houze 1993, Klein and Majda 2006, Morrison and Grabowski 2008). Thus, for
large-scale mid-latitude flows, the assumption of asymptotically fast cloud microphysics leads
to a particularly simple model description denoted FARE, standing for the assumptions of
‘fast auto-conversion and rain evaporation’ (Hernandez-Duenas et al. 2013).

The FARE model uses the combined assumptions of both fast autoconversion and fast rain
evaporation, where all microphysical processes are on the same footing as being fast relative
to the dynamical time scales of interest, and it follows earlier studies that use the simplifying
assumption of fast autoconversion alone (Seitter and Kuo 1983, Emanuel 1986, Bretherton
1987, Majda et al. 2010, Deng et al. 2012). When the autoconversion of small cloud droplets to
rain drops is considered fast, the cloud water ¢. is asymptotically small, and the state of water
in the system is described by only two variables: the water vapor ¢, and rain water ¢,. With
both fast autoconversion and fast rain evaporation, water below the saturation level exists in
the vapor phase only, and water above the saturation level is instantaneously converted to
rain water, which falls at constant speed V..

Here we focus on the structure and statistics of total water, and for simplicity consider
exclusively saturated domains. One valuable aspect of a fully saturated or convecting setup is
that it allows theoretical analysis that would be complicated if not impossible in the presence
of phase changes or convective thresholds. Several earlier studies have also used the fully
saturated or convecting setup, such as Emanuel (1986), Bretherton (1987), and Neelin and
Yu (1994). An interesting case for the future is to also include the effects of phase changes
as they are included in the original PQG setup (Smith and Stechmann 2017, Wetzel et al.
2019a), and/or to include convective effects, as done by Lapeyre and Held (2004). Here, we
are presenting results without phase changes as a case that demonstrates nontrivial behavior
of water in an even simpler setup. In particular, as shown below, water is influenced by two
balanced eigenmodes (the vortical mode and a moist M mode), and the behavior of water
is determined by the competing influences of these two eigenmodes. This competition can
be seen even in a setup without phase changes; in fact, the competition is clearest to see in
simulations without phase changes, since phase changes introduce additional complexity and
complicate (if not prevent) theoretical analysis techniques.

In this section, we introduce the continuously stratified PQG equations in a saturated
environment in section 2.1, and then the 2-level PQG equations and boundary conditions are
described in detail in section 2.2. Next, we provide an overview of the numerical method and
the model parameters used for our 2-level PQG simulations in section 2.3. We end the section
with descriptions of the basic structures of the dry and moist variables in section 2.4.
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Table 1.: Definition of variables

z = (z,9,2) Horizontal coordinates

t Time

u(x,t) = (u,v,w) Velocities

up = (u,v) Horizontal velocities
((x,t) = 0,v — Oyu Relative vorticity

P(x,t) Streamfunction (pressure scaled by constant density)
0 Potential temperature
qv(x,t) Water vapor mixing ratio
qr(z,t) Rain water mixing ratio
q(x,t) = qv + qr Total water mixing ratio
Oc(x,t) =0+ qy Equivalent potential temperature
PV (z,t) = V21p + (L/Lgs)*(3%4/322) Potential Vorticity
M(x,t) = q: + Gprbe Thermodynamic variable M

Table 2.: Dimensional parameters and typical values

L 1000km Characteristic length scale

Lgs 700km Saturated deformation

Cp 103 Jkg P K1 Specific heat

L, 2.5 x 106 J Latent heat factor

dé, /dz 1.5 K km™! Background vertical gradient of equivalent potential temperature
dg;/dz  —0.6g kg™t km~! Background vertical gradient of rain water

Vi 0.3—10ms! Rainfall speed

Uy 10ms™! Characteristic mid-latitude horizontal velocity

Wo 0.1 ms! Characteristic vertical velocity

Bo 25x 107 m~t gt Change in rate of rotation

Table 3.: Nondimensional parameters

L/Lygs Nondimensional ratio of length scales

B = L?By /Uy Nondimensional change in rate of rotation

Gy = —Lyc;, ' (dg;/dz) (df./dz)~" Ratio of the background vertical gradients of ¢; and 6,
V. = Vp /Wy Nondimensional rainfall speed

Table 4.: Notation for derivatives

D/Dt =0 + u-Vy, Material derivative
Vi,=x0;+9y0, Horizontal laplacian
Dy, /Dt = 0; + up-V), Horizontal material derivative

2.1. PQG equations

Including the variation of the Coriolis parameter with latitude (the S-effect; see e.g., Read
2007), the PQG equations may be written in nondimensional form by

Dy¢ ow
- 1
oy TV =55 (La)
Dpb.  Lgs
— 1
ot vy (1b)
Dth Lds aQT

D v w =V (1c)
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Table 5.: Notation of variable location, where the subscript indicates which level.

(‘1 () at level 1
()2 () at level 2
()m (-) at the mid-domain (between level 1 and level 2)

where the variables u(x,t),((x,t),0.(x,t), ¢:(x, 1), g-(x,t) are functions of three space dimen-
sions = (z,y, 2) and time ¢; u = (u,v,w) is the fluid velocity with horizontal components
up, = (u,v); ( = 0,v — dyu is the vertical component of relative vorticity; 6. is the equivalent
potential temperature; ¢; is the mixing ratio of total water; and ¢, is the mixing ratio of
rain water. With linearized thermodynamics, 6. = 0 + q,, where 0(x,t) is the potential tem-
perature and g,(x,t) is the mixing ratio of water vapor. The horizontal material derivative
Dy /Dt = 0y +up- V), where V), = & 9, + 9 0, appears instead of the full material derivative
D/Dt = 9; + u-V, as discussed below. Summaries of the variables, parameters, and symbols
are provided in Tables 1-4.

The velocity and vorticity are anomalous quantities assuming a Boussinesq background state
of rest, whereas all thermodynamic quantities have been decomposed into Boussinesq back-
ground functions of altitude and anomalies; specifically, the equivalent potential temperature
is 02 (x,t) = 0.(2) + 0c(x, t), the total water is ¢l (x,t) = Gi(2) + ¢ (=, t), and the rain water
is L% (x,t) = G-(2) +q-(x,t). Since the setup here is saturated, the water vapor is equal to the
saturation water vapor: ¢t = G,s. Conversions of water between vapor and liquid are present
in the model, and, likewise, latent heating is present in the model, although these effects are
implicit in (1), owing to the use of conserved variables 6. and ¢;. In this Boussinesq setting,
the background gradients df./dz and dg;/dz are taken to be constants. Also, ¢, is chosen to
be a constant so that dg./dz = 0 and the background states (:) are a steady state solution
of (1). As a result, since ¢ = Gy + G = Gus + Gr, the gradients dg;/dz and dg,s/dz are equal
in this setup, and the anomalous total water ¢; is equal to the anomalous rain water, ¢,. (See
appendix A for more details.) Also, in order to maintain a saturated environment, a constant
source of water is needed to balance the loss of water due to rainfall. The source of water could
be taken to be a uniform constant that represents evaporation in a two-level setup, similar to
the approach of Lapeyre and Held (2004), or it could be a source of rain water that enters
the top of the domain, similar to the source of snow from cloud-top generating cells (Keeler
et al. 2016a,b, 2017, Rauber et al. 2017) (although only warm rain is explicitly included in
the present model), or an idealized source of rain water at domain top as used in other studies
(e.g., Emanuel 1986, Bretherton 1987). The water source would maintain the constant back-
ground rain water ¢,, and neither the water source nor the background rain water have an
influence on the evolution of the anomalies in (1), so it is not needed further in what follows.
In the saturated setup here, upward motion is always associated with condensation and latent
heating, and downward motion is always associated with evaporation and evaporative cooling.
While the environmental background state is chosen to be saturated here, it could also be
chosen to be unsaturated in the more general case (Smith and Stechmann 2017).

Underlying the saturated PQG system (1) are the geostrophic and hydrostatic balances,
resulting from, respectively, fast rotation and strong stable stratification:

X L oy

zxu = —-Vp, Ge—LdsaZ,
where 1) is a streamfunction (pressure scaled by the constant density). Note that the buoy-
ancy in (2b) depends on 6, but does not include the dependence on water vapor and liquid
water, such as water loading, that is typical of the Boussinesq and anelastic equations; this
latter dependence is not included here because these effects are asymptotically small in the
precipitating quasi-geostrophic limit (see Smith and Stechmann 2017, for more details). The

(2a,b)
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balances (2) may be used to rewrite the PQG equations (1) in terms of the streamfunction
in place of u,v,(, 6., with ( = V%LLZ). The geostrophic-hydrostatic balances (2) constrain the
vertical velocity w to be small compared to the horizontal velocity uy,, leading to dominance
of horizontal advection reflected by the operator Dy, /Dt = 9; + up- V. Equations (1a,b) and
(2) are mathematically equivalent to the dry quasi-geostrophic equations after replacing the
saturated deformation radius Lgs by the dry deformation radius Ly (Salmon 1980, Read 2007,
Pedlosky 1979).

In (1), there are four nondimensional parameters in the PQG equations: the length-scale
ratio Lgs/L; change in the rotation rate with latitude, 3; the rainfall speed, V;.; and the scaled
ratio of the background vertical gradients of total water and equivalent potential temperature,
G . Later on in section b, a fifth nondimensional parameter, the meridional gradient of water,
Qy is considered. Tables 2 and 3 list the dimensional and nondimensional parameters and
relationships between them.

Periodic boundary conditions are imposed in the horizontal directions, and a rigid lid bound-
ary condition w = 0 is imposed at top and bottom. Applying these boundary condition to
equations (1) and (2), the vertical boundary condition becomes

Dy0. _ Dpay 0qr

pr =0 D: = %, (3a-c)

w =0,

on both top and bottom. Further boundary conditions on ¢, will also be specified such as no
inflow of ¢, and this is discussed further in the description of the two-level setup in section 2.2.

In what follows, we recall from the discussion between (1) and (2) that the current setup is
fully saturated, so the anomaly g, represents the same quantity as ¢;:

qr = qt- (4)

From here on, all ¢, values will be replaced with ¢;. Since the anomalies of rain water and
total water are equivalent, we will sometimes refer simply to “the water” in what follows.

Following a similar procedure as for dry QG, the vertical velocity w may be eliminated
from (1) by introducing a potential vorticity PV, which here is a moist PV based on 6.. In
addition, for PQG, one can also form a thermodynamic variable M to eliminate the vertical
velocity w from (1). The PV and M variables are defined as

PV = Vi + LYo M =g+ Gunb (5a,b)
- h Lds d22 ) = qt MVe )
leading to the dynamical equations
DyPV B DpM  _ Oq
Dt +p0v =0, pr = V. (6a,b)

For the PQG system, there are coupled equations (6) for PV and M, the latter which is
simply the combination of (1b,c) that eliminates w within this framework.

The form of PQG in (6) highlights the two eigenmodes of the system: a vortical mode char-
acterized by PV and a moist eigenmode characterized by M. The water can be decomposed
into its contributions from these two eigenmodes as

qr = M — GMHE (7)

which follows from (5b), and where 6. = (L/Lg4s)0%/0z is the contribution from the vortical
mode. From this decomposition, one can see that the behavior of water is complicated by
the competing contributions from these two eigenmodes. At the same time, this eigenmode
decomposition will be useful below for sorting out the behavior of water.
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2.2. Two-level PQG

There are several derivations of the dry two level QG equations, such as in Phillips (1954),
Salmon (1998). Here we include a detailed derivation of PQG to make clear how the discretized
equation for M is obtained, and how we implement boundary conditions for ¢; and M.

According to the two-level set-up shown in figure 1, we use the notation Dq(:)/Dt
0¢(-) + ©104(-) + v104(-), and similarly for Da(-)/Dt and D,,(-)/Dt. Using a finite difference
approximation in z of (6) and specific initial /boundary conditions described below, we arrive
at the two level PQG equations given by

D1PV1 _ D2PV2 o
S+ B = 0, o7 =0, (8a.b)
DpMy Vi _ W
D¢ - Azqtvm - AZ (Mm GMee,m) ) (SC)
with
Pr =+ (L) (9a)
1= Va¥l Az Ly 2 Y
PVy = Vi + (L L 2(w — 1) (9b)
27 Vhv2 Az Ly ! 20
L g — 1
Ocn = L. As (9¢)
al/JZ‘ awi ;
i = — , i = fi = 1a27 ’
u 5 v P or 1 (9d,e)
um = (ur +uz), vm = 3(v1 +v2). (9%e)

In quasigeostrophic literature, the velocities u,,, v,, are also known as the barotropic (depth-
averaged) velocities. Expressions (9a-c) are obtained by a centered difference in z of (6a) with

0% 1 [y X0

o~ = - == for level 1 1
022 Az(bz PO ZB> oreve (10a)
0% 1 [y X0

o~ = - == for level 2 1
022 Az(bz ., 02 ZZ) oreve (10b)

and where zp, 2z, 2z denote z at the bottom, middle and top, respectively. For an initial
condition of 8, = 0 at top and bottom, equation (3b) ensures that the value will remain zero
for all time, and hence that 0t¢/9z|,, = 0¢/dz|,, = 0 for all time by (2b). For the more
general vertical boundary condition Dp6./Dt = 0, it was shown that the interior two-level
dry QG equations are unchanged (Phillips 1954, Salmon 1998). The same result also holds
for the 2-level PQG equations within a single phase, either unsaturated or saturated, but not
in an environment with phase changes. For simplicity, and since we consider a domain that
is completely saturated for all time, we use the vertical boundary condition 6, = 0 as done
similarly in the dry QG case (e.g. in Held and O’Brien (1992)).

To obtain (8c), an upwind difference was taken to approximate (6b). For example at
Zm, 0/02 (M — Gpbe) 2=z, = Vi/AZ (G| 2=z, — Gt|2=2,, ). Imposing the initial condition that
q:(t =0) =0 for z > 27, the upwind approximation of equation (3c) gives q;(z = zr) = 0 for
all time. From this latter condition,

0

0z

V.,
Az

(M — Grbe) | 2=z, = (0— (M, — Grbem)) - (11)
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Level 2 . O PV, U, v,
M, q,6,u_ v,
Level 1 . L S PV, u, v,

Figure 1.: Diagram of the two-level set-up. The variables q;, M, 0. are in fact g m, M, O0c.m,
the indices were dropped here so as to match the variables in the later sections.

Since the main interest is on the dynamics of the moist variables in the interior (M, and
¢t,m), and because the moist variables at the lower boundary do not affect the values of the
moist variables in the interior, the M-equation at the lower boundary is omitted. To simplify
notation, the subscript m will be dropped from 6., M from here on.

To summarize, the two-level PQG system, under saturated conditions without phase
changes, takes the form shown in (8)—(9), which is the standard Phillips model plus a tracer
(M), where the tracer M is advected by the barotropic velocity and adjusts with the relax-
ation rate V,./Az to the baroclinic (equivalent potential) temperature (weighted with factor
G ). The tracer M is passive in this setup of saturated conditions without phase changes, in
the sense that the evolution of the upper- and lower-level PVs can be found without knowl-
edge of the evolution of M. Two things which are different with respect to canonical studies
of passive tracers in QG turbulence are that the tracer is not advected by velocities in the
layers, but by the vertically averaged (barotropic) velocity, and the tracer is relaxing to the
baroclinic (equivalent potential) temperature (weighted with factor Gjy).

2.3. Discretized model for numerical computations

Our main goal is to investigate the structure and statistics of water in a statistically quasi-
steady state of saturated PQG, evolving from baroclinically unstable initial conditions. To
this end, we numerically computed the solution to (8) with additional dissipation terms given
by 4th-order hyperviscosity and lower-level friction:

D, PV
1Dt L — U0, PVi +110,PVi 4y + 1 = — kA —vA*PV, (12a)
D, PV
2Dt 2 L U0, PVa+ 190, PVayy + g = — vA*PV;, (12b)
DmM _ Vv?“ 4
7Dt + ’UmayMbg = — 7AZ (M — GMQe) —vA*M . (12(3)

The parameter values U = 0.2, f = 2.5, kyy = 0.05, v = 5 x 1071% and kgs = 4 were
chosen to match the (dry) mid-latitude atmosphere case studied in Qi and Majda (2016).
The expressions for the background values of 6. and PV are, respectively, 0.5, = Oy =
— (1/Az2) (L] Lgs) (2Uy) and PV = (—1)7 (1A2)* (L/Lgs)* (2Uy). The parameters reflecting
the presence of water in our 2-level PQG equations are Gj; and V,: Gj; depends on the
background water profile and V, is the rainfall speed. In the present study, we fix the value
Gy = 1 and vary V.. The baseline case considered in sections 3 and 4 has background
meridional gradient @, = 0 such that M, = (Q, + GuO)y = GuOy; Qy # 0, Gar # 1 is
considered in section 5.

A pseudospectral solver was used to solve (12) on a doubly periodic, horizontal domain.
The time-stepping was done according to a 3rd-order Runge-Kutta scheme with an adaptive
At chosen to satisfy the CFL condition. Three-halfs padding was used for de-aliasing. Most
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of the simulations used resolution N? = 5122 Fourier modes, with a few higher-resolution
simulations as described below. The initial condition was a band of eigenmodes centered
around the unstable wave-vector (k,l) = (3,1), and the simulations were run long enough to
obtain statistical steady states. These eigenmodes can be obtained by solving the linearized
equation (see appendix C for more details on the linearized equations and initial condition
setup). In addition to the two modes obtained from the PV equations, as done in dry QG,
there is another eigenmode from the M equation that is not present in dry QG.

2.4. Basic structure of the statistical steady state (baseline case)

We end this section with figure 2 of zonally averaged variables in a time interval ¢ € [60, 100],
in part to demonstrate that the chosen parameter values for 5, deformation radius k:;sl, and
background vertical shear U are consistent with mid-latitude dynamics. Zonal averages are
denoted by an overbar, e.g., the zonally averaged zonal velocity at mid-height is denoted
Um(t,y). Figure 2 will also help with interpretation of later single-time plots visualizing the
water variables ¢; and M in the (z,y)-plane.

Figure 2a shows a single, persistent, eastward jet with minimal meandering in this relatively
short time window; some meandering is observed for longer time windows as for the mid-
latitude case of Qi and Majda (2016). The asymmetry in the jet, with the westward jet being
broader and the eastward jet being narrower, is related to the § effect (e.g., Kuo 1949, Armi
1989). The potential temperature shown in figure 2b is approximately constant below and
above the jet, which separates warm air to the south from colder air to the north. There is a
gradient of decreasing temperature across the jet region. Within the saturated one-phase PQG
approximation, the dynamics of v, and hence the dynamics of velocity u and temperature 6.,
are not changed by the presence of water. Thus figures 2a and 2b are the same for all values of
rainfall speed V.. However, the dynamics of the water variables ¢; and M depend crucially on
V; as will be demonstrated in the following sections. For V,. = 0.1, the large-scale features of
M (t,y) roughly mirror the features of 8.(¢,%), but with more fine-scale structure (figure 2c).
The zonally averaged anomalous water ¢; is concentrated at the boundaries of the jet, with
less water on the southern warm side and more water on the northern cold side (figure 2d). A
more detailed analysis of zonally averaged water and meridional water fluxes is planned for a
forthcoming manuscript.

To view the simulations from a PV perspective, the power spectra for PV;, PV5 and kinetic
energy at level 1,2 as well as the potential energy are presented in figure 3b. The simulations
for this paper are in the forward enstrophy cascade regime, with the KF spectra matching
those found in Qi and Majda (2016), also in the forward cascade regime. If simulations were
run in a different regime, a regime with the inverse cascade, one would expect a different
shape, notably a flatter K'FE spectra with a -5/3 slope, such as those found in (Larichev and
Held 1995, Smith and Vallis 2001).

3. Simulation results for water variables

In this section, the variability of water is investigated, and it is illustrated in terms of both
its physical-space structure (section 3.1) and its power spectral density (section 3.2). A main
goal is to explore how the water variability changes (if at all) as the influence of precipitation
changes, as controlled in the model here by the parameter V..
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Figure 2.: Panels (a)-(d) show zonally averaged quantities as a function of time ¢ and merid-
ional direction y: (a) zonal velocity ,,, (b) equivalent potential temperature ., (c) M (t,y)
for V., = 0.1, (d) total water g; for V,, = 0.1, and (e) snapshot of PV; at ¢ = 60 (f) snapshot
of PV at t = 60. One time unit corresponds to about one day. (Color online)
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K FE; and level 2, KFE5 and Potential Energy, PE.

3.1. Physical-space structure

Single-time snapshots of anomalous water ¢; are shown in figure 4, where the different rows
correspond to different values of rainfall speed V, = 0,0.1,1.0. The time is ¢t = 60, after
the simulation has reached a statistically steady state, and the height is mid-level between
levels 1 and 2 (see figures 1 and 2). One can see that both the amplitude and variability of
water depend strongly on V., with both amplitude and fine-scale structure decreasing as V,
increases.

From the ¢; plots in figure 4, one anticipates that variance spectra for water q; will steepen
as rainfall speed V, increases and fine-scale structure decreases. In the next section 3.2, we
quantify the range of spectral scalings and the limiting spectral exponents for V,, — 0 and
V, — oo. Later in section 4, we provide a rational basis for understanding the structural
transition from ¢, ~ M for V. — 0, to ¢ ~ w for V. — oc.

3.2. Spectra of total water

Figure 5 shows that the spectra of total water variance steepen and decrease in magnitude
as rainfall speed V, increases, reflecting the loss of fine-scale structure in ¢; as well as the
amplitude reduction seen in figure 4. To quantify the changes in the spectra, figure 6 shows
the spectral exponents as a function of V,.. (The spectral exponents were computed by a linear
fit from kp, = 30 £5 to ki = 70 + 5, shown as vertical lines to indicate uncertainty in the
figure; the horizontal lines are the spectral exponents computed from kj, = 30 to 70.) Broadly
speaking, there seem to be three distinct regimes: the spectral exponent approaches the value
~ —1.4 as V, — 0; there is a transition region for 1072 < V, < 1; the exponent approaches
the bottom dashed blue line as V. — oo, with value close to —4.

A detail that arises in figure 6 is the non-monotonic change in the spectral exponent as a
function of V,.. For V, values between roughly 10° to 10!, the spectral exponent value falls
below the large-V, limiting value (about -4). To investigate whether the non-monotonicity is
a numerical artifact, higher-resolution simulations were carried out with resolution of 10242
Fourier modes (as opposed to the standard cases with 5122 Fourier modes), and the results
are shown in figure 6 by the green marks. The higher-resolution results appear to be only
slightly more monotonic, which suggests the non-monotonicity may be a natural property of
the system.

Observational studies, for comparison, have reported spectral exponents that range as widely
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Figure 4.: Contours of total water ¢, for increasing V. at time ¢ = 60, after quasi-steady state
has been established. (Color online)

as -1.3 to -2.7 (Fischer et al. 2012) or -1.4 to -2.2 (Kahn and Teixeira 2009), although the
more convenient numbers of —5/3 and —2 are more commonly reported. Such observational
ranges are more narrow than the wide range of roughly —1.4 to —4 shown in figure 6 for the
model. Nevertheless, it is interesting that the model’s bound of —1.4 is roughly in line with
the bound that is seen in observations. Moreover, in the model a steeper spectrum can also
be seen, and it is due to the influence of precipitation.

The observational spectra are influenced by numerous factors, and not all factors are in-
cluded in the present idealized setup. In the present setup, it is mainly three parameters that
could potentially influence the water spectrum: rainfall (V;.), vertical moisture gradient, and
meridional moisture gradient. The latter two (the moisture gradients) will be shown in sec-
tion 5 to have limited influence on the water spectrum. Rainfall, on the other hand, is seen to
have a significant influence on the water spectrum.

To aid the comparison between observations and the present idealized model, the parameter
V, here can be viewed as an indicator of the influence of precipitation on the variability of
water, in the following way. While the origin of the parameter V, is as a representation of
terminal velocity of rain, the case of V;, = 0 here is equivalent to the dynamics of a moist
atmosphere that is always unsaturated and cloud-free. As a result, small V,. values correspond
to dynamics with little or no influence of precipitation, moderate V,. values correspond with
appreciable influence of precipitation, and large V,. values correspond with a dominating in-
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Figure 5.: Spectra of total water ¢; for different values of rainfall speed V..

fluence of precipitation. The correspondence between V. in this saturated model and V, in
nature is not a perfect match, since the model here is saturated whereas nature has phase
changes of water. Nevertheless, the trends in the influence of V,. on water spectra can offer an
idealized indication of trends in the influence of precipitation on water spectra.

Given this viewpoint of V., and given all of the factors that complicate a perfect comparison
between observations and the present idealized model, it is interesting that roughly -1.4 is seen
as the bound on the spectral exponent in both observations and the model, and it is seen in
the model for the case of small V.., indicating little or no influence of precipitation. Beyond
this bound, steeper spectra are also seen in both observations and the present idealized model.
While the steeper spectra in the model are mainly due to a larger influence of precipitation
(as indicated by larger V. values), one can expect that the steeper spectra in observations are
likely influenced by precipitation as well as numerous other factors. Also, while a large range
of V. values was used here in order to explore the limiting cases, it is a smaller range of V,
values (roughly a factor of 10) that causes the large changes in the spectral exponent, ranging
from -1.4 to -4 or even steeper.

From a broad point of view, the results here suggest that, even with a minimal model such
as PQG, it is possible to see a wide range of exponents, broadly similar to the existence of
ranges of exponents in observational data, rather than a unique, universal exponent.

4. Limiting values for water spectral exponents

In section 3, it was seen in figure 6 that the behavior of water changes significantly as the
influence of precipitation changes, as measured by changes in V,.. In particular, the spectral
exponent of ¢? approaches different limiting values as V,, — 0 and V. — oo. In this section,
we present some theoretical explanations to better understand this behavior.
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Figure 6.: Spectral exponents of ¢? for increasing V,.. Runs with a resolution of 5122 Fourier
modes are in blue and those of 10242 are in green. Error bars are indicated by the vertical
line segments. The dashed horizontal lines are explained in section 4.2. (Color online)

4.1. Small rainfall speed

A rudimentary understanding of the limit V. — 0 can be found from setting V,, = 0 in the con-
tinuously stratified PV-M equations (6) with 8 = 0. There is a well-known analogy between
the PV-equation (6a) and the vorticity equation for 2D turbulence (Charney 1971). By the
analogy, one may predict the scalings for the kinetic energy K E(ky,) (associated with velocity)
and potential energy PFE(kp) (associated with 6.) resulting from the forced-dissipative ver-
sion of (6). The theory relies on isotropy and the existence of inertial ranges in a statistically
steady state (Kraichnan 1967). In the inertial range of scales smaller than the forcing scales
and larger than the dissipation scale, these predictions are K E(kp) k;?’ and PE(kp) x k‘;‘r’,
where the latter uses the relations between w, 1, PV and 6, given by (2) and (5a).

The M-equation (6b) with V. = 0 describes the evolution of a passive scalar M advected
by the horizontal winds, with expected shallow spectrum M2 (k) oc k,:l (e.g., Babiano et al.
1987). Figure 7(a) and figure 8 reflect this fact as well. The latter figure is made in the same
way as that described in subsection 3.2 for figure 6. (The notation of M?(ky), ¢?(ks) will be
used to describe the power spectra of M, ¢ in terms of the horizontal wavenumber.)

In the discretized 2-level equations with hyperviscosity (12a,b), the Phillips background
acts as a large-scale forcing, albeit anisotropic, leading to baroclinic instability and eventually
to a statistically steady state. In previous studies of both forced-dissipative 2D turbulence
with 8 # 0 (e.g., Maltrud and Vallis 1991) and 2-level QG-equations with 5 # 0 (e.g., Qi
and Majda 2016), the spectrum has been observed to be KE k,‘i with —4 < ¢ < —=3.
As discussed in the latter references and many others, the anisotropy introduced by nonzero
B leads to a change in flow structure from vortices to anisotropic jets, and as reproduced
here in figure 2. Hence, the arguments surrounding the scalings KE k;g’, PE « k,:5
and M? k:gl are no longer strictly valid, but the observed spectra are nevertheless not
far from the predictions associated with isotropic conditions. Our simulations of (12) show,
approximately, KFE k}:3'8, PE « k}:&g and M? k}:M. Factors contributing to steeper-
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Figure 7.: Contours of M for increasing V,. at time ¢ = 60, after quasi-steady state has been
established. (Color online)

than-isotropic spectra are anisotropy, structure formation and truncated vertical structure.

Finally, we can use the information about the spectral scalings for PE(ky) and M?2(ky)
together with relation ¢ = M — G0, to understand the spectral scaling of ¢; observed in
figure 6 for V. — 0. Since the potential energy spectrum PFE(kp,) falls off much more rapidly
than the M-spectrum M?2(ky,), it is clear that significantly more ‘energy’ is associated with
M than with 6. as soon as wavenumbers kj, are larger than the forcing scales k¢, which are
the largest scales in our simulation domain. Hence, g; inherits the fine-scale structure of M
as V, — 0, and the spectrum of ¢; scales as g7 o k:}:l'4, kn > kj.

4.2. Large rainfall speed

Consider the discretized version of equation (1c) for ¢; at mid-height in the 2-level set-up:

Lds
L

Ve
Az%'

Dyt
Dt

_GM

w4 vQy = — (13)



November 11, 2019 Geophysical and Astrophysical Fluid Dynamics output

16 T.K. EDWARDS ET AL.

4

Spectral exponent of M?
4

Figure 8.: Spectral exponents of M2 for increasing V.. Runs with a resolution of 5122 Fourier
modes are in blue. Error bars are indicated by the vertical line segments. The dashed hori-
zontal lines indicate the computed spectral exponent for 2 (there are two lines to indicate
uncertainty). (Color online)

We set @@, = 0 for the baseline case considered above in figures 2-6. Defining € = 1/V},, the
variables in (13) can be expanded in powers of €, for example,

(0) (1)

@ =q +eq +-o, (14a)
v = ¢(0) + 61!)(1) 4 (14b)
w = w0 + ew® ... , (14c)

and so on. The order O(e™!) balance gives

Ve (0)
_ _ _ 1
0= ﬁzqt (15)

To leading order, then, the total water ¢; is small, and its contribution at next order, qt(l),
satisfies the balance

oo Las o Ve )
Gumr T = (16)

(For a more formal derivation where this limit is included as part of the distinguished limit
for PQG, see Smith and Stechmann 2017).

Accordingly, in our simulations with large V,., we observe that the magnitude of ¢; becomes
small, and ¢; ~ w, as in the time snapshot figure 9 with V. = 10. Similarly, the spectral scaling
exponent for the spectrum of ¢ approaches the exponent characterizing the spectrum w? as
seen in figure 6.
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Figure 9.: Contours of (a) total water ¢;, (b) M, (c) vertical velocity w, and (d) equivalent
potential temperature .; the rainfall speed is fixed at V,. = 10. For this large V,., the structure
of ¢ is similar to the structure of w; M approaches 6. (Color online)

4.3. Intermediate V, values

Between the small V, and large V, values, the spectral exponent of ¢; exhibits a wide range
of values as seen in (6). As pointed out in section 3.2, the non-monotonocity due to the dip is
perhaps an unexpected result; is this dip a numerical artifact or is it not and if so, why does
this dip occur?

As mentioned above, the dip is believed to be a natural property of the system from results
from other higher resolution simulations. Further evidence is provided by comparison with
the spectral exponent of ., and M, as shown in figure 8. Since ¢ = M — G0, the spectral
slope of ¢; will match the shallower slope of M, which persists until around V,, = 1. When V,
is approximately 1, the exponent of M is approaching —5.5 or —6, which explains why the
spectral exponent of ¢, is able to also reach approximately —5.5.

5. Effects of a meridional and vertical moisture gradients

In addition to precipitation, other factors can also influence the water variance spectrum.
Two such factors are the meridional moisture gradient, associated with parameter @, and
the vertical moisture gradient, associated with parameter Gjy.
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Figure 10.: Winds at mid-height: (a) w and (b) vy,. (Color online)

The effect of meridional moisture gradient can be studied by taking @, # 0 in (13). We
explored several values of @), corresponding to |Q,| << GaLgs/L, |Qy| = GnrLgs/L, and
|Qy‘ >> GMLds/L.

We observed that the effects of (), are the most apparent for large V., and thus we present
only this case. Returning to (13), the scaling V; = O(e™!) with € — 0 gives qt(o) = 0 and the
O(1) balance

Las v,
U(O)Qy - GMwa(O) = — Eqil) . (17)

Now qél) is a combination of v(®) and w(®). By changing the coefficients Qy and GarLgs/L,

the structure of ¢; may inherit the structure of w, or the structure of v, or some combination
of the two.

Single-time snapshots of w and v, at mid-height are plotted in figure 10, so that their
structure can be compared to ¢;. Note that the structure of the winds does not depend on the
value of V,. because of the one-way coupling. For fixed, large V. = 10, figure 11 illustrates the
competition between w and v for determining the structure of ¢;, depending on the value of
background meridional water gradient @, compared to GarLg4s/L. Figure 11a is the baseline
case with @), = 0, showing that ¢; inherits the structure of w seen in figure 10a. However,
figure 11b for |Q,| =~ GarLgs/L, shows that ¢ inherits the structures of both v and w. While
not as easy to see, the effects of w can be observed in figure 11b, for example in the lower right
corner near x = 1,y = —3, there is a streak through the negative anomaly in ¢; corresponding
to the weak positive anomalies in w. The dual dependence of ¢; on w and v can also be
observed in spectra as shown in figure 12. For comparison to ¢7, the spectra for w? and v?
have been normalized by the appropriate coefficients from (17). For 1 < kj, < 5, Q, causes the
q? spectra to have a similar shape to that of the v? spectra. However, for large ky,, the shape of
the ¢? spectra seems to independent of Qy. In this case of V. = 10, where the rainfall speed is
large, yet not so large to be near the asymptotic regime, both the ¢? spectra are between the
normalized v? and w? spectra. If a larger value of V; is taken, both of the ¢? spectra approach
that of the w? spectra, for large kj,. One sees that the background meridional water gradient
@y is another parameter, in addition to the parameters of the dry system and rainfall speed,
V,, which can change the characteristics of the spectral scaling for total water g;.

Another water parameter, G can also effect the spectral scaling of total water. From (13),
it can be seen that Gj; does not have as strong an effect on the shape of the spectral curves
for ¢;.
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6. Discussion and conclusion

In summary, we have investigated the organization and structure of water in simulations of
geostrophic turbulence. While this PQG model has the usual limitations from QG, along
with those from having coarse, 2-level vertical resolution, it allows for understanding how
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Figure 13.: Left column represents the change of the spectra based on changes in Gj; and
the right column represents that by changes in M,. (Larger values of Gy, M, correspond
to curves higher up. The parameters Gr, M, do not effect the behavior of the ¢; spectra at
high wave numbers. For low wave-numbers, we do see some difference, which can be explained
from the combination of 6., M. (Note M, = (-) should be considered as M,, = (-)x base value.
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precipitation influences statistics of water, in an idealized setting.

A main focus was to study the influence of precipitation on the variability of water. In
the simple model setup here, the influence of precipitation can be controlled by varying the
rainfall speed parameter, V., and it was seen that different behaviors can observed: small V.
leads to a prominent small-scale structure of water, while larger V,. essentially filters out the
small scales. The model showed that for small V,., a spectral exponent for ¢; will be between
-2 and -1, and for large V., the spectrum slope will approach that of w. Moreover, theoretical
arguments provided explanations for these two asymptotic limits.

While it is natural to search for a clean fractional value for the spectral exponent, the results
here are in line with the view that the spectral exponent in nature may not have a simple
fractional value, as even with a PQG model which contains few parameters, by just adjusting
the value of one, V,., a continuum of possible spectral exponent values is obtained, ranging
from around -1.4 to around -5. Moreover, with a presence of a meridional gradient of water,
one can adjust the balance between the vertical and meridional to obtain a ¢; which appears
to be a combination of v and w in the limit of large V,.. In the case of comparable water
gradients, there is a possibility that ¢; will appear like v for a certain range and w for another,
although this would require further investigation to understand in more detail.

Wave or mode decompositions provided a key perspective here for understanding water. In
particular, it was shown that the water ¢; could be written as a linear combination of two other
variables: a passive tracer M and an active tracer 6., which correspond to a moist eigenmode
and the vortical mode, respectively. In the case where the passive tracer is different from the
active tracer, i.e. the small V. regime, we saw that in our case, ¢; behaved more as a passive
tracer. In the case where the passive tracer (M) was forced to relax towards the active tracer
(0), the water ¢; behaved as the difference between the passive tracer and active tracer, which
in our case was w.

With the ability to provide a continuum of behavior for water while also providing asymp-
totic limits to the behavior, this study suggests that the two level PQG model provides a
useful framework to study water in the atmosphere. In the future, it would be interesting to
use the full version of the PQG equations including phase changes (Smith and Stechmann
2017), and/or to include the effects of a convective parameterization (e.g., as in Lapeyre and
Held 2004), which would offer additional realism to the model, but likely at the expense of
complicating theoretical analyses.
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Appendix A: Details on ¢, G,

The saturation water vapor takes the value of its background state, so that ¢! = G,s. Taken

together, since G; = @, + G = ¢'% + G, and the water vapor is always at its saturation value,
the anomalies of total water are equal to the anomalies of rain water: ¢; = ¢,.. The saturation

water vapor ¢'%(z) is taken to be a function of z, since ¢/% (T, p'°t) ~ ¢!%(T(z),p(z)) in

this Boussinesq setup where the anomalies T" and p are small compared with the background
states T'(z) and p(z) (e.g., Hernandez-Duenas et al. 2013). For an environment that remains

saturated for all time, the total mixing ratio of water vapor ¢'* is always equal to a prescribed

saturation function of altitude ¢'%(z), such that ¢!°* = ¢'%!. Furthermore, the mixing ratio of
total water ¢/ is always above saturation, with ¢! = ¢!" — ¢! > 0. The latter inequality,

in turn, implies that the background rain ¢. must be sufficiently large to allow for negative
anomalies in our simulations (see section 3).
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Appendix B: Computation of w

The values for w is obtained by solving the w equation,

2 Las \
—[AZ—V%<£> Az]w

= [[(vs = 00)B+ [T (2, Via) — J(ur, Vi)

+ V2 (vgur — ugv1) + kappaarV>3ir + 20V, (1o + 1/11)} , (B.1)

where J(a,b) represents the determinant of the jacobian. The horizontal derivatives are com-
puted spectrally in Fourier space.

Appendix C: Baroclinic instability of the linearized PQG equations in a saturated
environment

In the numerical simulations, the initial conditions are a band of linearly unstable eigenmodes.
In what follows, these eigenmodes are presented for the PQG equations. The PGQ eigenmodes
are similar to the dry QG eigenmodes, but they differ because of the additional moist variable
M, as explained below.

The effect of water on the linear stability of the two-level PQG equations can be studied
by solving the ‘Phillips problem’ (Phillips 1954), which is perhaps the simplest framework to
study baroclinic instability on a S-plane. Related formulations of the linear stability problem
for the dry QG equations may be found in (Salmon 1980, Read 2007, Pedlosky 1979).

From (8) written in terms of the streamfunction ¢ and M, one can see that (8a,b) form a
closed subsystem for ¢ which is mathematically equivalent to the dry Phillips formulation.
There is only a one-way coupling with (8c), such that v influences the dynamics of M but not
the other way around. As will be verified below, the presence of moisture does not introduce
new instabilities, but only changes the range of unstable wavelengths and growth rates. The
effect of moisture on the growth rate of unstable modes has been examined in previous studies,
such as Emanuel et al. (1987), Lapeyre and Held (2004). The linear instability analysis of the
continuously stratified PQG equations without the [S-effect (the so-called Eady problem Eady
1949, Pedlosky 1979) has been studied in Wetzel et al. (2017). Moist baroclinic instability
has also been studied in other contexts (such as in Gall 1976, Thorpe and Emanuel 1985,
Whitaker and Davis 1994, Zhang et al. 2007, Booth et al. 2014). It was observed in Wetzel
et al. (2017) that with the continuous PQG in a saturated regime, the ratio between the moist
and dry maximum growth rates were comparable to that found in Gall (1976). However, the
wavenumber of the maxmimum growth rate was unchanged in Gall (1976) even with moisture,
whereas for Wetzel et al. (2017), the wavenumber increased.

To impose a zonal flow with vertical shear, together with a meridional temperature gra-
dient, the Phillips background streamfunction is chosen at levels j = 1,2 to be ;3 = U;
with U; = (—1)’U and U constant (Haidvogel and Held 1980, Lapeyre and Held 2004). The
resulting expressions for #. and PV are, respectively, 0.,y = Oy = — (L/Lgs) (1/Az) (2Uy)
and PV, = (—1)7 (1/Az)? (L/Lgs)* (2Uy). For analysis of the saturated environment, we
also impose a background water profile g; , = Qyy with @), constant. Thus both temperature
and water decrease linearly from south to north. From here on, all variables are decomposed
into Boussinesq and Phillips background state and anomalies, in which case the equations (8)
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may be written as
D, PV
1Dt L — U0,PVi +110,PVi 4, + fv1 =0, (C.1a)
D, PV
B T UBPVa + 120, PV + fua = 0, (C.1b)
D, M v
git + ’UmayMbg = — I; (M - GMee) y (C].C)

where Mbg = Qg + GMee,bg = (Qy + GM@)y

The linearized version of (C.1) has constant coefficients U, 3, Qy, Gy, Vr, and thus one may
look for exponential solutions ¢; =Re{t);e!F* W=D} and M =Re{Meikz+lv=wt)} eading to
the possible values of w:

k K2\ K2 AUk (R — K31
E 1 ds ds 2 h\"™h ds oR)
“ k2 + k2, {ﬁ< ok ) Fa |7 K ’ (C.22)
— e

with kp, = VK2 + 12 and k2, = 8L%/L2_.

To simplify the notation, zﬁl, 1[12 are used to represent the eigenmodes found from the solution
of the two level dry QG linearized instability problem. (For more details, see Read 2007,
Pedlosky 1979).

The eigenmode associated with w® is given by

b
2 . (C.3)
B 1 Vi (g L2—t) o ditve,,
“iwE AV, Az Az \ MLy Az 2 b
and that associated with w” is given by
(0,0,1)". (C.4)

The initial conditions for 1&1, 1&2 are obtained from a band of these eigenmodes, with uni-
formly random phase, as in the dry case. For the initial condition of M, the linear combination
of the M —component of w* + afw” is used, with o being the amplitude of the wave from
wP™ and B being a random number chosen from a normal distribution.



