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Abstract Atmospheric variables (temperature, velocity, etc.) are often decomposed into
balanced and unbalanced components that represent low-frequency and high-frequency
waves, respectively. Such decompositions can be defined, for instance, in terms of eigen-
modes of a linear operator. Traditionally these decompositions ignore phase changes
of water since phase changes create a piecewise-linear operator that differs in different
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method is described here motivated by the case of small Froude and Rossby numbers,
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1 Introduction

It is often desirable to decompose atmospheric variables (temperature, velocity, etc.) into

balanced and unbalanced components. Here, the terms balanced and unbalanced are used

to refer to low-frequency and high-frequency components, respectively, which evolve on slow

and fast time scales, respectively. The balanced component is typically associated with a

scalar variable, called potential vorticity (PV), or a quasi-geostrophic (QG) PV that arises

approximately in an asymptotic limit. The ideas of balance and PV have been widely used and

beneficial in contexts such as, for instance, analyzing atmospheric dynamics (see, e.g., [13, 21, 36]

and references therein) and data assimilation and forecasting (see, e.g., [2, 14, 20, 32, 39] and

references therein). Furthermore, rigorous mathematical theory, such as fast-wave averaging,

can be proved for balanced–unbalanced decompositions [7, 8, 30, 31].

Traditionally, balanced–unbalanced decompositions are based on dry dynamics of the atmo-

sphere, without consideration of moisture or phase changes of water between, e.g., vapor and

liquid phases. If phase changes of water are present, then one needs to define variables (such as

PV) that appropriately account for water and its phase changes. Alternatively, from a related

point of view, eigenmodes can be taken as the quantity of interest instead of PV, since PV can

be associated with a low-frequency eigenmode (the vortical mode) of the linear operator L of

the atmospheric fluid dynamics equations. In particular, in the case of dry dynamics, the fluid

dynamics equations can be written abstractly as

∂v

∂t
+ ε−1L(v) + B(v,v) = 0, (1.1)

where L is a linear operator, ε is a small number (related to Froude and/or Rossby numbers),

B is a bilinear operator, and v is a vector of all fluid dynamics variables (temperature, velocity,

etc.) [30]. When phase changes are present, the linear operator L becomes a piecewise linear

operator HuLu +HsLs that takes a different form in cloudy versus non-cloudy regions:

∂v

∂t
+ ε−1 (HuLu(v) +HsLs(v)) + B(v,v) = 0, (1.2)

where Hu and Hs are Heaviside functions that indicate unsaturated and saturated phases,

respectively. In this case with phase changes, it is unclear how to best perform a decomposition

into balanced and unbalanced components for the piecewise linear operator.

The main purpose of the present paper is to investigate the question: How can a balanced–

unbalanced decomposition be performed in the presence of phase changes? While one could

formulate the methods in a setting of any Froude and Rossby numbers (i.e., any value of ε

in (1.1)–(1.2)), the main methods that are proposed and tested here will use the simplifying

assumption of small Froude and Rossby numbers (although also tested for their applicability in

general settings where Froude and Rossby numbers are not necessarily small). The theoretical

assumption of small Froude and Rossby numbers allows the use of a QG PV variable, in

which case the identification of the balanced component is somewhat simplified. The balanced

component can be found by solving an elliptic partial differential equation (PDE), and the

process of solving this elliptic PDE is known as PV inversion. Here, we are motivated by a

new version of QG equations and PV inversion that includes moisture, precipitation, and phase
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changes of water. These precipitating quasi-geostrophic (PQG) equations were recently derived

as the asymptotic limit, for small (moist) Froude and Rossby numbers, of an atmosphere with

moisture and phase changes [43].

Other methods for moist PV inversion have been proposed in the past (e.g., [37, 41, 50]),

and they differ from [43] and the present paper in some fundamental ways. One of the most

distinguishing aspects of [43] is in its recognition that, if moisture is present, then the bal-

anced component of the flow is a two-dimensional space, rather than a one-dimensional space

characterized by only the single PV variable. A second balanced variable, called M due to its

association with moisture, is used by [43] to complete the specification of the two-dimensional

balanced component. From an eigenmode perspective, the addition of a moisture variable cre-

ates a new eigenmode that is not present in dry dynamics, and the new eigenmode can be

associated with the variable M . As a result, for moist dynamics, the balanced component is

obtained by the process of PV-and-M inversion, rather than dry PV inversion.

This article is dedicated to Andrew J. Majda to celebrate his 70th birthday, and it has drawn

on his influence through his many contributions to topics of, e.g., balanced dynamics, singular

limits, and fast-wave averaging for fluids with small Mach, Froude, and/or Rossby numbers

[3, 4, 5, 7, 8, 17, 18, 29, 30, 31, 33], and PDEs and atmospheric dynamics with nonlinear

switches [10, 16, 34, 44].

This paper is organized as follows. In Section 2, we describe how to construct the bal-

anced components of atmospheric variables. We begin by describing the motivating model, the

PQG equations with three moisture constituents and their derivation in the QG limit from the

anelastic equations. We then describe some aspects associated with the inversion of PV and

M to recover the streamfunction. In Section 3, we discuss three different methods that may

be employed to recover the balanced streamfunction. We finish that section by discussing the

simple numerical method that we use to invert the PV. In Section 4, we use the inversion meth-

ods of Section 3 to discuss the effects of a simple, idealized PV and M with phase transitions

on the balanced streamfunction and temperature. Lastly, in Section 5, we use the inversion

methods on simulated data for a mid-latitude simulation of a channel flow. We then discuss

the balanced streamfunction, velocity, and temperature and the effect that the moisture has on

their structure.

2 Model Motivation: The Quasi-Geostrophic Limit of the
Precipitating Anelastic Equations

Here, we use the PQG equations to motivate the decomposition of a moist atmospheric model

into balanced (zero-frequency or vortical) and unbalanced (high-frequency or wave) components.

Specifically, the potential vorticity as defined in the QG sense will give a natural decomposition

of the system into balanced (zero-frequency) and unbalanced (high-frequency) contributions

by filtering out of high-frequency modes. The fact that moisture is included in our starting

set of anelastic equations means that these moist QG equations will include zero-frequency or

low-frequency modes associated with moisture contributions.

We begin by describing the anelastic equations of moist air with three phases of water (water
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vapor, cloud water, and rainwater) in Section 2.1. We then discuss the derivation of the system

in the quasi-geostrophic limit in Section 2.2. This asymptotic limit gives rise to what are called

the PQG equations. We finish the section by briefly discussing how a balanced or low-frequency

mode is determined for the total water of the system in Section 2.3.

2.1 Anelastic Equations with Three Moisture Constituents

Our starting point are the governing anelastic equations for moist air with three water con-

stituents [1, 11, 26, 38]:
Du

Dt
+ f ẑ × u = −∇

(
p

ρ̃

)
+ ẑ b, (2.1a)

∇ · (ρ̃u) = 0, (2.1b)

Dθ

Dt
+ w

dθ̃

dz
=
Lv
cp

θ̃

T̃
(Cd − Er), (2.1c)

Dqv
Dt

+ w
dq̃v
dz

= −Cd + Er, (2.1d)

Dqc
Dt

= Cd −Ar − Cr, (2.1e)

Dqr
Dt
− 1

ρ̃

∂

∂z
(ρ̃VT qr) = Ar + Cr − Er. (2.1f)

Here u = (u, v, w) is the velocity vector, where u is the zonal (west-east), v is the meridional

(south-north), and w is the vertical (down-up) velocity component; ρ is the density; p is the

pressure; T is the temperature; θ is the potential temperature; qv is the water vapor mixing

ratio; qc is the cloud water mixing ratio; and qr is the rainwater mixing ratio. The buoyancy

b = b(θ, qv, qc, qr) is given by the formula

b = g

(
θ

θ̃
+ ε0qv − qc − qr

)
. (2.1g)

The material derivative operator is defined as D/Dt := ∂/∂t+u·∇ with∇ := (∂/∂x, ∂/∂y, ∂/∂z)

being the gradient operator and ẑ is a unit vector in the direction of gravity. The thermody-

namic variables ρ, p, θ, T and moisture variables qv, qc, qr haven been decomposed such that

the static background states, denoted by a tilde (̃·), are functions of the height z only, e.g.,

the total potential temperature is given by θ̃(z) + θ(x, y, z, t) with anelastic background state

θ̃ and anomaly/perturbation θ. The static background states are freely chosen to match an

atmospheric state of interest; for this paper we choose a hydrostatically balanced pressure

and density and q̃c = q̃r = 0. Lastly, g is the acceleration due to gravity, f is the constant

Coriolis parameter, Lv is the latent heat factor, cp is the specific heat at constant pressure,

ε0 = Rv/Rd − 1 is the ratio of water vapor Rv and dry air Rd gas constants, and VT is the

rainfall speed, which is assumed to be constant for simplicity.

The source terms in prognostic equations (2.1c)–(2.1f) allow for the conversion between

moisture constituents qv, qc, qr and correspond to the following moist thermodynamic processes:

Cd symbolizes the condensation of water vapor to form cloud water, Er is the evaporation of

rainwater into water vapor, Ar is the auto-conversion of cloud water into rainwater, and Cr is
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the collection of cloud water to form rainwater. A complete characterization of these source

terms requires modeling the microphysics and the thermodynamic properties of the system

(e.g., [15]) beyond the scope of the present paper. The cloud condensation term Cd, however,

may be defined implicitly so as to impose the condition that (i) there is no cloud water in

unsaturated regions and (ii) the water vapor is at saturation in regions with cloud water [11].

Indeed, the condensation term implies the following conditions of moisture must be satisfied in

saturated and unsaturated regions:

qv < qvs, qc = 0 (unsaturated), (2.2a)

qv = qvs, qc ≥ 0 (saturated), (2.2b)

where qvs is the water vapor at saturation. In principle, the saturation water vapor qvs depends

on the pressure and temperature of the system [40]. For simplicity, however, here qvs denotes a

prescribed water vapor saturation profile that depends on the height only, i.e., qvs = qvs(z) [12,

19]. While conditions (2.2a)–(2.2b) do not allow for supersaturation of water vapor in saturated

regions, water vapor is immediately relaxed to its saturation value qv = qvs in saturated regions,

the conditions impose no constraint on the rainwater. Thus, both unsaturated and saturated

regions permit rainwater.

Phase conditions (2.2a)–(2.2b) allow us to reduce the number of thermodynamic evolution

equations (2.1c)–(2.1f) from four to three. Specifically, the total water mixing ratio qt =

qv + qc + qr and the rainwater mixing ratio qr are now sufficient to determine all moisture

constituents qv, qc, qr. To see this fact, phase conditions (2.2a)–(2.2b) may be written in the

form

qt − qr < qvs, qc = 0 (unsaturated), (2.3a)

qt − qr ≥ qvs, qv = qvs (saturated). (2.3b)

These conditions, in turn, may be used to deduce the formulas

qv = min(qt − qr, qvs), (2.4a)

qc = max(0, qt − qr − qvs). (2.4b)

It is customary to then write the thermodynamic equations of the system in terms of the

equivalent potential temperature θe and total water qt [6, 45]. The variables θe and qt have

the advantage that their evolution equations do not include the source terms Cd, Er, Ar, or

Cr. Additionally, we supplement the equations for θe and qt with an equation for the rainwater

qr. Thus, the 4 thermodynamic equations (2.1c)–(2.1f) may be reduced to the thermodynamic

equations [6, 43, 45]

Dθe
Dt

+ w
dθ̃e
dz

= 0, (2.5a)

Dqt
Dt

+ w
dq̃t
dz
− 1

ρ̃

∂

∂z
(ρ̃VT qr) = 0, (2.5b)

Dqr
Dt
− 1

ρ̃

∂

∂z
(ρ̃VT qr) = Ar + Cr − Er. (2.5c)
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For our purposes, thermodynamic and moisture variables are related by means of the lin-

earized equivalent potential temperature equations for the background and anomaly:

dθ̃e
dz

=
dθ̃

dz
+

Lv

cpΠ̃

dq̃v
dz

and θe = θ +
Lv

cpΠ̃
qv, (2.6a)

where Π̃ = T̃ /θ̃ = (p̃/p0)
Rd/cp is the Exner function for the background pressure and p0 is the

surface pressure reference state. Lastly, the background and anomaly total water qt are given

by:

q̃t = q̃v and qt = qv + qc + qr. (2.6b)

In addition, we assume that q̃vs = q̃v so that both the total moisture variables, e.g., q̃t+ qt, and

moisture anomalies satisfy conditions (2.2a)–(2.3b).

The anelastic evolution equations with three moisture constituents may then be taken to

consist of the two equations (2.1a)–(2.1b) and three thermodynamic equations (2.5a)–(2.5c).

2.2 Quasi-Geostrophic Anelastic Equations with Three Moisture Con-
stituents

In what follows, we use the anelastic equations presented in the previous section to derive the

anelastic PQG equations. We attempt to highlight key features of this procedure and refer the

interested reader to [43] for details on the asymptotic derivation.

The quasi-geostrophic limit entails an asymptotic scaling of comparable and small Rossby

and Froude numbers. Additionally, due to the thermodynamic equations (2.5a)–(2.5b), we

must specify the relative size of the background states dθ̃e/dz and dq̃t/dz. We assume that

the background states dθ̃e/dz and (Lv/cp)dq̃t/dz are comparable and large in relation to the

Rossby number. Specifically, these terms are large enough to balance the horizontal advection

of the θe and qt anomalies in equations (2.5a)–(2.5b). Under these assumptions, the leading

order balance in the system of equations (2.1a)–(2.1b) with (2.5a)–(2.5c) consists of geostrophic

balance for horizontal motions and hydrostatic balance for vertical motions. This leading order

balance naturally gives rise to a streamfunction ψ satisfying

b = f
∂ψ

∂z
, (2.7a)

uH =

(
−∂ψ
∂y

,
∂ψ

∂x

)
, (2.7b)

ζ = ∇2
Hψ, (2.7c)

where ψ = p/(fρ̃), uH = (u, v) is the horizontal velocity vector, and ζ is the relative vorticity

with ∇2
H := ∂2/∂x2 + ∂2/∂y2 being the horizontal Laplacian. The vertical velocity does not

appear in the above set of equations as it is identically zero at this order. Moreover, at leading

order, explicit moisture contributions from qv, qc, qr to the buoyancy (2.1g) vanish [43, 49] and

the buoyancy in the quasi-geostrophic limit is given by

b = g
θ

θ̃
; (2.7d)
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resembling in form the buoyancy obtained in dry quasi-gesotrophic dynamics (e.g., [48]). Im-

plicitly, however, the buoyancy (2.7d) still retains important moisture information by means of

the phase transitions of the system.

The anelastic PQG equations with three moisture constituents are then [43]

DHζ

Dt
=
f

ρ̃

∂

∂z
(ρ̃w) , (2.8a)

DHθe
Dt

+ w
dθ̃e
dz

= 0, (2.8b)

DHqt
Dt

+ w
dq̃t
dz

=
1

ρ̃

∂

∂z
(ρ̃VT qr) , (2.8c)

DHqr
Dt

=
1

ρ̃

∂

∂z
(ρ̃VT qr) +Ar + Cr − Er. (2.8d)

The horizontal material derivative operator DH/Dt is defined in the expected manner by

DH/Dt := ∂/∂t+ uH ·∇H with the horizontal gradient ∇H := (∂/∂x, ∂/∂y).

In addition, the PQG equations (2.8a)–(2.8d) may be combined so as to eliminate the vertical

velocity variable w; much like in dry QG [48]. These new equations naturally define a potential

vorticity variable, denoted the equivalent potential vorticity PVe, and two additional variables

due to the moisture constituents qt and qr [43]. These new variables take the form

PVe = ζ +
f

ρ̃

∂

∂z

(
ρ̃

dθ̃e/dz
θe

)
, (2.9a)

M = qt +GMθe, (2.9b)

Mr = M − qr (2.9c)

with evolution equations
DHPVe
Dt

= − f

dθ̃e/dz

∂uH
∂z
·∇Hθe, (2.10a)

DHM

Dt
=

1

ρ̃

∂

∂z
(ρ̃VT qr) , (2.10b)

DHMr

Dt
= Er −Ar − Cr, (2.10c)

where GM = −(dq̃t/dz)/(dθ̃e/dz) is a function of z.

In complete analogy with dry QG, it is natural to attempt to formulate a diagnostic equation

for the streamfunction ψ in terms of the dynamic variables PVe, M , andMr. In this way, we may

derive an inversion procedure for the streamfunction ψ in terms of the potential vorticity and

moisture variables of PQG. Since PVe, M , and Mr correspond to low-frequency or balanced

variables by construction, we use these variables as a starting point to define all balanced

components of the system. Namely, as we proceed to describe below, from the variables PVe,

M , and Mr we determine the balanced streamfunction ψ, which may then be used to obtain

all other balanced variables.

To construct the inversion for ψ, we use the equivalent potential vorticity equation (2.9a)

and write down both ζ and θe in terms of ψ, M , and/or Mr. The relative vorticity ζ is directly
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related to the streamfunction ψ by equation (2.7c). The equivalent potential temperature

θe, however, requires more discussion. In the quasi-geostrophic limit, equation (2.6a) for θe

remains unchanged. Therefore, using the fact that (2.4a) can be written in the form qv =

(qt− qr)Hu + qvsHs, we use equation (2.6a) to write down an equation for θe in terms of θ and

Mr in both the saturated and unsaturated regions, where

Hu =

{
1 if qt − qr < qvs (unsaturated)

0 if qt − qr ≥ qvs (saturated)
and Hs = 1−Hu (2.11)

are the indicator functions for the unsaturated or saturated regions. Specifically, using (2.9b)–

(2.9c), equation (2.6a) for θe becomes

θe =

(
θ +

Lv

cpΠ̃
(Mr −GMθe)

)
Hu +

(
θ +

Lv

cpΠ̃
qvs

)
Hs (2.12a)

or solving for θe = θe(θ,Mr, z) and using the background θ̃e equation (2.6a) we obtain

1

dθ̃e/dz
θe =

g

θ̃

1

N2
u

(
θ +

Lv

cpΠ̃
Mr

)
Hu +

g

θ̃

1

N2
s

(
θ +

Lv

cpΠ̃
qvs

)
Hs, (2.12b)

where we define the buoyancy frequencies

N2
u =

g

θ̃

dθ̃

dz
and N2

s =
g

θ̃

dθ̃e
dz

. (2.13)

Then, using (2.12b), the potential vorticity equation (2.9a) becomes

PVe = ζ +
f

ρ̃

∂

∂z

(
ρ̃
g

θ̃

1

N2
u

(
θ +

Lv

cpΠ̃
Mr

)
Hu + ρ̃

g

θ̃

1

N2
s

(
θ +

Lv

cpΠ̃
qvs

)
Hs

)
. (2.14a)

We may then use (2.7a)–(2.7d) on (2.14a) to obtain the inversion relation for ψ in terms of PVe

and Mr:

∇2
Hψ +

1

ρ̃

∂

∂z

(
ρ̃
f2

N2

∂ψ

∂z

)
= PVe −

1

ρ̃

∂

∂z

(
ρ̃
g

f θ̃

Lv

cpΠ̃

f2

N2
(MrHu + qvsHs)

)
, (2.14b)

where

N2 = N2
uHu +N2

sHs. (2.15)

For PQG, the balanced streamfunction ψ can then be found by solving the nonlinear, non-

constant coefficient, elliptic partial differential equation (2.14b) using suitable boundary condi-

tions. It is worth noting that the three moisture constituent inversion (2.14b) requires knowledge

not only of the potential vorticity variable, as in dry QG, but also of a moisture variable in the

form of Mr. This is in complete analogy to the two moisture constituent inversion presented

in [43], where the moisture variable needed was M rather than Mr. Recall that here qvs is

assumed to be prescribed and therefore does not feature as part of the variables of the system.

Moreover, for PQG, the nonlinearity in inversion (2.14b) arises from the indicator functions

Hu and Hs due to the fact that they depend implicitly on the streamfunction. To highlight
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this fact, note that we may write the phase transition conditions (2.11) in terms of ψ, PVe, M ,

and/or Mr as follows. First, using (2.9b)–(2.9c) we may simply write qt − qr as

qt − qr = Mr −GMθe. (2.16)

Second, using the fact that θe is given by (2.6a) and qv = (qt − qr)Hu + qvsHs by (2.4a), we

may gather terms and write

(qt − qr)(DMHu +Hs) = Mr −GMθ + (1−DM ) qvsHs, (2.17)

where equations (2.13) and the definition of the background state θ̃e in (2.6a) allow us to define

DM = 1 +GM
Lv

cpΠ̃
=
N2
u

N2
s

. (2.18)

Lastly, subtracting qvs(DMHu +Hs) from both sides in (2.17) gives

(qt − qr − qvs)(DMHu +Hs) = Mr −GMθ −DMqvs. (2.19)

Since DMHu+Hs ≥ 0 by definition, equation (2.19) shows that we may equally take the sign of

Mr−GMθ−DMqvs or qt−qr−qvs as our condition to determine phase transitions. Specifically,

this means that we may re-write the indicator function Hu in terms of the variables Mr and ψ

(the potential temperature θ is related to only ψ by (2.7a) and (2.7d)) as

Hu =

{
1 if Mr −GMθ < DMqvs (unsaturated)

0 if Mr −GMθ ≥ DMqvs (saturated)
and Hs = 1−Hu. (2.20)

We note in passing that it is peculiar that the moisture variable M is not required for the

inversion (2.14b), the determination of the phase boundaries (2.20), and the computation of

water vapor qv and cloud water qc by means of the equations (2.4a)–(2.4b) and (2.17). One

may legitimately ask the question whether M is a necessary variable in the system or whether

one may dismiss this variable. The variable M is indeed necessary to determine qt and qr, as

we show in Section 2.3; these variables being most likely required to determine the source terms

Ar, Cr, Er in equation (2.10c) for the evolution of Mr.

In summary, the balanced or low-frequency component of the streamfunction can be found

by solving (2.14b) for known PVe and Mr. Other balanced components can be found using

this balanced streamfunction and the variables PVe, M , and Mr. Specifically, the balanced

horizontal velocity is obtained directly from (2.7b) and the balanced potential temperature is

obtained from (2.7a)–(2.7d). To obtain a balanced component for the moisture variables of the

system is more involved. We describe such a process for total water anomaly qt in the next

subsection.

2.3 Balanced Component of Total Water

To find the balanced component of total water, we write down the equation for qt in terms of the

balanced variables ψ, PVe, M , and/or Mr. This procedure will be analogous to that discussed
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to obtain (2.17) in the previous section. We begin by using (2.9b) to write qt = M −GMθe. In

addition, from equation (2.17) we deduce

(qt − qr)Hu =
1

DM
(Mr −GMθ)Hu. (2.21)

Then, as before, using the fact that θe is given by (2.6a) and qv = (qt − qr)Hu + qvsHs is given

by (2.4a), we may write

qt = M −GM

(
θ +

Lv

cpΠ̃

(
1

DM
(Mr −GMθ)Hu + qvsHs

))
. (2.22a)

This formulation of qt in terms of ψ, M , and Mr may be simplified into the concise form

qt = M +

(
N2
s −N2

u

N2

)(
MrHu +

cpΠ̃

Lv
θ + qvsHs

)
(2.22b)

by using (2.18). So, the balanced component of the total water mixing ratio is given by the

equation (2.22b) above. Notice that this equation depends on the M , Mr, and ψ variables of

the PQG system for prescribed background profiles of N2
u , N2

s , Π̃, and qvs.

3 Potential Vorticity Inversion

In this section, we discuss different methods that may be used to recover the streamfunction

of the balanced system. In principle, this process amounts to the inversion of the QG elliptic

operator in (2.14b) using suitable boundary data for a known potential vorticity PVe and

moisture variable Mr. In practice, however, different methods may be attempted to approximate

the streamfunction.

3.1 Estimate using the Pressure

A simple estimate for the streamfunction may be produced as follows. For mid-latitude synoptic

atmospheric flows, one natural idea is to consider the pressure —which may be easily obtainable

from simulations or atmospheric data— as a proxy for the streamfunction. Namely, for flows in

near geostrophic balance, actual pressure is not expected to be significantly different from the

balanced pressure arising from the streamfunction. This would entail estimating the requisite

streamfunction ψ by

ψ ≈ ψ0 =
p

fρ̃
, (3.1)

where the subscript 0 is used to connote that this is a “zeroth” order estimate. Therefore,

the function ψ0 is an estimate of ψ in the sense that it satisfies the equations (2.7a)–(2.7b) of

hydrostatic and geostrophic balance approximately.

Although, this method is not, strictly speaking, an inversion procedure, it represents a

legitimate avenue for estimation of the streamfunction. The appeal of this method is its relative

simplicity and ease of implementation. We include it here mainly for comparison with other

more mathematically justifiable methods.
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3.2 Inversion of Dry QG PV

Another avenue to estimate the streamfunction involves the inversion of equation (2.14b) in a

“one phase” case. Specifically, we consider solving the inversion (2.14b) under the assumption

that Hu = 1 and Hs = 0 everywhere in the domain, i.e., the domain is strictly unsaturated. As

justification for this simplification, we are motivated by the fact that the fraction of the domain

that is saturated is expected to be small in mid-latitude atmospheric dynamics. The inversion

equation in this solely unsaturated case then becomes

∇2
Hψ +

1

ρ̃

∂

∂z

(
ρ̃
f2

N2
u

∂ψ

∂z

)
= PVe −

1

ρ̃

∂

∂z

(
ρ̃
g

f θ̃

Lv

cpΠ̃

f2

N2
u

Mr

)
. (3.2)

Inversion equation (3.2) gives rise to two immediate observations. First, the inversion still

requires for both PVe and Mr to be specified; the potential vorticity PVe and moisture variable

Mr are then constructed using the definitions (2.9a) and (2.9b). Second, the absence of the phase

indicator functions Hu, Hs means that the buoyancy frequency coefficients N2 are continuous,

though still non-constant.

To carry out the one phase inversion (3.2), suitable boundary information for the stream-

function must be specified. For our purposes we will consider periodicity in the x direction

and Neumann boundary conditions in the y, z directions. Equations (2.7a)–(2.7b) imply that

the Neumann conditions require us to specify the potential temperature θ at the top and bot-

tom boundaries of our domain and the East-West (zonal) velocity u in the South and North

boundaries of the domain.

We denote the solution of (3.2) by ψ1, where the subscript denotes that this is a “one phase”

solution.

3.3 Inversion of PQG PV

We may also consider the inversion of (2.14b) with two phases of moisture. Namely, we solve

∇2
Hψ +

1

ρ̃

∂

∂z

(
ρ̃
f2

N2

∂ψ

∂z

)
= PVe −

1

ρ̃

∂

∂z

(
ρ̃
g

f θ̃

Lv

cpΠ̃

f2

N2
(MrHu + qvsHs)

)
(3.3)

for the streamfunction ψ with PVe and Mr specified. As in the one phase case of Section 3.2,

we consider a periodic boundary condition in x and Neumann conditions in y and z.

For a completely balanced flow, as arises from QG dynamics, solving (3.3) for the stream-

function could be done with both discontinuous coefficients and nonlinearities arising from the

phase indicator functions Hu and Hs [43]. Here, instead, as a method for decomposing flows

with both balanced and unbalanced components, the phase indicators Hu and Hs are influenced

by both the balanced and unbalanced components of the system, and they will be treated as

given functions, which yields a linear problem (with discontinuous coefficients). That is, we

treat the phase interface as known here. For the QG case of the nonlinear inversion problem

where the phase interface is unknown, methods are currently under development (C.-N. Tzou

and S. N. Stechmann, personal communication).

We label solutions of this inversion procedure by ψ2, where the subscript 2 denotes that this

is a “two phase” solution of the inversion.
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3.4 Numerical Method

To solve the inversions discussed in Sections 3.2–3.3, we use the following simple numerical

method. First, we discretize the differential operator using centered differences on a staggered

grid (e.g., [22]). This step would be standard and second-order accurate if the coefficients of

the PDE were smooth, but it is slightly complicated due to the discontinuity of the buoyancy

frequency coefficients. As a result, the method is only first-order accurate, and it is similar

to the ghost fluid method [27, 28]. Rather than using the more complex version with sub-cell

interface locations [27], our implementation uses the simpler setup with all functions evaluated

at their respective grid points, similar to [28]. Second, the discretized system is then inverted

using the conjugate gradient method for symmetric matrices (e.g., [46]).

The discretization of the system is done on the interior points of the grid which range

over the indices i ∈ [1, I], j ∈ [1, J ], k ∈ [1,K]. Thus, grid cell “edges” are located halfway

between interior points, e.g., (i − 1/2, j, k) and (i + 1/2, j, k) are edges for the point (i, j, k).

The boundaries of the domain are then at the points i = 1/2, I + 1/2, j = 1/2, J + 1/2, and

k = 1/2,K+ 1/2. The discretization of the differential operator then follows the standard form

at the grid point (i, j, k):

ρ̃k∇2
Hψi,j,k + ρ̃k+1/2

f2

N2
k+1/2

(
ψi,j,k+1 − ψi,j,k

(∆z)2

)
− ρ̃k−1/2

f2

N2
k−1/2

(
ψi,j,k − ψi,j,k−1

(∆z)2

)
= Fi,j,k,

(3.4a)

where ∇2
Hψi,j,k is the usual discrete Laplacian

∇2
Hψi,j,k =

ψi+1,j,k − 2ψi,j,k + ψi−1,j,k

(∆x)2
+
ψi,j+1,k − 2ψi,j,k + ψi,j−1,k

(∆y)2
(3.4b)

and

F (x, y, z) = ρ̃PVe −
∂G

∂z
with G(x, y, z) = ρ̃

g

f θ̃

Lv

cpΠ̃

f2

N2
(MrHu + qvsHs) (3.4c)

which is discretized as

Fi,j,k = ρ̃k(PVe)i,j,k −
(
Gi,j,k+1/2 −Gi,j,k−1/2

∆z

)
. (3.4d)

The streamfunction ψi,j,k for the indices i = 0, I + 1, j = 0, J + 1, and k = 0,K + 1 lies

outside the grid and must be specified in some form. At the i = 1/2, I + 1/2 boundaries of the

domain, we assume periodicity, i.e.,

ψ0,j,k = ψI,j,k and ψ1,j,k = ψI+1,j,k. (3.4e)

For the y and z boundaries we use discretizations of the conditions (2.7a)–(2.7b) as our Neumann

conditions. Namely, we set

−ui,1/2,k =
ψi,1,k − ψi,0,k

∆y
and − ui,J+1/2,k =

ψi,J+1,k − ψi,J,k
∆y

, (3.4f)

g
θi,j,1/2

θ̃1/2
= f

ψi,j,1 − ψi,j,0
∆z

and g
θi,j,K+1/2

θ̃K+1/2

= f
ψi,j,K+1 − ψi,j,K

∆z
(3.4g)
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where u and θ are specified functions at the given boundary.

Finally, note that one could possibly use a second-order accurate numerical method [9, 23,

24, 25, 47] instead of a first-order accurate method, but a first-order accurate method is simpler

and is sufficient for the purposes of the present paper.

4 Streamfunction Inversion in a Simplified Setting

In this section, we describe the difference between the streamfunctions and temperatures ob-

tained from the one phase inversion discussed in Section 3.2 and the two phase inversion of

Section 3.3 in a simplified setting. Namely, we use simplified anelastic background states and

simplified anomaly variables to observe the difference our choice of inversion and anomaly vari-

ables has on the resultant streamfunction. Both the background states and anomaly variables

of this section are physically motivated, but are primarily chosen for their analytical simplicity.

We observe that the moisture choice, in particular, the choice of cloud water qc, can have a

significant impact on the structure of the streamfunction and temperature. In other words,

all else held equal, the location of the transition between phases, the choice of background

states in saturated regions, and the quantity of cloud water in saturated regions affect the

streamfunction.

4.1 Anelastic Background State

We begin by describing the simplified anelastic background state we will use to study the effects

of moisture on the streamfunction obtained from one and two phase inversions. Our goal in

choosing our background states is for them to be both physically sensible and analytically

tractable. First, we require the background states to satisfy the equations

dp̃

dz
= −ρ̃g, (4.1a)

p̃ = ρ̃RdT̃ , (4.1b)

θ̃ = T̃

(
p0
p̃

)Rd/cp

, (4.1c)

where equation (4.1a) corresponds to hydrostatic balance, (4.1b) is the ideal gas law, and (4.1c)

is the definition of potential temperature. Note that equations (4.1a)–(4.1c) entail that only

one of ρ̃, p̃, T̃ , or θ̃ may be chosen freely, with all others then determined. For simplicity we

choose the following background potential temperature:

θ̃ = θ0 +Bz, (4.2a)

where θ0 = 280 K and B = 5 K/km are chosen to roughly match a low altitude mid-latitude

profile [35, Fig. 5.8]. A comprehensive list of relevant parameters and their mid-latitude values

is given in Table 1. For this potential temperature profile, equations (4.1a)–(4.1c) determine

the background state pressure

p̃ = p0

(
1− g

Bcp
log

(
1 +

Bz

θ0

))cp/Rd

, (4.2b)
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where p0 = 105 Pa is the value of the pressure at the surface; we refer the interested reader

to [12] for a careful derivation of the pressure (4.2b) from profile (4.2a) and equations (4.1a)–

(4.1c). From the background potential temperature (4.2a) and pressure (4.2b), the background

temperature T̃ can then be found by means of (4.1c) and the background density ρ̃ may be

found by means of (4.1b).

Note that equations (4.1a)–(4.1c) do not specify the background moisture. So, we freely

choose the background water vapor to be

q̃v = qv,0 exp (−Cz) . (4.2c)

where qv,0 = 8 g/kg and C = 1/5 km−1 are again chosen to be physically sensible for mid-

latitudes [35, Fig. 5.15]. The form of the background state density ρ̃, pressure p̃, potential

temperature θ̃, and water vapor q̃v is shown in Figure 1.
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Figure 1. Anelastic background states satisfying equations (4.1a)–(4.1c), (4.2a), and (4.2c).
Top left: background density ρ̃. Top Right: background pressure p̃. Bottom left: background

potential temperature θ̃. Bottom right: background water vapor q̃v.

Additionally, the water vapor saturation profile may be determined in approximate form

using the Clausius-Clapeyron relation [12, 40]. Namely, we define the total saturation profile to

be qtotvs (z) = qvs(p̃(z), T̃ (z)) ≈ qvs(p, T ), where the saturation profile qvs(p, T ) is obtained from
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the total pressure and the Clausius-Clapeyron formula for saturation vapor pressure dependent

on the temperature T . This gives the equation

qtotvs =
qvs,0
p̃/p0

exp

(
−Lv
Rv

(
1

T̃
− 1

θ0

))
, (4.3a)

where qvs,0 = 20 g/kg is the surface water vapor saturation value. Then, the saturation water

vapor (anomaly) that will be used to determine the phase transitions, e.g., using relations

(2.3a)–(2.3b), is then

qvs = qtotvs − q̃v. (4.3b)

Lastly, the background potential temperature θ̃ (4.2a) and water vapor q̃v (4.2c) with equa-

tion (2.6a) for θ̃e allow us to determine the buoyancy frequencies N2
u(z) and N2

s (z) defined by

equations (2.13). The form of the buoyancy frequencies is shown in Figure 2.
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Figure 2. Buoyancy frequencies for unsaturated regions N2
u (solid line) and saturated regions

N2
s (dashed line).

4.2 Simplified Anomaly Variables

In this section, we describe the simplified anomaly variables that we will use in each of our

streamfunction inversions. The choice of these variables will determine not only what may

be acceptable boundary conditions for the inversion procedure, but also the location of phase

transitions. In principle, each streamfunction inversion requires us to specify both the equivalent

potential vorticity PVe and moisture variable Mr. It is perhaps easier, however, to construct

these variables from simpler variables related to the moisture and streamfunction. In this case,

we choose to use the moisture qt − qr and a streamfunction like function ϕ. The potential

vorticity PVe and moisture variable Mr will then be defined by

PVe = ∇2
Hϕ+

f

ρ̃

∂

∂z

(
ρ̃

dθ̃e/dz

(
fθ̃

g

∂ϕ

∂z
+

Lv

cpΠ̃
((qt − qr)Hu + qvsHs)

))
, (4.4a)
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Table 1.

Parameter Typical Value Definition
f 10−4 s−1 Coriolis parameter
g 9.81 m/s2 Acceleration due to gravity
Lv 2.5× 106 J kg−1 Latent heat factor
cp 103 J kg−1 K−1 Specific heat at constant pressure
Rd 287 J kg−1 K−1 Dry air gas constant
Rv 462 J kg−1 K−1 Water vapor gas constant
p0 105 Pa Reference surface pressure
θ0 280 K Reference surface temperature
B 5 K km−1 Vertical gradient of background temperature
qv,0 8 g kg−1 Reference surface water vapor
C 1/5 km−1 Background water vapor rate of decrease
qvs,0 20 g kg−1 Reference surface saturation water vapor
A0 10 g kg−1 Surface value of moisture anomaly
A1 −1 g kg−1 km−1 Vertical gradient of moisture anomaly
L 1, 000 km Horizontal reference scale for QG dynamics
H 10 km Vertical reference scale for QG dynamics
U 10 m/s Velocity reference scale for QG dynamics

Mr = qt − qr +GM

(
fθ̃

g

∂ϕ

∂z
+

Lv

cpΠ̃
((qt − qr)Hu + qvsHs)

)
(4.4b)

for prescribed variables qt − qr and ϕ. As before, the indicator functions Hu and Hs are

determined to be consistent with the phase conditions (2.11) for the chosen qt − qr and qvs.

Thus, once qt − qr and ϕ are chosen, PVe and Mr are determined and are kept the same for

both inversion cases.

We will consider two different formulations for the qt− qr and ϕ variables. One formulation

will be chosen so that qt − qr and ϕ are uniform in the horizontal directions (uniform in x and

y), while the other formulation will have x and y variation. Namely, for simplicity we choose

the moisture variable qt − qr to satisfy either

qt − qr = A0 +A1z (4.5a)

or

qt − qr =
1

3
(A0 + zA1)

(
2− cos

(
4π

Lx
x

)
cos

(
2π

Ly
x

))
. (4.5b)

Here, we choose the parameters A0 = 10 g/kg and A1 = −1 (g/kg) km−1 related to the moisture

profile and Lx = 12, 000 km and Ly = 8, 000 km related to the domain geometry. We show the

moisture variable qt−qr for both (4.5a) and (4.5b) for the saturation water vapor (4.3a)–(4.3b)

in Figure 3. Notice that the region where qt − qr > qvs corresponds to a saturated region;

for our chosen moisture profiles saturation occurs approximately between 2 km ≤ z ≤ 10 km.

Since qc = qt − qr − qvs by definition (2.4b), the excess of qt − qr above the saturation water

vapor qvs corresponds to cloud water and can be seen to have a maximum of about 2.5 g/kg

at z = 6 km for (4.5a) and two maxima of about 2.5 g/kg at (x, y, z) = (3000, 4000, 6) km
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and (x, y, z) = (9000, 4000, 6) km for (4.5b). Lastly, we note that the values of qt − qr at high

altitudes are not wholly realistic as they would require a very large and negative rainwater qr

profile to be true, but we neglect this fact in favor of the relative simplicity of the moisture

profile.
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Figure 3. Saturation water vapor qvs from (4.3a)–(4.3b) with moisture anomaly qt − qr. Left:
qvs (solid line) and qt − qr (dashed line) given by (4.5a) in the simplified setting. Right:
qt − qr − qvs for qt − qr given by (4.5b); solid black lines represent phase transitions

qt − qr = qvs.

Next, we similarly consider two formulations of for the variable ϕ. In particular, we consider

either

ϕ = UL cos

(
6π

Lz
z

)
(4.6a)

or

ϕ = UL cos

(
4π

Lx
x

)
cos

(
2π

Ly
y

)
cos

(
6π

Lz
z

)
. (4.6b)

Here, we choose U = 10 m/s and L = 106 m as realistic mid-latitude geostrophic values [48]

and Lz = 16 km as the height of the domain.

Therefore, we construct the potential vorticity PVe and moisture variable Mr via (4.4a)–

(4.4b) by using (1) the formulation (4.5a) and (4.6a) to obtain a uniform in x and y system

and (2) the formulation (4.5b) and (4.6b) which gives a system with variability in (x, y, z). We

show the potential vorticity PVe and moisture variable Mr using (4.5a) and (4.6a) in Figure 4

and those obtained using (4.5b) and (4.6b) in Figure 5.

4.3 Comparison of One and Two Phase Inversions

Using the anomaly variables PVe and Mr of Section 4.2 with the background state of Sec-

tion 4.1, we may recover the streamfunction by inverting (2.14b) using the numerical method

specified in Section 3.4. We are then additionally able to compute the balanced potential tem-

perature arising from the streamfunction by means of equations (2.7a) and (2.7d). We do the

streamfunction inversion in two ways: first, we consider the one phase inversion outlined in
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Figure 4. Left: Equivalent potential vorticity PVe for the uniform in x and y formulation
(4.5a) and (4.6a). Right: Moisture variable Mr for the same formulation.
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Figure 5. Left: Equivalent potential vorticity PVe for the fully three-dimensional (4.5b) and
(4.6b) formulation. Right: Moisture variable Mr for the same formulation.

Section 3.2 and, second, we consider the two phase inversion described in Section 3.3. For each

inversion we impose the following boundary conditions: periodicity in the x direction, ∂ψ
∂y = 0

on y = 0, Ly, and ∂ψ
∂z = 0 on z = 0, Lz. In addition, to understand the effect that our choice

of anomalies has on the streamfunction we use both the uniform in y, z formulation (4.5a) and

(4.6a) and the fully three-dimensional formulation (4.5b) and (4.6b).

The streamfunction and balanced potential temperature from the one phase (denoted with

a subscript 1) and two phase (denoted with a subscript 2) inversions using PVe and Mr for

the uniform in x and y formulation are shown in Figure 6. Notice that the balanced one and

two phase streamfunctions and temperatures differ significantly in the location of the region

of saturation; in this case, saturation occurs between 2 ≤ z ≤ 10 km as shown in left plot of

Figure 3. In particular, an excess of cloud water of about qc ≈ 3 g/kg (left plot in Figure 3)
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leads to a difference of about 8 K in the temperature (bottom plots in Figure 6) or about a

20% change in the amplitude. The one phase temperature appears to be strictly lower than

the two phase temperature. Moreover, the length scale of the difference between one and two

phase solutions is comparable to the length scale of cloud water qc features.
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Figure 6. Streamfunction ψ (top) and potential temperature θ (bottom) arising from inversion
using PVe and Mr given by uniform (4.5a) and (4.6a). Subscript 1 refers to one phase

inversion while subscript 2 refers to two phase inversion.

Similarly, the potential temperature and the difference between the potential temperature

from the one and two phase inversions is shown in Figure 7 for the fully three-dimensional PVe

and Mr of (4.5b) and (4.6b). As in the 1D case, we observe that an excess of qc ≈ 3 g/kg (right

on Figure 3) in cloud water leads to a 7 K difference in temperature. Moreover, we find that

the region where the significant difference between the two temperature fields occurs is strongly

linked to the location where the system in saturated; compare the region of saturation of the

right plot in Figure 3 with the region in Figure 7. As before, the difference is such that the

temperature of the one phase inversion is lower than that of the two phase case. This, however,

is no longer strictly true everywhere in the domain; observe that the two phase temperature is

higher at (y, z) = (4000, 12) km, which is inside the unsaturated region of the domain.

It is perhaps not surprising that the differences between the solutions of the two inversion
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Figure 7. Potential temperature θ1 obtained from one phase inversion (left) and difference
between temperatures in one and two phase inversions (right). Both streamfunction inversions

preformed using PVe and Mr given by (4.5b) and (4.6b).

procedures are strongest in the locations where the system is saturated; the key difference

between the one and two phase inversions is the incorporation of saturated regions into the

inversion. We may indeed clarify this point slightly by considering the difference between the

two inversion procedures.

4.4 Difference Between One and Two Phase Inversions

We note briefly that by taking the difference (3.2) and (3.3) it is possible to write down a

simple PDE satisfied by the difference between the streamfunctions, i.e., ψ2 − ψ1. Specifically,

the difference between the solutions of the one and two phase inversions can be written as

∇2
H(ψ2 − ψ1) +

1

ρ̃

∂

∂z

(
ρ̃
f2

N2

∂

∂z
(ψ2 − ψ1)

)
=

1

ρ̃

∂

∂z

(
ρ̃
g

f θ̃

Lv

cpΠ̃

f2

N2
u

qc

)
(4.7)

simplifying by means of equation (2.6a) for θe, equation (2.9c) Mr, and equation (2.18) and

the fact that both inversions require the same PVe and Mr variables. Therefore, the difference

between the two inversion procedures is related to the cloud water and the location of phase

transitions.

5 Simulated Data

Here, we use data from an equilibrated turbulent synoptic mid-latitude numerical simulation to

determine balanced components for the temperature and velocity by means of the procedures

of Section 3. Notice that data arising from a large scale mid-latitude simulation fits naturally

within the QG inversion or approximate QG balance framework of Section 3. We proceed analo-

gously to Section 4 by constructing potential vorticity PVe and moisture variable Mr to recover

the streamfunction. The balanced variables that arise from these different streamfunction are
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then compared and the effects of the different inversions on the solutions are discussed. We

begin by describing the numerical model chosen and the simulation setup.

5.1 Description of WRF Numerical Code and Setup

For our numerical simulations we use version 3.7.1 of the Weather Research and Forecast

(WRF; [42]) model developed by the National Center for Atmospheric Research (NCAR). The

WRF model solves the compressible, non-hydrostatic Euler equations using a terrain-following

hydrostatic-pressure vertical coordinate with C-grid staggering and a time-split integration

scheme. Our simulation consists of a generalization of the idealized default unstable baroclinic

wave case em b wave available within the WRF package. Namely, we configure the model to run

a β-plane mid-latitude channel simulation. The physics parameterization used for this simula-

tion is that of the Kessler microphysics scheme [15], which contains warm moisture constituents

of rainwater, cloud water, and water vapor. We include no short- or long-wave radiation, no

surface or boundary layer physics, and no cumulus physics schemes.

The channel geometry is chosen to be Lx × Ly × Lz = 12, 000 km ×8, 000 km ×16 km

in the West-East, South-North, and Down-Up directions, respectively. The resolution of the

simulation is selected to be ∆x = ∆y = 25 km, giving 480 equally spaced grid points in the

East-West and 320 points in the South-North direction, and 64 grid points in the vertical

direction, accounting for an approximate ∆z ≈ 250 m resolution in the vertical. The time-step

chosen is ∆t = 40 seconds. The β-plane is chosen with the following parameters: f0 = 10−4

s−1 at the center of the channel and β = 10−8 s−1 km−1 as the south-north gradient, i.e.,

f = f0 +β(y−y0), where f is the Coriolis frequency and y0 = Ly/2 = 4, 000 km is the reference

position at the center of the channel.

Lastly, we impose periodic boundary conditions in the x (East-West) direction and specify

the boundary values in the South and North walls of the channel. At these specified boundaries

we use a relaxation zone of 4 grid points. Therefore, the south and north boundary conditions

are rigid and specified. The specific boundary values used at the south and north walls of the

channel are discussed in more detail in the next section.

5.2 Background State and Boundary Conditions

The background state and boundary conditions for the numerical simulation are chosen to be

physically relevant for a mid-latitude flow. These values themselves are taken from the default

WRF package em b wave. We show the anelastic background state used in the numerical

simulation in Figure 8. Similarly, the uniform in x (East-West) south and north boundary

values are shown in Figure 9. For the boundary data, we note that the water vapor chosen has

a significant signal at the southern boundary. Namely, the southern boundary will maintain a

high level of water vapor that will then flow into the channel through this wall. In this way,

the total moisture in the channel is controlled by these chosen boundaries values.
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Figure 8. Anelastic background states used in the WRF numerical simulation.

5.3 Snapshots of Simulated Data

We run the numerical simulation of the WRF model beginning from an unstable baroclinic

wave initial condition. We do not describe this initial condition in detail since it is that found

in the default em b wave case and our interest lies in the equilibrated state. In this simulation,

nonlinear effects become significant at around 8 days and equilibration of the solution is achieved

after about 40 days of simulation time. For the remainder of this section, we consider the

simulation data at 100 days since the system is well equilibrated and turbulence is sufficiently

developed at that time.

To give a sense of the simulated data at 100 days, we show a series of cross-sections at 4 km

height of the turbulent channel flow and a 3D visualization of the cloud water in Figure 10. At

100 days we find a significant amount of transport of moisture northward at x = 8, 000 km; see

qv plot in Figure 10. This moisture transport is connected to a broad northward meander of the

West-East jet at this height most easily seen in the top picture of Figure 11 for the pressure.

In addition, we observe a significant amount of cloud cover in the northern part of the channel

and broad cloud cover in the region between 5 km and 10 km in height; see qc plot and the 3D

cloud isosurface plot in Figure 10 .
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Figure 9. Southern and northern boundary values of velocity u (top left), water vapor qv (top
right), potential temperature θ (bottom left), and equivalent potential temperature θe

(bottom right) used in WRF simulations.

5.4 Balanced Components of Simulated Data

Since our simulation consists of an equilibrated mid-latitude channel flow, the QG inversions

of Section 3 used to construct the balanced flow are directly applicable. For the simulation we

compute the balanced components of the velocity and temperature analogously to the simplified

case of Section 4. Namely, we construct PVe and Mr variables using the simulated data and

use these to recover the balanced streamfunction by means of an inversion process. Unlike the

process of Section 4, however, we are also able to compute a streamfunction arising from the

pressure as discussed in Section 3.1. The balanced velocity and temperature are then obtained

from the respective streamfunction by means of equations (2.7a)–(2.7d). For the inversions

we use boundary conditions arising from the simulated data: periodicity in the x direction,

∂ψ/∂y = −u on y = 0, Ly, and ∂ψ/∂z = gθ/(f θ̃) on z = 0, Lz. Here, boundary values of the

velocity u and the temperature θ are given by the simulation.

We show a cross-section at 4 km height for the streamfunctions obtained from the estimate

from pressure and inversion procedures in Figure 11. We note that all streamfunctions produce
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broadly the same essential features with the streamfunction from pressure broadly agreeing

with those obtained from inversion. Namely, all streamfunctions reproduce the large meander

of the flow at x ≈ 8, 000 km and the two large vortices at y ≈ 5, 000 km. The West-East jet

meander coincides with the northward moisture transport seen in the bottom row of Figure 10.

The two vortices, moreover, correspond to areas with significant cloud water coverage.

In terms of the individual streamfunctions, we note that the streamfunction estimated from

pressure appears to overestimate the pressure gradient associated with the two northern vortices

in comparison to the one and two phase solutions. Similarly, the one and two phase streamfunc-

tions consider the West-East jet to be slightly stronger, with a higher gradient of streamfunction

seen in the meander. Differences between the one and two phase streamfunctions appear to be

small and localized owing largely to the small cloud water amounts in the saturated regions of

the simulation; see bottom plot in Figure 11. Nonetheless, differences between the one and two

phase streamfunctions become appreciable on derivatives of the streamfunction: the balanced

velocity and temperature.

We may quantify some the differences between the streamfunction estimates by considering

the L2 norm of the data. Namely, below 8 km in height we find that ||ψ1−ψ0||2/||ψ0||2 ≈ 0.3062

and ||ψ2−ψ1|2/||ψ1||2 ≈ 0.0106, where the subscript 0 denotes the estimate from pressure, the

subscript 1 denotes the one phase inversion, and 2 denotes the two phase inversion. That is, the

difference between the streamfunction from pressure ψ0 and the one phase streamfunction ψ1

below 8 km is roughly 30%, while the difference between the one and two phase streamfunctions

below 8 km is about 1%. This is broadly consistent with what is observed on the figures, but we

note that these norms may not capture significant small scale variations between the variables.

In addition, we show the cross-sections of the velocity at a 4 km height in Figure 12 and

velocity differences, the unbalanced velocities, in Figure 13. These pictures show that large

scale features of the velocity are broadly captured by all balanced velocities. Most small scale

features of the raw velocity, however, are filtered out below the ≈ 500 km level in both the

one and two phase balanced velocity. In contrast, the balanced velocity arising from pressure

appears to overestimate the amplitudes of large features and significantly overestimates the

small scale velocity signature.

As before, we may quantify the bulk differences between the balanced velocities and the

raw velocity by considering the L2 norm of the data. Namely, considering the values of the

velocities below 8 km in height we find: ||u − u0||2/||u||2 ≈ 0.4664, ||u − u1||2/||u||2 ≈ 0.1205,

and ||u2−u1||2/||u1||2 ≈ 0.0180. Therefore, the balanced velocity estimated from pressure gives

a significantly different velocity signal as those predicted from the one and two phase inversions.

The one and two phase inversions are close to each other in the large scale, however, they differ

at small scales in regions of saturation. To see this last fact about the one and two phase

balanced velocities, we consider the magnitude of the Fourier transform in the x direction for a

fixed (y, z) of the data and average for all y values, i.e., the meridional mean of the magnitude

of the zonal Fourier transform. Again, we pick the height of z = 4 km and show these results

on the left plot of Figure 16. Figure 16 shows that the one and two phase balanced velocities

capture the raw velocity at large scales, but begin to differ from it at scales below ≈ 1000 km.

Moreover, the one and two phase velocities differ from each other at scales below ≈ 400 km;
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Figure 12. Velocity from simulation at 4 km height 100 days after start of simulation.

the scales associated with the cloud water, as seen in Figure 10.

We may similarly compare cross-sections of the potential temperature with the balanced

temperature at the 4 km height. We show the temperature in Figure 14 and temperature

differences, the unbalanced temperatures, in Figure 15. We find that the potential temperature

θ is approximated very well by the balanced solutions for large scales. Indeed, ||θ−θ0||2/||θ||2 ≈
0.2134, ||θ − θ1||2/||θ||2 ≈ 0.0919, and ||θ2 − θ1||2/||θ1||2 ≈ 0.0167. So, while the estimate

from pressure θ0 still differs significantly from the one and two phase temperatures, they all

collectively match the raw temperature broadly. In addition, the one and two phase balanced

temperature variables are again very close (2%) to each other in the large scale sense.

To observe the small scale features that are filtered out by the balanced temperatures we

show the temperature differences in Figure 15. We see that the differences between the raw

potential temperature θ and the balanced temperature θ0 are broadly in the large scale and

mostly of the order of 5 K. The difference between the raw temperature θ and the balanced one

phase temperature θ1 and two phase temperature θ2 are mostly in the small scale (below ≈ 500

km) and have significant amplitude differences of 15 K. The locations where these differences

between the one and two phase solution and the raw data occur coincide with the location of the

strong streamfunction vortices of Figure 11 and the cloud water shown in Figure 10. In addition,

the differences between one and two phase balanced temperatures are significant (order of 5 K),

match very closely the cloud water distribution, and are most prominent in the location of the

two vortices; the fact that the difference between one and two phase streamfunctions are most

significant in regions with cloud water is consistent with our discussion in Section 4.4.

We consider once more the mean in the y direction of the magnitude of the Fourier transform

in the x direction for a fixed z = 4 km and show these results for the temperature in the right

plot of Figure 16. We find that this plot broadly corroborates our conclusions so far, but

allows us to quantify our observations. Namely, we find that the potential temperature θ and

the balanced potential temperature arising from the pressure θ0 are nearly indistinguishable

at all scales. The one and two phase balanced temperatures begin to differ from the potential
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Figure 14. Temperature from simulation at 4 km height 100 days after start of simulation.

temperature at about the ≈ 1000 km scale and begin to differ from each other below ≈ 400

km. Thus, the one and two phase balanced temperatures filter out the small scale features of

the temperature and differ between each other at the scales associated with the cloud water

content of the flow.

6 Conclusion

We have presented a procedure to determine the balanced and unbalanced components of

atmospheric variables in moist mid-latitude flows. To accomplish this, we were motivated by

the anelastic PQG equations [43] with the three moisture constituents of water vapor, cloud

water, and rainwater. These equations give rise to a natural decomposition of balanced and

unbalanced modes by means of a PV and moisture variable (M) inversion that recovers the

QG streamfunction of this moist problem under suitable boundary conditions. This inversion

procedure differs from those previously considered in the recognition that both PV and M

variables —accounting for moisture, precipitation, and two phases of water— are necessary to

recover the streamfunction, rather than a single dry PV variable. This QG streamfunction

may then be used to construct all other balanced variables of the system, including balanced

moisture variables.

To recover the streamfunction, we considered three methods: using the pressure as a proxy

for the streamfunction, a one phase PV-and-M inversion, or a two phase PV-and-M inversion.

The streamfunction recovered from each method leads to balanced variables that broadly cap-

ture the large scale, synoptic features of the atmospheric quantity in question. Namely, the

balanced components of both velocity and temperature capture the large scale features of the

raw velocity and temperature. Of the three methods, the balanced components arising from

pressure do worst in capturing the large scale features of the flow. The balanced variables,

however, mainly differ from each other and the raw data at smaller scales associated with the

phase transitions and the cloud water. Therefore, considerable differences may arise between
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Figure 15. Differences between temperature θ and balanced temperatures θi for i = 0, 1, 2
obtained from the three methods of Section 3 at 4 km height at 100 days.

solutions of different inversion procedures.

The main finding is that it is within the cloud where the the two-phase inversion method

has the most substantial differences from the one-phase inversion method. For example, within
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the cloud, the potential temperature difference of the two methods, θ1 − θ2, is as large as 5

K. Furthermore, a theoretical explanation was derived in (4.7) in the form of an elliptic PDE

for the difference ψ1 − ψ2 in the one-phase and two-phase streamfunctions. The forcing in the

elliptic PDE is related to the cloud water, qc, the presence of cloud water is a main factor in

creating differences between the different inversion methods. Another key factor is that the

two-phase inversion involves two different buoyancy frequencies, N2
u and N2

s , corresponding

to the unsaturated and saturated phases, respectively; and the different values of N2
u and N2

s

contribute to the differences seen in the streamfunctions ψ1 and ψ2.

Lastly, we note that one may similarly consider the effects that the different inversion

procedures have on the balanced component of total water. In particular, it may be of interest

to determine the dependence of the balanced component of moisture on features arising from

the moisture such as the phase transition and rainwater. We leave, however, the analysis of

this quantity for a future paper.
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