ON THE OBERLIN AFFINE CURVATURE CONDITION

PHILIP T. GRESSMAN

Abstract

We generalize the well-known notions of affine arclength and affine hypersurface
measure to submanifolds of any dimension d in R", 1 <d <n — 1. We show that a
canonical equiaffine-invariant measure exists and that, modulo sufficient regularity
assumptions on the submanifold, the measure satisfies the affine curvature condition
of Oberlin with an exponent which is best possible. The proof combines aspects of
geometric invariant theory, convex geometry, and frame theory. A significant new
element of the proof is a generalization to higher dimensions of an earlier result con-
cerning inequalities of reverse Sobolev type for polynomials on arbitrary measurable
subsets of the real line.
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1. Introduction

Many of the deep questions in harmonic analysis, such as Fourier restriction, decou-
pling theory, or L”-improving estimates for geometric averages, deal with certain
operators associated to submanifolds of Euclidean space. In most cases, the “nicest
possible” submanifolds are, informally, as far as possible from lying in any affine
hyperplane. Many of these problems also exhibit natural equiaffine invariance, mean-
ing that when the underlying Euclidean space is transformed by a measure-preserving
affine linear mapping, the relevant quantities (i.e., norms and so forth) are unchanged.
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This simple observation leads naturally to the question of how in general to properly
quantify this sort of well-curvedness in a way that respects equiaffine invariance. Of
the many approaches to this question, one particularly successful strategy has been the
use of the so-called affine arclength measure for curves and the analogous notion of
affine hypersurface measure (sometimes called equiaffine measure). Affine arclength
measure is defined for the curve parameterized by y : I — R” by

f fdMAZZ/f(V(f))‘det(V'(t),...,y“”(t))!ﬁ dt,
R” 1

and equiaffine measure for the graph {(x,¢(x)) € R"|x e U C R" 1} is
1
[ fduai= [ f(xp)|decvio| = ax
R U

where V2¢ is the Hessian matrix of second derivatives of ¢. Although these measures
were well known outside harmonic analysis for quite some time (see, e.g., [16], [23]),
their first appearances within the field are somewhat more recent, in work of Sj6lin
[29] (in two dimensions, generalized later by Drury and Marshall [10]) and Carbery
and Ziesler [4], respectively. Both measures have the property that they are indepen-
dent of the parameterization and that they are suitably invariant when the curve or
surface is transformed by an equiaffine mapping. These measures and certain “vari-
able coefficient” generalizations to families of curves and hypersurfaces have played
a central role in the Fourier restriction problem as well as the problem of character-
izing the L?—-L9 mapping properties of geometrically constructed convolution oper-
ators, two problems which have been of sustained interest for many years (see, e.g.,
(11, [2], [S]-[9], [15], [24], [27], [30], [31]).

The deep connections between analysis and geometry enjoyed by affine arclength
and hypersurface measures naturally lead to the problem of generalizing these objects
to manifolds of arbitrary dimension or even to abstract measure-theoretic settings.
One particularly interesting approach is due to Oberlin [25] (which generalizes an
earlier observation of Graham, Hare, and Ritter [12] in one dimension), who intro-
duced the following condition on nonnegative measures p associated to submani-
folds: a Borel measure p on R” which is supported on a d-dimensional immersed
submanifold of R” will be said to satisfy the Oberlin condition with exponent o > 0
when there exists a finite positive constant C such that, for every K in the set K, of
compact convex subsets of R”,

W(K) < C|K

%, (1)

where | K| represents the usual Lebesgue measure of K in R”. When restricted to the
class of balls with respect to the standard metric on R”, the condition (1) becomes
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a familiar inequality from geometric measure theory. Unlike in that setting, here the
exponent o measures not just the dimension of the measure, but also a certain kind
of curvature, for the simple reason that (1) cannot hold for any o > 0 when p is
supported on a hyperplane, which can be seen by taking K to be increasingly thin in
the direction transverse to such a hyperplane. Oberlin observed that this condition is
necessary for Fourier restriction or L?-improving estimates to hold; in particular,

1
~ q 4
(/Iflqdu)qSIIfllu(Rn) VfeLP®) = w(K)SIKIY VK € K
and
1_1
1/ sllon SIS lr@ny Yf € LPRY) = p(K) S IK[P 70 VK € X,

where * is the Fourier transform and * is convolution. (Here and throughout the
present article, the notation A < B means that there is a finite positive constant C
such that A < CB, and this constant C is independent of the relevant variables, func-
tions, sets, and so forth, appearing in the expressions or quantities A and B.) By virtue
of known results for these two problems, the affine arclength and hypersurface mea-
sures must satisfy (1) for appropriate exponents o when suitable regularity hypotheses
on the submanifolds are imposed.

The significance of the Oberlin condition (1) for curves and hypersurfaces in R”
is that, up to a constant factor, the affine arclength and affine hypersurface measures
on immersed submanifolds are the unique largest measures on such manifolds satisfy-
ing (1) when o =2/(n? +n) and @ = (n — 1)/(n + 1), respectively. More precisely,
for hypersurfaces satisfying certain algebraic constraints, Oberlin [25] showed that
any sufficiently regular measure p which is supported on an immersed hypersurface
M C R"™ and which satisfies (1) with o = (n + 1)/(n — 1) must also satisfy p < 1.4
for affine hypersurface measure 4 (where < here means w(E) < w4 (E) uniformly
for all Borel sets E). Moreover, under the same algebraic limits on the complex-
ity of the immersion, pu itself satisfies (1) for this same exponent. The condition
(1) also turns out to be equivalent to the boundedness of certain geometrically con-
structed multilinear determinant functionals (see [14]). For curves in the plane, the
Oberlin condition (1) has also been shown to be connected to an affine generalization
of the classical Hausdorff measure, which as Oberlin showed in [26], reduces to affine
arclength on sufficiently regular convex curves.

In this article we examine the Oberlin condition for arbitrary d-dimensional
submanifolds of R” (where 1 < d < n) and we characterize it in the case of maxi-
mal nondegeneracy. Specifically, results analogous to those just mentioned above are
established in all dimensions and codimensions: an equiaffine-invariant measure! is

'The precise definition of this measure is delayed until Section 2.2 because there are a number of items of
notation and auxiliary geometric objects which must first be defined and understood.
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constructed which is essentially the largest possible measure satisfying the Oberlin
condition for the largest nontrivial choice of «. To say that « is nontrivial means
simply that there is a nonzero measure satisfying (1) for this o on some immersed
submanifold of the given dimension and codimension. As in the case of curves and
hypersurfaces, the largest nontrivial o can be understood as a ratio of the intrinsic
dimension of the submanifold and its h-omogeneous dimension, which captures infor-
mation about scaling and curvature-like properties to be measured. The correct value
of homogeneous dimension is defined as follows: when d and n are fixed, let the
homogeneous dimension Q = Q(d,n) be defined to be the smallest positive integer
which equals the sum of the degrees of some collection of n distinct, nonconstant
monomials in d variables (see Figure 1). The main result of this paper is Theorem 1.

n

(d+l)_ 1 (d;Z)_l (d:[r})_ 1 (d;ﬂ)_ 1

Figure 1. This plot shows the homogeneous dimension Q as a function of n for d fixed. The
graph is piecewise linear with slope k 4 1 from the point ((d}_k) -1, dk——fl (djk)) to the point

(5 -1, %(dt]f“)) for each k > 1.

THEOREM 1

Suppose that M is an immersed d -dimensional submanifold of R". To any such M,

one may associate a nonnegative Borel measure |14 on R", defined by the formula

(15) in Section 2.2, which is supported on M. Then the following are true:

D If v is any nonnegative Borel measure supported on M which satisfies (1) with
exponent o > d / Q, then | is the zero measure.
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(2) If u is any nonnegative Borel measure supported on M which satisfies (1) with
exponentx =d/Q, then it < L.

(3)  If M is the image of an immersion f : Q — R”, where Q C R? is open with
compact closure Q and f extends to be real analytic on a neighborhood of 2,
then the measure [L 4 satisfies (1) with exponent « = d / Q and is consequently
the largest such measure, up to a multiplicative constant.

Furthermore, it is also the case that:

4) The measure [L4 agrees up to normalization with affine arclength and affine
hypersurface measure when d = 1 and n — 1, respectively.

(5) The correspondence sending M to L4 is equiaffine invariant, meaning that if
M and M’ are immersed submanifolds such that M’ is the image of M under
some equiaffine transformation T of R", then the measure W', corresponding
to M’ and the measure [ 4, corresponding to M satisfy ', (T(E)) = jp4(E)
for all Borel sets E.

Theorem 1 extends Oberlin’s result for equiaffine hypersurface measure in [25]
to submanifolds of any dimension. To certify the nontriviality of Theorem 1—that
is, to demonstrate that © 4 is not simply the zero measure for all possible choices of
M—it is necessary to carry out some additional careful study of 4 for submanifolds
M parameterized by f : Q — R” of the form

F(@) = (") 1<jal<c> 1), .., (D)), 2)

where pq, ..., pm are linearly independent, real homogeneous polynomials of degree
k in d variables, and m and « are chosen (as functions of n and d only) so that
the right-hand side of (2) is an element of R". For such polynomials, let P;,(f) :=
;pe(t), j=1,...,d,£=1,....,m. Such an embedding f will be called a model
form when there exist real numbers ¢ and ¢’ such that

d m
Y Piu@Pip®i=o=cbepe  and D> Pi@)Pi()li=o =81, (3)
j=1 =1

where § is the Kronecker delta. The main result for model forms is Theorem 2.

THEOREM 2

The following are true for embeddings f of the form (2).

(D) The closure of the orbit {Nf(MTt)}NGSL(n,R)’MGSL(d,R) in the space of n-
tuples of polynomials of degree at most k always contains an embedding of
the form (2) which is a model form (3). If any embedding in the closure of the
orbit is degenerate, then all are degenerate (i.e., L4 = 0 for each embedding
in the orbit closure or w4 # 0 for each embedding).
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(2) For any p := (p1,..., pm) satisfying (3), the measure |4 associated to the
submanifold of R" parameterized by (2) is a nonzero constant times the push-
Sorward of Lebesgue measure via f if and only if ¢ and ¢’ are nonzero.

(3)  Foranypair (d,n) with 1 <d < n, there is some p := (p1, ..., Pm) satisfying
(3) for nonzero ¢ and ¢'. Consequently, in any dimension and codimension,
there is a submanifold M whose affine measure |4 is everywhere nonzero
on M.

Outline

The structure of this article is as follows. In Section 2, the measure 4 is constructed
by combining ideas of Kempf and Ness [22] from geometric invariant theory together
with a simple but far-reaching observation that any covariant tensor field on a mani-
fold can be used to construct an associated measure on that manifold in a way that gen-
eralizes the relationship between the Riemannian metric tensor and the Riemannian
volume. In particular, the measure 4 will be the measure associated to an “affine
curvature tensor”” on the manifold M immersed in R”. The general process of passing
from a tensor to an associated measure is detailed in Section 2.1, and the construction
of the affine curvature tensor is given in Section 2.2. Section 2.2 then explicitly gives a
definition of the measures (15) (via the constructions from Section 2.1) which are the
subject of Theorem 1 and gives proofs of parts (4) and (5) of that theorem (i.e., that
L4 18 intrinsic, equiaffine-invariant, and agrees up to constants with affine arclength
and equiaffine measure in dimension and codimension 1, respectively).

Section 3 is devoted to an in-depth analysis of the measure 4 constructed in
Section 2 with a particular emphasis on developing a host of computational tools to
use when establishing the triviality or nontriviality of x4 in both general and concrete
cases. The number and variety of results in Section 3 highlight the wealth of possi-
bilities for understanding affine curvature which results from the meeting of several
seemingly disjoint areas of mathematics. Readers primarily interested in the proofs of
Theorems 1 and 2 rather than applications can proceed to Section 3.3, as it contains
proofs of parts (1) and (2) of Theorem 2 and lays additional groundwork for the later
proof of part (3).

Section 4 returns to our main thread, with proofs of parts (1) and (2) of Theo-
rem 1, which are based on what are essentially elementary observations concerning
scaling, Taylor approximation, and convexity.

Section 5 is devoted to the proofs of part (3) of Theorem 1 and part (3) of The-
orem 2. Part (3) of Theorem 1 is proved by first generalizing Theorem 1 of [13] to
higher dimensions. This generalization, accomplished by Theorem 3 and Lemma 7, is
interesting in its own right and will likely have important implications for the theory
of L?-improving estimates for averages over submanifolds in much the same way
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that [13, Theorem 1] formed the basis for a new proof of a restricted version of Tao
and Wright’s result in [33] for averages over curves. To formulate these results, it is
convenient to make the following definition. Let M be any real analytic manifold of
dimension d, and let ¥ be a finite-dimensional vector space of real analytic functions
on M whose differentials span the cotangent space at every point of M. Any such
pair (M, F) will be called a geometric function system. Such a system will be called
compact when either M is compact or has a compact closure in some larger real ana-
lytic manifold M ™ such that the functions of ¥ extend to functions ¥+ on M™ in
such a way that (M™, F 1) is also a geometric function system. The “zeroth order”
generalization of the results of [13] are the following.

THEOREM 3
Suppose that (M, F) is a compact geometric function system. Then for any finite
positive measure (L on M absolutely continuous with respect to Lebesgue measure

and any measurable set E C M of positive measure there is a measurable subset
E’ C E such that u(E') Z u(E) and

sup | f(p)| <

5,
—_— d orall f e ¥.
sup, () E|f| w fe S

The implicit constants in both inequalities depend only on the pair (M, F).

The proof of this theorem and its generalization appear in Section 5.1. The use
of these results to prove part (3) of Theorem 1 appears in Section 5.2. Section 5.3
shows that the measure .4 from Theorems 1 and 2 is not trivial by proving part (3)
of Theorem 2—that is, by constructing submanifolds in every possible dimension and
codimension such that j 4 is comparable to the pushforward of Lebesgue measure.

Finally, Section 5.3 establishes uniform estimates for the number of nondegener-
ate solutions—that is, solutions where the Jacobian determinant is nonvanishing—of
certain systems of equations encountered in Section 5.1. These estimates are impor-
tant for part (3) of Theorem 1; furthermore, they establish not only that the Oberlin
condition is satisfied for submanifolds with algebraic or real analytic parameteriza-
tions, but also give an indication as to how one can extend the same result to more
general situations like global polynomial embeddings or o-minimal structures.

Notation

As already noted, this paper will make frequent use of the notation A < B to indicate
that there is a finite positive constant C such that A < CB with C independent of
the relevant functions, sets, and so on, appearing in the expressions or quantities A
and B. Also, A =~ B means A < B and B < A.
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The symbol d will generally represent the d-tuple (d1,. .., d4) of standard coor-
dinate partial derivatives on R?. If M € R?*?  then M 9 will represent the d -tuple of
coordinate derivatives given by

d
(M0); = Z M;j;.

j=1

In a few places, the notation V f will denote the standard coordinate gradient of f;
that is, Vf := (91 f,...,94 f). This paper also makes extensive use of multi-index

notation: for any d-tuple o := («q,...,®y) of nonnegative integers, let
o . 0 g d o .__ 9o o
1% =1 "-1,4 forallt € RY, 0% := 07" ---0,7,
al:=oa!aq!, and  |o|i=a; 4+ ag.

The quantity || will be referred to as either the degree or the order of |«| depending
on context.

The space of real polynomials of degree at most x in d variables will be denoted
P}, and the subspace of homogeneous polynomials of degree « will be denoted P -
This space comes equipped with the inner product (-, -}, given by

(q,r) =
i

k!
= 2 —0"qlod"rlo
le|=k

= klg(@)r(1)|i=o. “)

where the middle identity follows because there are k!/o! distinct ways to expand the
mixed derivative 0% as a product of first coordinate derivatives, and the final identity
follows easily by direct computation together with the observation that monomials
form an orthogonal basis.

2. Affine geometry and necessity

2.1. Geometric invariant theory

The main ideas and results from geometric invariant theory that we will use come
from the seminal work of Kempf and Ness [22] and its subsequent extension to real
reductive algebraic groups by Richardson and Slodowy [28]. The idea of interest is
that, for suitable representations of such groups, one can study group orbits by under-
standing the infimum over the orbit of a certain vector space norm. For our purposes
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here, it suffices to consider only representations of SL(d, R) or SL(m,R) x SL(d,R)
on vector spaces of tensors. In this context, the associated minimum vectors can be
understood as model forms of tensors and the actual numerical value of the infimum
carries meaningful and important quantitative information about these tensors (in con-
trast with the usual situation in geometric invariant theory, in which one cares only
about whether the infimum is zero or nonzero and whether or not it is attained).

To begin the construction, suppose that 4 is any k-linear functional on a real
vector space V' of dimension d. Appropriating the Kempf—Ness minimum vector cal-
culations of geometric invariant theory, it becomes possible to canonically associate
a density functional § : V¢ — Rx to any such s. Specifically, for any such # and

any vectors vy, ..., Vg, let §(vy,...,vg) be the quantity given by
8(v1,...,vq)
d d 2 %
= [Mesi?{d,ﬂ&)_ Z ‘ Z ‘A(Mjlilviﬂ""Mjkikvik) ] . 5

Jlseesjk=1 1150k =1

Before showing that the quantity (5) is a density functional, it is worth acknowl-
edging the algebraic structure that lies behind it. When the vectors in the d-tuple
v = (v1,...,vg) € V¢ are linearly independent, one may define a representation
oY :SL(d,R) x V — V by setting

d
Phe(vj) =D Mijv; (6)
i=1

foreach j =1,...,d and then extending to all of V' by linearity. This representation
extends to act on k-linear functionals by duality; that is,

(P A) (Vs V) 1= ATV s PorT Vi)

where M T is the transpose of M. If one further defines a norm on the space of k-
linear functionals by means of the formula

d d
JAIS = 3 o D7 AWy vz)

J1=1  jg=1

2

then the definition (5) may be restated as

Ea Y

B01. e va) = (,_inf llphAl) .
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PROPOSITION 1
The quantity (5) is a density functional; that is, if T is any linear transformation of V
and vy,...,vq €V, then

8(Tvy,...,Tvg) =|detT|6(vy,...,v4). @)

Furthermore, § is intrinsic in the sense that it depends only on A and V and not on
any other objects, such as choices of bases.

Proof

The fact that § is intrinsic is immediately visible from its definition (5). To see that § is
a density functional as promised, the first step is to demonstrate that §(vy,...,v4) =0
when vy, ...,v, are linearly dependent. In this case, there must exist an invertible
matrix M such that 2;1:1 M;v; =0, and without loss of generality, one may assume
that this matrix M has been normalized so as to belong to SL(d,R). Now for each
t >0, let M® be the matrix obtained by scalar multiplying the first row of M by
971 and all remaining rows by #~!. These matrices M ®) belong to SL(d,R) for all
t >0, and

1040 Allo =1 [l phy Allo ®)
by multilinearity of 4 because

A(M(t). Vigs. .- ,M(t) Uik) = t_kA(Mjlilvil, . ’Mjkikvik)

Jiit Jkik

by homogeneity provided that each ji,..., ji is not equal to 1; if any index j, does
equal 1, then both sides vanish when summed over 7, making the equality (8) true in
all cases. Taking t — oo shows that the infimum in (5) over all SL(d, R) must vanish
when vy, ..., vg are linearly dependent.

Now let T be any linear transformation of V. When vy, ..., vy are linearly depen-
dent or when T is not invertible, T'vy, ..., Tvg will be linearly dependent, so it must
hold that

8(Tvy,...,Tvg) =|detT|5(vy,...,vg) =0.

Otherwise, when vy, ...,v, are linearly independent and 7 is invertible, there is a
matrix P € GL(d,R) with det P = detT such that Tv; = Zle Pj;v; foreach j =
1,...,d. Factor P as ﬂ:|detP|éP/ for some P’ with |det P’'| = 1 in general and
det P’ =1 when d is odd. Once again, by multilinearity of +,

d

d
2
Z ‘ Z ‘A(Mjﬂ]Tvi]v'--ijkik Tvik)

Tl dk=1i1,..,ig=1



ON THE OBERLIN AFFINE CURVATURE CONDITION 2085

2k
=|detT| 4
d d 9
/ i
XY AP M Pl
T1seees Jk=11i,..., [ PR AT lr=1

2k 2
=ldet7F 3| DT AP v (P i) )

Since SL(d,R) is a group, the set of matrices of the form M P’ when M € SL(d,R)
is itself exactly SL(d, R), assuming that det P’ = 1. If det P’ = —1, then the matrices
M P’ for M € SL(d,R) are exactly those matrices N which belong to SL(d, R) after
the first two rows of N are interchanged. Since (9) is invariant under permutations of
the rows of M P’, it follows in both cases (det P’ = £1) that

d d

inf Z ‘ Z ‘A((MP/)jlilvil""’(MP/)jkikvik) ’

MeSL(d,R) . - . -
J1ses k=1 11500 =1

which gives the desired identity
8(Tvy,...,Tvg) = |detT|6(vy,...,v4)

for any vy, ..., vy and any linear transformation 7'. O

Example

It is illuminating to compute § in the special case when # is a symmetric bilinear
form. Fix linearly independent vectors vy, ..., vg and define the matrix A by A4;; :=
A(v;, v;). It follows that

(PR A W)y, vi) = (MAMT)jj, and  [|phy Al = w(MAMTMATMT).

Now MAMTMAT MT is symmetric and positive-semidefinite, so its eigenvalues
are all nonnegative. Thus the arithmetic mean-geometric mean (AM-GM) inequality
implies that

1
d(detMAMT MATMT))7 <u(MAMT MATMT)

with equality when all eigenvalues are equal (which, when A is invertible, must hold
for some M € SL(d,R) by building M from a basis of unit-length eigenvectors of A
with respect to some inner product and then rescaling the eigenvectors appropriately).
Because det M = 1, det(MAMT MAT MT) = (det A)?, and so
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d 1
8(v1,...,vg) =d 4 |det A|2. (10)

In particular, on a Riemannian manifold, setting 4 equal to the metric tensor g yields
a density 6 which is exactly equal to a dimensional constant times the corresponding
Riemannian volume density functional.

2.2. Construction of the affine curvature tensor and associated measure

We move now to the construction of a covariant tensor which captures the affine
curvature of interest here. This tensor gives rise to an associated density using (5)
which can be integrated to give a canonical measure on immersed submanifolds M C
R”™.

To be precise, suppose that M is a manifold of dimension d which is equipped
with a smooth immersion f : M — R”. For convenience, let the values of f be
regarded as column vectors. For any positive integer j, let «; be the smallest integer
such that the dimension of the space Pa'fj of real polynomials of degree «; in d
variables has dimension at least j + 1, and let A4, be the index set

Ngp:={(.k)€ZXZ|1<j<nandl<k <k;}.

The index set Ay, is represented pictorially in Figure 2 as the first n columns of
boxes. The cardinality of Ay, is exactly the homogeneous dimension Q defined in
the Introduction. We will define a Q-linear covariant tensor + , at each point p € M
which captures the affine geometry of the immersion f. We will denote the action of
A p on Q-tuples of tangent vectors at the point p by either

’AP(le-'-sXQ) or ’AP((X/\)AEAL/")

k

oL 0o -

3T I I R N I

2 oo --gooooo--gg s

-y --gouoooo--gg s
N S I P L P

Figure 2. In the diagram above, squares represent points in Z x Z. The index set A4 ,, is simply
the union of the first n columns, and the homogeneous dimension Q is simply the cardinality of
A g . In terms of the tensor A p, the number of boxes in each column indicates how many
derivatives are applied to f in the corresponding factor of the wedge product (or equivalently,
the corresponding column of the matrix).
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depending on which approach is most convenient at the moment (where we lexico-
graphically order the elements of A4, when such an order is not specified).
Now for any finite sequence of vector fields X indexed by A € A4 ,, let

Ap(X)reay,) =det(Xa, ) f(P) A AXG1y - X)) S(P) A=
/\X(n,l)"'X(n,/cn)f(p))- (11)

In other words, (11) equals the determinant of an n X n matrix whose jth column
is the column vector Xj 1)+ X(jx,) f(p). (Note also that the lexicographic order
on Ay, corresponds exactly to the order that each A € Ay, appears in the above
formula when moving from left to right; with respect to Figure 2, the order is left to
right followed by bottom to top.) This object 4, will be called the affine curvature
tensor at p.

PROPOSITION 2

The affine curvature tensor is a tensor in the usual sense, that is, a multilinear function
of the vector fields X; which depends only on the pointwise values of these vector
fields at the point p. The tensor 4, is also equiaffine-invariant, by which we mean
that A, is invariant up to a factor of 1 under the action of equiaffine (i.e., measure-
preserving) transformations of R™ applied to f.

Proof

Equiaffine invariance of + , follows immediately from (11). Linearity in X for each
A € Mgy is a trivial consequence of the multilinearity of wedge products and the
determinant. To see that 4, depends only on the pointwise values of the X,’s at p
and not on any derivatives of these vector fields, it suffices to show that any single one
of the vector fields X3 may be replaced by any other vector field X agreeing with X,
at p without changing the value of # ,. For any indices A = (j, k) such that k; =1,
this invariance under replacement follows immediately from the fact that these vector
fields appear alone in their own column (i.e., the formula (11) contains no derivatives
of X to begin with). For any A = (j, k) with k; > 1, the identity

XGy Xk XGun S (0) =X X X ) S ()
= XG0 XG k-0 XGk-1): XG0 = X (i) XGk+1) - X (e £ (P)
+ o (XG0 X = XG0l XG2)  XGw X f(p)

(where ~ indicates omission of X(; k) in its usual place) shows that 4, vanishes
when X is replaced by X — X )’L; the difference between 4, ((X;)1en, ,,) and the
corresponding quantity where one X, x) is replaced by a corresponding X (’ k) can,
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by virtue of the identity, be written as a linear combination of determinants of matrices
such that, for each matrix, the number of columns in which f is differentiated to order
kj — 1 1s strictly greater than the dimension of the vector space of homogeneous order
k; — 1 differential operators. Thus each such matrix must have linearly dependent
columns, which forces the difference in values of +, to vanish. O

The distinguished measure (4 of Theorem 1 can now be defined as the pushfor-
ward via f of the measure on M associated to the density (5) generated by the affine
curvature tensor (11). In other words, for # , as in (11), let

5p(X1, ... Xa)

d d

. 2156
et T[T w0 1

J1seesjo=1i1,...ip=1

Since § is a density on M, it uniquely defines a measure v4 on M such that, for any
coordinate chart ¢ : B — M (where B C RY is any open ball) and any nonnegative
Borel function g supported on ¢(B),

/gdvA=/Bg((p(t))(gw(,)(d(p(ai[l),...,dgo(%)) dr. (13)

The transformation law (7) and the change of variables formula guarantee consistency
of the definition on the overlap of coordinate charts. In particular, this means that in
any local coordinates (1, ...,¢;7) near a point p € M, the Radon—Nikodym derivative
of vy with respect to the Lebesgue measure d¢ is given by evaluating §, on the
standard d -tuple of coordinate vectors. By (11) (recalling the definition of M d from
the Introduction), this gives the identity

20
[ L)

. Kl!"'Kn!
= f S | det((M )™ A
MesLid ) la;{ 011!~~oen!| et((M0)*! f(p)
11=K1,

sl [=Kn

A M f(p))|? (14)

for almost every p, where the factorial factors merely count the number of ways that
the monomial 0% may be written as a product of first-order operators. To avoid the
minor irritation of constantly excluding exceptional sets of measure zero, (14) will be
taken to define a unique representative of the Radon—-Nikodym derivative within the
usual equivalence class. In other words, dv 4 /dt will always be taken so as to satisfy
(14) for all p.
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Finally, the measure w4 from Theorems 1 and 2 is given by the pushforward of
V4 Vvia f; that is, for any nonnegative Borel function F' on R”,

/ Fd/i,,p:[ (Fo f)dvg. (15)
R? M
It is now a trivial task to prove parts (4) and (5) of Theorem 1.

Proof of part (5) of Theorem 1

The affine curvature tensor (11) is clearly invariant (up to a factor of £1) under the
action of equiaffine transformations of R” because it only depends on derivatives
of f (so is trivially insensitive to translation in R") and because of the elementary
transformation law

det( X,y Nf(P) A+ A X1y Xy N (D))
= (detN) det(X(l,l)f(p) ARERRA X(n,l) "'X(n,lcn)f(p))

which holds for any N € R**". By (12), the density §, is therefore unchanged when
f is acted on by an equiaffine transformation of R”. O

To prove part (4) of Theorem 1, the following auxiliary lemma is needed.

LEMMA 1
Suppose that a1, ...,aN is an enumeration of all multi-indices of order k in d vari-
ables. Then

(MO* f(p) A+ A(MO™N f(p) =0 f(p) A+ AN f(p)

for any M € SL(d,R).

Proof

Let Ty be the operator on the vector space of homogeneous differential operators of
order k which is given by Ty p(9) := p(M9) for all homogeneous polynomials p
of degree k in d variables. By multilinearity of the wedge product, the lemma will
follow once it is shown that detThs = 1 for all M € SL(d,R). Because SL(d,R)
is connected and detTp = 1 when M is the identity, it suffices to prove that the
determinant equals &1 for any M € SL(d,R).

For convenience, we regard Tjs as simply acting on P{f . By the chain rule,

d d
9iy - i (T p)lo = Z Mjiy -+ Mjyi, (9, -+ 9, plo) (16)
=1

J1=1 Jjk
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for each M € R"" each p € P¥, and any indices i1, ..., ix. If one supposes that O
is an orthogonal matrix, then by (4) and (16), the inner product (To p, Toq )k is equal
to the sum over all indices iy,...,ik, j1..... jk» j{.---. j; of the quantities

Ojuir++* Ojyix Ojpiy +++ Oy (-9, plo) (@7 -+ 9 qlo)-
Summing over iy, ..., ik first and using orthogonality of O proves that
{(Top.Toq)k = (P.q)«- 17

Since T is orthogonal with respect to the inner product (-, -)x, detTp = +1.
On the other hand, every p € P a’,‘ may also be uniquely expressed as a sum

p6)=)" pat®

|a|=k
with constant coefficients p,. If D is diagonal with entries (sy,...,54), then
(Top)(1) = Y (s* pa)t®,
la=k

which means that Tp is also diagonal in the monomial basis. Thus

detTp = 1_[ s¥ = (detD)(lengl)’
|lx|=k

where the second identity holds because symmetry dictates that the product must
have the form (s;---s4)" for some r; subsequently, r can be easily computed from
the degree of the polynomial.

The lemma follows by the singular-value decomposition, since every M of deter-
minant 1 may be factored as O; DO, for orthogonal matrices O1, O, and a diagonal
matrix D of determinant 1. ]

Proof of part (4) of Theorem 1
When d = 1, the expression (14) reduces immediately to the usual torsion determi-
nant for affine arclength because the action of M is trivial and because «; = j for
each j.

To compute (14) in the case of hypersurfaces (i.e., d = n — 1), by virtue of
Lemma 1, if A is the (n — 1) x (n — 1) matrix given by

Ajir :=det(dy f(p) A-+- A dn1 f(p) A D7 f(P)).

then (14) simplifies to
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n—1 n—1
dva| inf [(n — 1y Z |(MAMT),~,~/ 2] LICESY)

dt lp ™~ MesL(n—1,r)

i,i’=1

because when |a1| = -+ = |oy—1| = 1, the wedge product (M3)*L f(p) A -+ A
(M 9)*n=1 f(p) vanishes unless «y,...,a,—1 are distinct, in which case the wedge
product is independent of M . The factor of (n — 1)! counts the total number of ways
to assign distinct values to the multi-indices «y, ..., «,—1, which are all of order 1.
By the example calculation (10) from the previous section, this infimum is explicitly
computable:

2 1

d n—1 n—
AL = (= D)) T [(n = 1)"T | det A|2]7FT = Cy|det [T, (18)

dt lp

Aside from the constant factor C,, this corresponds exactly to equiaffine measure on
the hypersurface parameterized by f. O

3. Working with affine curvature

In contrast to the essentially trivial cases of affine arclength and equiaffine hypersur-
face measure, the presence of the infimum in the definition (12) of the density &,
presents an added layer of difficulty when explicitly computing the associated mea-
sure i 4. However, the richness of existing tools from algebra, geometry, and analysis
provides a variety of ways to overcome this difficulty. In this section, a number of dif-
ferent approaches to the computational problem are identified along with illustrative
examples of how these approaches may be applied to determine well-curvedness (as
defined by the nonvanishing of w4 ).

3.1. Algebraic approaches

The first and simplest observation to make is that Lemma 1 facilitates the further
simplification of the expression used to define dv4/dt via the right-hand side of
(14). Given n and d, let m be the number of entries in the ordered list «q,...,k,
which equal «,,. This number m will be called the relative codimension of a manifold
of dimension d in R". Analytically, m counts the number of highest-order derivatives
in (14). One can explicitly see that m =n + 1 —dim Py ' =n+1— ("”+dd_1), but
this identity will not be particularly useful. By Lemma 1, the dependence on M of
the determinants inside the sum (14) is much less than it would seem. For each k, let

1
LEfpyi=J\ —o*f(p) (19)

I<la|<k =

(where the monomials are ordered lexicographically). By Lemma 1 and (14),
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dva - (cn )™ _
ZC[ f — - |det LKn 1
dt lp MEéE(d,]R)‘ ‘ 223 — ﬂll"'ﬁm!| et( f(p)
== By | =k
d
20

AMDPf(p) A A (MO £(p)[] 20)

for some constant C that depends only on d and n. In certain special cases, the sim-
plification proceeds even further.

Example
When n + 1 = dim P;” (including curves for all n), the measure v4 has Radon—
Nikodym derivative with respect to Lebesgue measure equal to

dv g

— 2 = Kn
L Cldet L*" f(p)|

for some constant C depending only on d and n. In such cases, dv4/dt is nonzero
at a point if and only if the vectors {3% f(p)}1<|a|<k, Span R".

The reader may wonder if it is always possible to evaluate the infimum (20)
explicitly in terms of a determinant as in the example. The answer is in general no,
because for generic d and n, one must appeal to a richer and deeper family of alge-
braic operations than merely the determinant. As observed in Section 2.1, the infimum
(20) can be understood as the infimum of a norm over an orbit of an SL(d, R) repre-
sentation. In the specific instance at hand, for sy,...,5;, € RY, at every point p, one
may define the polynomial

:‘PP(Sl,...,Sm)

1= (16 )" det(L T f(p) A (51 V) f(P) A oo A (s - V) f(p)) (21

which is homogeneous of degree k;, in each set of variables sy, ...,s,. The group
SL(d,R) acts on the vector space of such multihomogeneous polynomials via the
group representation

(P Pp)(S1,- e 5m) = Pp(MTsy, ..., MTsy). (22)

If one defines the inner product (-, ), ,» on such polynomials by the formula

E (K ')m m m
<Q’r>Knam:= ﬂlln..ﬂm'afll8fmq|08?118€nr
|B11="=|Bm|=kn

0, (23)

then by (20),
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d
S| = ot lou Pl e4)
for a suitable constant C’ that depends only on d and n.

Quantities like the right-hand side of (24) have been thoroughly studied in the
context of geometric invariant theory. In this vast literature, it is well understood that
the algebra of SL(d, R)-invariant polynomials in the coefficients of &, is fundamen-
tally connected to the right-hand side of (24). Hilbert [17] showed that, when the
group SL(d, R) is replaced by SL(d, C), this algebra is finitely generated. From this
fact it is easy to see that the same result must be true for SL(d, R) itself. Subsequent
work has shown that this algebra must also be finitely generated for representations
of any group G which is a real reductive algebraic group (which, as far as the present
work is concerned, is a class which includes SL(d,R) and is closed under Cartesian
products). The relevance of Hilbert’s theorem to the quantity (24) is as follows.

LEMMA 2

Suppose that G is a real reductive algebraic group and that p is a G-representation
on some finite-dimensional real vector space V equipped with a norm || - ||. Let
P1,---, PN be any collection of homogeneous polynomial functions on V, with posi-
tive degrees dy, ... ,dy, which generates the algebra of all G -invariant polynomials.
Then there exist constants 0 < C1 < C, < 00 such that

e
C; max ‘()| % < inf v
L max [p @)% < it flouro]

1
<C, maxN\pj(v)}df forallv eV. (25)
j=1

.....

Proof
To prove the first inequality, observe by scaling that

__L
d.

1
il |2 ()% < vl

for all j and all v € V, where || p; ||« is the supremum of p; on the unit sphere of
| - II. Moreover, because each p; is invariant under p,

1
a;
Ipjlloo”

1
d;

1 1
|pi)|% =lpjlles ” |Pj(orav)| % < llppvl,
so taking an infimum in M and a supremum in j gives

. 1
i d; L .

in - max @7 < inf ol
['—1,...,N 17illoe ]j=1 N|p,( )| < Jnf lloavll

.....
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To prove the reverse inequality, suppose for the sake of contradiction that the second
inequality of (25) does not hold for any finite C,. Because the inequality is homoge-
neous in the norm || - ||, its failure would imply that one could find a sequence vy with
infas ||parvr |l = 1 for all k such that

1
a; -1 -1
max|p; (v J <k~ inf vell =k,
i |pj ()| < eG||/0M kll

Moreover, by replacing vx by pa, v for suitable My and taking a subsequence by
compactness, it may be assumed that vy converges to some v in the unit sphere
as k — oo. By continuity of the polynomials p;, p;(v) = 0 for all j. Therefore,
v belongs to the so-called nullcone of the representation, and by the real Hilbert—
Mumford criterion, first proved by Birkes [3], there must exist a 1-parameter sub-
group Pexp(rx) Oof G such that pex,:x)v — 0 as £ — oo. This, of course, implies that
infas ||oamrv]| = 0. However, infas ||oarvi|| = 1 for all k implies that ||pprvg|l > 1
for all M € G and all k, which means by continuity that ||pasv|| > 1 for all M, so
infas || parv]| = 0 must be contradicted. O

There are certain cases in which minimal generating families of the algebra are
explicitly known, which means that the measure it 4 may consequently be computed
up to factors depending on d and n. We have the following examples.

Example

Whend =3 andn =3+ 64 1 =10, $, is a ternary cubic form (i.e., cubic polyno-
mial of degree 3). The algebra of SL(3,R)-invariant polynomials of ternary cubic
forms is known to be generated by Aronhold’s invariants S and T (see [32]) of
degrees 4 and 6, respectively. Consequently, for any 3-surface in R1?,

dv g

1 1
ar lp ~ |S(=7)p)|4 + |T(Pp)|6

with universal implicit constants that do not depend on J,,. For example, the 3-surface
parameterized by

(11,12, 13,17, 1313 11y Dotz 103,15 + 13 +13)

has P, (1) =13 +13 + 13, where t = (t1,12,13) € R® and S(P,) =1, T(P,) =0, so
V4 is a nonzero constant times Lebesgue measure dz.

Example
When d =2 and m = 1, &, is a homogeneous polynomial of degree «, on R2. By
Hilbert [17], it is known that the nullcone of the representation consists exactly of all
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polynomials which have a (projective) zero of order greater than «, /2. Thus for any
2-surface parameterized by

((ta)lf\ak/c’q(l))

for some homogeneous polynomial ¢ of degree k in two variables, it is an elementary
exercise to determine whether or not p 4 = 0.

Example

When m = 1 and d and n are otherwise arbitrary, it is known that the discriminant
is an SL(d,R)-invariant polynomial on the space of homogeneous polynomials of
degree « for any k. While the discriminant alone does not characterize dv 4 /dt, when
the discriminant of &, is nonzero, (dv/dt)|, will also be nonzero. The discrimi-
nant vanishes if and only if the gradient of the polynomial vanishes at some nonzero
complex point. Thus one can immediately see that the d -surface given by

(t1,... ,td) — ((ta)1§|a|<x,ti( RS tc'i()

will also have v4 equal to a nonzero constant times Lebesgue measure for any d
and k. The same will be true for any small-coefficient perturbations 7y + --- + £} as
well.

It is always possible in principle to compute a complete, finite collection of gen-
erators of the algebra of invariant polynomials explicitly in finite time (see Sturmfels
[32]), which means by (25) that for any individual values of d and n of particu-
lar interest, it is always possible to compute the magnitude of dv 4 /dt directly up to
unimportant multiplicative factors. Carrying out this computation in parallel for many
different values of d and n is, with the exception of special combinations, somewhat
unwieldy and akin to the attempted computation of the determinant via the permu-
tation expansion rather than by more efficient, symmetry-exploiting techniques. As
implied by the above examples, it is also worth observing that when many invari-
ant polynomials exist (which, unlike for curves and hypersurfaces, is typically the
case), the nullcone of tensors A such that the density (12) vanishes has codimension
greater than 1, which means that for general submanifolds of dimension d in R”, it
is typically “easier” to have nonvanishing affine curvature than it is for hypersurfaces
because the space of “flat” Taylor polynomial jets to be avoided is of codimension
greater than 1.

It is substantially easier to directly compute the entire algebra of SL(d,R)-
invariant polynomial functions of J#, than it is to determine a finite set of generators
because the Reynolds operator, which projects polynomials in &, onto the space of
SL(d,R)-invariant polynomials, can be explicitly expressed in terms of Cayley’s Q2
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operator. For any polynomial function of the entries of M € R?*? et

ad
Qp = - (26)
UEZ/S:d a]‘4101 "'aMdO'd
THEOREM 4
Let V;’;ﬂ be the real vector space of real polynomials in variables sy, ..., Sy € R4
which are homogeneous of degree ky, as a function of each variable s;, i =1,...,m.

A homogeneous polynomial F of degree k on V;’;n is called an SL(d,R) invariant if
F(ppP) = F(P) for all M € SL(d,R) and all P € V;’;ﬂ, where pys is as defined
in (22). If d divides k,mk, then let

RIFI(P) = (1) " [F (ot P)] @7

=0

Then the following are true.

(1)  Ifd does not divide k,mk, then there are no nonzero homogeneous SL(d,R)
invariants F of degree k on V;’;n

(2)  Ifd divides kymk and F is any homogeneous polynomial of degree k on V; -
then R[F] is an SL(d,R) invariant; that is,

RIF)(op ) = RIF)(P) forall M € SL(d,R) and all P € V..

(3)  If d divides k,mk, then there is a positive constant ¢ depending on (d,k,
m, ky) such that every homogeneous SL(d,R) invariant F of degree k on
V;';n satisfies R[F] = cR[F].

Proof
To establish the first conclusion (for which it may be assumed without loss of gen-
erality that d > 1), let M be a diagonal matrix with entries f1,...,¢; such that
t1---tg = 1. The quantity F(ppsP) is necessarily a polynomial of degree «,mk
in t1,...,t7. If any term c,t% of this polynomial has a nonzero coefficient for a
multi-index « := (ay,...,ag) with entries that are not all equal (i.e., o; # s for
some i,i’), then substituting ¢; = (1 +-+£;—1¢;4+1---14)"" for an appropriate choice
of index j will necessarily yield a nonconstant rational function of the remaining
variables, which contradicts SL(d, R) invariance. However, the entries of « can only
be equal to one another if d divides |«| = k,mk.

The remaining conclusions of this theorem are simply applications of more gen-
eral results of Sturmfels [32] for relative GL(d, C) invariants. A polynomial F as

above is called a relative GL(d, C) invariant of index i when

F(ppmP) = (det M) F(P) forall M € GL(d,C)
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and all & in the complexification of V"” By Theorem 4.3.7 of [32], R[F] is always
a relative GL(d, C) invariant of index K,,mk /d, which in particular forces it to be an
SL(d,R) invariant. Conversely, if F is an SL(d, R) invariant, then any M € GL(d,R)
with positive determinant may be factored as

— (detM)a M’
for M’ € SL(d,R). By homogeneity,
F(pu®) = F((det M) ppy )

= (det M) " F(ppy/ P)

F(P)

for all P € V;" Now both F(par ) are polynomial func-
tions of M and & which are equal for any real 2 and any M in an open subset of

real matrices. By analytic continuation, they must also agree for all M € GL(d,C)
for all complex &, so F' must be a relative GL(d, C) invariant of index «,km/d; by
[32, Corollary 4.3.6],

Knm

RIFIP) = (@) "4 [F(osr P)] |y

al

=F(J
=cF(P)

1lr=o

for some ¢ > 0. This finishes the proof. O
By Lemma 2, one has the following immediate corollary of Theorem 4.

COROLLARY 1
For any point p, (dvs/dt)|p, = 0 if and only if, for every k such that d divides k,mk,
every homogeneous polynomial F of degree k on V;’;n satisfies

@) T [F(om P)]| 7= = O- (28)

Proof

This condition is immediately equivalent to the condition that every SL(d, R) invari-
ant F vanishes at J°,,, which is equivalent to every generator of the algebra vanishing
at Pp. O
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Example
The 3-surface in R!? given by

2 .2 .2 3 .2 2
(11,12, 13,17, 15 , 15 Tita, i 13, T3, 15 1513, 1215

is well curved. If 51, 52, 53 € R3, then

3 3 3
S11 $21 §31

D _ 2 2 2
Pp(s1,52,83) =det | 57,513 55,523 53,533
2 2 2
512513 s22S23 S32S33

Let F($) be the coefficient of 57,535,553, when & is expressed in the standard basis
of the variables s;; (i.e., s; = (s;1, Si2,i3) for each i). Then

M}, M3, M3,
F(fp(MTSI,MTS2,MTS3)) = det M122M13 M222M23 M322M33
MaME MMy Mz M3,
Because 2y is antisymmetric under permutation of the rows of M,
Qi Fpm Pp) = 623 (M M3, Mz M3, M35),
which readers may recognize as a transvectant. It follows that

Q3 F(py Pp) = 6232, (3M121 [4Mox Moz M3y M33 — M222M323])
— 18Qp7 (2M 11 [4Ma3 M3y — 4May M33 — 4 Moy Ms3])
= 144Q 1 (M11[M23 M3, — 2M22M33])
= 144[-2—1] = —432 #0.

Because the algebra of SL(d, R) invariants is finitely generated, Corollary 1 can
be further refined to state that there is some k¢ depending only on d and n such that
(dva/dt)|, = 0 if and only if (28) holds for all homogeneous polynomials F of
degree k < k¢ such that d divides k,mk.

3.2. Sublevel set approaches

Because all norms on a given finite-dimensional vector space are comparable, it can
be useful to replace the norm appearing in (24) by other more meaningful ones. One
such example is the observation that

dv ) d
“Alx~ inf sup ‘:‘Pp(Msl,...,MsmﬂQ,
dt lp MESLWR) s |,.... s, <1

~
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where | - || is any choice of norm on R? . Let K denote the unit ball of this norm, and
let Z, :={(s1,....5m) | |Pp(s1,....Sm)| < 1}. A trivial application of homogeneity
gives
d\)(A, -1 m m
[— ] ~ sup  {IMK|®|(MK)" C Z,), 29)
dr Ip M eGL(d,R)

where |M K| denotes Lebesgue measure. This allows one to employ sublevel set esti-
mates to establish nondegeneracy of p4. This idea is made precise by Theorem 5
which is stated and proved below after the following lemma.

LEMMA 3

Suppose that K C R is a centered ellipsoid. There exists a nonzero radius r satisfy-
ing r > |K|"4 for an implicit constant depending only on d such that the (d — 1)-
dimensional Lebesgue measure of K N {x € R? | |x| = r} satisfies

}Kﬂ{xeRd } |x|=r}|Z|K|r_1

for some second implicit constant depending only on d.

Proof
Applying an orthogonal transformation to K if necessary, it may be assumed that the
axes of K are in the standard coordinate directions; that is,

{(xl,.. xd)eRd‘.Xz:— }

for strictly positive Ry,..., Rgz. Moreover, it may be further assumed that R; < Ry
forall j €{l,...,d —1}.Letr := Ry/~/2 and

\m

Eo:= [_ Ry R, ] " [_ Ri-1 Ra— ]
' 2Vd =1 2vd =1 2vVd =1 2vd =11
Every y € E satisfies

d—1 R2 R2 2

1 r
sz Z4(&1 5<% =7

Set (y) := (v, /r2—|y]?) € R?. The map 7 is well defined on all of E¢ and maps
it into the sphere {x € R? | |x| = r}. The Lebesgue measure of 7 (Ey) in this sphere
satisfies the inequality

1
-2 _d—1 _
nEn)|= [ (=25 ay = 1ol = @ - )7 R Ray 2 KD



2100 PHILIP T. GRESSMAN

Lastly, every point of 7 (Ey) belongs to the ellipse K because

d—1 2 2 2 d—1
i re— 1 1
(Z|y]1e2l|)+ R2|y| §(Z4d 1)+§51'
j=1 j d j=1 @=1
This completes the proof. ([

THEOREM 5
For every € > 0, let 1(€) be the measure in (S°~1)" of the set

{(@1,....0m) € SH" | |Pp(@1, ..., 0m)| <€},

where Py, is as in (21). Suppose that there exist positive constants Cy and o such that
I(€) < C1€'/? forall € > 0. If o < *%, then

d
dvy >C—K‘I’1Q

— 30
ar |, ~Cr (30)

with an implicit constant depending only on d and n.

Proof
The class of centered ellipsoids in R? is closed under invertible linear transforma-
tions. Let K be any centered ellipsoid such that

K™ C{(t1... tm) € R)™ | |Pp(tr, ... tm)| < 1}

Let r be the radius identified by Lemma 3. By Lemma 3 and the fact that K™ is
contained in the sublevel set where |#,| < 1, it follows that the Lebesgue measure
in (rS?=1)™ of the sublevel set | P,| < 1 is greater than or comparable to (| K|r~')"
with an implicit constant depending only on d. By homogeneity,

pmA=D p(pKnmy > (|K|r_1)m.

By the sublevel set bound for /(€), it must be the case that
1 Kn L Kn
|K| S Clm r—7+d S, C]m |K|_W+1,
where the last inequality follows because —%% +d <0 and r 2 [K |1/4 . Therefore,

K| < C;Td/("”m) with an implicit constant depending only on d and . By (29), this
establishes (30). O
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Example
The 3-surface in R> parameterized by

(t1.12. 13,1713 + 13)
is not well curved (i.e., u4 = 0). It has
e7)]7(t17t29t35Slvs2aS3) = tlz(sg + s%) - (t22 + t:?)s%

The boxes K, = [—€/2,€/2] x [-e~!,e71]? have volume tending to infinity as € —
0%, but K¢ x K is contained in the set where | #,| < 1 for all € > 0. Thus (29) implies
that 114 = 0. In contrast, the 3-surface in R?! parameterized by

((t")15|a|53,112|t|2, (3 + 132)|l|2)
is well curved. It has

Pp(t1,12.13,51,52,53) = (17 (s3 + 53) — (65 + 13)s7) |1 *|s|?

2 2 2 2 2 2
= (eF1s1> = s31e1%) e %152

By a simple change of variables, every set in S? which is rotationally symmetric about
the x;-axis has measure equal to 277 times the measure of the projection onto that axis.
Therefore, the sublevel integral /(¢) defined in Theorem 5 satisfies

I(¢) =4n2|{(u,v) e[-1,1]? | |u? —v?| §E}|

which is easily shown to satisfy a nontrivial sublevel set inequality for any o > 1.

3.3. Model forms for well-curvedness and Theorem 2
Recall from the Introduction that a polynomial map f of the form

F@) = () 1<aj<cn P1{). ... Pm(?)) 31)

for p1,...,pm € P;” is a model form when there exist A1, A» > 0 such that

M-

.
Il
-

(07 pe. 0 perdicn—1 = M6 p,
(32)

NE

(0 pe: 07 Pe)icy—1 = A28 5,

~
Il
-

where in both equations § is the Kronecker delta. In this section, we will prove parts
(1) and (2) of Theorem 2 concerning model forms. This section will also lay some
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additional groundwork for proof of part (3) of Theorem 2, which will be completed
in Section 5.3.

The key observation from geometric invariant theory which plays a prominent
role in this case is that critical points (as a function of M) in the infimum (14) must
be points at which the infimum is attained. This will be the main observation to be
exploited; a secondary observation, encapsulated in the following lemma, allows one
to simplify the structure of & even further at the expense of taking an infimum over a
larger group.

LEMMA 4
Let f have the form (2). Let p :== (p1,..., Pm) € (P";")m be the m-tuple of highest-
order parts of f. For any (N, M) € SL(m,R) x SL(d,R), let

(Rn,mp)(t):=Np(MTt). (33)

Then the measure v 4 defined by (14) is a constant times Lebesgue measure, and

dVeA %
o = [NE;S({,, - Z [ Ry )2, (34)
MeSLdR)’

for some constant C" depending only on d and n.
Before proving Lemma 4, a more fundamental lemma is necessary.

LEMMA 5

Let A be a real m x m’ matrix where m’ > m, and let [A);, ..i,, be the m X m matrix
formed by combining columns iy, ..., i, of A into a square matrix; that is, the (j, k)
entry of this matrix is Aj;, . Then

Z idetA]u lm| [NGSL(mR)ZZ‘ZN kAkz

i150e0im=1 =1li=1 k=1

] . (35)

Proof
First observe that both

m/
A > |det[A;,.q,,[”  and Al—)ZZ|A,,|2

i1yenrim=1 j=li=1

are invariant under the left action of O(m,R) on columns of A as well as the right
action of O(m’,R) on rows of A4 (in both cases, the identity is established by expand-
ing multilinear sums and directly exploiting the orthogonality identity as was done in
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Lemma 1). In particular, this means that we may, by the singular-value decomposi-
tion, assume without loss of generality that

Aji=0;8j;,

where o is the jth singular value of 4 and § is the Kronecker delta. Thus

m m

Z Idet[A]il..‘im|2 =mlo?---02 and ZZIAMZ =o0f+-+o0p.
i1yeesim=1 j=li=1
By the AM-GM inequality,

m/

1 5 1 m m
2 detl Al | < [;ZZ ;] (36)

Tl enim=1 j=li=1
with equality if and only if the singular values of A are all equal. Now multiplication
of A on the left by a matrix N € SL(m, R) preserves the left-hand side of (36) but not
necessarily the right-hand side; taking an infimum of the right-hand side over all N
gives

m/

3 |detfAlyyi, | < [Neslﬁ‘(i R)ZZ‘ZNJ"A’“‘ I

i1=1,.i;m=1 =1i=1 k=1

for any A € R™™ To show equality, assume once again without loss of generality
that A is diagonal in the standard basis of Rmxm/, and let N be the diagonal matrix
such that N;; := O'i_l (01 ++-0m) /™ assuming none of the singular values are zero. In
this case, NA has all diagonal entries equal, and consequently (36) holds with equality
when A is replaced by NA, giving equality in (35) as well. If, on the other hand, some
singular value o/ of 4 is zero, let N ® be another diagonal matrix such that Ni(il) =t
for all entries i # i’, and let N(,tl, =¢~™%1 Then fort >0, N® e SL(m,R) and

i [E SIS vl T - o] o

t—0t
- IES

so (35) holds with equality again in this case as well. O

Proof of Lemma 4
The polynomial given by (21) is independent of the point at which it is based and
takes the particularly simple form

pi(s1) - pism)
P(51,...,5m) = det : : . (37)

Pm(s1) - pm(sm)
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Independence of the basepoint means that the density &, given by (12) is either always
zero or never zero. For any M € SL(d,R), let AM be the m x d*» matrix (where
columns are indexed by 1 := (i1,...,i,) € {1,...,d}*") given by

AN = (M )i, -+ (M )i, pjlo-
By virtue of (22), (23), and (37),

los P2, = > |det{AM ], |-

By (35), this implies that

loar P12, m

- [NeSL(m R)Z Z ’ZNJ"(MB)”' (Ma)”‘"pkb‘ ]

=1it,. ik, =1 k=1

- S 2]

where || - ||, is the norm corresponding to the inner product (4) defined in the Intro-
duction, and Ry, s is the representation of SL(m, R) x SL(d, R) on the space (P;f” )"
given by (33). Raising both sides to the power % and taking an infimum over M gives
the formula (34). O

Proof of part (2) of Theorem 2
Now given any p,q € (Pa';” )™, the quantity

m
ij’q]

j=1

is an inner product on (Pﬂ';” )™ which is invariant under the action of Rg, 0, for
orthogonal O, and O, by virtue of the invariance of the usual inner product on R™
and by the identity (17) from Lemma 1. By Theorem 4.3 of Richardson and Slodowy
[28] (which is the real analogue of ideas introduced by Kempf and Ness [22]), it
suffices to show that the map

(N.M) = | (Ryaa )|, (38)
j=1

has a critical point at the identity since their theorem establishes that all critical points
are points where the infimum over all (N, M) € SL(m,R) x SL(d,R) is attained. (In
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particular, there are no nontrivial local maxima. The proof of their theorem ultimately
reduces to establishing that the function must be convex along any 1-dimensional
exponential family starting at a critical point.) Differentiating N at the identity in the
direction of E € sl(m,R) gives

m
2 Z Eee(pj> per), =0
L4 =1

for all traceless m x m matrices E. A similar calculation differentiating M at the
identity gives

m d
2K Z Z Eii/<aipj7ai/pj)"n_1 =0
j=lii'=1

for all traceless E € R?*4_ From these two calculations, it must be the case that
(38) has a critical point at the identity if and only if p satisfies the system (32). By
summing each identity over the diagonal, it follows that

m m
miy=dl =Y lpjlls, = inf > [ Rympl,-
=1

— NeSL(m,R) “—
J=1 MesLd,R) =
By (34),
dvA md
—2 =C"(Ad)22.
T =C"(had)

Thus for any f of the form (2) satisfying the critical point equations (32), the measure
L4 1s a nonzero constant times the pushforward of Lebesgue measure if and only if
A1, A2 #0. O

Proof of part (1) of Theorem 2
Exactly as was computed in the proof of Lemma 1, the space Pt';”_l is mapped into
itself by the representation

pmq(t):=q(MTt)

and det ppr = 1 when M € SL(d, R). Therefore, it suffices to study only the highest-
order part of f (namely, (p1,..., pm) € (Pt';”)m) and to show that the closure of the
orbit { Ry, p P} N esLom,R),MesLd,R) in (P")" :
(32) and that degeneracy or nondegeneracy must hold for every single p’ € (Pd',‘")m

always contains an m-tuple satisfying

in the closure of the orbit. This latter fact is an immediate consequence of the identity
(34). As for the fact that the closure of the orbit always contains a model form, this is
a consequence of Lemma 3.3 and Theorem 4.4 of Richardson and Slodowy [28] since
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. the orbit { Ry ar p} meets the solution set of (32) when the orbit is Zariski-
closed;
. when the orbit { Ry as p} is not Zariski-closed, there exist traceless self-adjoint

No, My such that
t_l)ir_noo ReZNO,efMO f

exists and does have Zariski-closed orbit.
In this latter case, the orbit of the limit meets the solution set of (32). In particular,
there must exist Ny € SL(m,R) and M; € SL(d,R) such that

tl}r—noo RNle’NO,Mle’MO f

exists and satisfies (32), which implies that the closure of the orbit Ry s f (in either
the standard or Zariski topologies) always contains a solution of (32). U

Example

Suppose that p(t) := (t*' /Jaq!,...,t%" //a,,") for multi-indices o, i = 1,...,m,
such that |o; | = k5. Suppose also that ¢ is the multi-index of order 1 with entry 1 in
position j and that the multi-indices {o;; 4 e} are distinct for every pair (i, j). Then
it must be the case that (3% ,9;/¢t%"),,_1 =0 when (i, j) # (i’, j’) and that

1 2
” Bjt"‘f

Oli! kn—1

1 e gi—e
= 5(%‘)?0“’ CL T ) -1
i!

- a%(xn = Dl (e = ej)! = (kn — D)) .

For this particular p, the first system of equations in (32) will always be satisfied
for some nonzero A; because each multi-index has the same order. The second sys-
tem will be true with some nonzero A, if Y /L &; is a multiple of the multi-index
(1,...,1). This immediately gives well-curvedness for examples such as the 4-surface
in R12° parameterized by

22,2 4.2 4.2 4.2
(((N1<lals, 11315, 1113,1313, 1313
(since rescaling in individual directions by constant nonzero factors preserves well-
curvedness). A somewhat more sophisticated set of examples in a similar spirit is
provided by Lemma 8 in Section 5.3.

3.4. Newton-type polyhedra and height

The final observation we make regarding well-curvedness of simple polynomial sub-
manifolds of the form (2) is an analytic reinterpretation of the Hilbert—Mumford cri-
terion, which in this case asserts that dv4/dt = 0 if and only if there exist traceless
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self-adjoint matrices Ny € R™ ™, M, € R4*? such that
R —iNg o—tmop —> 0 ast — o0.

This condition has a natural geometric interpretation similar to (but simpler than) the
notion of the height of real analytic functions, which is ubiquitous in the application
of resolution of singularities methods to oscillatory integral operators in harmonic
analysis (see, e.g., [19]).

THEOREM 6
Let {e1,...,em} be the standard basis of R™. For any p € (P;")m, let N(p) C
[0, 00)™ x [0,00)? be the convex hull of all points (ej,a) such that

0%pj(t)]i=0 #O.

Then the associated submanifold defined by (2) is well curved if and only if

1 K
<I’I_’llm’ gnld) € E/\'[(RO],Ozp) (39)

for all real orthogonal matrices O1 € O(m) and O, € O(d), where1,, :=(1,...,1) €
[0, 00)™ and likewise for 15 € [0, 00)?.

Proof
Because the norm

m
IplI?:=>"lp;lZ,
j=1

is invariant under the action of both of the orthogonal groups O(m) and O(d), it suf-
fices in the calculation (34) of dv4/dt to take the infimum only over N € SL(m, R)
and M e SL(d,R) which have the form DO, where D is diagonal with nonnegative
entries and O is orthogonal, by virtue of the singular-value decomposition. If N =

D10, where the ordered diagonal entries of D; are s1,...,8y, and if M = D,0,
where the ordered diagonal entries of D, are ty,...,#;, then it must be the case that
m P )
2 _ 2,20 Kn:
IRvmpl? =30 37 55022 ](01(0:0)p) | (40)

J=1la|=kn

It follows that dv4/dt is nonzero if and only if there is a nonzero lower bound for
the right-hand side of (40) which holds for all Oy, O, s, and ¢ assuming that O; and
O, are orthogonal and sy -5, =1 ---17 = 1.
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If the condition (39) holds, then for every O; and O, there must be pairs
(ej;,a1),...,(ej,,ar) and nonnegative 01, ..., 0 summing to 1 such that, for each
i, we get [01(020)% p]j, #0 and

k
Z@,’ (ejl.,oz,-) = (%lm, I;—n1d>.

i=1
By the AM-GM inequality,

k

Zsizz"‘t_|(ol(02 )% p) ZG 52 120"— (010200 p) |

i=1 i=1

>l_[\ e

i=1
k

(0100 p), |

2|0
(01(029)% ).}‘ >0 (41

=1

uniformly for all admissible s and 7. Because the quantities O1(0,0)* p are contin-
uous as a function of Oy and O;, the quantity on the right-hand side of (41) must be
uniformly bounded below by a positive constant on some neighborhood of (01, O3)
in O(m) x O(d). Because this space is compact, there must be a universal bound
from below, meaning by (34) that i 4 is a nonzero constant times the pushforward of
Lebesgue measure.

If on the other hand, there are O; and O, such that (39) does not hold, then in
fact no point of the form (c1,,,¢'14) can belong to N (Ro, 0, p) since every (e, a)
such that [0 (0,20)* p]; # 0 has

1
ej-1m=1=—0t-1d,
Kn
and ¢ = 1/m,c¢’ =k, /d is the only pair for which the point in question lies in both
affine subspaces. Thus by the separating hyperplane theorem, there must exist vectors
ueR™andv e RY,

uj +v-a>0 whenever [01(020)%p], #0
and
u.lmzld-l)zo.

(That is, there must exist a vector (u,v) € R”+¢ which has zero dot product with
every vector of the form (c1,,,c¢'1;) and strictly positive dot product with every
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vector in N (Ro,,0,p).) Fixing s; :=e™ "/, j =1,...,m,and t; ;= e "%/, j =
1,....d, gives s1++-5;m = 1 =ty ---14 for all T but also gives sztza — 0 for each
nonzero term in the sum (40) as T — oo, forcing dv4/dt = 0. O
Example

A homogeneous polynomial g of degree « in two variables satisfies dfq = -+ =
995 = 0 if and only if ¢, dgg, ..., d%q all vanish at the point (1,0), where dg =
—t01 + t10; is the angular derivative. Using this fact, it is an elementary exercise
to check that when d = m = 2, for example, the condition (39) for nondegeneracy
of p := (p1, p2) is equivalent to the condition that, for every orthogonal matrix O €
R2*2, there are no points on the unit circle at which functions (Op); and (Op),
vanish in the angular direction to orders 0, and 0,, respectively, with 01 + 0, > k5.
The 2-surface in R given by

(1.2, 1,13 11la 1] = 3011331715 — 13)

is well curved by this reasoning since no linear combination of the cubic polynomials
vanishes to order more than 1 in the angular direction on the unit circle in R2.

4. Necessity and proofs of parts (1) and (2) of Theorem 1

It is now time to return attention to the proof of Theorem 1. We begin with the fol-
lowing elementary lemma, which gives an estimate for the volume of the convex hull
of certain sets S C R”.

LEMMA 6
Suppose that S C R" is a compact set containing the origin, and let K be its convex
hull. There exist vy, ...,v, € S such that the sets
n n
K= {v ceR" |v= Zci v; for coefficients c¢; > 0 such that Zci < 1}
i=1 i=1
and
n
Ko = {v eR"|v= Zciviforcoeﬁ‘icients ¢ e[-1,1],i = 1,...,n}
i=1
satisfy
K\ CK C K. (42)
In particular,

1
n—!’det(vl /\---/\vn)| <|K]| 52"|det(v1 /\-~-/\vn)’. (43)
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Proof

This lemma is essentially a minor variation of John’s ellipsoid theorem in [20]. Let V'
be the unique vector subspace of R” of smallest dimension which contains S' (where
uniqueness holds because the intersection of two subspaces containing S would be a
subspace of smaller dimension also containing S). Let m denote the dimension of V,
and let dety be any nontrivial alternating m-linear form on V. Let (vy,...,vp) € S™
be any m-tuple at which the maximum of the function

(V1y.e s Um) = |d§t(v1 /\-~-/\vm)|

is attained. Since S is not contained in any subspace of smaller dimension, | dety (v, A
-+ A V)| > 0 unless m = 0 (in which case S = {0} and the lemma is trivial). Now
by Cramer’s rule, forany v € V,

=~ 1 dety (VA VLA AT A AUp)
v= Z(—l)’ Vi,

Pt dety (vy A+ A vp)
where, in this case, the circumflex ~indicates that a vector is to be omitted from the
determinant. In the particular case when v € S, the m-tuple (v,vq,...,05,...,Vm)
belongs to the set S over which the supremum of | dety | was taken; therefore each
numerator has magnitude less than or equal to the magnitude of the denominator.
Thus S belongs to the parallelepiped

m
v = Zcivi for some ¢q,...,c;m € [—1,1]}.
i=1

P:={ve]R"

Since P is convex and contains .S, it must contain K as well. To establish the lemma,
we extend the sequence vy, ..., v, to a sequence of length n by fixing v; = 0 for
J > m. Trivially P = K for this choice, so the containment K C K, must hold.
For the remaining containment, observe that 0, vy, ..., v, must belong to K since they
belong to S. Therefore, by convexity of K, the set K1 must be contained in K. The
volume inequality (43) follows from the elementary calculation of the volumes of K;
and K. O

With Lemma 6 in place, we turn now to the proofs of parts (1) and (2) of Theo-
rem 1.

Proof of part (1) of Theorem 1

Pick any point p € M, and fix any smooth coordinate system (1, ...,%7) near p so
that the immersion f : M — R may be regarded in these coordinates as a function
from a 3§ neighborhood of the origin (chosen so that # = 0 are the coordinates of p)
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into R”. It may also be assumed without loss of generality that f is an embedding on
this neighborhood. By Taylor’s formula, for all 7o, t € R¢ <28,

ro- =3 T 3 LN )" t‘;m, (44)

o<|a|<t |1B|=C+1 'B'

for any finite £, where each remainder term R , (1) is continuous on |¢| < 2§ and

equals 8? f(to) when t = to. (For most of what follows, ¢y will be regarded as a
fixed but otherwise arbitrary point with |f9| < 8.) For definiteness, let £ := k;,; that
is, £ equals the highest order of differentiation that appears in a column of the matrix
whose determinant forms # (or equivalently, £ is the number of boxes in column n
of the diagram given in Figure 2). This choice of £ implies that the dimension of the
space of polynomials of degree ¢ with no constant term is at least equal to n. For any
r €(0,4], let S, » be the compact subset of R” given by

S’O”‘Z{O}UU{%BH(:O)}U U {%

lel<¢ [BI=L+1,t]<28

RE @)},

and let Ky, , be the convex hull of Sy, U (—=Sy,,-). Now each term in either sum
on the right-hand side of (44) belongs to Ky, , whenever |f| < 2§ and |t — o] <.
Because the total number of summands on the right-hand side is at most some constant
C depending only on d and n, the difference vector f(t) — f(¢9) must belong to the
dilated set CK;, , whenever |t| <28 and |t —t9| < r. In particular, this implies that
the translated set CKj, , + f(fp) must contain the vector f(¢) whenever |f| < 2§ and
[t —to] <r <3.

By virtue of (43), the Lebesgue measure of the set CK;, » + f(¢o) is O(r 2) as
r — 07 since it is dominated by a constant depending on d and n times a deter-
minant |det(vy A -+ A vy,)| for some vi,...,v, € Szp,r U (—Sy,-) and since Q is
by definition the smallest integer which is possible to express as a sum of degrees
of distinct, nonconstant monomials in d variables (thus Q corresponds to the small-
est possible power of r which will appear via scaling in such determinants). In fact,
a slightly stronger result is also true—namely, that it is possible to quantify the
implied constant in this O(r2) estimate in terms of the affine curvature tensor /4
at to. For any collection «y, ..., a, of multi-indices such that oy | + ++- + |on| = O,
it is possible to find indices i) for each A € Ay, (these indices being obtained
by “expanding” each «; as a composition of first-order coordinate derivatives) so
that

|det(35" f(t0) A -+- A OF" f(20))| = |Aeo (3 )reny.,)|

whenever the left-hand side is nonzero. Therefore, it follows from (43) that when
r <6, the image f(B,(fp)) is contained in CKy, , + f(tp), which is a compact
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convex set with volume no greater than

d
C,rQ[. 3 |A,O(atjl,...,a,jg)|2]

D=

+ 02t

as r — 0T, where C’ is some new constant depending only on d and n. Conse-
quently, if p is any measure on R” supported on M satisfying the Oberlin condition
(1) with exponent « and constant C;,, then

1

d >
timsupr =@ (£ (Brw) SCul[ D [0y,

+ . N
r—>0 J1sejo=1

(45)

for any to with |t9| < § with an implied constant depending only on d and n. If
a > d/Q, then this implies that u must be absolutely continuous with respect to the
pushforward of Lebesgue measure on M on a §-neighborhood of the chosen origin
point p, and if & > d/Q, then it further implies that & must be the zero measure on
the image of that neighborhood in R” (since the Radon-Nikodym derivative of u
with respect to the pushforward of Lebesgue measure must vanish at every Lebesgue
point, which is almost every point in the neighborhood), thus establishing part (1) of
Theorem 1. O

Proof of part (2) of Theorem 1

Returning to (45) when o = d/Q, the previous calculations show that on a §-
neighborhood of the point p in the given coordinates, u restricted to the image of
that neighborhood (with respect to the immersion f, which may be assumed to be
an embedding on this neighborhood) must be absolutely continuous with respect to
the pushforward of Lebesgue measure. It follows that the Radon—Nikodym derivative
du/dt, which for simplicity is taken as a function on M rather than R”, is well
defined and satisfies

d
lim sup r_du(f(Br(to))) = Cdd—/;(IO)
r—0+

for almost every ty with |fo| < 8. By (45), then,

d

d d_
d_/;|q SC,U«[. Z |'A’q(8tj1""’atjg)|2]zg

for almost every point g in some neighborhood of the original point p (where, once
again, the implied constant depends only on d and n). Now, by transforming the coor-
dinates (#1,...,%;7) by matrices M € SL(d,R) to produce new coordinate systems, it
follows by the same reasoning as above that
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d/*L d d 2%
ol £ At iy ]
1 J1seesjo=1i1,..., ip=

for every M € SL(d,R) and almost every ¢ in a neighborhood of p (by continuity
of the right-hand side as a function of M, it suffices to consider only some countable
dense subset of SL(d,R) so that the set on which the inequality fails is clearly null).
Taking an infimum over M gives that

d_'“<c dva

dt ~ " dt
almost everywhere on the coordinate patch. Because the coordinates and patch were
arbitrary, it follows that part (2) of Theorem 1 must hold with an implicit constant
which equals a dimensional quantity (depending only on d and n) times the Oberlin
constant C,, from (1) for the measure p itself. O

5. Sufficiency and nontriviality

5.1. On the geometry of functions on measurable sets

This section begins with a construction generalizing the results of Theorem 1 of [13].
Roughly stated, that theorem indicated that for single-variable real polynomials of a
given degree, every measurable subset of the real line has a “core” which contains
a nontrivial fraction of the set such that the supremum of any such polynomial (or
appropriately weighted derivatives) on the core is bounded above by the average of
the polynomial on the entire set. The proof involved careful analysis of Vandermonde
determinants and has no immediate generalization to other dimensions or families of
functions. In the arguments below, an entirely different approach will be used which
is based on convex geometry and admits extensions to a variety of new contexts. In
particular, the setting of polynomials is no simpler to study than any other finite-
dimensional family of real analytic functions, which will be the preferred formulation
of the result.

Recall from Section 1 that a pair (M, F) of a real analytic manifold M of dimen-
sion d and a finite-dimensional vector space & of real analytic functions on M whose
differentials span the cotangent space at every point of M is called a geometric func-
tion system. Such a system is called compact when M is either compact or has a
compact closure in some larger real analytic manifold .M such that the functions of
F extend to functions £+ on M in such a way that (M1, F 1) is also a geometric
function system. Recall also Theorem 3.

THEOREM 3
Suppose that (M, F) is a compact geometric function system. Then for any finite
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positive measure |1 on M absolutely continuous with respect to Lebesgue measure
and any measurable set E C M of positive measure, there is a measurable subset
E’' C E such that p(E’) Z u(E) and

1 lrod
;élg/|f(1))|§E/E|f|du forall f € F

The implicit constants in both inequalities depend only on the pair (M, F).

Proof
For each f € ¥, consider the norm

1
1/ "M/E'”d’”‘

Compactness of the geometric function system implies that || /| is finite for every
f € ¥ .Because each function f € ¥ is real-analytic and the measure of E is strictly
positive, no f € ¥ aside from the zero function can have || /|| = 0, which is what
guarantees that | - || is a norm rather than merely a seminorm. Assuming that the
dimension of ¥ is k, applying Lemma 6 to the set S which is the unit ball of || - || and
using homogeneity of the norm, there must be functions fi,..., fr with || fi|| =1
for all i (none of the functions f; will be identically zero because the unit sphere
does not lie in any nontrivial subspace of ¥) such that every f € ¥ has the property
that

k
f=Ycifi

i=1

with |c;| < || f|| for each i. In particular, this implies that
k k
@) =[] <1711 fip)
i=1 i=1

for each f € ¥ . Let E’ be the subset of E on which Zf-;l | fi (p)| <2k; by Cheby-
shev’s inequality,

: 1 [ < I
M(E)ZM(E)—ﬂ/EZ;Iﬁ(p)IduZEM(E)
and
sup ()| = sup [||f||Z|ﬁ(p)| 2 L ira

forall f e F. U
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The extension of the results of [13] to derivative estimates in higher dimensions is
necessarily much more subtle than the 1-dimensional case because of inherent issues
of anisotropy of differentiation in various directions. Any proper formulation will
necessarily be phrased in terms of vector fields which capture (either implicitly or
explicitly) this anisotropy. For convenience, given any vectors Xp,..., Xy at a point
peM,let u(X; A--- A Xg) denote the associated density of p, which is equal to
the volume of the parallelepiped generated by X7,..., Xz as measured by p. In other
words,

d
PO A n Kol = S| [detX]

where the Radon—-Nikodym derivative dj/dt is with respect to Lebesgue measure in
some coordinate system (¢1,...,#z), and X is the matrix with entries X;; = d#; (X;).
With this definition in place, the formulation of the differential version of Theorem 3
to be proved here is as follows.

LEMMA 7

Suppose that (M, F) is a compact geometric function system, and let N be any pos-
itive integer. Then for any finite positive measure | on M which is absolutely contin-
uous with respect to Lebesgue measure and any measurable set E C M of positive
measure, there is an open set U C M, a family of smooth vector fields {Xj;};; with
je{l,....N}yandi €{l,...,d}, and a measurable set E' C E N U such that the
following are true with implicit constants depending only on the pair (M, ¥ ) and the
integer N.

. The subset E' C E N U satisfies w(E') 2 w(E).

. The vector fields X j; satisfy infpep p(X;1 A+ ANXja)lp 2 n(E) and

d
Xji=) ciiwXj-1i (46)

i'=1

with |cj ;| S1foreach j €{2,...,N}andeachi,i' € {l,...,d}.
. For any k € {1,...,N}, any indices 1 < j; < jo <+ < jr < N and
i1,....ige{l,....d},

1
sup | X i X i g—f d 47
0 [Xiei X f D) Sy [ 1S 1w @7

uniformly for all f € . Furthermore, the case corresponding to k = 0, that
is,

1
< du,
;gg/|f(p)|NM(E)/E|f| I
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also holds uniformly for all f € .

Proof

By induction (the base case of which is taken to be Theorem 3), for a given measurable
set E C M of positive measure, we may assume that there exist a nested family of
open sets M =: Uy D Uy DU, D-+- D Uy—1 and vector fields {X;;},i =1,...,d,
defined on U; for each j € {1,..., N — 1} satistying all the stated properties. Next,
let ¥o := ¥, and then take ¥ to be the vector space of real analytic functions on U;
spanned by ¥;_; and all functions of the form X;; f fori =1,...,d and f € ¥;_;.
By construction, u(E N Unx—1) 2 w(E) > 0, so in particular,

1
Il i= = fldp
M(ENUn-1) JEAUN_,
will be a norm on Fy_;. Let fi,..., fr be a basis of Fy_; given by applying
Lemma 6 to the unit ball of || - || y—1, let  be the set of d-tuples 8 := (B1,...,B4) of
indices satisfying 1 < 81 < 8, <--- < B4 <k, and let Vg be the open set

{peUna ) \dfg, A Adfs,|pl > %|df,3i AN AN ANT I

where the bars | - | indicate any nontrivial norm on d-forms at p (the precise choice
does not affect the set since any such norms must be multiples of each other because
the space is 1-dimensional). Because the cardinality of 4 is bounded by a constant
depending only on N and the dimensions of ¥ and M, there is at least one § such
that u(E N Vg) 2 w(E N Upy—1), where the implicit constant may simply be taken to
be (#4) L. If we now define the vector field X ; on the set Uy := Vg to equal

dfp, /\"'/\dfﬁi—l /\df/\dfﬂi+l /\"'/\dfﬁdlp
df.Bl /\"'/\dfﬁdlp

(again, well defined because numerator and denominator belong to the same 1-

Xn,if(p):=

dimensional vector space), then it must be the case that

X f( )_Xk:cdfﬂl/\”'/\dfﬁifl/\dfi/\dfﬂi«H/\'“/\dfﬂdb’
NI 48 dfp, AN dfglp

i=1

for constants ¢; satisfying |c¢;| < || f || n—1. Since the ratio is bounded above by 2 on
Uy, it follows that

2k
sup |Xni f(p)| < —— o d (48)
pel;)N‘ wi /() WENUn-1) JEnUN_, |/ 1dy

forall f € Fy_1.Since u(E NUyx_1) 2 u(E), it follows by induction that
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pseupN|XNzN Xui f(P)] S ) / |/ 1dp
for all f € ¥ . This establishes (47) for any set £’ C E N Uy assuming that the top
index ji equals N. If not, then (47) follows simply by induction, provided that E’ in
the induction step N is a subset of the corresponding E’ from induction step N — 1.

Next observe that each vector field X ; is locally a coordinate vector field rel-
ative to the coordinate functions (fg,,..., fg,) € 3‘716_1 (i.e., the vector fields Xy ;)
equal the coordinate partial derivatives when (fg,...., fp,) are used as coordinate
functions) and that the average value of |fg.| on E N Uy—y is 1. Without loss of
generality (since the hypothesis is trivial in the base case N = 0), we may assume the
additional induction hypothesis that for each j € {1,..., N —1}, the vector fields X ; ;
are local coordinate vector fields with respect to coordinate functions (gq, , - - - , 8ay,) €
Fd - In particular, if (gq,, ..., ga, ) are the coordinate functions for the vector fields
XnN—1,i, then it follows that

d

XNi =) (XNigay)XN-1'-
i=1

By the derivative estimate (48), assuming N > 2,

2dim Fy_;
sup |XN,i8a; (P)| S —o 77— |G/ | d it
peUy' 08 = WENUN=1) Juy_inE

1

S |8yl dp =1,
MENUN=2) JEnuy 5

which is exactly the bound on the coefficients c; ; ;- claimed for (46) when j = N.
For j < N, (46) follows analogously by virtue of the added induction hypothesis.

Lastly, the quantity u(Xn,1 A -+ A Xn,4) must be estimated. Observe that
W(XnN1 A+ A Xpn,q) is exactly the Radon—Nikodym derivative of u with respect to
Lebesgue measure in coordinates given by fg, ..., fg,. This implies that

-1
[t e n Xl = [ 1ty nee n

Because the functions are real-analytic, we know that there is a finite number M
independent of the choice of the functions fg, such that the system fg. (p) = ¢; has at
most M nondegenerate solutions (at which the Jacobian is nonzero). For polynomial
functions, this is a simple consequence of Bézout’s theorem. In our case, however,
even if the original function system Fy consists only of polynomial functions, the
definition of the X ;’s leads naturally to the inclusion of certain rational functions
in %;, at which point there is little additional difficulty in going to the more general
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context of real analytic functions. The algebraic argument is given in Section 5.3 and
for now may be safely postponed.

Assuming the existence of such an M depending only on the geometric function
system, by the change of variables formula and Fubini’s theorem,

’

d
| 1afoy A Ayl < TS ()

Jj=1

where | fg, (E')| refers to the 1-dimensional Lebesgue measure of the image of E’ via
/B, - Because the average value of fg, on E N Uy—; is 1, by Theorem 3 there is a
subset E/ C EN Uy with w(E") 2 w(E NUy) 2 (E) such that

sup | /3, (p)| S | fg: | d e
pEE’

wW(ENUN) JEnUy
<1

W(ENUNn-1) JEnUy_,
=1

|fﬂi|dﬂ

for each i, which implies that | fg, (E")| < 1 for each i as well. For this set E’, it
follows that

-1
/ [W(XNi A AXNa)] du ST
E/
Further restricting E’ using Chebyshev’s inequality, we may assume that
inf (XN, A AXNa)lp 2 1(E).
DPEE’
This completes the proof. O

5.2. Proof of part (3) of Theorem 1
We now return to the proof of part (3) of Theorem 1. The proof combines Lemma 7
with the geometric framework introduced in Section 2.2.

Suppose that M is a real analytic manifold of dimension d and that f is a
real analytic immersion of M into R” in such a way that the component functions
f1,..., fn of the immersion together with the constant function belong to some com-
pact geometric function system (M, ). Fix any compact convex set K € K, let
E := f~1(K), and let py € E. Now the integral

1E) = [ dea(£ o) = £ o) ()

— f(p0))| dva(p1) - dva(pn)
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(where v, is the measure (13) whose pushforward (15) is the affine measure [ 4
on R") must be bounded above by n!|K| since the integrand equals n! times the
volume of the simplex generated by f(po),..., f(pn), which has volume bounded
by | K| since each point f(p;) belongs to K and K is convex. In this case, Lemma 7
can be applied to each integral iteratively to prove a lower bound for the functional.
Specifically, the lemma is applied to the innermost integral, which is then replaced by
a supremum over some set £’ of some derivative in the parameter p;. As a result, the
lemma establishes that

I(E)z sup |det(X1,i(1.1)f(pl)/\“'
(P15 Pn)E(E)"

/\X’Cj,i(j,l) "'Xl,i(j,Kj)f(Pj) N

A X’Cnai(n,l) tee Xl,i(n’,(n) f(pn))}

for any choice of indices ij for A € Agz,. Next replace the supremum over
(p1....,pn) € E™ by a supremum over p € E’ assuming that p; = --- = p, = p.
It is also advantageous to use only vector fields Xy, ;- rather than using any X;; for
J < kp. Thanks to (46) it must be the case that

det(XKn,i(/lil)f(p) ARERRA XKnsi(n.l) : Kn l(n Kn)f(p))

= Zcii’ det(Xl,i(l,l).f(p) ASRRRAN XKn,i(n.l) “.Xlai(n.fcn)f(p))

with coefficients |c;;/| < 1, where the sum is over all possible choices of the indices i .
This identity holds because the change of basis formula may be simply substituted
term-by-term in the left-hand side of the equation; any terms in which the coefficients
of the change of basis happened to be differentiated by some subsequent vector field
would ultimately have determinant zero since (assuming the column in which the
derivative appears is column ;) the number of derivatives acting directly on f would
be strictly less than « ;, which means that column j and all preceding columns would
be linearly dependent. Therefore, by the triangle inequality, it must be the case that

I(E) Z sup |det(X,, ; )|

oy 9 ’(1,1)f(p)/\“'/\X"”’i(/n,l) : Kn,

l(n/()

uniformly for any choice of i; . Taking an £2 norm over all such choices and invoking
the definition (5) of the density (12) gives

&|tQ

I(E) 2 sup I:SP(XKn,lv'-' K,,,d)| ]
peE’
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To conclude, observe that for the measure vy4, the quantity 8,(X,,1,-... X,.d)
exactly equals the quantity which was shown to be bounded below in Lemma 7.
Therefore,

Qo
Qo
Q

K| 2 I(E) 2 [|8p (X1« Xicyan) |, 17 2 (va(E)) T = (1 (K))

uniformly in K. This is exactly part (3) of Theorem 1. U

5.3. Proof of part (3) of Theorem 2

The remaining result is to show that « = d/Q is a nontrivial exponent in the sense
that there is always some submanifold M of dimension d in R” for which the Oberlin
condition (1) is satisfied with exponent « for some nonzero measure supported on M.
The model case to be considered here is exactly the one laid out in Theorem 2: M
is topologically a bounded open subset of R? and the embedding f is a polynomial
embedding into R” of the form (2). In light of the inequalities (25), the measure
W4 Will vanish if and only if 2 belongs to the nullcone of the representation (22).
Although the nullcone can be computed explicitly on a case-by-case basis, it can be
challenging to compute in a very general or abstract way as we would seek to do here.
Instead, we use the model form result, part (2) of Theorem 2, to construct a nontrivial
example for every n and d . The specific examples to be constructed are laid out in the
following lemma.

LEMMA 8
Suppose that € is a set of multi-indices of order ky, in d variables such that € is closed
under cyclic permutations of the entries of the multi-indices and such that each multi-
index in € has at least two nonzero entries. Suppose further that {¢;} ;=1

.....

uniform normalized tight frame (UNTF) on R for some dy < d, meaning that

d
d
Yl =0l forallveR® and o= j=1...d.

j=1
Then assuming that #€ + dy = m, the collection of polynomials given by

ta

d fn
((ﬁ)aef (j=1 \/jT_n!%’k)kﬂ do)’ (49)

.....

where @ i is the kth coordinate of ¢ in the standard basis, satisfies the critical point
equations (32) for nonzero Ay, Aj.

Proof
For simplicity, fix « := «,,. Before beginning in earnest, note that
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(01, 0itP)—1 = 01 Bir (k — Dt — €)18q—c; pe;, (50)

where e; is the multi-index which is zero except in position i, where it equals 1 (and
note that the right-hand side of (50) is to be interpreted as zero if a; = 0 or B;» = 0).
To verify the first condition of (32), notice that when £ # £’ and one of £ or
¢ correspond to indices of a monomial-type polynomial, every inner product in the
sum must be zero because d; p¢ and 9; pys have no monomials in common and are
consequently orthogonal. If £ = £’ and the polynomial p; is of monomial type, then

d e 4 (k=13 (@ —e))!

ta
i R D

Jj=1 J=1

If, in the final case, both £ and £’ arise from UNTF terms, the left-hand side of the
first equality of (32) must equal

d d

1 1
> 001505151 = D —00j0 () =kl p
j=1"" j=1"

since the ¢;’s are a normalized tight frame (NTF).
As for the second condition of (32), by (50), the polynomials p;, of monomial
type have norms that equal

<8j%’8j/%>x—1

Summing over all monomial-type polynomials gives a matrix (as a function of i and

= (K — I)I(X!(Sj,j/(gaj>0.

i") which is a multiple of the identity: simply by symmetry, any monomial appearing
in the sum also appears with all its cyclic permutations, so all diagonal entries must
be equal. As for the terms of the sum which arise from UNTF polynomials,

2

f—i f - o
(0002 =ik 03 D2 =) = 1 = 18 b P
K > _ | J>J W0 j ke JsJ Js ’
o V! K! k—1 K

i=1

which again sums to a multiple of the identity since, after the sum, the jth diagonal
entry equals [|¢;||%. O

Proof of part (3) of Theorem 2

By Lemma 8, to establish the existence of a well-curved d -dimensional submanifold
of R”", it suffices to establish that there is a collection of the form (49) with #€ 4 dy =
m, where m is the relative codimension. Real UNTFs are guaranteed to exist for any
do < d (see [11] for existence; a general algorithm based on Theorem 7 of [21] which
can convert an NTF to a UNTF is also known; see [18]). Thus it suffices to establish
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the existence of a suitable collection € of monomials such that m — #€ < d (note
that the case dy = 0 is explicitly allowed; omitting any UNTF terms in Lemma 8 still
solves the critical point equations (32)).

Let S be the set of cardinalities #€ for any set of multi-indices of order x which
is closed under cyclic permutations and containing only monomials with at least
two nonzero entries. The smallest element of S is of course zero, and the largest is
dim P 7 — d, which corresponds to € being all monomials with at least two nonzero
entries. The size of any gap (i.e., the difference between consecutive values in .S) must
be strictly less than d for the simple reason that no equivalence class of monomials
modulo cyclic permutation has cardinality greater than d. In other words, if any non-
pure power polynomials happen not already to belong to the collection €, including
any such monomial together with its cyclic permutations (which is a total of d or
fewer new monomials) will again make a larger admissible set. Since the gaps in S
are of size strictly less than d and since dy can be chosen as desired in {1,...,d},

for any d and n there must be a collection € and UNTF {¢;};—; . 4, to which

Lemma 8 applies. Consequently, the associated f given by (2) must be well curved
and have affine measure 4 which equals a nonzero constant times the pushforward

of Lebesgue measure via the embedding f. O

Appendix: Uniform bounds on the number of solutions of real analytic systems
of equations

We finish with a brief discussion of the problem of uniformly bounding the number of
nondegenerate solutions to any system of equations that arises in a geometric function
system. The precise statement that is needed is the following.

LEMMA 9

For arbitrary positive integers d and n (no longer retaining their previous defini-
tions), when fi,..., fq are real analytic functions on a neighborhood of the unit
cube [0, 1]", then any system of equations

(@1(x), ... Pu(x)) = (V1...-. ¥n)

must have bounded nondegenerate multiplicity when the functions ®; are rational
functions of the f;’s and finitely many derivatives of each f;. Here bounded nonde-
generate multiplicity is defined to mean that the number of solutions in [0, 1] at which
the Jacobian determinant of the system is nonzero is bounded above by a constant that
depends only on the functions f; and the complexity of the system, that is, the degrees
of the numerators and denominators and the order of the highest derivative of an f;.

Proof
To see why this lemma must be true, let S be the Cartesian product of {1,...,d} with
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the set of multi-indices o := (a1, ...,®y,) such that |«| :=o; + - + &, < N. For
any $ which is a multi-index on S (i.e., a map from S into nonnegative integers), we
define s# := ]_[( ja)e s(s j,a)ﬁ/ﬂ for every s € RS in analogy with the usual notation.
Lastly, define P to be the Cartesian product of {1,...,n} and multi-indices f of size
at most N on the set S. We can then define a mapping F from [0, 1]" x R" x R? x
RP xRS into R” x R” x RP x R? x RS by means of the formula

F(x.y.p.q.5)
= (( S (rp—-ynqp)st ) (pn,ﬂ—ynqn,ﬁ)sﬂ),y,p,q,
(1B)eP (n.)eP

{Sj,a — aafj(x)}(j,a)ES)'

For a given triple (o, po,qo) € R* x RF x R? and any positive scalar C, nondegen-
erate solutions of the system

Y 151=v (P0) .8 Tl(j7 yes (0% f7 ()P
Z|ﬂ|SN (qo)j,ﬂ n(j”a)es(aa fj/(x))ﬂj/.oz

will also be nondegenerate solutions of the system

=Wo)j, Jj=1....n, (51

1 1 1
F sy Ve MY :(0’_ [ [ ,0)-
(x,y.p.4.5) V0 galo 4o

Choosing C so that the right-hand side always belongs to a fixed neighborhood
of the origin with compact closure, we may use the fact that F is itself real-
analytic in all parameters and so the number of connected components of the fiber
F~10,y0/C, po/C?.q0/C,0) is bounded uniformly in yq, po, and go (which holds,
in fact, for any analytic-geometric category in the sense of van den Dries and Miller
[34]), which gives exactly the desired property that there is also a uniform bound
on the number of isolated solutions of (51). If the functions f; are all polynomial,
Bézout’s theorem gives a similar global bound on the number of nondegenerate solu-
tions, that is, for all nondegenerate solutions x € R” rather than simply [0, 1]”. O
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