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Atmospheric water has a complex behavior partly due to the influence of precipitation. Consequently, it is
challenging to explain properties of water such as the scale-dependence of its variance, for which a range of
spectral exponents has been identified in observational data. Here, a precipitating quasi-geostrophic (PQG)
model is explored as a possible prototype for contributing to understanding of water spectra, in an idealized
setting. Geostrophic turbulence is examined in numerical simulations, where precipitation is included to
explore its effect on the water spectrum, but where phase changes are neglected to allow corresponding
theoretical analysis. The water spectral exponent is seen to range from approximately -1.4 to approximately
-5 depending on the rainfall speed parameter, Vr, which indicates a significant influence of precipitation
on the water spectrum. The limiting values of this range are explained through asymptotic analyses for
large and small values of Vr. To obtain this theoretical understanding of the model, a key observation is
that water can be written as a linear combination of two other tracers (equivalent potential temperature
and a moist variable M), which themselves have theoretically tractable spectra. These two other tracers are
linked to distinct modes of the PQG equations—the vortical mode and a moist mode—and the analysis here
highlights the usefulness of wave or mode decompositions for understanding water in a saturated domain.
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1. Introduction

Atmospheric water is notoriously difficult to model, predict, and understand. This is in part
due to the multitude of physical processes involved in the dynamics of water, such as precip-
itation and related processes.

The power spectrum of water—i.e., the scale dependence of its variance—seems to reflect
water’s complex physics and dynamics. In particular, a range of spectral exponents has been
reported in observations of water, as widely as a range of −1.3 to −2.7 (see, e.g., section 3.1
of Fischer et al. 2012), but more commonly in terms of simpler fractions, in part motivated
by turbulence theory, as a range of −5/3 to −2 (Nastrom et al. 1986, Cho et al. 2000, Kahn
and Teixeira 2009, Kahn et al. 2011, Fischer et al. 2012, Pressel and Collins 2012). A variety
of factors could influence the spectrum of water, such as, e.g., precipitation and meridional
and vertical gradients of the background state, and by investigating the influence of different
factors, a better understanding of the physics and dynamics of water could be obtained.

In the present paper, the overarching question is: Can some theoretical insight be gained for
the spectrum of water, at least in an idealized setup? To carry out the investigation here, a
quasi-geostrophic (QG) framework is used. The great advantage of the QG framework is that
it is simple enough to allow theoretical understanding. In the past, for instance, some of the
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achievements of the QG equations include, but are not limited to, explaining baroclinic insta-
bility (Charney 1947, 1948, Phillips 1954) and geostrophic turbulence (Rhines 1979, Salmon
1980). In particular, the QG framework allows theoretical explanations. Despite the benefits
that come from QG theory, one must also keep in mind the limitations of the QG framework,
since it assumes that the Froude and Rossby numbers are asymptotically small, and therefore
the QG framework is an idealization of nature. With such a background, it is reasonable to
hope that the behavior of water could also be amenable to some theoretical analysis, within
the idealized QG framework. Here it is shown that, in a simple moist QG framework, the
spectral exponent of water can take a range of values, and the spectrum can change signif-
icantly due to the influence of precipitation. Facilitating the analysis of QG water is a key
observation that the water can be decomposed into contributions from two eigenmodes: the
vortical mode and a moist mode.

As a quasi-geostrophic model with water, the recently derived precipitating quasi-
geostrophic (PQG) equations will be used (Smith and Stechmann 2017). For comparison,
there have been other variations/adaptations of the dry QG equations to include moisture
and moisture effects via latent heat release, etc. (e.g., Mak 1982, Bannon 1986, Lapeyre and
Held 2004, Monteiro and Sukhatme 2015); these and other models (e.g., Brennan and Lack-
mann 2005, Lambaerts et al. 2012) have provided insight into moisture dynamics and the
role of latent heat release in the atmosphere. One distinguishing and advantageous prop-
erty of the PQG equations is that they are asymptotic limiting equations. Specifically, the
PQG equations arise in the limit of rapid rotation and strong (moist) stratification, starting
from the equations for midlatitude dynamics with moisture, phase changes, and precipitation
(Hernandez-Duenas et al. 2013).

It is worth noting some of the complicating factors that are either neglected here, or not
accessible with the framework of the present paper, especially keeping in mind that the QG
framework itself is asymptotic and idealized. For example, phase changes of water will be ne-
glected, and the model here will use a crude vertical structure. While phase changes of water
are undoubtedly important, it is possible to include some aspects of precipitation without
including the nonlinear switch associated with phase changes; for instance, it is still possible
to have coherent filamentary structures that resemble atmospheric rivers, which we analyze in
a separate work (Edwards et al. 2019). Other studies have used more comprehensive versions
of the dynamics, without neglecting some or all of the factors listed above, and are there-
fore able to provide a more precise connection to observational data (Spyksma and Bartello
2008, Sukhatme et al. 2012, Schemann et al. 2013, Mellado 2017). On the other hand, more
comprehensive dynamics comes at the expense of complicating the possibility of a theoretical
analysis like the one considered here.

The organization of the paper is as follows. In section 2, the precipitating quasigeostrophic
(PQG) model is described, as well as details of the numerical method used to solve the system
projected onto two vertical levels. The results from the numerical simulations of 2-level PQG
are presented in section 3. section 4 provides a theoretical explanation for the exponent of the
water spectra seen in the simulations. The effect of adding a meridional background gradient
of water is investigated in section 5. The final section 6 contains discussion and conclusions
of the main results.

2. PQG Model Description

The PQG equations can be considered as a moist version of the QG equations. The dry QG
equations describe the slow evolution of synoptic-scale flows under assumptions of rapid rota-
tion and strong stratification. Derivations for the dry QG equations can be found in Salmon
(1998), Read (2007), Pedlosky (1979), Dolaptchiev and Klein (2013). Beyond the assumptions
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of the dry QG framework (rapid rotation and strong dry stratification), an additional assump-
tion in the PQG framework is a strong moist stratification of equivalent potential temperature
(Smith and Stechmann 2017, Wetzel et al. 2017). Furthermore, in PQG, phase changes of wa-
ter can be included, and the boundaries between unsaturated and saturated flow regions are
represented by Heaviside nonlinear switches.

PQG is derived starting from a cloud resolving model. In principle, while any cloud micro-
physics scheme could be used (Smith and Stechmann 2017, Wetzel et al. 2019b), we focus here
on warm-rain microphysics, and on a limiting case for simplicity. In brief, conversions between
water vapor qv, cloud water qc, and rain water qr can be modeled at macroscopic scales, and
each conversion process is associated with a time scale. For evolution of mid-latitude flows on
length scales of many kilometers and time scales of hours to days, the time scales for conver-
sions of water substance are relatively short, on the order of seconds to minutes, compared
to the characteristic times associated with rotation, buoyancy effects, and advection (Rogers
and Yau 1989, Houze 1993, Klein and Majda 2006, Morrison and Grabowski 2008). Thus, for
large-scale mid-latitude flows, the assumption of asymptotically fast cloud microphysics leads
to a particularly simple model description denoted FARE, standing for the assumptions of
‘fast auto-conversion and rain evaporation’ (Hernandez-Duenas et al. 2013).

The FARE model uses the combined assumptions of both fast autoconversion and fast rain
evaporation, where all microphysical processes are on the same footing as being fast relative
to the dynamical time scales of interest, and it follows earlier studies that use the simplifying
assumption of fast autoconversion alone (Seitter and Kuo 1983, Emanuel 1986, Bretherton
1987, Majda et al. 2010, Deng et al. 2012). When the autoconversion of small cloud droplets to
rain drops is considered fast, the cloud water qc is asymptotically small, and the state of water
in the system is described by only two variables: the water vapor qv and rain water qr. With
both fast autoconversion and fast rain evaporation, water below the saturation level exists in
the vapor phase only, and water above the saturation level is instantaneously converted to
rain water, which falls at constant speed Vr.

Here we focus on the structure and statistics of total water, and for simplicity consider
exclusively saturated domains. One valuable aspect of a fully saturated or convecting setup is
that it allows theoretical analysis that would be complicated if not impossible in the presence
of phase changes or convective thresholds. Several earlier studies have also used the fully
saturated or convecting setup, such as Emanuel (1986), Bretherton (1987), and Neelin and
Yu (1994). An interesting case for the future is to also include the effects of phase changes
as they are included in the original PQG setup (Smith and Stechmann 2017, Wetzel et al.
2019a), and/or to include convective effects, as done by Lapeyre and Held (2004). Here, we
are presenting results without phase changes as a case that demonstrates nontrivial behavior
of water in an even simpler setup. In particular, as shown below, water is influenced by two
balanced eigenmodes (the vortical mode and a moist M mode), and the behavior of water
is determined by the competing influences of these two eigenmodes. This competition can
be seen even in a setup without phase changes; in fact, the competition is clearest to see in
simulations without phase changes, since phase changes introduce additional complexity and
complicate (if not prevent) theoretical analysis techniques.

In this section, we introduce the continuously stratified PQG equations in a saturated
environment in section 2.1, and then the 2-level PQG equations and boundary conditions are
described in detail in section 2.2. Next, we provide an overview of the numerical method and
the model parameters used for our 2-level PQG simulations in section 2.3. We end the section
with descriptions of the basic structures of the dry and moist variables in section 2.4.
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Table 1.: Definition of variables

x = (x, y, z) Horizontal coordinates
t Time
u(x, t) = (u, v, w) Velocities
uh = (u, v) Horizontal velocities
ζ(x, t) = ∂xv − ∂yu Relative vorticity
ψ(x, t) Streamfunction (pressure scaled by constant density)
θ Potential temperature
qv(x, t) Water vapor mixing ratio
qr(x, t) Rain water mixing ratio
qt(x, t) = qv + qr Total water mixing ratio
θe(x, t) = θ + qv Equivalent potential temperature
PV (x, t) = ∇2

hψ + (L/Lds)
2(∂2ψ/∂z2) Potential Vorticity

M(x, t) = qt +GMθe Thermodynamic variable M

Table 2.: Dimensional parameters and typical values

L 1000km Characteristic length scale
Lds 700km Saturated deformation
cp 103 J kg−1 K−1 Specific heat
Lv 2.5× 106 J Latent heat factor

dθ̃e/dz 1.5 K km−1 Background vertical gradient of equivalent potential temperature
dq̃t/dz −0.6 g kg−1 km−1 Background vertical gradient of rain water
VT 0.3− 10 m s−1 Rainfall speed
U0 10 m s−1 Characteristic mid-latitude horizontal velocity
W0 0.1 m s−1 Characteristic vertical velocity
β0 2.5× 10−11 m−1 s−1 Change in rate of rotation

Table 3.: Nondimensional parameters

L/Lds Nondimensional ratio of length scales
β = L2β0/U0 Nondimensional change in rate of rotation

GM = −Lvc
−1
p (dq̃t/dz) (dθ̃e/dz)−1 Ratio of the background vertical gradients of qt and θe

Vr = VT /W0 Nondimensional rainfall speed

Table 4.: Notation for derivatives

D/Dt = ∂t + u·∇h Material derivative
∇h = x̂ ∂x + ŷ ∂y Horizontal laplacian
Dh/Dt = ∂t + uh·∇h Horizontal material derivative

2.1. PQG equations

Including the variation of the Coriolis parameter with latitude (the β-effect; see e.g., Read
2007), the PQG equations may be written in nondimensional form by

Dhζ

Dt
+ βv =

∂w

∂z
, (1a)

Dhθe
Dt

+
Lds

L
w = 0 , (1b)

Dhqt
Dt
−GM

Lds

L
w = Vr

∂qr
∂z

, (1c)
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Table 5.: Notation of variable location, where the subscript indicates which level.

(·)1 (·) at level 1
(·)2 (·) at level 2
(·)m (·) at the mid-domain (between level 1 and level 2)

where the variables u(x, t), ζ(x, t), θe(x, t), qt(x, t), qr(x, t) are functions of three space dimen-
sions x = (x, y, z) and time t; u = (u, v, w) is the fluid velocity with horizontal components
uh = (u, v); ζ = ∂xv − ∂yu is the vertical component of relative vorticity; θe is the equivalent
potential temperature; qt is the mixing ratio of total water; and qr is the mixing ratio of
rain water. With linearized thermodynamics, θe = θ + qv, where θ(x, t) is the potential tem-
perature and qv(x, t) is the mixing ratio of water vapor. The horizontal material derivative
Dh/Dt = ∂t +uh·∇h, where ∇h = x̂ ∂x + ŷ ∂y, appears instead of the full material derivative
D/Dt = ∂t + u·∇, as discussed below. Summaries of the variables, parameters, and symbols
are provided in Tables 1–4.

The velocity and vorticity are anomalous quantities assuming a Boussinesq background state
of rest, whereas all thermodynamic quantities have been decomposed into Boussinesq back-
ground functions of altitude and anomalies; specifically, the equivalent potential temperature
is θtote (x, t) = θ̃e(z) + θe(x, t), the total water is qtott (x, t) = q̃t(z) + qt(x, t), and the rain water
is qtotr (x, t) = q̃r(z)+qr(x, t). Since the setup here is saturated, the water vapor is equal to the
saturation water vapor: qtotv = q̃vs. Conversions of water between vapor and liquid are present
in the model, and, likewise, latent heating is present in the model, although these effects are
implicit in (1), owing to the use of conserved variables θe and qt. In this Boussinesq setting,
the background gradients dθ̃e/dz and dq̃t/dz are taken to be constants. Also, q̃r is chosen to

be a constant so that dq̃r/dz = 0 and the background states (̃·) are a steady state solution
of (1). As a result, since q̃t = q̃v + q̃r = q̃vs + q̃r, the gradients dq̃t/dz and dq̃vs/dz are equal
in this setup, and the anomalous total water qt is equal to the anomalous rain water, qr. (See
appendix A for more details.) Also, in order to maintain a saturated environment, a constant
source of water is needed to balance the loss of water due to rainfall. The source of water could
be taken to be a uniform constant that represents evaporation in a two-level setup, similar to
the approach of Lapeyre and Held (2004), or it could be a source of rain water that enters
the top of the domain, similar to the source of snow from cloud-top generating cells (Keeler
et al. 2016a,b, 2017, Rauber et al. 2017) (although only warm rain is explicitly included in
the present model), or an idealized source of rain water at domain top as used in other studies
(e.g., Emanuel 1986, Bretherton 1987). The water source would maintain the constant back-
ground rain water q̃r, and neither the water source nor the background rain water have an
influence on the evolution of the anomalies in (1), so it is not needed further in what follows.
In the saturated setup here, upward motion is always associated with condensation and latent
heating, and downward motion is always associated with evaporation and evaporative cooling.
While the environmental background state is chosen to be saturated here, it could also be
chosen to be unsaturated in the more general case (Smith and Stechmann 2017).

Underlying the saturated PQG system (1) are the geostrophic and hydrostatic balances,
resulting from, respectively, fast rotation and strong stable stratification:

ẑ × u = −∇hψ , θe =
L

Lds

∂ψ

∂z
, (2a,b)

where ψ is a streamfunction (pressure scaled by the constant density). Note that the buoy-
ancy in (2b) depends on θe but does not include the dependence on water vapor and liquid
water, such as water loading, that is typical of the Boussinesq and anelastic equations; this
latter dependence is not included here because these effects are asymptotically small in the
precipitating quasi-geostrophic limit (see Smith and Stechmann 2017, for more details). The
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balances (2) may be used to rewrite the PQG equations (1) in terms of the streamfunction ψ
in place of u, v, ζ, θe, with ζ = ∇2

hψ. The geostrophic-hydrostatic balances (2) constrain the
vertical velocity w to be small compared to the horizontal velocity uh, leading to dominance
of horizontal advection reflected by the operator Dh/Dt = ∂t + uh·∇h. Equations (1a,b) and
(2) are mathematically equivalent to the dry quasi-geostrophic equations after replacing the
saturated deformation radius Lds by the dry deformation radius Ld (Salmon 1980, Read 2007,
Pedlosky 1979).

In (1), there are four nondimensional parameters in the PQG equations: the length-scale
ratio Lds/L; change in the rotation rate with latitude, β; the rainfall speed, Vr; and the scaled
ratio of the background vertical gradients of total water and equivalent potential temperature,
GM . Later on in section 5, a fifth nondimensional parameter, the meridional gradient of water,
Qy is considered. Tables 2 and 3 list the dimensional and nondimensional parameters and
relationships between them.

Periodic boundary conditions are imposed in the horizontal directions, and a rigid lid bound-
ary condition w = 0 is imposed at top and bottom. Applying these boundary condition to
equations (1) and (2), the vertical boundary condition becomes

w = 0 ,
Dhθe
Dt

= 0 ,
Dhqt
Dt

= Vr
∂qr
∂z

(3a–c)

on both top and bottom. Further boundary conditions on qr will also be specified such as no
inflow of qr and this is discussed further in the description of the two-level setup in section 2.2.

In what follows, we recall from the discussion between (1) and (2) that the current setup is
fully saturated, so the anomaly qr represents the same quantity as qt:

qr = qt. (4)

From here on, all qr values will be replaced with qt. Since the anomalies of rain water and
total water are equivalent, we will sometimes refer simply to “the water” in what follows.

Following a similar procedure as for dry QG, the vertical velocity w may be eliminated
from (1) by introducing a potential vorticity PV , which here is a moist PV based on θe. In
addition, for PQG, one can also form a thermodynamic variable M to eliminate the vertical
velocity w from (1). The PV and M variables are defined as

PV = ∇2
hψ +

(
L

Lds

)2
∂2ψ

∂z2
, M = qt +GMθe (5a,b)

leading to the dynamical equations

DhPV

Dt
+ βv = 0 ,

DhM

Dt
= Vr

∂qt
∂z

. (6a,b)

For the PQG system, there are coupled equations (6) for PV and M , the latter which is
simply the combination of (1b,c) that eliminates w within this framework.

The form of PQG in (6) highlights the two eigenmodes of the system: a vortical mode char-
acterized by PV and a moist eigenmode characterized by M . The water can be decomposed
into its contributions from these two eigenmodes as

qt = M −GMθe (7)

which follows from (5b), and where θe = (L/Lds)∂ψ/∂z is the contribution from the vortical
mode. From this decomposition, one can see that the behavior of water is complicated by
the competing contributions from these two eigenmodes. At the same time, this eigenmode
decomposition will be useful below for sorting out the behavior of water.
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2.2. Two-level PQG

There are several derivations of the dry two level QG equations, such as in Phillips (1954),
Salmon (1998). Here we include a detailed derivation of PQG to make clear how the discretized
equation for M is obtained, and how we implement boundary conditions for qt and M .

According to the two-level set-up shown in figure 1, we use the notation D1(·)/Dt =
∂t(·) + u1∂x(·) + v1∂y(·), and similarly for D2(·)/Dt and Dm(·)/Dt. Using a finite difference
approximation in z of (6) and specific initial/boundary conditions described below, we arrive
at the two level PQG equations given by

D1PV1

Dt
+ βv1 = 0 ,

D2PV2

Dt
+ βv2 = 0 , (8a,b)

DmMm

Dt
= − Vr

∆z
qt,m = − Vr

∆z
(Mm −GMθe,m) , (8c)

with

PV1 = ∇2
hψ1 +

(
1

∆z

L

Lds

)2

(ψ2 − ψ1) , (9a)

PV2 = ∇2
hψ2 +

(
1

∆z

L

Lds

)2

(ψ1 − ψ2) , (9b)

θe,m =
L

Lds

ψ2 − ψ1

∆z
, (9c)

ui = − ∂ψi

∂y
, vi =

∂ψi

∂x
for i = 1, 2 , (9d,e)

um = 1
2(u1 + u2) , vm = 1

2(v1 + v2) . (9f,g)

In quasigeostrophic literature, the velocities um, vm are also known as the barotropic (depth-
averaged) velocities. Expressions (9a-c) are obtained by a centered difference in z of (6a) with

∂2ψ

∂z2
≈ 1

∆z

(
∂ψ

∂z

∣∣∣∣
z=zm

− ∂ψ

∂z

∣∣∣∣
zB

)
for level 1 (10a)

∂2ψ

∂z2
≈ 1

∆z

(
∂ψ

∂z

∣∣∣∣
zT

− ∂ψ

∂z

∣∣∣∣
z=zm

)
for level 2 (10b)

and where zB, zm, zT denote z at the bottom, middle and top, respectively. For an initial
condition of θe = 0 at top and bottom, equation (3b) ensures that the value will remain zero
for all time, and hence that ∂ψ/∂z|zT = ∂ψ/∂z|zB = 0 for all time by (2b). For the more
general vertical boundary condition Dhθe/Dt = 0, it was shown that the interior two-level
dry QG equations are unchanged (Phillips 1954, Salmon 1998). The same result also holds
for the 2-level PQG equations within a single phase, either unsaturated or saturated, but not
in an environment with phase changes. For simplicity, and since we consider a domain that
is completely saturated for all time, we use the vertical boundary condition θe = 0 as done
similarly in the dry QG case (e.g. in Held and O’Brien (1992)).

To obtain (8c), an upwind difference was taken to approximate (6b). For example at
zm, ∂/∂z (M −GMθe) |z=zm ≈ Vr/∆z (qt|z=zT − qt|z=zm). Imposing the initial condition that
qt(t = 0) = 0 for z ≥ zT , the upwind approximation of equation (3c) gives qt(z = zT ) = 0 for
all time. From this latter condition,

∂

∂z
(M −GMθe) |z=zm ≈

Vr
∆z

(0− (Mm −GMθe,m)) . (11)
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Figure 1.: Diagram of the two-level set-up. The variables qt,M, θe are in fact qt,m,Mm, θe,m,
the indices were dropped here so as to match the variables in the later sections.

Since the main interest is on the dynamics of the moist variables in the interior (Mm and
qt,m), and because the moist variables at the lower boundary do not affect the values of the
moist variables in the interior, the M -equation at the lower boundary is omitted. To simplify
notation, the subscript m will be dropped from θe,M from here on.

To summarize, the two-level PQG system, under saturated conditions without phase
changes, takes the form shown in (8)–(9), which is the standard Phillips model plus a tracer
(M), where the tracer M is advected by the barotropic velocity and adjusts with the relax-
ation rate Vr/∆z to the baroclinic (equivalent potential) temperature (weighted with factor
GM ). The tracer M is passive in this setup of saturated conditions without phase changes, in
the sense that the evolution of the upper- and lower-level PVs can be found without knowl-
edge of the evolution of M . Two things which are different with respect to canonical studies
of passive tracers in QG turbulence are that the tracer is not advected by velocities in the
layers, but by the vertically averaged (barotropic) velocity, and the tracer is relaxing to the
baroclinic (equivalent potential) temperature (weighted with factor GM ).

2.3. Discretized model for numerical computations

Our main goal is to investigate the structure and statistics of water in a statistically quasi-
steady state of saturated PQG, evolving from baroclinically unstable initial conditions. To
this end, we numerically computed the solution to (8) with additional dissipation terms given
by 4th-order hyperviscosity and lower-level friction:

D1PV1

Dt
− U∂xPV1 + v1∂yPV1,bg + βv1 = − κM∆ψ1 − ν∆4PV1 , (12a)

D2PV2

Dt
+ U∂xPV2 + v2∂yPV2,bg + βv2 = − ν∆4PV2 , (12b)

DmM

Dt
+ vm∂yMbg = − Vr

∆z
(M −GMθe)− ν∆4M . (12c)

The parameter values U = 0.2, β = 2.5, κM = 0.05, ν = 5 × 10−15 and kds = 4 were
chosen to match the (dry) mid-latitude atmosphere case studied in Qi and Majda (2016).
The expressions for the background values of θe and PV are, respectively, θe,bg = Θy =

− (1/∆z) (L/Lds) (2Uy) and PVj,bg = (−1)j (1∆z)2 (L/Lds)
2 (2Uy). The parameters reflecting

the presence of water in our 2-level PQG equations are GM and Vr: GM depends on the
background water profile and Vr is the rainfall speed. In the present study, we fix the value
GM = 1 and vary Vr. The baseline case considered in sections 3 and 4 has background
meridional gradient Qy = 0 such that Mbg = (Qy + GMΘ)y = GMΘy; Qy 6= 0, GM 6= 1 is
considered in section 5.

A pseudospectral solver was used to solve (12) on a doubly periodic, horizontal domain.
The time-stepping was done according to a 3rd-order Runge-Kutta scheme with an adaptive
∆t chosen to satisfy the CFL condition. Three-halfs padding was used for de-aliasing. Most
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of the simulations used resolution N2 = 5122 Fourier modes, with a few higher-resolution
simulations as described below. The initial condition was a band of eigenmodes centered
around the unstable wave-vector (k, l) = (3, 1), and the simulations were run long enough to
obtain statistical steady states. These eigenmodes can be obtained by solving the linearized
equation (see appendix C for more details on the linearized equations and initial condition
setup). In addition to the two modes obtained from the PV equations, as done in dry QG,
there is another eigenmode from the M equation that is not present in dry QG.

2.4. Basic structure of the statistical steady state (baseline case)

We end this section with figure 2 of zonally averaged variables in a time interval t ∈ [60, 100],
in part to demonstrate that the chosen parameter values for β, deformation radius k−1

ds , and
background vertical shear U are consistent with mid-latitude dynamics. Zonal averages are
denoted by an overbar, e.g., the zonally averaged zonal velocity at mid-height is denoted
ūm(t, y). Figure 2 will also help with interpretation of later single-time plots visualizing the
water variables qt and M in the (x, y)-plane.

Figure 2a shows a single, persistent, eastward jet with minimal meandering in this relatively
short time window; some meandering is observed for longer time windows as for the mid-
latitude case of Qi and Majda (2016). The asymmetry in the jet, with the westward jet being
broader and the eastward jet being narrower, is related to the β effect (e.g., Kuo 1949, Armi
1989). The potential temperature shown in figure 2b is approximately constant below and
above the jet, which separates warm air to the south from colder air to the north. There is a
gradient of decreasing temperature across the jet region. Within the saturated one-phase PQG
approximation, the dynamics of ψ, and hence the dynamics of velocity u and temperature θe,
are not changed by the presence of water. Thus figures 2a and 2b are the same for all values of
rainfall speed Vr. However, the dynamics of the water variables qt and M depend crucially on
Vr as will be demonstrated in the following sections. For Vr = 0.1, the large-scale features of
M̄(t, y) roughly mirror the features of θ̄e(t, y), but with more fine-scale structure (figure 2c).
The zonally averaged anomalous water qt is concentrated at the boundaries of the jet, with
less water on the southern warm side and more water on the northern cold side (figure 2d). A
more detailed analysis of zonally averaged water and meridional water fluxes is planned for a
forthcoming manuscript.

To view the simulations from a PV perspective, the power spectra for PV1, PV2 and kinetic
energy at level 1,2 as well as the potential energy are presented in figure 3b. The simulations
for this paper are in the forward enstrophy cascade regime, with the KE spectra matching
those found in Qi and Majda (2016), also in the forward cascade regime. If simulations were
run in a different regime, a regime with the inverse cascade, one would expect a different
shape, notably a flatter KE spectra with a -5/3 slope, such as those found in (Larichev and
Held 1995, Smith and Vallis 2001).

3. Simulation results for water variables

In this section, the variability of water is investigated, and it is illustrated in terms of both
its physical-space structure (section 3.1) and its power spectral density (section 3.2). A main
goal is to explore how the water variability changes (if at all) as the influence of precipitation
changes, as controlled in the model here by the parameter Vr.
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(c) M̄(t, y) for Vr = 0.1
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(d) q̄t(t, y) for Vr = 0.1

(e) Snapshot of PV1 (f) Snapshot of PV2

Figure 2.: Panels (a)-(d) show zonally averaged quantities as a function of time t and merid-
ional direction y: (a) zonal velocity ūm, (b) equivalent potential temperature θ̄e, (c) M̄(t, y)
for Vr = 0.1, (d) total water q̄t for Vr = 0.1, and (e) snapshot of PV1 at t = 60 (f) snapshot
of PV2 at t = 60. One time unit corresponds to about one day. (Color online)
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Figure 3.: Panels (a), (b) show the spectra of (a) PV1, PV2 and (b) Kinetic Energy at level 1,
KE1 and level 2, KE2 and Potential Energy, PE.

3.1. Physical-space structure

Single-time snapshots of anomalous water qt are shown in figure 4, where the different rows
correspond to different values of rainfall speed Vr = 0, 0.1, 1.0. The time is t = 60, after
the simulation has reached a statistically steady state, and the height is mid-level between
levels 1 and 2 (see figures 1 and 2). One can see that both the amplitude and variability of
water depend strongly on Vr, with both amplitude and fine-scale structure decreasing as Vr
increases.

From the qt plots in figure 4, one anticipates that variance spectra for water qt will steepen
as rainfall speed Vr increases and fine-scale structure decreases. In the next section 3.2, we
quantify the range of spectral scalings and the limiting spectral exponents for Vr → 0 and
Vr → ∞. Later in section 4, we provide a rational basis for understanding the structural
transition from qt ∼M for Vr → 0, to qt ∼ w for Vr →∞.

3.2. Spectra of total water

Figure 5 shows that the spectra of total water variance steepen and decrease in magnitude
as rainfall speed Vr increases, reflecting the loss of fine-scale structure in qt as well as the
amplitude reduction seen in figure 4. To quantify the changes in the spectra, figure 6 shows
the spectral exponents as a function of Vr. (The spectral exponents were computed by a linear
fit from kh = 30 ± 5 to kh = 70 ± 5, shown as vertical lines to indicate uncertainty in the
figure; the horizontal lines are the spectral exponents computed from kh = 30 to 70.) Broadly
speaking, there seem to be three distinct regimes: the spectral exponent approaches the value
≈ −1.4 as Vr → 0; there is a transition region for 10−2 < Vr < 1; the exponent approaches
the bottom dashed blue line as Vr →∞, with value close to −4.

A detail that arises in figure 6 is the non-monotonic change in the spectral exponent as a
function of Vr. For Vr values between roughly 100 to 101, the spectral exponent value falls
below the large-Vr limiting value (about -4). To investigate whether the non-monotonicity is
a numerical artifact, higher-resolution simulations were carried out with resolution of 10242

Fourier modes (as opposed to the standard cases with 5122 Fourier modes), and the results
are shown in figure 6 by the green marks. The higher-resolution results appear to be only
slightly more monotonic, which suggests the non-monotonicity may be a natural property of
the system.

Observational studies, for comparison, have reported spectral exponents that range as widely
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(a) qt, Vr = 0 (b) qt, Vr = 0.1

(c) qt, Vr = 1 (d) qt, Vr = 10

Figure 4.: Contours of total water qt for increasing Vr at time t = 60, after quasi-steady state
has been established. (Color online)

as -1.3 to -2.7 (Fischer et al. 2012) or -1.4 to -2.2 (Kahn and Teixeira 2009), although the
more convenient numbers of −5/3 and −2 are more commonly reported. Such observational
ranges are more narrow than the wide range of roughly −1.4 to −4 shown in figure 6 for the
model. Nevertheless, it is interesting that the model’s bound of −1.4 is roughly in line with
the bound that is seen in observations. Moreover, in the model a steeper spectrum can also
be seen, and it is due to the influence of precipitation.

The observational spectra are influenced by numerous factors, and not all factors are in-
cluded in the present idealized setup. In the present setup, it is mainly three parameters that
could potentially influence the water spectrum: rainfall (Vr), vertical moisture gradient, and
meridional moisture gradient. The latter two (the moisture gradients) will be shown in sec-
tion 5 to have limited influence on the water spectrum. Rainfall, on the other hand, is seen to
have a significant influence on the water spectrum.

To aid the comparison between observations and the present idealized model, the parameter
Vr here can be viewed as an indicator of the influence of precipitation on the variability of
water, in the following way. While the origin of the parameter Vr is as a representation of
terminal velocity of rain, the case of Vr = 0 here is equivalent to the dynamics of a moist
atmosphere that is always unsaturated and cloud-free. As a result, small Vr values correspond
to dynamics with little or no influence of precipitation, moderate Vr values correspond with
appreciable influence of precipitation, and large Vr values correspond with a dominating in-
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Figure 5.: Spectra of total water qt for different values of rainfall speed Vr.

fluence of precipitation. The correspondence between Vr in this saturated model and Vr in
nature is not a perfect match, since the model here is saturated whereas nature has phase
changes of water. Nevertheless, the trends in the influence of Vr on water spectra can offer an
idealized indication of trends in the influence of precipitation on water spectra.

Given this viewpoint of Vr, and given all of the factors that complicate a perfect comparison
between observations and the present idealized model, it is interesting that roughly -1.4 is seen
as the bound on the spectral exponent in both observations and the model, and it is seen in
the model for the case of small Vr, indicating little or no influence of precipitation. Beyond
this bound, steeper spectra are also seen in both observations and the present idealized model.
While the steeper spectra in the model are mainly due to a larger influence of precipitation
(as indicated by larger Vr values), one can expect that the steeper spectra in observations are
likely influenced by precipitation as well as numerous other factors. Also, while a large range
of Vr values was used here in order to explore the limiting cases, it is a smaller range of Vr
values (roughly a factor of 10) that causes the large changes in the spectral exponent, ranging
from -1.4 to -4 or even steeper.

From a broad point of view, the results here suggest that, even with a minimal model such
as PQG, it is possible to see a wide range of exponents, broadly similar to the existence of
ranges of exponents in observational data, rather than a unique, universal exponent.

4. Limiting values for water spectral exponents

In section 3, it was seen in figure 6 that the behavior of water changes significantly as the
influence of precipitation changes, as measured by changes in Vr. In particular, the spectral
exponent of q2

t approaches different limiting values as Vr → 0 and Vr → ∞. In this section,
we present some theoretical explanations to better understand this behavior.
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Figure 6.: Spectral exponents of q2
t for increasing Vr. Runs with a resolution of 5122 Fourier

modes are in blue and those of 10242 are in green. Error bars are indicated by the vertical
line segments. The dashed horizontal lines are explained in section 4.2. (Color online)

4.1. Small rainfall speed

A rudimentary understanding of the limit Vr → 0 can be found from setting Vr = 0 in the con-
tinuously stratified PV -M equations (6) with β = 0. There is a well-known analogy between
the PV -equation (6a) and the vorticity equation for 2D turbulence (Charney 1971). By the
analogy, one may predict the scalings for the kinetic energy KE(kh) (associated with velocity)
and potential energy PE(kh) (associated with θe) resulting from the forced-dissipative ver-
sion of (6). The theory relies on isotropy and the existence of inertial ranges in a statistically
steady state (Kraichnan 1967). In the inertial range of scales smaller than the forcing scales
and larger than the dissipation scale, these predictions are KE(kh) ∝ k−3

h and PE(kh) ∝ k−5
h ,

where the latter uses the relations between u, ψ, PV and θe given by (2) and (5a).
The M -equation (6b) with Vr = 0 describes the evolution of a passive scalar M advected

by the horizontal winds, with expected shallow spectrum M2(kh) ∝ k−1
h (e.g., Babiano et al.

1987). Figure 7(a) and figure 8 reflect this fact as well. The latter figure is made in the same
way as that described in subsection 3.2 for figure 6. (The notation of M2(kh), q2

t (kh) will be
used to describe the power spectra of M, qt in terms of the horizontal wavenumber.)

In the discretized 2-level equations with hyperviscosity (12a,b), the Phillips background
acts as a large-scale forcing, albeit anisotropic, leading to baroclinic instability and eventually
to a statistically steady state. In previous studies of both forced-dissipative 2D turbulence
with β 6= 0 (e.g., Maltrud and Vallis 1991) and 2-level QG-equations with β 6= 0 (e.g., Qi
and Majda 2016), the spectrum has been observed to be KE ∝ kqh with −4 < q < −3.
As discussed in the latter references and many others, the anisotropy introduced by nonzero
β leads to a change in flow structure from vortices to anisotropic jets, and as reproduced
here in figure 2. Hence, the arguments surrounding the scalings KE ∝ k−3

h , PE ∝ k−5
h

and M2 ∝ k−1
h are no longer strictly valid, but the observed spectra are nevertheless not

far from the predictions associated with isotropic conditions. Our simulations of (12) show,
approximately, KE ∝ k−3.8

h , PE ∝ k−5.8
h and M2 ∝ k−1.4

h . Factors contributing to steeper-
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(a) M , Vr = 0 (b) M , Vr = 0.1

(c) M , Vr = 1 (d) M , Vr = 10

Figure 7.: Contours of M for increasing Vr at time t = 60, after quasi-steady state has been
established. (Color online)

than-isotropic spectra are anisotropy, structure formation and truncated vertical structure.
Finally, we can use the information about the spectral scalings for PE(kh) and M2(kh)

together with relation qt = M − GMθe to understand the spectral scaling of qt observed in
figure 6 for Vr → 0. Since the potential energy spectrum PE(kh) falls off much more rapidly
than the M -spectrum M2(kh), it is clear that significantly more ‘energy’ is associated with
M than with θe as soon as wavenumbers kh are larger than the forcing scales kf , which are
the largest scales in our simulation domain. Hence, qt inherits the fine-scale structure of M
as Vr → 0, and the spectrum of qt scales as q2

t ∝ k−1.4
h , kh > kf .

4.2. Large rainfall speed

Consider the discretized version of equation (1c) for qt at mid-height in the 2-level set-up:

Dmqt
Dt

−GM
Lds

L
w + vQy = − Vr

∆z
qt . (13)
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modes are in blue. Error bars are indicated by the vertical line segments. The dashed hori-
zontal lines indicate the computed spectral exponent for θ2

e (there are two lines to indicate
uncertainty). (Color online)

We set Qy = 0 for the baseline case considered above in figures 2-6. Defining ε = 1/Vr, the
variables in (13) can be expanded in powers of ε, for example,

qt = q
(0)
t + εq

(1)
t + · · · , (14a)

ψ = ψ(0) + εψ(1) + · · · , (14b)

w = w(0) + εw(1) + · · · , (14c)

and so on. The order O(ε−1) balance gives

0 = − Vr
∆z

q
(0)
t . (15)

To leading order, then, the total water qt is small, and its contribution at next order, q
(1)
t ,

satisfies the balance

−GM
Lds

L
w(0) = − Vr

∆z
q

(1)
t . (16)

(For a more formal derivation where this limit is included as part of the distinguished limit
for PQG, see Smith and Stechmann 2017).

Accordingly, in our simulations with large Vr, we observe that the magnitude of qt becomes
small, and qt ∼ w, as in the time snapshot figure 9 with Vr = 10. Similarly, the spectral scaling
exponent for the spectrum of q2

t approaches the exponent characterizing the spectrum w2 as
seen in figure 6.
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(a) qt, Vr = 10 (b) M , Vr = 10

(c) w (d) θe

Figure 9.: Contours of (a) total water qt, (b) M , (c) vertical velocity w, and (d) equivalent
potential temperature θe; the rainfall speed is fixed at Vr = 10. For this large Vr, the structure
of qt is similar to the structure of w; M approaches θe. (Color online)

4.3. Intermediate Vr values

Between the small Vr and large Vr values, the spectral exponent of qt exhibits a wide range
of values as seen in (6). As pointed out in section 3.2, the non-monotonocity due to the dip is
perhaps an unexpected result; is this dip a numerical artifact or is it not and if so, why does
this dip occur?

As mentioned above, the dip is believed to be a natural property of the system from results
from other higher resolution simulations. Further evidence is provided by comparison with
the spectral exponent of θe and M , as shown in figure 8. Since qt = M −GMθe, the spectral
slope of qt will match the shallower slope of M , which persists until around Vr = 1. When Vr
is approximately 1, the exponent of M is approaching −5.5 or −6, which explains why the
spectral exponent of qt is able to also reach approximately −5.5.

5. Effects of a meridional and vertical moisture gradients

In addition to precipitation, other factors can also influence the water variance spectrum.
Two such factors are the meridional moisture gradient, associated with parameter Qy, and
the vertical moisture gradient, associated with parameter GM .
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(a) GM (Lds/L)w (b) −Qyvm

Figure 10.: Winds at mid-height: (a) w and (b) vm. (Color online)

The effect of meridional moisture gradient can be studied by taking Qy 6= 0 in (13). We
explored several values of Qy corresponding to |Qy| << GMLds/L, |Qy| ≈ GMLds/L, and
|Qy| >> GMLds/L.

We observed that the effects of Qy are the most apparent for large Vr, and thus we present

only this case. Returning to (13), the scaling Vr = O(ε−1) with ε → 0 gives q
(0)
t = 0 and the

O(1) balance

v(0)Qy −GM
Lds

L
w(0) = − Vr

∆z
q

(1)
t . (17)

Now q
(1)
t is a combination of v(0) and w(0). By changing the coefficients Qy and GMLds/L,

the structure of qt may inherit the structure of w, or the structure of v, or some combination
of the two.

Single-time snapshots of w and vm at mid-height are plotted in figure 10, so that their
structure can be compared to qt. Note that the structure of the winds does not depend on the
value of Vr because of the one-way coupling. For fixed, large Vr = 10, figure 11 illustrates the
competition between w and v for determining the structure of qt, depending on the value of
background meridional water gradient Qy compared to GMLds/L. Figure 11a is the baseline
case with Qy = 0, showing that qt inherits the structure of w seen in figure 10a. However,
figure 11b for |Qy| ≈ GMLds/L, shows that qt inherits the structures of both v and w. While
not as easy to see, the effects of w can be observed in figure 11b, for example in the lower right
corner near x = 1, y = −3, there is a streak through the negative anomaly in qt corresponding
to the weak positive anomalies in w. The dual dependence of qt on w and v can also be
observed in spectra as shown in figure 12. For comparison to q2

t , the spectra for w2 and v2

have been normalized by the appropriate coefficients from (17). For 1 ≤ kh ≤ 5, Qy causes the
q2
t spectra to have a similar shape to that of the v2 spectra. However, for large kh, the shape of

the q2
t spectra seems to independent of Qy. In this case of Vr = 10, where the rainfall speed is

large, yet not so large to be near the asymptotic regime, both the q2
t spectra are between the

normalized v2 and w2 spectra. If a larger value of Vr is taken, both of the q2
t spectra approach

that of the w2 spectra, for large kh. One sees that the background meridional water gradient
Qy is another parameter, in addition to the parameters of the dry system and rainfall speed,
Vr, which can change the characteristics of the spectral scaling for total water qt.

Another water parameter, GM can also effect the spectral scaling of total water. From (13),
it can be seen that GM does not have as strong an effect on the shape of the spectral curves
for qt.



November 11, 2019 Geophysical and Astrophysical Fluid Dynamics output

GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 19

(a) qt with Qy = 0 (b) qt with Qy = −1

Figure 11.: Contours of total water qt for large Vr = 10: (a) Qy = 0 corresponding to Phillips
background with zero background meridional water gradient; (b) |Qy| = 1 corresponding to
Phillips background with large gradient of water in the meridional direction. (Color online)
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Figure 12.: Velocity and total water spectra for large Vr = 10. Baseline case with Qy = 0
(zero Phillips background water): normalized v2 (dash-dot); q2

t (dot). Case |Qy| = 1 (non-zero
meridional gradient of Phillips background water ): normalized w2 (solid); q2

t (dashed). For
even larger values of Vr, the slope at large wavenumbers for both qt spectra approach that of
w. (Color online)

6. Discussion and conclusion

In summary, we have investigated the organization and structure of water in simulations of
geostrophic turbulence. While this PQG model has the usual limitations from QG, along
with those from having coarse, 2-level vertical resolution, it allows for understanding how
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Figure 13.: Left column represents the change of the spectra based on changes in GM and
the right column represents that by changes in My. (Larger values of GM ,My correspond
to curves higher up. The parameters GM ,My do not effect the behavior of the qt spectra at
high wave numbers. For low wave-numbers, we do see some difference, which can be explained
from the combination of θe,M . (Note My = (·) should be considered as My = (·)× base value.
My = 1.1 corresponds with Qy = 0.1.) (Color online)
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precipitation influences statistics of water, in an idealized setting.
A main focus was to study the influence of precipitation on the variability of water. In

the simple model setup here, the influence of precipitation can be controlled by varying the
rainfall speed parameter, Vr, and it was seen that different behaviors can observed: small Vr
leads to a prominent small-scale structure of water, while larger Vr essentially filters out the
small scales. The model showed that for small Vr, a spectral exponent for qt will be between
-2 and -1, and for large Vr, the spectrum slope will approach that of w. Moreover, theoretical
arguments provided explanations for these two asymptotic limits.

While it is natural to search for a clean fractional value for the spectral exponent, the results
here are in line with the view that the spectral exponent in nature may not have a simple
fractional value, as even with a PQG model which contains few parameters, by just adjusting
the value of one, Vr, a continuum of possible spectral exponent values is obtained, ranging
from around -1.4 to around -5. Moreover, with a presence of a meridional gradient of water,
one can adjust the balance between the vertical and meridional to obtain a qt which appears
to be a combination of v and w in the limit of large Vr. In the case of comparable water
gradients, there is a possibility that qt will appear like v for a certain range and w for another,
although this would require further investigation to understand in more detail.

Wave or mode decompositions provided a key perspective here for understanding water. In
particular, it was shown that the water qt could be written as a linear combination of two other
variables: a passive tracer M and an active tracer θe, which correspond to a moist eigenmode
and the vortical mode, respectively. In the case where the passive tracer is different from the
active tracer, i.e. the small Vr regime, we saw that in our case, qt behaved more as a passive
tracer. In the case where the passive tracer (M) was forced to relax towards the active tracer
(θe), the water qt behaved as the difference between the passive tracer and active tracer, which
in our case was w.

With the ability to provide a continuum of behavior for water while also providing asymp-
totic limits to the behavior, this study suggests that the two level PQG model provides a
useful framework to study water in the atmosphere. In the future, it would be interesting to
use the full version of the PQG equations including phase changes (Smith and Stechmann
2017), and/or to include the effects of a convective parameterization (e.g., as in Lapeyre and
Held 2004), which would offer additional realism to the model, but likely at the expense of
complicating theoretical analyses.
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Appendix A: Details on q̃t, q̃r

The saturation water vapor takes the value of its background state, so that qtotvs = q̃vs. Taken
together, since q̃t = q̃v + q̃r = qtotvs + q̃r and the water vapor is always at its saturation value,
the anomalies of total water are equal to the anomalies of rain water: qt = qr. The saturation
water vapor qtotvs (z) is taken to be a function of z, since qtotvs (T tot, ptot) ≈ qtotvs (T̃ (z), p̃(z)) in
this Boussinesq setup where the anomalies T and p are small compared with the background
states T̃ (z) and p̃(z) (e.g., Hernandez-Duenas et al. 2013). For an environment that remains
saturated for all time, the total mixing ratio of water vapor qtotv is always equal to a prescribed
saturation function of altitude qtotvs (z), such that qtotv = qtotvs . Furthermore, the mixing ratio of
total water qtott is always above saturation, with qtotr = qtott − qtotvs > 0. The latter inequality,
in turn, implies that the background rain q̃r must be sufficiently large to allow for negative
anomalies in our simulations (see section 3).
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Appendix B: Computation of w

The values for w is obtained by solving the ω equation,

−
[

2

∆z
−∇2

h

(
Lds

L

)2

∆z

]
w

=
[
[(v2 − v1)β +

[
J(ψ2,∇2

hψ2)− J(ψ1,∇2
hψ1)

]
+∇2

h(v2u1 − u2v1) + kappaM∇2ψ1 + 2U∇2
h∂x (ψ2 + ψ1)

]
, (B.1)

where J(a, b) represents the determinant of the jacobian. The horizontal derivatives are com-
puted spectrally in Fourier space.

Appendix C: Baroclinic instability of the linearized PQG equations in a saturated
environment

In the numerical simulations, the initial conditions are a band of linearly unstable eigenmodes.
In what follows, these eigenmodes are presented for the PQG equations. The PGQ eigenmodes
are similar to the dry QG eigenmodes, but they differ because of the additional moist variable
M , as explained below.

The effect of water on the linear stability of the two-level PQG equations can be studied
by solving the ‘Phillips problem’ (Phillips 1954), which is perhaps the simplest framework to
study baroclinic instability on a β-plane. Related formulations of the linear stability problem
for the dry QG equations may be found in (Salmon 1980, Read 2007, Pedlosky 1979).

From (8) written in terms of the streamfunction ψ and M , one can see that (8a,b) form a
closed subsystem for ψ which is mathematically equivalent to the dry Phillips formulation.
There is only a one-way coupling with (8c), such that ψ influences the dynamics of M but not
the other way around. As will be verified below, the presence of moisture does not introduce
new instabilities, but only changes the range of unstable wavelengths and growth rates. The
effect of moisture on the growth rate of unstable modes has been examined in previous studies,
such as Emanuel et al. (1987), Lapeyre and Held (2004). The linear instability analysis of the
continuously stratified PQG equations without the β-effect (the so-called Eady problem Eady
1949, Pedlosky 1979) has been studied in Wetzel et al. (2017). Moist baroclinic instability
has also been studied in other contexts (such as in Gall 1976, Thorpe and Emanuel 1985,
Whitaker and Davis 1994, Zhang et al. 2007, Booth et al. 2014). It was observed in Wetzel
et al. (2017) that with the continuous PQG in a saturated regime, the ratio between the moist
and dry maximum growth rates were comparable to that found in Gall (1976). However, the
wavenumber of the maxmimum growth rate was unchanged in Gall (1976) even with moisture,
whereas for Wetzel et al. (2017), the wavenumber increased.

To impose a zonal flow with vertical shear, together with a meridional temperature gra-
dient, the Phillips background streamfunction is chosen at levels j = 1, 2 to be ψj,bg = Ujy
with Uj = (−1)jU and U constant (Haidvogel and Held 1980, Lapeyre and Held 2004). The
resulting expressions for θe and PV are, respectively, θe,bg = Θy = − (L/Lds) (1/∆z) (2Uy)

and PVj,bg = (−1)j (1/∆z)2 (L/Lds)
2 (2Uy). For analysis of the saturated environment, we

also impose a background water profile qt,bg = Qyy with Qy constant. Thus both temperature
and water decrease linearly from south to north. From here on, all variables are decomposed
into Boussinesq and Phillips background state and anomalies, in which case the equations (8)
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may be written as

D1PV1

Dt
− U∂xPV1 + v1∂yPV1,bg + βv1 = 0 , (C.1a)

D2PV2

Dt
+ U∂xPV2 + v2∂yPV2,bg + βv2 = 0 , (C.1b)

DmM

Dt
+ vm∂yMbg = − Vr

∆z
(M −GMθe) , (C.1c)

where Mbg = qt,bg +GMθe,bg = (Qy +GMΘ)y.
The linearized version of (C.1) has constant coefficients U, β,Qy, GM , Vr, and thus one may

look for exponential solutions ψj =Re{ψ̂je
i(kx+ly−ωt)} and M =Re{M̂ei(kx+ly−ωt)}, leading to

the possible values of ω:

ω± = − k

k2
h + k2

ds

{
β

(
1 +

k2
ds

2k2
h

)
∓
k2
ds

2k2
h

[
β2 +

4U2k4
h(k4

h − k4
ds)

k4
ds

]1/2
}
, (C.2a)

ωr = − i
Vr
∆z

, (C.2b)

with kh =
√
k2 + l2 and k2

ds = 8L2/L2
ds.

To simplify the notation, ψ̂1, ψ̂2 are used to represent the eigenmodes found from the solution
of the two level dry QG linearized instability problem. (For more details, see Read 2007,
Pedlosky 1979).

The eigenmode associated with ω± is given by
ψ̂1

ψ̂2

− 1

−iω± + Vr/∆z

[
Vr
∆z

(
GM

L

Lds

ψ̂2 − ψ̂1

∆z

)
− ik

ψ̂1 + ψ̂2

2
Mbg

]
 (C.3)

and that associated with ωr is given by (
0 , 0 , 1

)T
. (C.4)

The initial conditions for ψ̂1, ψ̂2 are obtained from a band of these eigenmodes, with uni-
formly random phase, as in the dry case. For the initial condition of M̂ , the linear combination
of the M−component of ω± + αβωr is used, with α being the amplitude of the wave from
ωpm and β being a random number chosen from a normal distribution.


