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Abstract
We generalize the well-known notions of affine arclength and affine hypersurface
measure to submanifolds of any dimension d in Rn, 1 � d � n � 1. We show that a
canonical equiaffine-invariant measure exists and that, modulo sufficient regularity
assumptions on the submanifold, the measure satisfies the affine curvature condition
of Oberlin with an exponent which is best possible. The proof combines aspects of
geometric invariant theory, convex geometry, and frame theory. A significant new
element of the proof is a generalization to higher dimensions of an earlier result con-
cerning inequalities of reverse Sobolev type for polynomials on arbitrary measurable
subsets of the real line.
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1. Introduction
Many of the deep questions in harmonic analysis, such as Fourier restriction, decou-
pling theory, or Lp-improving estimates for geometric averages, deal with certain
operators associated to submanifolds of Euclidean space. In most cases, the “nicest
possible” submanifolds are, informally, as far as possible from lying in any affine
hyperplane. Many of these problems also exhibit natural equiaffine invariance, mean-
ing that when the underlying Euclidean space is transformed by a measure-preserving
affine linear mapping, the relevant quantities (i.e., norms and so forth) are unchanged.
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This simple observation leads naturally to the question of how in general to properly
quantify this sort of well-curvedness in a way that respects equiaffine invariance. Of
the many approaches to this question, one particularly successful strategy has been the
use of the so-called affine arclength measure for curves and the analogous notion of
affine hypersurface measure (sometimes called equiaffine measure). Affine arclength
measure is defined for the curve parameterized by � W I !Rn byZ

Rn

f d�A WD

Z
I

f
�
�.t/

�ˇ̌
det
�
� 0.t/; : : : ; � .n/.t/

�ˇ̌ 2
n.nC1/ dt;

and equiaffine measure for the graph ¹.x;'.x// 2Rnjx 2U �Rn�1º isZ
Rn

f d�A WD

Z
U

f
�
x;'.x/

�ˇ̌
detr2'.x/

ˇ̌ 1
nC1 dx;

where r2' is the Hessian matrix of second derivatives of '. Although these measures
were well known outside harmonic analysis for quite some time (see, e.g., [16], [23]),
their first appearances within the field are somewhat more recent, in work of Sjölin
[29] (in two dimensions, generalized later by Drury and Marshall [10]) and Carbery
and Ziesler [4], respectively. Both measures have the property that they are indepen-
dent of the parameterization and that they are suitably invariant when the curve or
surface is transformed by an equiaffine mapping. These measures and certain “vari-
able coefficient” generalizations to families of curves and hypersurfaces have played
a central role in the Fourier restriction problem as well as the problem of character-
izing the Lp–Lq mapping properties of geometrically constructed convolution oper-
ators, two problems which have been of sustained interest for many years (see, e.g.,
[1], [2], [5]–[9], [15], [24], [27], [30], [31]).

The deep connections between analysis and geometry enjoyed by affine arclength
and hypersurface measures naturally lead to the problem of generalizing these objects
to manifolds of arbitrary dimension or even to abstract measure-theoretic settings.
One particularly interesting approach is due to Oberlin [25] (which generalizes an
earlier observation of Graham, Hare, and Ritter [12] in one dimension), who intro-
duced the following condition on nonnegative measures � associated to submani-
folds: a Borel measure � on Rn which is supported on a d -dimensional immersed
submanifold of Rn will be said to satisfy the Oberlin condition with exponent ˛ > 0
when there exists a finite positive constant C such that, for every K in the set Kn of
compact convex subsets of Rn,

�.K/� C jKj˛; (1)

where jKj represents the usual Lebesgue measure of K in Rn. When restricted to the
class of balls with respect to the standard metric on Rn, the condition (1) becomes
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a familiar inequality from geometric measure theory. Unlike in that setting, here the
exponent ˛ measures not just the dimension of the measure, but also a certain kind
of curvature, for the simple reason that (1) cannot hold for any ˛ > 0 when � is
supported on a hyperplane, which can be seen by taking K to be increasingly thin in
the direction transverse to such a hyperplane. Oberlin observed that this condition is
necessary for Fourier restriction or Lp-improving estimates to hold; in particular,�Z

j Of jq d�
� 1
q � kf kLp.Rn/ 8f 2Lp.Rn/)�.K/� jKj

q

p0 8K 2Kn

and

kf ��kLq.Rn/ � kf kLp.Rn/ 8f 2Lp.Rn/) �.K/� jKj 1p� 1q 8K 2Kn;

where O� is the Fourier transform and � is convolution. (Here and throughout the
present article, the notation A � B means that there is a finite positive constant C
such that A� CB , and this constant C is independent of the relevant variables, func-
tions, sets, and so forth, appearing in the expressions or quantitiesA andB .) By virtue
of known results for these two problems, the affine arclength and hypersurface mea-
sures must satisfy (1) for appropriate exponents ˛ when suitable regularity hypotheses
on the submanifolds are imposed.

The significance of the Oberlin condition (1) for curves and hypersurfaces in Rn

is that, up to a constant factor, the affine arclength and affine hypersurface measures
on immersed submanifolds are the unique largest measures on such manifolds satisfy-
ing (1) when ˛D 2=.n2C n/ and ˛D .n� 1/=.nC 1/, respectively. More precisely,
for hypersurfaces satisfying certain algebraic constraints, Oberlin [25] showed that
any sufficiently regular measure � which is supported on an immersed hypersurface
M �Rn and which satisfies (1) with ˛ D .nC 1/=.n� 1/ must also satisfy �� �A

for affine hypersurface measure �A (where � here means �.E/� �A.E/ uniformly
for all Borel sets E). Moreover, under the same algebraic limits on the complex-
ity of the immersion, �A itself satisfies (1) for this same exponent. The condition
(1) also turns out to be equivalent to the boundedness of certain geometrically con-
structed multilinear determinant functionals (see [14]). For curves in the plane, the
Oberlin condition (1) has also been shown to be connected to an affine generalization
of the classical Hausdorff measure, which as Oberlin showed in [26], reduces to affine
arclength on sufficiently regular convex curves.

In this article we examine the Oberlin condition for arbitrary d -dimensional
submanifolds of Rn (where 1 � d < n) and we characterize it in the case of maxi-
mal nondegeneracy. Specifically, results analogous to those just mentioned above are
established in all dimensions and codimensions: an equiaffine-invariant measure1 is

1The precise definition of this measure is delayed until Section 2.2 because there are a number of items of
notation and auxiliary geometric objects which must first be defined and understood.
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constructed which is essentially the largest possible measure satisfying the Oberlin
condition for the largest nontrivial choice of ˛. To say that ˛ is nontrivial means
simply that there is a nonzero measure satisfying (1) for this ˛ on some immersed
submanifold of the given dimension and codimension. As in the case of curves and
hypersurfaces, the largest nontrivial ˛ can be understood as a ratio of the intrinsic
dimension of the submanifold and its homogeneous dimension, which captures infor-
mation about scaling and curvature-like properties to be measured. The correct value
of homogeneous dimension is defined as follows: when d and n are fixed, let the
homogeneous dimension QDQ.d;n/ be defined to be the smallest positive integer
which equals the sum of the degrees of some collection of n distinct, nonconstant
monomials in d variables (see Figure 1). The main result of this paper is Theorem 1.

Figure 1. This plot shows the homogeneous dimension Q as a function of n for d fixed. The
graph is piecewise linear with slope kC 1 from the point

��dCk
d

�
� 1; kd

dC1

�dCk
d

��
to the point��dCkC1

d

�
� 1;

.kC1/d
dC1

�dCkC1
d

��
for each k � 1.

THEOREM 1
Suppose that M is an immersed d -dimensional submanifold of Rn. To any such M,
one may associate a nonnegative Borel measure �A on Rn, defined by the formula
(15) in Section 2.2, which is supported on M. Then the following are true:
(1) If � is any nonnegative Borel measure supported on M which satisfies (1) with

exponent ˛ > d=Q, then � is the zero measure.
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(2) If � is any nonnegative Borel measure supported on M which satisfies (1) with
exponent ˛D d=Q, then �� �A.

(3) If M is the image of an immersion f W�! Rn, where �� Rd is open with
compact closure� and f extends to be real analytic on a neighborhood of�,
then the measure �A satisfies (1) with exponent ˛D d=Q and is consequently
the largest such measure, up to a multiplicative constant.

Furthermore, it is also the case that:
(4) The measure �A agrees up to normalization with affine arclength and affine

hypersurface measure when d D 1 and n� 1, respectively.
(5) The correspondence sending M to �A is equiaffine invariant, meaning that if

M and M0 are immersed submanifolds such that M0 is the image of M under
some equiaffine transformation T of Rn, then the measure �0

A
corresponding

to M0 and the measure �A corresponding to M satisfy �0
A
.T .E//D �A.E/

for all Borel sets E .

Theorem 1 extends Oberlin’s result for equiaffine hypersurface measure in [25]
to submanifolds of any dimension. To certify the nontriviality of Theorem 1—that
is, to demonstrate that �A is not simply the zero measure for all possible choices of
M—it is necessary to carry out some additional careful study of �A for submanifolds
M parameterized by f W�!Rn of the form

f .t/ WD
�
.t˛/1�j˛j<� ; p1.t/; : : : ; pm.t/

�
; (2)

where p1; : : : ; pm are linearly independent, real homogeneous polynomials of degree
� in d variables, and m and � are chosen (as functions of n and d only) so that
the right-hand side of (2) is an element of Rn. For such polynomials, let Pj`.t/ WD
@jp`.t/, j D 1; : : : ; d , ` D 1; : : : ;m. Such an embedding f will be called a model
form when there exist real numbers c and c0 such that

dX
jD1

Pj`.@/Pj`0.t/jtD0 D cı`;`0 and
mX
`D1

Pj`.@/Pj 0`.t/jtD0 D c
0ıj;j 0 ; (3)

where ı is the Kronecker delta. The main result for model forms is Theorem 2.

THEOREM 2
The following are true for embeddings f of the form (2).
(1) The closure of the orbit ¹Nf .MT t /ºN2SL.n;R/;M2SL.d;R/ in the space of n-

tuples of polynomials of degree at most � always contains an embedding of
the form (2) which is a model form (3). If any embedding in the closure of the
orbit is degenerate, then all are degenerate (i.e., �A D 0 for each embedding
in the orbit closure or �A ¤ 0 for each embedding).
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(2) For any p WD .p1; : : : ; pm/ satisfying (3), the measure �A associated to the
submanifold of Rn parameterized by (2) is a nonzero constant times the push-
forward of Lebesgue measure via f if and only if c and c0 are nonzero.

(3) For any pair .d;n/ with 1� d < n, there is some p WD .p1; : : : ; pm/ satisfying
(3) for nonzero c and c0. Consequently, in any dimension and codimension,
there is a submanifold M whose affine measure �A is everywhere nonzero
on M.

Outline
The structure of this article is as follows. In Section 2, the measure �A is constructed
by combining ideas of Kempf and Ness [22] from geometric invariant theory together
with a simple but far-reaching observation that any covariant tensor field on a mani-
fold can be used to construct an associated measure on that manifold in a way that gen-
eralizes the relationship between the Riemannian metric tensor and the Riemannian
volume. In particular, the measure �A will be the measure associated to an “affine
curvature tensor” on the manifold M immersed in Rn. The general process of passing
from a tensor to an associated measure is detailed in Section 2.1, and the construction
of the affine curvature tensor is given in Section 2.2. Section 2.2 then explicitly gives a
definition of the measures (15) (via the constructions from Section 2.1) which are the
subject of Theorem 1 and gives proofs of parts (4) and (5) of that theorem (i.e., that
�A is intrinsic, equiaffine-invariant, and agrees up to constants with affine arclength
and equiaffine measure in dimension and codimension 1, respectively).

Section 3 is devoted to an in-depth analysis of the measure �A constructed in
Section 2 with a particular emphasis on developing a host of computational tools to
use when establishing the triviality or nontriviality of �A in both general and concrete
cases. The number and variety of results in Section 3 highlight the wealth of possi-
bilities for understanding affine curvature which results from the meeting of several
seemingly disjoint areas of mathematics. Readers primarily interested in the proofs of
Theorems 1 and 2 rather than applications can proceed to Section 3.3, as it contains
proofs of parts (1) and (2) of Theorem 2 and lays additional groundwork for the later
proof of part (3).

Section 4 returns to our main thread, with proofs of parts (1) and (2) of Theo-
rem 1, which are based on what are essentially elementary observations concerning
scaling, Taylor approximation, and convexity.

Section 5 is devoted to the proofs of part (3) of Theorem 1 and part (3) of The-
orem 2. Part (3) of Theorem 1 is proved by first generalizing Theorem 1 of [13] to
higher dimensions. This generalization, accomplished by Theorem 3 and Lemma 7, is
interesting in its own right and will likely have important implications for the theory
of Lp-improving estimates for averages over submanifolds in much the same way
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that [13, Theorem 1] formed the basis for a new proof of a restricted version of Tao
and Wright’s result in [33] for averages over curves. To formulate these results, it is
convenient to make the following definition. Let M be any real analytic manifold of
dimension d , and let F be a finite-dimensional vector space of real analytic functions
on M whose differentials span the cotangent space at every point of M. Any such
pair .M;F / will be called a geometric function system. Such a system will be called
compact when either M is compact or has a compact closure in some larger real ana-
lytic manifold MC such that the functions of F extend to functions F C on MC in
such a way that .MC;F C/ is also a geometric function system. The “zeroth order”
generalization of the results of [13] are the following.

THEOREM 3
Suppose that .M;F / is a compact geometric function system. Then for any finite
positive measure � on M absolutely continuous with respect to Lebesgue measure
and any measurable set E �M of positive measure there is a measurable subset
E 0 �E such that �.E 0/� �.E/ and

sup
p2E 0

ˇ̌
f .p/

ˇ̌
� 1

�.E/

Z
E

jf jd� for all f 2F :

The implicit constants in both inequalities depend only on the pair .M;F /.

The proof of this theorem and its generalization appear in Section 5.1. The use
of these results to prove part (3) of Theorem 1 appears in Section 5.2. Section 5.3
shows that the measure �A from Theorems 1 and 2 is not trivial by proving part (3)
of Theorem 2—that is, by constructing submanifolds in every possible dimension and
codimension such that �A is comparable to the pushforward of Lebesgue measure.

Finally, Section 5.3 establishes uniform estimates for the number of nondegener-
ate solutions—that is, solutions where the Jacobian determinant is nonvanishing—of
certain systems of equations encountered in Section 5.1. These estimates are impor-
tant for part (3) of Theorem 1; furthermore, they establish not only that the Oberlin
condition is satisfied for submanifolds with algebraic or real analytic parameteriza-
tions, but also give an indication as to how one can extend the same result to more
general situations like global polynomial embeddings or o-minimal structures.

Notation
As already noted, this paper will make frequent use of the notation A�B to indicate
that there is a finite positive constant C such that A � CB with C independent of
the relevant functions, sets, and so on, appearing in the expressions or quantities A
and B . Also, A�B means A�B and B �A.
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The symbol @ will generally represent the d -tuple .@1; : : : ; @d / of standard coor-
dinate partial derivatives on Rd . If M 2Rd�d , then M@ will represent the d -tuple of
coordinate derivatives given by

.M@/i D

dX
jD1

Mij @j :

In a few places, the notation rf will denote the standard coordinate gradient of f ;
that is, rf WD .@1f; : : : ; @df /. This paper also makes extensive use of multi-index
notation: for any d -tuple ˛ WD .˛1; : : : ; ˛d / of nonnegative integers, let

t˛ WD t
˛1
1 � � � t

˛d
d

for all t 2Rd ; @˛ WD @
˛1
1 � � �@

˛d
d
;

˛Š WD ˛1Š � � �˛d Š; and j˛j WD ˛1C � � � C ˛d :

The quantity j˛j will be referred to as either the degree or the order of j˛j depending
on context.

The space of real polynomials of degree at most � in d variables will be denoted
P �
d

, and the subspace of homogeneous polynomials of degree � will be denoted PP �
d

.
This space comes equipped with the inner product h�; �i� given by

hq; ri� WD

dX
i1;:::;i�D1

@i1 � � �@i�qj0@i1 � � �@i� r j0

D
X
j˛jD�

kŠ

˛Š
@˛qj0@

˛r j0

D kŠq.@/r.t/jtD0; (4)

where the middle identity follows because there are kŠ=˛Š distinct ways to expand the
mixed derivative @˛ as a product of first coordinate derivatives, and the final identity
follows easily by direct computation together with the observation that monomials
form an orthogonal basis.

2. Affine geometry and necessity

2.1. Geometric invariant theory
The main ideas and results from geometric invariant theory that we will use come
from the seminal work of Kempf and Ness [22] and its subsequent extension to real
reductive algebraic groups by Richardson and Slodowy [28]. The idea of interest is
that, for suitable representations of such groups, one can study group orbits by under-
standing the infimum over the orbit of a certain vector space norm. For our purposes
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here, it suffices to consider only representations of SL.d;R/ or SL.m;R/	 SL.d;R/
on vector spaces of tensors. In this context, the associated minimum vectors can be
understood as model forms of tensors and the actual numerical value of the infimum
carries meaningful and important quantitative information about these tensors (in con-
trast with the usual situation in geometric invariant theory, in which one cares only
about whether the infimum is zero or nonzero and whether or not it is attained).

To begin the construction, suppose that A is any k-linear functional on a real
vector space V of dimension d . Appropriating the Kempf–Ness minimum vector cal-
culations of geometric invariant theory, it becomes possible to canonically associate
a density functional ı W V d ! R�0 to any such A. Specifically, for any such A and
any vectors v1; : : : ; vd , let ı.v1; : : : ; vd / be the quantity given by

ı.v1; : : : ; vd /

WD
h

inf
M2SL.d;R/

dX
j1;:::;jkD1

ˇ̌̌ dX
i1;:::;ikD1

A.Mj1i1vi1 ; : : : ;Mjk ikvik /
ˇ̌̌2i d

2k
: (5)

Before showing that the quantity (5) is a density functional, it is worth acknowl-
edging the algebraic structure that lies behind it. When the vectors in the d -tuple
v WD .v1; : : : ; vd / 2 V

d are linearly independent, one may define a representation
�v� W SL.d;R/	 V ! V by setting

�vM .vj / WD

dX
iD1

Mij vi (6)

for each j D 1; : : : ; d and then extending to all of V by linearity. This representation
extends to act on k-linear functionals by duality; that is,

.�vMA/.vj1 ; : : : ; vjk / WDA.�v
MT vj1 ; : : : ; �

v
MT vjk /;

where M T is the transpose of M . If one further defines a norm on the space of k-
linear functionals by means of the formula

kAk2v WD

dX
j1D1

� � �

dX
jkD1

ˇ̌
A.vj1 ; : : : ; vjk /

ˇ̌2
;

then the definition (5) may be restated as

ı.v1; : : : ; vd /D
�

inf
M2SL.d;R/

k�vMAkv
�d
k :
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PROPOSITION 1
The quantity (5) is a density functional; that is, if T is any linear transformation of V
and v1; : : : ; vd 2 V , then

ı.T v1; : : : ; T vd /D jdetT jı.v1; : : : ; vd /: (7)

Furthermore, ı is intrinsic in the sense that it depends only on A and V and not on
any other objects, such as choices of bases.

Proof
The fact that ı is intrinsic is immediately visible from its definition (5). To see that ı is
a density functional as promised, the first step is to demonstrate that ı.v1; : : : ; vd /D 0
when v1; : : : ; vd are linearly dependent. In this case, there must exist an invertible
matrixM such that

Pd
iD1M1ivi D 0, and without loss of generality, one may assume

that this matrix M has been normalized so as to belong to SL.d;R/. Now for each
t > 0, let M .t/ be the matrix obtained by scalar multiplying the first row of M by
td�1 and all remaining rows by t�1. These matrices M .t/ belong to SL.d;R/ for all
t > 0, and

k�v
M .t/Akv D t

�kk�vMAkv (8)

by multilinearity of A because

A.M
.t/
j1i1

vi1 ; : : : ;M
.t/
jk ik

vik /D t
�kA.Mj1i1vi1 ; : : : ;Mjk ikvik /

by homogeneity provided that each j1; : : : ; jk is not equal to 1; if any index j` does
equal 1, then both sides vanish when summed over i , making the equality (8) true in
all cases. Taking t!1 shows that the infimum in (5) over all SL.d;R/ must vanish
when v1; : : : ; vd are linearly dependent.

Now let T be any linear transformation of V . When v1; : : : ; vd are linearly depen-
dent or when T is not invertible, T v1; : : : ; T vd will be linearly dependent, so it must
hold that

ı.T v1; : : : ; T vd /D jdetT jı.v1; : : : ; vd /D 0:

Otherwise, when v1; : : : ; vd are linearly independent and T is invertible, there is a
matrix P 2GL.d;R/ with detP D detT such that T vj D

Pd
iD1Pj ivi for each j D

1; : : : ; d . Factor P as ˙jdetP j
1
d P 0 for some P 0 with jdetP 0j D 1 in general and

detP 0 D 1 when d is odd. Once again, by multilinearity of A,

dX
j1;:::;jkD1

ˇ̌̌ dX
i1;:::;ikD1

A.Mj1i1T vi1 ; : : : ;Mjk ikT vik /
ˇ̌̌2
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D jdetT j
2k
d

	

dX
j1;:::;jkD1

ˇ̌̌ dX
i1;:::;ik ;`1;:::;`kD1

A.Mj1i1P
0
i1`1

v`1 ; : : : ;Mjk ikP
0
ik`k

v`k /
ˇ̌̌2

D jdetT j
2k
d

dX
j1;:::;jkD1

ˇ̌̌ dX
i1;:::;ikD1

A
�
.MP 0/j1i1vi1 ; : : : ; .MP

0/jk ikvik
�ˇ̌̌2
: (9)

Since SL.d;R/ is a group, the set of matrices of the form MP 0 when M 2 SL.d;R/
is itself exactly SL.d;R/, assuming that detP 0 D 1. If detP 0 D�1, then the matrices
MP 0 for M 2 SL.d;R/ are exactly those matrices N which belong to SL.d;R/ after
the first two rows of N are interchanged. Since (9) is invariant under permutations of
the rows of MP 0, it follows in both cases (detP 0 D˙1) that

inf
M2SL.d;R/

dX
j1;:::;jkD1

ˇ̌̌ dX
i1;:::;ikD1

A
�
.MP 0/j1i1vi1 ; : : : ; .MP

0/jk ikvik
�ˇ̌̌2

D
�
ı.v1; : : : ; vd /

� 2k
d ;

which gives the desired identity

ı.T v1; : : : ; T vd /D jdetT jı.v1; : : : ; vd /

for any v1; : : : ; vd and any linear transformation T .

Example
It is illuminating to compute ı in the special case when A is a symmetric bilinear
form. Fix linearly independent vectors v1; : : : ; vd and define the matrix A by Aij WD
A.vi ; vj /. It follows that

.�vMA/.vj1 ; vj2/D .MAM
T /j1j2 and k�vMAk2v D tr.MAMTMATM T /:

Now MAMTMATM T is symmetric and positive-semidefinite, so its eigenvalues
are all nonnegative. Thus the arithmetic mean-geometric mean (AM-GM) inequality
implies that

d
�
det.MAMTMATM T /

� 1
d � tr.MAM TMATM T /

with equality when all eigenvalues are equal (which, when A is invertible, must hold
for some M 2 SL.d;R/ by building M from a basis of unit-length eigenvectors of A
with respect to some inner product and then rescaling the eigenvectors appropriately).
Because detM D 1, det.MAM TMATM T /D .detA/2, and so
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ı.v1; : : : ; vd /D d
d
4 jdetAj

1
2 : (10)

In particular, on a Riemannian manifold, setting A equal to the metric tensor g yields
a density ı which is exactly equal to a dimensional constant times the corresponding
Riemannian volume density functional.

2.2. Construction of the affine curvature tensor and associated measure
We move now to the construction of a covariant tensor which captures the affine
curvature of interest here. This tensor gives rise to an associated density using (5)
which can be integrated to give a canonical measure on immersed submanifolds M �

Rn.
To be precise, suppose that M is a manifold of dimension d which is equipped

with a smooth immersion f WM ! Rn. For convenience, let the values of f be
regarded as column vectors. For any positive integer j , let �j be the smallest integer
such that the dimension of the space P

�j
d

of real polynomials of degree �j in d
variables has dimension at least j C 1, and let ƒd;n be the index set

ƒd;n WD
®
.j; k/ 2 Z	Z

ˇ̌
1� j � n and 1� k � �j

¯
:

The index set ƒd;n is represented pictorially in Figure 2 as the first n columns of
boxes. The cardinality of ƒd;n is exactly the homogeneous dimension Q defined in
the Introduction. We will define a Q-linear covariant tensor Ap at each point p 2M

which captures the affine geometry of the immersion f . We will denote the action of
Ap on Q-tuples of tangent vectors at the point p by either

Ap.X1; : : : ;XQ/ or Ap

�
.X�/�2ƒd;n

�

Figure 2. In the diagram above, squares represent points in Z	Z. The index set ƒd;n is simply
the union of the first n columns, and the homogeneous dimension Q is simply the cardinality of
ƒd;n. In terms of the tensor Ap , the number of boxes in each column indicates how many

derivatives are applied to f in the corresponding factor of the wedge product (or equivalently,
the corresponding column of the matrix).
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depending on which approach is most convenient at the moment (where we lexico-
graphically order the elements of ƒd;n when such an order is not specified).

Now for any finite sequence of vector fields X� indexed by � 2ƒd;n, let

Ap

�
.X�/�2ƒd;n

�
WD det

�
X.1;1/f .p/^ � � � ^X.j;1/ � � �X.j;�j /f .p/^ � � �

^X.n;1/ � � �X.n;�n/f .p/
�
: (11)

In other words, (11) equals the determinant of an n 	 n matrix whose j th column
is the column vector X.j;1/ � � �X.j;�j /f .p/. (Note also that the lexicographic order
on ƒd;n corresponds exactly to the order that each � 2 ƒd;n appears in the above
formula when moving from left to right; with respect to Figure 2, the order is left to
right followed by bottom to top.) This object Ap will be called the affine curvature
tensor at p.

PROPOSITION 2
The affine curvature tensor is a tensor in the usual sense, that is, a multilinear function
of the vector fields X� which depends only on the pointwise values of these vector
fields at the point p. The tensor Ap is also equiaffine-invariant, by which we mean
that Ap is invariant up to a factor of˙1 under the action of equiaffine (i.e., measure-
preserving) transformations of Rn applied to f .

Proof
Equiaffine invariance of Ap follows immediately from (11). Linearity in X� for each
� 2 ƒd;n is a trivial consequence of the multilinearity of wedge products and the
determinant. To see that Ap depends only on the pointwise values of the X�’s at p
and not on any derivatives of these vector fields, it suffices to show that any single one
of the vector fieldsX� may be replaced by any other vector fieldX 0

�
agreeing withX�

at p without changing the value of Ap . For any indices �D .j; k/ such that �j D 1,
this invariance under replacement follows immediately from the fact that these vector
fields appear alone in their own column (i.e., the formula (11) contains no derivatives
of X� to begin with). For any �D .j; k/ with �j > 1, the identity

X.j;1/ � � �X.j;k/ � � �X.j;�j /f .p/�X.j;1/ � � �X
0
.j;k/ � � �X.j;�j /f .p/

DX.j;1/ � � �X.j;k�1/ŒX.j;k�1/;X.j;k/ �X
0
.j;k/�X.j;kC1/ � � �X.j;�j /f .p/

C � � � C ŒX.j;1/;X.j;k/ �X
0
.j;k/�X.j;2/ � � � X̂.j;k/ � � �X.j;�j /f .p/

(where b� indicates omission of X.j;k/ in its usual place) shows that Ap vanishes
when X� is replaced by X� �X 0�; the difference between Ap..X�/�2ƒd;n/ and the
corresponding quantity where one X.j;k/ is replaced by a corresponding X 0

.j;k/
can,
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by virtue of the identity, be written as a linear combination of determinants of matrices
such that, for each matrix, the number of columns in which f is differentiated to order
�j �1 is strictly greater than the dimension of the vector space of homogeneous order
�j � 1 differential operators. Thus each such matrix must have linearly dependent
columns, which forces the difference in values of Ap to vanish.

The distinguished measure �A of Theorem 1 can now be defined as the pushfor-
ward via f of the measure on M associated to the density (5) generated by the affine
curvature tensor (11). In other words, for Ap as in (11), let

ıp.X1; : : : ;Xd /

WD inf
M2SL.d;R/

h dX
j1;:::;jQD1

ˇ̌̌ dX
i1;:::;iQD1

Ap.Mj1i1Xi1 ; : : : ;MjQiQXiQ/
ˇ̌̌2i d

2Q

: (12)

Since ı is a density on M, it uniquely defines a measure 	A on M such that, for any
coordinate chart ' W B !M (where B � Rd is any open ball) and any nonnegative
Borel function g supported on '.B/,Z

g d	A D

Z
B

g
�
'.t/

�
ı'.t/

�
d'
� @
@t1

�
; : : : ; d'

� @

@td

��
dt: (13)

The transformation law (7) and the change of variables formula guarantee consistency
of the definition on the overlap of coordinate charts. In particular, this means that in
any local coordinates .t1; : : : ; td / near a point p 2M, the Radon–Nikodym derivative
of 	A with respect to the Lebesgue measure dt is given by evaluating ıp on the
standard d -tuple of coordinate vectors. By (11) (recalling the definition of M@ from
the Introduction), this gives the identity

hd	A
dt

ˇ̌̌
p

i 2Q
d

D inf
M2SL.d;R/

X
j˛1jD�1;

:::;j˛njD�n

�1Š � � ��nŠ

˛1Š � � �˛nŠ

ˇ̌
det
�
.M@/˛1f .p/^ � � �

^ .M@/˛nf .p/
�ˇ̌2

(14)

for almost every p, where the factorial factors merely count the number of ways that
the monomial @˛ may be written as a product of first-order operators. To avoid the
minor irritation of constantly excluding exceptional sets of measure zero, (14) will be
taken to define a unique representative of the Radon–Nikodym derivative within the
usual equivalence class. In other words, d	A=dt will always be taken so as to satisfy
(14) for all p.
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Finally, the measure �A from Theorems 1 and 2 is given by the pushforward of
	A via f ; that is, for any nonnegative Borel function F on Rn,Z

Rn

F d�A WD

Z
M

.F ı f /d	A: (15)

It is now a trivial task to prove parts (4) and (5) of Theorem 1.

Proof of part (5) of Theorem 1
The affine curvature tensor (11) is clearly invariant (up to a factor of ˙1) under the
action of equiaffine transformations of Rn because it only depends on derivatives
of f (so is trivially insensitive to translation in Rn) and because of the elementary
transformation law

det
�
X.1;1/Nf .p/^ � � � ^X.n;1/ � � �X.n;�n/Nf .p/

�
D .detN/det

�
X.1;1/f .p/^ � � � ^X.n;1/ � � �X.n;�n/f .p/

�
which holds for any N 2Rn�n. By (12), the density ıp is therefore unchanged when
f is acted on by an equiaffine transformation of Rn.

To prove part (4) of Theorem 1, the following auxiliary lemma is needed.

LEMMA 1
Suppose that ˛1; : : : ; ˛N is an enumeration of all multi-indices of order k in d vari-
ables. Then

.M@/˛1f .p/^ � � � ^ .M@/˛N f .p/D @˛1f .p/^ � � � ^ @˛N f .p/

for any M 2 SL.d;R/.

Proof
Let TM be the operator on the vector space of homogeneous differential operators of
order k which is given by TMp.@/ WD p.M@/ for all homogeneous polynomials p
of degree k in d variables. By multilinearity of the wedge product, the lemma will
follow once it is shown that detTM D 1 for all M 2 SL.d;R/. Because SL.d;R/
is connected and detTM D 1 when M is the identity, it suffices to prove that the
determinant equals ˙1 for any M 2 SL.d;R/.

For convenience, we regard TM as simply acting on PP k
d

. By the chain rule,

@i1 � � �@ik .TMp/j0 D

dX
j1D1

� � �

dX
jkD1

Mj1i1 � � �Mjk ik .@j1 � � �@jkpj0/ (16)
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for each M 2 Rn�n, each p 2 PP k
d

, and any indices i1; : : : ; ik . If one supposes that O
is an orthogonal matrix, then by (4) and (16), the inner product hTOp;TOqik is equal
to the sum over all indices i1; : : : ; ik; j1; : : : ; jk ; j 01; : : : ; j

0
k

of the quantities

Oj1i1 � � �Ojk ikOj 01i1
� � �Oj 0

k
i1
.@j1 � � �@jkpj0/.@j 01

� � �@j 0
k
qj0/:

Summing over i1; : : : ; ik first and using orthogonality of O proves that

hTOp;TOqik D hp;qik : (17)

Since TO is orthogonal with respect to the inner product h�; �ik , detTO D˙1.
On the other hand, every p 2 PP k

d
may also be uniquely expressed as a sum

p.t/D
X
j˛jDk

p˛t
˛

with constant coefficients p˛ . If D is diagonal with entries .s1; : : : ; sd /, then

.TDp/.t/D
X
j˛Dk

.s˛p˛/t
˛;

which means that TD is also diagonal in the monomial basis. Thus

detTD D
Y
j˛jDk

s˛ D .detD/.
kCd�1
k�1 /;

where the second identity holds because symmetry dictates that the product must
have the form .s1 � � � sd /

r for some r ; subsequently, r can be easily computed from
the degree of the polynomial.

The lemma follows by the singular-value decomposition, since everyM of deter-
minant 1 may be factored as O1DO2 for orthogonal matrices O1;O2 and a diagonal
matrix D of determinant 1.

Proof of part (4) of Theorem 1
When d D 1, the expression (14) reduces immediately to the usual torsion determi-
nant for affine arclength because the action of M is trivial and because �j D j for
each j .

To compute (14) in the case of hypersurfaces (i.e., d D n � 1), by virtue of
Lemma 1, if A is the .n� 1/	 .n� 1/ matrix given by

Ai i 0 WD det
�
@1f .p/^ � � � ^ @n�1f .p/^ @

2
i i 0f .p/

�
;

then (14) simplifies to
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d	A

dt

ˇ̌̌
p
D inf
M2SL.n�1;R/

h
.n� 1/Š

n�1X
i;i 0D1

ˇ̌
.MAM T /i i 0

ˇ̌2i n�1
2.nC1/

because when j˛1j D � � � D j˛n�1j D 1, the wedge product .M@/˛1f .p/ ^ � � � ^

.M@/˛n�1f .p/ vanishes unless ˛1; : : : ; ˛n�1 are distinct, in which case the wedge
product is independent of M . The factor of .n� 1/Š counts the total number of ways
to assign distinct values to the multi-indices ˛1; : : : ; ˛n�1, which are all of order 1.
By the example calculation (10) from the previous section, this infimum is explicitly
computable:

d	A

dt

ˇ̌̌
p
D
�
.n� 1/Š

� n�1
2.nC1/

�
.n� 1/

n�1
4 jdetAj

1
2

� 2
nC1 D CnjdetAj

1
nC1 : (18)

Aside from the constant factor Cn, this corresponds exactly to equiaffine measure on
the hypersurface parameterized by f .

3. Working with affine curvature
In contrast to the essentially trivial cases of affine arclength and equiaffine hypersur-
face measure, the presence of the infimum in the definition (12) of the density ıp
presents an added layer of difficulty when explicitly computing the associated mea-
sure �A. However, the richness of existing tools from algebra, geometry, and analysis
provides a variety of ways to overcome this difficulty. In this section, a number of dif-
ferent approaches to the computational problem are identified along with illustrative
examples of how these approaches may be applied to determine well-curvedness (as
defined by the nonvanishing of �A).

3.1. Algebraic approaches
The first and simplest observation to make is that Lemma 1 facilitates the further
simplification of the expression used to define d	A=dt via the right-hand side of
(14). Given n and d , let m be the number of entries in the ordered list �1; : : : ; �n
which equal �n. This number m will be called the relative codimension of a manifold
of dimension d in Rn. Analytically,m counts the number of highest-order derivatives
in (14). One can explicitly see that mD nC 1� dimP �n�1

d
D nC 1�

�
�nCd�1

d

�
, but

this identity will not be particularly useful. By Lemma 1, the dependence on M of
the determinants inside the sum (14) is much less than it would seem. For each k, let

Lkf .p/ WD
^

1�j˛j�k

1

˛Š
@˛f .p/ (19)

(where the monomials are ordered lexicographically). By Lemma 1 and (14),
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d	A

dt

ˇ̌̌
p
D C

h
inf

M2SL.d;R/

X
jˇ1jD���DjˇmjD�n

.�nŠ/
m

ˇ1Š � � �ˇmŠ

ˇ̌
det
�
L�n�1f .p/

^ .M@/ˇ1f .p/^ � � � ^ .M@/ˇmf .p/
�ˇ̌2i d

2Q

(20)

for some constant C that depends only on d and n. In certain special cases, the sim-
plification proceeds even further.

Example
When n C 1 D dimP �n

d
(including curves for all n), the measure 	A has Radon–

Nikodym derivative with respect to Lebesgue measure equal to

d	A

dt

ˇ̌̌
p
D C

ˇ̌
detL�nf .p/

ˇ̌
for some constant C depending only on d and n. In such cases, d	A=dt is nonzero
at a point if and only if the vectors ¹@˛f .p/º1�j˛j��n span Rn.

The reader may wonder if it is always possible to evaluate the infimum (20)
explicitly in terms of a determinant as in the example. The answer is in general no,
because for generic d and n, one must appeal to a richer and deeper family of alge-
braic operations than merely the determinant. As observed in Section 2.1, the infimum
(20) can be understood as the infimum of a norm over an orbit of an SL.d;R/ repre-
sentation. In the specific instance at hand, for s1; : : : ; sm 2 Rd , at every point p, one
may define the polynomial

Pp.s1; : : : ; sm/

WD .�nŠ/
�m det

�
L�n�1f .p/^ .s1 � r/

�nf .p/^ � � � ^ .sm � r/
�nf .p/

�
(21)

which is homogeneous of degree �n in each set of variables s1; : : : ; sm. The group
SL.d;R/ acts on the vector space of such multihomogeneous polynomials via the
group representation

.�MPp/.s1; : : : ; sm/ WDPp.M
T s1; : : : ;M

T sm/: (22)

If one defines the inner product h�; �i�n;m on such polynomials by the formula

hq; ri�n;m WD
X

jˇ1jD���DjˇmjD�n

.�nŠ/
m

ˇ1Š � � �ˇmŠ
@ˇ1s1 � � �@

ˇm
sm
qj0@

ˇ1
s1
� � �@ˇmsm r j0; (23)

then by (20),
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d	A

dt

ˇ̌̌
p
D C 0 inf

M2SL.d;R/
k�MPpk

d
Q
�n;m (24)

for a suitable constant C 0 that depends only on d and n.
Quantities like the right-hand side of (24) have been thoroughly studied in the

context of geometric invariant theory. In this vast literature, it is well understood that
the algebra of SL.d;R/-invariant polynomials in the coefficients of Pp is fundamen-
tally connected to the right-hand side of (24). Hilbert [17] showed that, when the
group SL.d;R/ is replaced by SL.d;C/, this algebra is finitely generated. From this
fact it is easy to see that the same result must be true for SL.d;R/ itself. Subsequent
work has shown that this algebra must also be finitely generated for representations
of any group G which is a real reductive algebraic group (which, as far as the present
work is concerned, is a class which includes SL.d;R/ and is closed under Cartesian
products). The relevance of Hilbert’s theorem to the quantity (24) is as follows.

LEMMA 2
Suppose that G is a real reductive algebraic group and that � is a G-representation
on some finite-dimensional real vector space V equipped with a norm k � k. Let
p1; : : : ; pN be any collection of homogeneous polynomial functions on V , with posi-
tive degrees d1; : : : ; dN , which generates the algebra of all G-invariant polynomials.
Then there exist constants 0 < C1 � C2 <1 such that

C1 max
jD1;:::;N

ˇ̌
pj .v/

ˇ̌ 1
dj � inf

M2G
k�Mvk

� C2 max
jD1;:::;N

ˇ̌
pj .v/

ˇ̌ 1
dj for all v 2 V: (25)

Proof
To prove the first inequality, observe by scaling that

kpj k
� 1
dj
1

ˇ̌
pj .v/

ˇ̌ 1
dj � kvk

for all j and all v 2 V , where kpj k1 is the supremum of pj on the unit sphere of
k � k. Moreover, because each pj is invariant under �,

kpj k
� 1
dj
1

ˇ̌
pj .v/

ˇ̌ 1
dj D kpj k

� 1
dj
1

ˇ̌
pj .�Mv/

ˇ̌ 1
dj � k�Mvk;

so taking an infimum in M and a supremum in j gives

�
min

jD1;:::;N
kpj k

� 1
dj
1

�
max

jD1;:::;N

ˇ̌
pj .v/

ˇ̌ 1
dj � inf

M2G
k�Mvk:
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To prove the reverse inequality, suppose for the sake of contradiction that the second
inequality of (25) does not hold for any finite C2. Because the inequality is homoge-
neous in the norm k � k, its failure would imply that one could find a sequence vk with
infM k�Mvkk D 1 for all k such that

max
j

ˇ̌
pj .vk/

ˇ̌ 1
dj � k�1 inf

M2G
k�Mvkk D k

�1:

Moreover, by replacing vk by �Mkvk for suitable Mk and taking a subsequence by
compactness, it may be assumed that vk converges to some v in the unit sphere
as k !1. By continuity of the polynomials pj , pj .v/ D 0 for all j . Therefore,
v belongs to the so-called nullcone of the representation, and by the real Hilbert–
Mumford criterion, first proved by Birkes [3], there must exist a 1-parameter sub-
group �exp.tX/ of G such that �exp.tX/v! 0 as t !1. This, of course, implies that
infM k�Mvk D 0. However, infM k�Mvkk D 1 for all k implies that k�Mvkk � 1
for all M 2 G and all k, which means by continuity that k�Mvk � 1 for all M , so
infM k�Mvk D 0 must be contradicted.

There are certain cases in which minimal generating families of the algebra are
explicitly known, which means that the measure �A may consequently be computed
up to factors depending on d and n. We have the following examples.

Example
When d D 3 and nD 3C 6C 1D 10, Pp is a ternary cubic form (i.e., cubic polyno-
mial of degree 3). The algebra of SL.3;R/-invariant polynomials of ternary cubic
forms is known to be generated by Aronhold’s invariants S and T (see [32]) of
degrees 4 and 6, respectively. Consequently, for any 3-surface in R10,

d	A

dt

ˇ̌̌
p
�
ˇ̌
S.Pp/

ˇ̌ 1
4 C

ˇ̌
T .Pp/

ˇ̌ 1
6

with universal implicit constants that do not depend on Pp . For example, the 3-surface
parameterized by

.t1; t2; t3; t
2
1 ; t

2
2 ; t

2
3 ; t1t2; t2t3; t1t3; t

3
1 C t

3
2 C t

3
3 /

has Pp.t/D t
3
1 C t

3
2 C t

3
3 , where t D .t1; t2; t3/ 2R3 and S.Pp/D 1, T .Pp/D 0, so

	A is a nonzero constant times Lebesgue measure dt .

Example
When d D 2 and mD 1, Pp is a homogeneous polynomial of degree �n on R2. By
Hilbert [17], it is known that the nullcone of the representation consists exactly of all
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polynomials which have a (projective) zero of order greater than �n=2. Thus for any
2-surface parameterized by �

.t˛/1�j˛j<� ; q.t/
�

for some homogeneous polynomial q of degree � in two variables, it is an elementary
exercise to determine whether or not �A D 0.

Example
When mD 1 and d and n are otherwise arbitrary, it is known that the discriminant
is an SL.d;R/-invariant polynomial on the space of homogeneous polynomials of
degree � for any �. While the discriminant alone does not characterize d	A=dt , when
the discriminant of Pp is nonzero, .d	A=dt/jp will also be nonzero. The discrimi-
nant vanishes if and only if the gradient of the polynomial vanishes at some nonzero
complex point. Thus one can immediately see that the d -surface given by

.t1; : : : ; td / 7!
�
.t˛/1�j˛j<� ; t

�
1 C � � � C t

�
d

�
will also have 	A equal to a nonzero constant times Lebesgue measure for any d
and �. The same will be true for any small-coefficient perturbations t�1 C � � � C t

�
d

as
well.

It is always possible in principle to compute a complete, finite collection of gen-
erators of the algebra of invariant polynomials explicitly in finite time (see Sturmfels
[32]), which means by (25) that for any individual values of d and n of particu-
lar interest, it is always possible to compute the magnitude of d	A=dt directly up to
unimportant multiplicative factors. Carrying out this computation in parallel for many
different values of d and n is, with the exception of special combinations, somewhat
unwieldy and akin to the attempted computation of the determinant via the permu-
tation expansion rather than by more efficient, symmetry-exploiting techniques. As
implied by the above examples, it is also worth observing that when many invari-
ant polynomials exist (which, unlike for curves and hypersurfaces, is typically the
case), the nullcone of tensors A such that the density (12) vanishes has codimension
greater than 1, which means that for general submanifolds of dimension d in Rn, it
is typically “easier” to have nonvanishing affine curvature than it is for hypersurfaces
because the space of “flat” Taylor polynomial jets to be avoided is of codimension
greater than 1.

It is substantially easier to directly compute the entire algebra of SL.d;R/-
invariant polynomial functions of Pp than it is to determine a finite set of generators
because the Reynolds operator, which projects polynomials in Pp onto the space of
SL.d;R/-invariant polynomials, can be explicitly expressed in terms of Cayley’s �
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operator. For any polynomial function of the entries of M 2Rd�d , let

�M WD
X
�2Sd

.�1/�
@d

@M1�1 � � �@Md�d

: (26)

THEOREM 4
Let PV �n

d;m
be the real vector space of real polynomials in variables s1; : : : ; sm 2 Rd

which are homogeneous of degree �n as a function of each variable si , i D 1; : : : ;m.
A homogeneous polynomial F of degree k on PV �n

d;m
is called an SL.d;R/ invariant if

F.�MP /D F.P / for all M 2 SL.d;R/ and all P 2 PV �n
d;m

, where �M is as defined
in (22). If d divides �nmk, then let

RŒF �.P / WD .�M /
�nkm
d

�
F.�MP /

�ˇ̌
MD0

: (27)

Then the following are true.
(1) If d does not divide �nmk, then there are no nonzero homogeneous SL.d;R/

invariants F of degree k on PV �n
d;m

.

(2) If d divides �nmk and F is any homogeneous polynomial of degree k on PV �n
d;m

,
then RŒF � is an SL.d;R/ invariant; that is,

RŒF �.�MP /DRŒF �.P / for all M 2 SL.d;R/ and all P 2 PV �n
d;m
:

(3) If d divides �nmk, then there is a positive constant c depending on .d; k;
m; �n/ such that every homogeneous SL.d;R/ invariant F of degree k on
PV
�n
d;m

satisfies RŒF �D cRŒF �.

Proof
To establish the first conclusion (for which it may be assumed without loss of gen-
erality that d > 1), let M be a diagonal matrix with entries t1; : : : ; td such that
t1 � � � td D 1. The quantity F.�MP / is necessarily a polynomial of degree �nmk
in t1; : : : ; td . If any term c˛t

˛ of this polynomial has a nonzero coefficient for a
multi-index ˛ WD .˛1; : : : ; ˛d / with entries that are not all equal (i.e., ˛i ¤ ˛i 0 for
some i; i 0/, then substituting tj D .t1 � � � tj�1tjC1 � � � td /�1 for an appropriate choice
of index j will necessarily yield a nonconstant rational function of the remaining
variables, which contradicts SL.d;R/ invariance. However, the entries of ˛ can only
be equal to one another if d divides j˛j D �nmk.

The remaining conclusions of this theorem are simply applications of more gen-
eral results of Sturmfels [32] for relative GL.d;C/ invariants. A polynomial F as
above is called a relative GL.d;C/ invariant of index i when

F.�MP /D .detM/iF.P / for all M 2GL.d;C/
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and all P in the complexification of PV �n
d;m

. By Theorem 4.3.7 of [32], RŒF � is always
a relative GL.d;C/ invariant of index �nmk=d , which in particular forces it to be an
SL.d;R/ invariant. Conversely, if F is an SL.d;R/ invariant, then anyM 2GL.d;R/
with positive determinant may be factored as

M D .detM/
1
dM 0

for M 0 2 SL.d;R/. By homogeneity,

F.�MP /D F
�
.detM/

�nm
d �M 0P

�
D .detM/

�nmk
d F.�M 0P /

D .detM/
�nmk
d F.P /

for all P 2 PV �n
d;m

. Now both F.�MP / and .detM/
�nmk
d F.P / are polynomial func-

tions of M and P which are equal for any real P and any M in an open subset of
real matrices. By analytic continuation, they must also agree for all M 2 GL.d;C/
for all complex P , so F must be a relative GL.d;C/ invariant of index �nkm=d ; by
[32, Corollary 4.3.6],

RŒF �.P /D .�M /
�nkm
d

�
F.�MP /

�ˇ̌
MD0

D F.P /.�M /
�nkm
d

�
.detM/

�nkm
d

�ˇ̌
MD0

D cF.P /

for some c > 0. This finishes the proof.

By Lemma 2, one has the following immediate corollary of Theorem 4.

COROLLARY 1
For any point p, .d	A=dt/jp D 0 if and only if, for every k such that d divides �nmk,
every homogeneous polynomial F of degree k on PV �n

d;m
satisfies

.�M /
�nkm
d

�
F.�MPp/

�ˇ̌
MD0

D 0: (28)

Proof
This condition is immediately equivalent to the condition that every SL.d;R/ invari-
ant F vanishes at Pp , which is equivalent to every generator of the algebra vanishing
at Pp .



2098 PHILIP T. GRESSMAN

Example
The 3-surface in R12 given by

.t1; t2; t3; t
2
1 ; t

2
2 ; t

2
3 ; t1t2; t1t3; t2t3; t

3
1 ; t

2
2 t3; t2t

2
3 /

is well curved. If s1; s2; s3 2R3, then

Pp.s1; s2; s3/D det

2
4 s311 s321 s331
s212s13 s222s23 s232s33

s12s
2
13 s22s

2
23 s32s

2
33

3
5 :

Let F.P / be the coefficient of s311s
3
22s

3
23 when P is expressed in the standard basis

of the variables sij (i.e., si D .si1; si2; i3/ for each i ). Then

F
�
Pp.M

T s1;M
T s2;M

T s3/
�
D det

2
4 M 3

11 M 3
21 M 3

31

M 2
12M13 M 2

22M23 M 2
32M33

M12M
2
13 M22M

2
23 M32M

2
33

3
5 :

Because �M is antisymmetric under permutation of the rows of M ,

�3MF.�MPp/D 6�
3
M .M

3
11M

2
22M23M32M

2
33/;

which readers may recognize as a transvectant. It follows that

�3MF.�MPp/D 6�
2
M

�
3M 2

11Œ4M22M23M32M33 �M
2
22M

2
33�
�

D 18�M
�
2M11Œ4M23M32 � 4M22M33 � 4M22M33�

�
D 144�M

�
M11ŒM23M32 � 2M22M33�

�
D 144Œ�2� 1�D�432¤ 0:

Because the algebra of SL.d;R/ invariants is finitely generated, Corollary 1 can
be further refined to state that there is some k0 depending only on d and n such that
.d	A=dt/jp D 0 if and only if (28) holds for all homogeneous polynomials F of
degree k � k0 such that d divides �nmk.

3.2. Sublevel set approaches
Because all norms on a given finite-dimensional vector space are comparable, it can
be useful to replace the norm appearing in (24) by other more meaningful ones. One
such example is the observation that

d	A

dt

ˇ̌̌
p
� inf
M2SL.d;R/

sup
ks1k;:::;ksmk�1

ˇ̌
Pp.Ms1; : : : ;Msm/

ˇ̌ d
Q ;
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where k � k is any choice of norm on Rd . Let K denote the unit ball of this norm, and
let Zp WD ¹.s1; : : : ; sm/ j jPp.s1; : : : ; sm/j � 1º. A trivial application of homogeneity
gives hd	A

dt

ˇ̌̌
p

i�1
� sup
M2GL.d;R/

®
jMKj

m
Q

ˇ̌
.MK/m �Zp

¯
; (29)

where jMKj denotes Lebesgue measure. This allows one to employ sublevel set esti-
mates to establish nondegeneracy of �A. This idea is made precise by Theorem 5
which is stated and proved below after the following lemma.

LEMMA 3
Suppose that K �Rd is a centered ellipsoid. There exists a nonzero radius r satisfy-
ing r � jKj1=d for an implicit constant depending only on d such that the .d � 1/-
dimensional Lebesgue measure of K \ ¹x 2Rd j jxj D rº satisfiesˇ̌

K \
®
x 2Rd

ˇ̌
jxj D r

¯ˇ̌
� jKjr�1

for some second implicit constant depending only on d .

Proof
Applying an orthogonal transformation to K if necessary, it may be assumed that the
axes of K are in the standard coordinate directions; that is,

K D
°
.x1; : : : ; xd / 2R

d
ˇ̌̌ dX
jD1

x2j

R2j
� 1

±

for strictly positive R1; : : : ;Rd . Moreover, it may be further assumed that Rj � Rd
for all j 2 ¹1; : : : ; d � 1º. Let r WDRd=

p
2 and

E0 WD
h
�

R1

2
p
d � 1

;
R1

2
p
d � 1

i
	 � � � 	

h
�

Rd�1

2
p
d � 1

;
Rd�1

2
p
d � 1

i
:

Every y 2E0 satisfies

d�1X
jD1

jyj j
2 �

d�1X
jD1

R2j

4.d � 1/
�
R2
d

4
D
r2

2
:

Set 
.y/ WD .y;
p
r2 � jyj2/ 2Rd . The map 
 is well defined on all of E0 and maps

it into the sphere ¹x 2 Rd j jxj D rº. The Lebesgue measure of 
.E0/ in this sphere
satisfies the inequality

ˇ̌

.E0/

ˇ̌
D

Z
E0

�
1�
jyj2

r2

�� 12
dy � jE0j D .d � 1/

�d�12 R1 � � �Rd�1 � jKjr�1:
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Lastly, every point of 
.E0/ belongs to the ellipse K because

�d�1X
jD1

jyj�1j
2

R2j

�
C
r2 � jyj2

R2
d

�
�d�1X
jD1

1

4.d � 1/

�
C
1

2
� 1:

This completes the proof.

THEOREM 5
For every � > 0, let I.�/ be the measure in .Sd�1/m of the set®

.!1; : : : ;!m/ 2 .S
d�1/m

ˇ̌ ˇ̌
Pp.!1; : : : ;!m/

ˇ̌
� �

¯
;

where Pp is as in (21). Suppose that there exist positive constants CI and � such that
I.�/� CI �

1=� for all � > 0. If � � �n
d

, then

d	A

dt

ˇ̌̌
p

� C
� �d
�nQ

I (30)

with an implicit constant depending only on d and n.

Proof
The class of centered ellipsoids in Rd is closed under invertible linear transforma-
tions. Let K be any centered ellipsoid such that

Km �
®
.t1; : : : ; tm/ 2 .R

d /m
ˇ̌ ˇ̌

Pp.t1; : : : ; tm/
ˇ̌
� 1

¯
:

Let r be the radius identified by Lemma 3. By Lemma 3 and the fact that Km is
contained in the sublevel set where jPpj � 1, it follows that the Lebesgue measure
in .rSd�1/m of the sublevel set jPpj � 1 is greater than or comparable to .jKjr�1/m

with an implicit constant depending only on d . By homogeneity,

rm.d�1/I.r��nm/�
�
jKjr�1

�m
:

By the sublevel set bound for I.�/, it must be the case that

jKj� C
1
m

I r
�
�n
� Cd � C

1
m

I jKj
�
�n
�d
C1;

where the last inequality follows because � �n
�
C d � 0 and r � jKj1=d . Therefore,

jKj� C
�d=.�nm/
I with an implicit constant depending only on d and n. By (29), this

establishes (30).
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Example
The 3-surface in R5 parameterized by

.t1; t2; t3; t
2
1 ; t

2
2 C t

2
3 /

is not well curved (i.e., �A D 0). It has

Pp.t1; t2; t3; s1; s2; s3/D t
2
1 .s

2
2 C s

2
3/� .t

2
2 C t

2
3 /s

2
1 :

The boxes K� D Œ��=2; �=2� 	 Œ���1; ��1�2 have volume tending to infinity as �!
0C, butK�	K� is contained in the set where jPpj � 1 for all � > 0. Thus (29) implies
that �A D 0. In contrast, the 3-surface in R21 parameterized by�

.t˛/1�j˛j�3; t
2
1 jt j

2; .t22 C t
2
3 /jt j

2
�

is well curved. It has

Pp.t1; t2; t3; s1; s2; s3/D
�
t21 .s

2
2 C s

2
3/� .t

2
2 C t

2
3 /s

2
1

�
jt j2jsj2

D
�
t21 jsj

2 � s21 jt j
2
�
jt j2jsj2:

By a simple change of variables, every set in S2 which is rotationally symmetric about
the x1-axis has measure equal to 2
 times the measure of the projection onto that axis.
Therefore, the sublevel integral I.�/ defined in Theorem 5 satisfies

I.�/D 4
2
ˇ̌®
.u; v/ 2 Œ�1; 1�2

ˇ̌
ju2 � v2j � �

¯ˇ̌
which is easily shown to satisfy a nontrivial sublevel set inequality for any � > 1.

3.3. Model forms for well-curvedness and Theorem 2
Recall from the Introduction that a polynomial map f of the form

f .t/ WD
�
.t˛/1�j˛j<�n ; p1.t/; : : : ; pm.t/

�
(31)

for p1; : : : ; pm 2 PP
�n
d

is a model form when there exist �1; �2 � 0 such that

dX
jD1

h@jp`; @jp`0i�n�1 D �1ı`;`0 ;

mX
`D1

h@jp`; @j 0p`i�n�1 D �2ıj;j 0 ;

(32)

where in both equations ı is the Kronecker delta. In this section, we will prove parts
(1) and (2) of Theorem 2 concerning model forms. This section will also lay some
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additional groundwork for proof of part (3) of Theorem 2, which will be completed
in Section 5.3.

The key observation from geometric invariant theory which plays a prominent
role in this case is that critical points (as a function of M ) in the infimum (14) must
be points at which the infimum is attained. This will be the main observation to be
exploited; a secondary observation, encapsulated in the following lemma, allows one
to simplify the structure of P even further at the expense of taking an infimum over a
larger group.

LEMMA 4
Let f have the form (2). Let p WD .p1; : : : ; pm/ 2 . PP

�n
d
/m be the m-tuple of highest-

order parts of f . For any .N;M/ 2 SL.m;R/	 SL.d;R/, let

.RN;Mp/.t/ WDNp.M
T t /: (33)

Then the measure 	A defined by (14) is a constant times Lebesgue measure, and

d	A

dt
D C 00

h
inf

N2SL.m;R/
M2SL.d;R/

mX
jD1

��.RN;Mp/j��2�n
imd
2Q

(34)

for some constant C 00 depending only on d and n.

Before proving Lemma 4, a more fundamental lemma is necessary.

LEMMA 5
Let A be a real m 	m0 matrix where m0 �m, and let ŒA�i1���im be the m 	m matrix
formed by combining columns i1; : : : ; im of A into a square matrix; that is, the .j; k/
entry of this matrix is Aj ik . Then

m0X
i1;:::;imD1

ˇ̌
detŒA�i1���im

ˇ̌2
D
mŠ

mm

h
inf

N2SL.m;R/

mX
jD1

m0X
iD1

ˇ̌̌ mX
kD1

NjkAki

ˇ̌̌2im
: (35)

Proof
First observe that both

A 7!

m0X
i1;:::;imD1

ˇ̌
detŒA�i1���im

ˇ̌2
and A 7!

mX
jD1

m0X
iD1

jAj i j
2

are invariant under the left action of O.m;R/ on columns of A as well as the right
action of O.m0;R/ on rows of A (in both cases, the identity is established by expand-
ing multilinear sums and directly exploiting the orthogonality identity as was done in



ON THE OBERLIN AFFINE CURVATURE CONDITION 2103

Lemma 1). In particular, this means that we may, by the singular-value decomposi-
tion, assume without loss of generality that

Aj i D �j ıj;i ;

where �j is the j th singular value of A and ı is the Kronecker delta. Thus

m0X
i1;:::;imD1

ˇ̌
detŒA�i1���im

ˇ̌2
DmŠ�21 � � ��

2
m and

mX
jD1

m0X
iD1

jAj i j
2 D �21 C � � � C �

2
m:

By the AM-GM inequality,

1

mŠ

m0X
i1;:::;imD1

ˇ̌
detŒA�i1���im

ˇ̌2
�
h 1
m

mX
jD1

m0X
iD1

jAj i j
2
im

(36)

with equality if and only if the singular values of A are all equal. Now multiplication
of A on the left by a matrix N 2 SL.m;R/ preserves the left-hand side of (36) but not
necessarily the right-hand side; taking an infimum of the right-hand side over all N
gives

m0X
i1D1;:::;imD1

ˇ̌
detŒA�i1���im

ˇ̌2
�
mŠ

mm

h
inf

N2SL.m;R/

mX
jD1

m0X
iD1

ˇ̌̌ mX
kD1

NjkAki

ˇ̌̌2im

for any A 2 Rm�m
0

. To show equality, assume once again without loss of generality
that A is diagonal in the standard basis of Rm�m

0

, and let N be the diagonal matrix
such that Ni i WD ��1i .�1 � � ��m/

1=m assuming none of the singular values are zero. In
this case,NA has all diagonal entries equal, and consequently (36) holds with equality
when A is replaced byNA, giving equality in (35) as well. If, on the other hand, some
singular value �i 0 of A is zero, let N .t/ be another diagonal matrix such that N .t/

i i D t

for all entries i ¤ i 0, and let N .t/
i 0i 0 D t

�mC1. Then for t > 0, N .t/ 2 SL.m;R/ and

lim
t!0C

h mX
jD1

m0X
iD1

ˇ̌̌ mX
kD1

N
.t/

jk
Aki

ˇ̌̌2im
D lim
t!0C

hX
i¤i 0

t2�2i

im
D 0;

so (35) holds with equality again in this case as well.

Proof of Lemma 4
The polynomial given by (21) is independent of the point at which it is based and
takes the particularly simple form

P .s1; : : : ; sm/D det

2
64
p1.s1/ � � � p1.sm/
:::

: : :
:::

pm.s1/ � � � pm.sm/

3
75 : (37)
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Independence of the basepoint means that the density ıp given by (12) is either always
zero or never zero. For any M 2 SL.d;R/, let AM be the m 	 d �n matrix (where
columns are indexed by { WD .i1; : : : ; i�n/ 2 ¹1; : : : ; dº

�n ) given by

AMj{ WD .M@/i1 � � � .M@/i�npj j0:

By virtue of (22), (23), and (37),

k�MP k2�n;m D
X

{1;:::;{m2¹1;:::;dº�n

ˇ̌
detŒAM �{1;:::;{m

ˇ̌2
:

By (35), this implies that

k�MP k2�n;m

D
mŠ

mm

h
inf

N2SL.m;R/

mX
jD1

dX
i1;:::;i�nD1

ˇ̌̌ mX
kD1

Njk.M@/i1 � � � .M@/i�npkj0

ˇ̌̌2im

D
mŠ

mm

h
inf

N2SL.m;R/

mX
jD1

��.RN;Mp/j��2�n
im
;

where k � k�n is the norm corresponding to the inner product (4) defined in the Intro-
duction, andRN;M is the representation of SL.m;R/	SL.d;R/ on the space . PP �n

d
/m

given by (33). Raising both sides to the power d
2Q

and taking an infimum over M gives
the formula (34).

Proof of part (2) of Theorem 2
Now given any p;q 2 . PP �n

d
/m, the quantity

mX
jD1

hpj ; qj i�j

is an inner product on . PP �n
d
/m which is invariant under the action of RO1;O2 for

orthogonal O1 and O2 by virtue of the invariance of the usual inner product on Rm

and by the identity (17) from Lemma 1. By Theorem 4.3 of Richardson and Slodowy
[28] (which is the real analogue of ideas introduced by Kempf and Ness [22]), it
suffices to show that the map

.N;M/ 7!

mX
jD1

��.RN;Mp/j��2�n (38)

has a critical point at the identity since their theorem establishes that all critical points
are points where the infimum over all .N;M/ 2 SL.m;R/	 SL.d;R/ is attained. (In
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particular, there are no nontrivial local maxima. The proof of their theorem ultimately
reduces to establishing that the function must be convex along any 1-dimensional
exponential family starting at a critical point.) Differentiating N at the identity in the
direction of E 2 sl.m;R/ gives

2

mX
`;`0D1

E``0hpj ; p`0i�n D 0

for all traceless m 	 m matrices E . A similar calculation differentiating M at the
identity gives

2�n

mX
jD1

dX
i;i 0D1

Ei i 0h@ipj ; @i 0pj i�n�1 D 0

for all traceless E 2 Rd�d . From these two calculations, it must be the case that
(38) has a critical point at the identity if and only if p satisfies the system (32). By
summing each identity over the diagonal, it follows that

m�1 D d�2 D

mX
jD1

kpj k
2
�n
D inf
N2SL.m;R/
M2SL.d;R/

mX
jD1

kRN;Mpj k
2
�n
:

By (34),

d	A

dt
D C 00.�2d/

md
2Q :

Thus for any f of the form (2) satisfying the critical point equations (32), the measure
�A is a nonzero constant times the pushforward of Lebesgue measure if and only if
�1; �2 ¤ 0.

Proof of part (1) of Theorem 2
Exactly as was computed in the proof of Lemma 1, the space P �n�1

d
is mapped into

itself by the representation

�Mq.t/ WD q.M
T t /

and det�M D 1 when M 2 SL.d;R/. Therefore, it suffices to study only the highest-
order part of f (namely, .p1; : : : ; pm/ 2 . PP

�n
d
/m) and to show that the closure of the

orbit ¹RN;MpºN2SL.m;R/;M2SL.d;R/ in . PP �n
d
/m always contains an m-tuple satisfying

(32) and that degeneracy or nondegeneracy must hold for every single p0 2 . PP �n
d
/m

in the closure of the orbit. This latter fact is an immediate consequence of the identity
(34). As for the fact that the closure of the orbit always contains a model form, this is
a consequence of Lemma 3.3 and Theorem 4.4 of Richardson and Slodowy [28] since
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� the orbit ¹RN;Mpº meets the solution set of (32) when the orbit is Zariski-
closed;

� when the orbit ¹RN;Mpº is not Zariski-closed, there exist traceless self-adjoint
N0;M0 such that

lim
t!�1

RetN0 ;etM0f

exists and does have Zariski-closed orbit.
In this latter case, the orbit of the limit meets the solution set of (32). In particular,
there must exist N1 2 SL.m;R/ and M1 2 SL.d;R/ such that

lim
t!�1

RN1etN0 ;M1etM0f

exists and satisfies (32), which implies that the closure of the orbit RN;Mf (in either
the standard or Zariski topologies) always contains a solution of (32).

Example
Suppose that p.t/ WD .t˛1=

p
˛1Š; : : : ; t

˛m=
p
˛mŠ/ for multi-indices ˛i , i D 1; : : : ;m,

such that j˛i j D �n. Suppose also that ej is the multi-index of order 1 with entry 1 in
position j and that the multi-indices ¹˛i C ej º are distinct for every pair .i; j /. Then
it must be the case that h@j t˛i ; @j 0 t˛i0 i�n�1 D 0 when .i; j /¤ .i 0; j 0/ and that��� 1

p
˛i Š
@j t

˛i

���2
�n�1
D

1

˛i Š
.˛i /

2
j ht

˛i�ej ; t˛i�ej i�n�1

D
1

˛i Š
.�n � 1/Š.˛i /

2
j .˛i � ej /ŠD .�n � 1/Š.˛i /j :

For this particular p, the first system of equations in (32) will always be satisfied
for some nonzero �1 because each multi-index has the same order. The second sys-
tem will be true with some nonzero �2 if

Pm
iD1 ˛i is a multiple of the multi-index

.1; : : : ; 1/. This immediately gives well-curvedness for examples such as the 4-surface
in R129 parameterized by�

.t˛/1�j˛j�5; t
2
1 t
2
2 t
2
3 ; t

4
1 t
2
4 ; t

4
2 t
2
4 ; t

4
3 t
2
4

�
(since rescaling in individual directions by constant nonzero factors preserves well-
curvedness). A somewhat more sophisticated set of examples in a similar spirit is
provided by Lemma 8 in Section 5.3.

3.4. Newton-type polyhedra and height
The final observation we make regarding well-curvedness of simple polynomial sub-
manifolds of the form (2) is an analytic reinterpretation of the Hilbert–Mumford cri-
terion, which in this case asserts that d	A=dt 
 0 if and only if there exist traceless
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self-adjoint matrices N0 2Rm�m, M0 2R
d�d such that

Re�tN0 ;e�tM0p! 0 as t!1:

This condition has a natural geometric interpretation similar to (but simpler than) the
notion of the height of real analytic functions, which is ubiquitous in the application
of resolution of singularities methods to oscillatory integral operators in harmonic
analysis (see, e.g., [19]).

THEOREM 6
Let ¹e1; : : : ; emº be the standard basis of Rm. For any p 2 . PP �n

d
/m, let N .p/ �

Œ0;1/m 	 Œ0;1/d be the convex hull of all points .ej ; ˛/ such that

@˛pj .t/jtD0 ¤ 0:

Then the associated submanifold defined by (2) is well curved if and only if

� 1
m

1m;
�n

d
1d
�
2N .RO1;O2p/ (39)

for all real orthogonal matricesO1 2O.m/ andO2 2O.d/, where 1m WD .1; : : : ; 1/ 2
Œ0;1/m and likewise for 1d 2 Œ0;1/d .

Proof
Because the norm

kpk2 WD

mX
jD1

kpj k
2
�n

is invariant under the action of both of the orthogonal groups O.m/ and O.d/, it suf-
fices in the calculation (34) of d	A=dt to take the infimum only over N 2 SL.m;R/
and M 2 SL.d;R/ which have the form DO , where D is diagonal with nonnegative
entries and O is orthogonal, by virtue of the singular-value decomposition. If N D
D1O1 where the ordered diagonal entries of D1 are s1; : : : ; sm, and if M DD2O2
where the ordered diagonal entries of D2 are t1; : : : ; td , then it must be the case that

kRN;Mpk
2 D

mX
jD1

X
j˛jD�n

s2j t
2˛ �nŠ

˛Š

ˇ̌�
O1.O2@/

˛p
�
j

ˇ̌2
: (40)

It follows that d	A=dt is nonzero if and only if there is a nonzero lower bound for
the right-hand side of (40) which holds for all O1;O2; s, and t assuming that O1 and
O2 are orthogonal and s1 � � � sm D t1 � � � td D 1.
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If the condition (39) holds, then for every O1 and O2 there must be pairs
.ej1 ; ˛1/; : : : ; .ejk ; ˛k/ and nonnegative 
1; : : : ; 
k summing to 1 such that, for each
i , we get ŒO1.O2@/˛ip�ji ¤ 0 and

kX
iD1


i .eji ; ˛i /D
� 1
m

1m;
�n

d
1d
�
:

By the AM-GM inequality,

kX
iD1

s2ji t
2˛i
�nŠ

˛i Š

ˇ̌�
O1.O2@/

˛ip
�
j

ˇ̌2
�

kX
iD1


is
2
ji
t2˛i

�nŠ

˛i Š

ˇ̌�
O1.O2@/

˛ip
�
j

ˇ̌2

�

kY
iD1

ˇ̌̌
s2ji t

2˛i
�nŠ

˛i Š

ˇ̌�
O1.O2@/

˛ip
�
j

ˇ̌2 ˇ̌̌�i

D

kY
iD1

ˇ̌̌�nŠ
˛i Š

ˇ̌�
O1.O2@/

˛ip
�
j

ˇ̌2 ˇ̌̌�i
> 0 (41)

uniformly for all admissible s and t . Because the quantities O1.O2@/˛p are contin-
uous as a function of O1 and O2, the quantity on the right-hand side of (41) must be
uniformly bounded below by a positive constant on some neighborhood of .O1;O2/
in O.m/ 	 O.d/. Because this space is compact, there must be a universal bound
from below, meaning by (34) that �A is a nonzero constant times the pushforward of
Lebesgue measure.

If on the other hand, there are O1 and O2 such that (39) does not hold, then in
fact no point of the form .c1m; c01d / can belong to N .RO1;O2p/ since every .ej ; ˛/
such that ŒO1.O2@/˛p�j ¤ 0 has

ej � 1m D 1D
1

�n
˛ � 1d ;

and c D 1=m; c0 D �n=d is the only pair for which the point in question lies in both
affine subspaces. Thus by the separating hyperplane theorem, there must exist vectors
u 2Rm and v 2Rd ,

uj C v � ˛ > 0 whenever
�
O1.O2@/

˛p
�
j
¤ 0

and

u � 1m D 1d � vD 0:

(That is, there must exist a vector .u; v/ 2 RmCd which has zero dot product with
every vector of the form .c1m; c01d / and strictly positive dot product with every
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vector in N .RO1;O2p/.) Fixing sj WD e��uj , j D 1; : : : ;m, and tj WD e��vj , j D
1; : : : ; d , gives s1 � � � sm D 1 D t1 � � � td for all � but also gives s2j t

2˛ ! 0 for each
nonzero term in the sum (40) as �!1, forcing d	A=dt D 0.

Example
A homogeneous polynomial q of degree � in two variables satisfies @�1q D � � � D
@��i1 @i2q D 0 if and only if q; @�q; : : : ; @i�q all vanish at the point .1; 0/, where @� D
�t2@1 C t1@2 is the angular derivative. Using this fact, it is an elementary exercise
to check that when d D m D 2, for example, the condition (39) for nondegeneracy
of p WD .p1; p2/ is equivalent to the condition that, for every orthogonal matrix O 2
R2�2, there are no points on the unit circle at which functions .Op/1 and .Op/2
vanish in the angular direction to orders o1 and o2, respectively, with o1 C o2 > �n.
The 2-surface in R7 given by

.t1; t2; t
2
1 ; t

2
2 ; t1t2; t

3
1 � 3t1t

2
2 ; 3t

2
1 t2 � t

3
2 /

is well curved by this reasoning since no linear combination of the cubic polynomials
vanishes to order more than 1 in the angular direction on the unit circle in R2.

4. Necessity and proofs of parts (1) and (2) of Theorem 1
It is now time to return attention to the proof of Theorem 1. We begin with the fol-
lowing elementary lemma, which gives an estimate for the volume of the convex hull
of certain sets S �Rn.

LEMMA 6
Suppose that S � Rn is a compact set containing the origin, and let K be its convex
hull. There exist v1; : : : ; vn 2 S such that the sets

K1 WD
°
v 2Rn

ˇ̌̌
vD

nX
iD1

civi for coefficients ci � 0 such that
nX
iD1

ci � 1
±

and

K1 WD
°
v 2Rn

ˇ̌̌
vD

nX
iD1

civi for coefficients ci 2 Œ�1; 1�; i D 1; : : : ; n
±

satisfy

K1 �K �K1: (42)

In particular,

1

nŠ

ˇ̌
det.v1 ^ � � � ^ vn/

ˇ̌
� jKj � 2n

ˇ̌
det.v1 ^ � � � ^ vn/

ˇ̌
: (43)
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Proof
This lemma is essentially a minor variation of John’s ellipsoid theorem in [20]. Let V
be the unique vector subspace of Rn of smallest dimension which contains S (where
uniqueness holds because the intersection of two subspaces containing S would be a
subspace of smaller dimension also containing S ). Let m denote the dimension of V ,
and let detV be any nontrivial alternating m-linear form on V . Let .v1; : : : ; vm/ 2 Sm

be any m-tuple at which the maximum of the function

.v1; : : : ; vm/!
ˇ̌
det
V
.v1 ^ � � � ^ vm/

ˇ̌
is attained. Since S is not contained in any subspace of smaller dimension, jdetV .v1^
� � � ^ vm/j > 0 unless mD 0 (in which case S D ¹0º and the lemma is trivial). Now
by Cramer’s rule, for any v 2 V ,

vD

mX
iD1

.�1/i�1
detV .v ^ v1 ^ � � � ^ bvi ^ � � � ^ vm/

detV .v1 ^ � � � ^ vm/
vi ;

where, in this case, the circumflexb� indicates that a vector is to be omitted from the
determinant. In the particular case when v 2 S , the m-tuple .v; v1; : : : ;bvi ; : : : ; vm/
belongs to the set Sm over which the supremum of jdetV j was taken; therefore each
numerator has magnitude less than or equal to the magnitude of the denominator.
Thus S belongs to the parallelepiped

P WD
°
v 2Rn

ˇ̌̌
vD

mX
iD1

civi for some c1; : : : ; cm 2 Œ�1; 1�
±
:

Since P is convex and contains S , it must contain K as well. To establish the lemma,
we extend the sequence v1; : : : ; vm to a sequence of length n by fixing vj D 0 for
j > m. Trivially P D K1 for this choice, so the containment K � K1 must hold.
For the remaining containment, observe that 0; v1; : : : ; vn must belong toK since they
belong to S . Therefore, by convexity of K , the set K1 must be contained in K . The
volume inequality (43) follows from the elementary calculation of the volumes of K1
and K1.

With Lemma 6 in place, we turn now to the proofs of parts (1) and (2) of Theo-
rem 1.

Proof of part (1) of Theorem 1
Pick any point p 2M, and fix any smooth coordinate system .t1; : : : ; td / near p so
that the immersion f WM! Rd may be regarded in these coordinates as a function
from a 3ı neighborhood of the origin (chosen so that t D 0 are the coordinates of p)
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into Rn. It may also be assumed without loss of generality that f is an embedding on
this neighborhood. By Taylor’s formula, for all t0; t 2Rd with jt0j � ı; jt j � 2ı,

f .t/� f .t0/D
X

0<j˛j�`

.t � t0/
˛

˛Š
@˛t f .t0/C

X
jˇ jD`C1

.t � t0/
ˇ

ˇŠ
R
ˇ
t0
.t/; (44)

for any finite `, where each remainder term R
ˇ
t0
.t/ is continuous on jt j � 2ı and

equals @ˇt f .t0/ when t D t0. (For most of what follows, t0 will be regarded as a
fixed but otherwise arbitrary point with jt0j � ı.) For definiteness, let ` WD �n; that
is, ` equals the highest order of differentiation that appears in a column of the matrix
whose determinant forms A (or equivalently, ` is the number of boxes in column n
of the diagram given in Figure 2). This choice of ` implies that the dimension of the
space of polynomials of degree ` with no constant term is at least equal to n. For any
r 2 .0; ı�, let St0;r be the compact subset of Rn given by

St0;r WD ¹0º [
[
j˛j�`

°r j˛j
˛Š
@˛t f .t0/

±
[

[
jˇ jD`C1;jt j�2ı

°r`C1
ˇŠ

R
ˇ
t0
.t/
±
;

and let Kt0;r be the convex hull of St0;r [ .�St0;r/. Now each term in either sum
on the right-hand side of (44) belongs to Kt0;r whenever jt j � 2ı and jt � t0j � r .
Because the total number of summands on the right-hand side is at most some constant
C depending only on d and n, the difference vector f .t/� f .t0/ must belong to the
dilated set CKt0;r whenever jt j � 2ı and jt � t0j � r . In particular, this implies that
the translated set CKt0;r C f .t0/ must contain the vector f .t/ whenever jt j � 2ı and
jt � t0j � r � ı.

By virtue of (43), the Lebesgue measure of the set CKt0;r C f .t0/ is O.rQ/ as
r ! 0C since it is dominated by a constant depending on d and n times a deter-
minant jdet.v1 ^ � � � ^ vn/j for some v1; : : : ; vn 2 St0;r [ .�St0;r/ and since Q is
by definition the smallest integer which is possible to express as a sum of degrees
of distinct, nonconstant monomials in d variables (thus Q corresponds to the small-
est possible power of r which will appear via scaling in such determinants). In fact,
a slightly stronger result is also true—namely, that it is possible to quantify the
implied constant in this O.rQ/ estimate in terms of the affine curvature tensor A

at t0. For any collection ˛1; : : : ; ˛n of multi-indices such that j˛1j C � � � C j˛nj DQ,
it is possible to find indices i� for each � 2 ƒd;n (these indices being obtained
by “expanding” each ˛i as a composition of first-order coordinate derivatives) so
that ˇ̌

det
�
@
˛1
t f .t0/^ � � � ^ @

˛n
t f .t0/

�ˇ̌
D
ˇ̌
At0

�
.@ti�

/�2ƒd;n
�ˇ̌

whenever the left-hand side is nonzero. Therefore, it follows from (43) that when
r � ı, the image f .Br.t0// is contained in CKt0;r C f .t0/, which is a compact
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convex set with volume no greater than

C 0rQ
h dX
j1;:::;jQD1

ˇ̌
At0.@tj1 ; : : : ; @tjQ /

ˇ̌2i 12
CO.rQC1/

as r ! 0C, where C 0 is some new constant depending only on d and n. Conse-
quently, if � is any measure on Rn supported on M satisfying the Oberlin condition
(1) with exponent ˛ and constant C�, then

lim sup
r!0C

r�˛Q�
�
f
�
Br.t0/

��
� C�

ˇ̌̌h dX
j1;:::;jQD1

ˇ̌
At0.@tj1 ; : : : ; @tjQ /

ˇ̌2i 12 ˇ̌̌˛
(45)

for any t0 with jt0j � ı with an implied constant depending only on d and n. If
˛ � d=Q, then this implies that � must be absolutely continuous with respect to the
pushforward of Lebesgue measure on M on a ı-neighborhood of the chosen origin
point p, and if ˛ > d=Q, then it further implies that � must be the zero measure on
the image of that neighborhood in Rn (since the Radon–Nikodym derivative of �
with respect to the pushforward of Lebesgue measure must vanish at every Lebesgue
point, which is almost every point in the neighborhood), thus establishing part (1) of
Theorem 1.

Proof of part (2) of Theorem 1
Returning to (45) when ˛ D d=Q, the previous calculations show that on a ı-
neighborhood of the point p in the given coordinates, � restricted to the image of
that neighborhood (with respect to the immersion f , which may be assumed to be
an embedding on this neighborhood) must be absolutely continuous with respect to
the pushforward of Lebesgue measure. It follows that the Radon–Nikodym derivative
d�=dt , which for simplicity is taken as a function on M rather than Rn, is well
defined and satisfies

lim sup
r!0C

r�d�
�
f
�
Br.t0/

��
D cd

d�

dt
.t0/

for almost every t0 with jt0j � ı. By (45), then,

d�

dt
jq � C�

h dX
j1;:::;jQD1

ˇ̌
Aq.@tj1 ; : : : ; @tjQ /

ˇ̌2i d
2Q

for almost every point q in some neighborhood of the original point p (where, once
again, the implied constant depends only on d and n). Now, by transforming the coor-
dinates .t1; : : : ; td / by matrices M 2 SL.d;R/ to produce new coordinate systems, it
follows by the same reasoning as above that
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d�

dt

ˇ̌̌
q

� C�

h dX
j1;:::;jQD1

ˇ̌̌ dX
i1;:::;iQD1

Aq.Mj1i1@ti1 ; : : : ;MjQiQ@tiQ /
ˇ̌̌2i d

2Q

for every M 2 SL.d;R/ and almost every q in a neighborhood of p (by continuity
of the right-hand side as a function of M , it suffices to consider only some countable
dense subset of SL.d;R/ so that the set on which the inequality fails is clearly null).
Taking an infimum over M gives that

d�

dt
� C�

d	A

dt

almost everywhere on the coordinate patch. Because the coordinates and patch were
arbitrary, it follows that part (2) of Theorem 1 must hold with an implicit constant
which equals a dimensional quantity (depending only on d and n) times the Oberlin
constant C� from (1) for the measure � itself.

5. Sufficiency and nontriviality

5.1. On the geometry of functions on measurable sets
This section begins with a construction generalizing the results of Theorem 1 of [13].
Roughly stated, that theorem indicated that for single-variable real polynomials of a
given degree, every measurable subset of the real line has a “core” which contains
a nontrivial fraction of the set such that the supremum of any such polynomial (or
appropriately weighted derivatives) on the core is bounded above by the average of
the polynomial on the entire set. The proof involved careful analysis of Vandermonde
determinants and has no immediate generalization to other dimensions or families of
functions. In the arguments below, an entirely different approach will be used which
is based on convex geometry and admits extensions to a variety of new contexts. In
particular, the setting of polynomials is no simpler to study than any other finite-
dimensional family of real analytic functions, which will be the preferred formulation
of the result.

Recall from Section 1 that a pair .M;F / of a real analytic manifold M of dimen-
sion d and a finite-dimensional vector space F of real analytic functions on M whose
differentials span the cotangent space at every point of M is called a geometric func-
tion system. Such a system is called compact when M is either compact or has a
compact closure in some larger real analytic manifold MC such that the functions of
F extend to functions F C on MC in such a way that .MC;F C/ is also a geometric
function system. Recall also Theorem 3.

THEOREM 3
Suppose that .M;F / is a compact geometric function system. Then for any finite
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positive measure � on M absolutely continuous with respect to Lebesgue measure
and any measurable set E �M of positive measure, there is a measurable subset
E 0 �E such that �.E 0/� �.E/ and

sup
p2E 0

ˇ̌
f .p/

ˇ̌
� 1

�.E/

Z
E

jf jd� for all f 2F :

The implicit constants in both inequalities depend only on the pair .M;F /.

Proof
For each f 2F , consider the norm

kf k WD
1

�.E/

Z
E

jf jd�:

Compactness of the geometric function system implies that kf k is finite for every
f 2F . Because each function f 2F is real-analytic and the measure of E is strictly
positive, no f 2 F aside from the zero function can have kf k D 0, which is what
guarantees that k � k is a norm rather than merely a seminorm. Assuming that the
dimension of F is k, applying Lemma 6 to the set S which is the unit ball of k � k and
using homogeneity of the norm, there must be functions f1; : : : ; fk with kfik D 1
for all i (none of the functions fi will be identically zero because the unit sphere
does not lie in any nontrivial subspace of F ) such that every f 2 F has the property
that

f D

kX
iD1

cifi

with jci j � kf k for each i . In particular, this implies that

ˇ̌
f .p/

ˇ̌
D
ˇ̌̌ kX
iD1

cifi .p/
ˇ̌̌
� kf k

kX
iD1

ˇ̌
fi .p/

ˇ̌

for each f 2 F . Let E 0 be the subset of E on which
Pk
iD1 jfi .p/j � 2k; by Cheby-

shev’s inequality,

�.E 0/� �.E/�
1

2k

Z
E

kX
iD1

ˇ̌
fi .p/

ˇ̌
d��

1

2
�.E/

and

sup
p2E 0

ˇ̌
f .p/

ˇ̌
� sup
p2E 0

h
kf k

kX
iD1

ˇ̌
fi .p/

ˇ̌i
�

2k

�.E/

Z
E

jf jd�

for all f 2F .
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The extension of the results of [13] to derivative estimates in higher dimensions is
necessarily much more subtle than the 1-dimensional case because of inherent issues
of anisotropy of differentiation in various directions. Any proper formulation will
necessarily be phrased in terms of vector fields which capture (either implicitly or
explicitly) this anisotropy. For convenience, given any vectors X1; : : : ;Xd at a point
p 2M, let �.X1 ^ � � � ^ Xd / denote the associated density of �, which is equal to
the volume of the parallelepiped generated by X1; : : : ;Xd as measured by �. In other
words,

�.X1 ^ � � � ^Xd /jp WD
d�

dt

ˇ̌̌
p
jdet Xj

where the Radon–Nikodym derivative d�=dt is with respect to Lebesgue measure in
some coordinate system .t1; : : : ; td /, and X is the matrix with entries Xij D dti .Xj /.
With this definition in place, the formulation of the differential version of Theorem 3
to be proved here is as follows.

LEMMA 7
Suppose that .M;F / is a compact geometric function system, and let N be any pos-
itive integer. Then for any finite positive measure � on M which is absolutely contin-
uous with respect to Lebesgue measure and any measurable set E �M of positive
measure, there is an open set U �M, a family of smooth vector fields ¹Xj;iºj;i with
j 2 ¹1; : : : ;N º and i 2 ¹1; : : : ; dº, and a measurable set E 0 � E \ U such that the
following are true with implicit constants depending only on the pair .M;F / and the
integer N .
� The subset E 0 �E \U satisfies �.E 0/� �.E/.
� The vector fields Xj;i satisfy infp2E 0 �.Xj;1 ^ � � � ^Xj;d /jp � �.E/ and

Xj;i D

dX
i 0D1

cj;i;i 0Xj�1;i 0 (46)

with jcj;i;i 0 j� 1 for each j 2 ¹2; : : : ;N º and each i; i 0 2 ¹1; : : : ; dº.
� For any k 2 ¹1; : : : ;N º, any indices 1 � j1 < j2 < � � � < jk � N and

i1; : : : ; ik 2 ¹1; : : : ; dº,

sup
p2E 0

ˇ̌
Xjk ;ik � � �Xj1;i1f .p/

ˇ̌
� 1

�.E/

Z
E

jf jd� (47)

uniformly for all f 2 F . Furthermore, the case corresponding to k D 0, that
is,

sup
p2E 0

ˇ̌
f .p/

ˇ̌
� 1

�.E/

Z
E

jf jd�;
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also holds uniformly for all f 2F .

Proof
By induction (the base case of which is taken to be Theorem 3), for a given measurable
set E �M of positive measure, we may assume that there exist a nested family of
open sets M DW U0 � U1 � U2 � � � � � UN�1 and vector fields ¹Xj;iº, i D 1; : : : ; d ,
defined on Uj for each j 2 ¹1; : : : ;N � 1º satisfying all the stated properties. Next,
let F0 WDF , and then take Fj to be the vector space of real analytic functions on Uj
spanned by Fj�1 and all functions of the form Xj;if for i D 1; : : : ; d and f 2Fj�1.
By construction, �.E \UN�1/� �.E/ > 0, so in particular,

kf kN�1 WD
1

�.E \UN�1/

Z
E\UN�1

jf jd�

will be a norm on FN�1. Let f1; : : : ; fk be a basis of FN�1 given by applying
Lemma 6 to the unit ball of k � kN�1, let I be the set of d -tuples ˇ WD .ˇ1; : : : ; ˇd / of
indices satisfying 1� ˇ1 < ˇ2 < � � �< ˇd � k, and let Vˇ be the open set

°
p 2UN�1

ˇ̌̌
jdfˇ1 ^ � � � ^ dfˇd jpj>

1

2
jdfˇ 0

1
^ � � � ^ dfˇ 0

d
jpj8ˇ

0 2 I n ¹ˇº
±
;

where the bars j � j indicate any nontrivial norm on d -forms at p (the precise choice
does not affect the set since any such norms must be multiples of each other because
the space is 1-dimensional). Because the cardinality of I is bounded by a constant
depending only on N and the dimensions of F and M, there is at least one ˇ such
that �.E \Vˇ /� �.E \UN�1/, where the implicit constant may simply be taken to
be .#I/�1. If we now define the vector field XN;i on the set UN WD Vˇ to equal

XN;if .p/ WD
dfˇ1 ^ � � � ^ dfˇi�1 ^ df ^ dfˇiC1 ^ � � � ^ dfˇd jp

dfˇ1 ^ � � � ^ dfˇd jp

(again, well defined because numerator and denominator belong to the same 1-
dimensional vector space), then it must be the case that

XN;if .p/D

kX
iD1

ci
dfˇ1 ^ � � � ^ dfˇi�1 ^ dfi ^ dfˇiC1 ^ � � � ^ dfˇd jp

dfˇ1 ^ � � � ^ dfˇd jp

for constants ci satisfying jci j � kf kN�1. Since the ratio is bounded above by 2 on
UN , it follows that

sup
p2UN

ˇ̌
XN;if .p/

ˇ̌
�

2k

�.E \UN�1/

Z
E\UN�1

jf jd� (48)

for all f 2FN�1. Since �.E \UN�1/� �.E/, it follows by induction that
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sup
p2UN

ˇ̌
XN;iN � � �X1;i1f .p/

ˇ̌
� 1

�.E/

Z
E

jf jd�

for all f 2 F . This establishes (47) for any set E 0 � E \ UN assuming that the top
index jk equals N . If not, then (47) follows simply by induction, provided that E 0 in
the induction step N is a subset of the corresponding E 0 from induction step N � 1.

Next observe that each vector field XN;i is locally a coordinate vector field rel-
ative to the coordinate functions .fˇ1 ; : : : ; fˇd / 2 F d

N�1 (i.e., the vector fields XN;i	
equal the coordinate partial derivatives when .fˇ1 ; : : : ; fˇd / are used as coordinate
functions) and that the average value of jfˇi j on E \ UN�1 is 1. Without loss of
generality (since the hypothesis is trivial in the base case N D 0), we may assume the
additional induction hypothesis that for each j 2 ¹1; : : : ;N �1º, the vector fieldsXj;i
are local coordinate vector fields with respect to coordinate functions .g˛1 ; : : : ; g˛n/ 2
F d
j�1. In particular, if .g˛1 ; : : : ; g˛d / are the coordinate functions for the vector fields
XN�1;i , then it follows that

XN;i D

dX
i 0D1

.XN;ig˛i0 /XN�1;i 0 :

By the derivative estimate (48), assuming N � 2,

sup
p2UN

ˇ̌
XN;ig˛i0 .p/

ˇ̌
�

2dim FN�1

�.E \UN�1/

Z
UN�1\E

jg˛i0 jd�

� 1

�.E \UN�2/

Z
E\UN�2

jg˛i0 jd�D 1;

which is exactly the bound on the coefficients cj;i;i 0 claimed for (46) when j D N .
For j < N , (46) follows analogously by virtue of the added induction hypothesis.

Lastly, the quantity �.XN;1 ^ � � � ^ XN;d / must be estimated. Observe that
�.XN;1 ^ � � � ^XN;d / is exactly the Radon–Nikodym derivative of � with respect to
Lebesgue measure in coordinates given by fˇ1 ; : : : ; fˇd . This implies thatZ

E 0

�
�.XN;1 ^ � � � ^XN;d /

��1
d�D

Z
E 0
jdfˇ1 ^ � � � ^ dfˇd j:

Because the functions are real-analytic, we know that there is a finite number M
independent of the choice of the functions fˇi such that the system fˇi .p/D ci has at
most M nondegenerate solutions (at which the Jacobian is nonzero). For polynomial
functions, this is a simple consequence of Bézout’s theorem. In our case, however,
even if the original function system F0 consists only of polynomial functions, the
definition of the Xj;i ’s leads naturally to the inclusion of certain rational functions
in Fi , at which point there is little additional difficulty in going to the more general
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context of real analytic functions. The algebraic argument is given in Section 5.3 and
for now may be safely postponed.

Assuming the existence of such an M depending only on the geometric function
system, by the change of variables formula and Fubini’s theorem,

Z
E 0
jdfˇ1 ^ � � � ^ dfˇd j �M

dY
jD1

ˇ̌
fˇi .E

0/
ˇ̌
;

where jfˇi .E
0/j refers to the 1-dimensional Lebesgue measure of the image of E 0 via

fˇi . Because the average value of fˇi on E \ UN�1 is 1, by Theorem 3 there is a
subset E 0 �E \UN with �.E 0/� �.E \UN /� �.E/ such that

sup
p2E 0

ˇ̌
fˇi .p/

ˇ̌
� 1

�.E \UN /

Z
E\UN

jfˇi jd�

� 1

�.E \UN�1/

Z
E\UN�1

jfˇi jd�

D 1

for each i , which implies that jfˇi .E
0/j � 1 for each i as well. For this set E 0, it

follows that Z
E 0

�
�.XN;1 ^ � � � ^XN;d /

��1
d�� 1:

Further restricting E 0 using Chebyshev’s inequality, we may assume that

inf
p2E 0

�.XN;1 ^ � � � ^XN;n/jp � �.E/:

This completes the proof.

5.2. Proof of part (3) of Theorem 1
We now return to the proof of part (3) of Theorem 1. The proof combines Lemma 7
with the geometric framework introduced in Section 2.2.

Suppose that M is a real analytic manifold of dimension d and that f is a
real analytic immersion of M into Rn in such a way that the component functions
f1; : : : ; fn of the immersion together with the constant function belong to some com-
pact geometric function system .M;F /. Fix any compact convex set K 2Kn, let
E WD f �1.K/, and let p0 2E . Now the integral

I.E/ WD
1

	A.E/n

Z
En

ˇ̌
det
�
f .p1/� f .p0/; : : : ; f .pn/

� f .p0/
�ˇ̌
d	A.p1/ � � �d	A.pn/
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(where 	A is the measure (13) whose pushforward (15) is the affine measure �A

on Rn) must be bounded above by nŠjKj since the integrand equals nŠ times the
volume of the simplex generated by f .p0/; : : : ; f .pn/, which has volume bounded
by jKj since each point f .pi / belongs to K and K is convex. In this case, Lemma 7
can be applied to each integral iteratively to prove a lower bound for the functional.
Specifically, the lemma is applied to the innermost integral, which is then replaced by
a supremum over some set E 0 of some derivative in the parameter p1. As a result, the
lemma establishes that

I.E/� sup
.p1;:::;pn/2.E 0/n

ˇ̌
det
�
X1;i.1;1/f .p1/^ � � �

^X�j ;i.j;1/ � � �X1;i.j;�j /
f .pj /^ � � �

^X�n;i.n;1/ � � �X1;i.n;�n/f .pn/
�ˇ̌

for any choice of indices i� for � 2 ƒd;n. Next replace the supremum over
.p1; : : : ; pn/ 2 E

0n by a supremum over p 2 E 0 assuming that p1 D � � � D pn D p.
It is also advantageous to use only vector fields X�n;i 0 rather than using any Xj;i for
j < �n. Thanks to (46) it must be the case that

det
�
X�n;i 0.1;1/

f .p/^ � � � ^X�n;i.n;1/ � � �X�n;i 0.n;�n/
f .p/

�
D
X
i

ci i 0 det
�
X1;i.1;1/f .p/^ � � � ^X�n;i.n;1/ � � �X1;i.n;�n/f .p/

�

with coefficients jci i 0 j� 1, where the sum is over all possible choices of the indices i�.
This identity holds because the change of basis formula may be simply substituted
term-by-term in the left-hand side of the equation; any terms in which the coefficients
of the change of basis happened to be differentiated by some subsequent vector field
would ultimately have determinant zero since (assuming the column in which the
derivative appears is column j ) the number of derivatives acting directly on f would
be strictly less than �j , which means that column j and all preceding columns would
be linearly dependent. Therefore, by the triangle inequality, it must be the case that

I.E/� sup
p2E 0

ˇ̌
det
�
X�n;i 0.1;1/

f .p/^ � � � ^X�n;i 0.n;1/
� � �X�n;i 0.n;�n/

f .p/
�ˇ̌

uniformly for any choice of i 0
�

. Taking an `2 norm over all such choices and invoking
the definition (5) of the density (12) gives

I.E/� sup
p2E 0

�
ıp.X�n;1; : : : ;X�n;d /

ˇ̌
p

�Q
d :
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To conclude, observe that for the measure 	A, the quantity ıp.X�n;1; : : : ;X�n;d /
exactly equals the quantity which was shown to be bounded below in Lemma 7.
Therefore,

jKj� I.E/�
�ˇ̌
ıp.X�n;1; : : : ;X�n;n/

ˇ̌
p

�Q
d �

�
	A.E/

�Q
d D

�
�A.K/

�Q
d

uniformly in K . This is exactly part (3) of Theorem 1.

5.3. Proof of part (3) of Theorem 2
The remaining result is to show that ˛ D d=Q is a nontrivial exponent in the sense
that there is always some submanifold M of dimension d in Rn for which the Oberlin
condition (1) is satisfied with exponent ˛ for some nonzero measure supported on M.
The model case to be considered here is exactly the one laid out in Theorem 2: M

is topologically a bounded open subset of Rd and the embedding f is a polynomial
embedding into Rn of the form (2). In light of the inequalities (25), the measure
�A will vanish if and only if P belongs to the nullcone of the representation (22).
Although the nullcone can be computed explicitly on a case-by-case basis, it can be
challenging to compute in a very general or abstract way as we would seek to do here.
Instead, we use the model form result, part (2) of Theorem 2, to construct a nontrivial
example for every n and d . The specific examples to be constructed are laid out in the
following lemma.

LEMMA 8
Suppose that C is a set of multi-indices of order �n in d variables such that C is closed
under cyclic permutations of the entries of the multi-indices and such that each multi-
index in C has at least two nonzero entries. Suppose further that ¹'j ºjD1;:::;d is a
uniform normalized tight frame (UNTF) on Rd0 for some d0 � d , meaning that

dX
jD1

ˇ̌
hv;'j i

ˇ̌2
D kvk2 for all v 2Rd0 and k'j k

2 D
d0

d
; j D 1; : : : ; d:

Then assuming that #C C d0 Dm, the collection of polynomials given by

�� t˛
p
˛Š

�
˛2C

;
� dX
jD1

t
�n
j
p
�nŠ
'j;k

�
kD1;:::;d0

�
; (49)

where 'j;k is the kth coordinate of 'j in the standard basis, satisfies the critical point
equations (32) for nonzero �1; �2.

Proof
For simplicity, fix � WD �n. Before beginning in earnest, note that
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h@i t
˛; @i 0 t

ˇ i��1 D ˛iˇi 0.� � 1/Š.˛ � ei /Šı˛�ei ;ˇ�ei0 (50)

where ei is the multi-index which is zero except in position i , where it equals 1 (and
note that the right-hand side of (50) is to be interpreted as zero if ˛i D 0 or ˇi 0 D 0).

To verify the first condition of (32), notice that when ` ¤ `0 and one of ` or
`0 correspond to indices of a monomial-type polynomial, every inner product in the
sum must be zero because @jp` and @jp`0 have no monomials in common and are
consequently orthogonal. If `D `0 and the polynomial p` is of monomial type, then

dX
jD1

D
@j

t˛
p
˛Š
; @j

t˛
p
˛Š

E
��1
D

dX
jD1

.� � 1/Š˛2j .˛ � ej /Š

˛Š
ı˛j>0 D �Š:

If, in the final case, both ` and `0 arise from UNTF terms, the left-hand side of the
first equality of (32) must equal

dX
jD1

1

�Š
'j;`'j;`0h@j t

�
j ; @j t

�
j i��1 D

dX
jD1

1

�Š
'j;`'j;`0.�Š/

2 D �Šı`;`0

since the 'j ’s are a normalized tight frame (NTF).
As for the second condition of (32), by (50), the polynomials p` of monomial

type have norms that equal

D
@j

t˛
p
˛Š
; @j 0

t˛
p
˛Š

E
��1
D .� � 1/Š˛Šıj;j 0ı˛j>0:

Summing over all monomial-type polynomials gives a matrix (as a function of i and
i 0) which is a multiple of the identity: simply by symmetry, any monomial appearing
in the sum also appears with all its cyclic permutations, so all diagonal entries must
be equal. As for the terms of the sum which arise from UNTF polynomials,

D
@j

dX
iD1

t�ip
�Š
'i;k; @j 0

dX
iD1

t�ip
�Š
'i;k

E
��1
D
j'j;kj

2

�Š
ıj;j 0kt

�
j k
2
� D �Šıj;j 0 j'j;kj

2;

which again sums to a multiple of the identity since, after the sum, the j th diagonal
entry equals k'j k2.

Proof of part (3) of Theorem 2
By Lemma 8, to establish the existence of a well-curved d -dimensional submanifold
of Rn, it suffices to establish that there is a collection of the form (49) with #CCd0 D

m, where m is the relative codimension. Real UNTFs are guaranteed to exist for any
d0 � d (see [11] for existence; a general algorithm based on Theorem 7 of [21] which
can convert an NTF to a UNTF is also known; see [18]). Thus it suffices to establish
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the existence of a suitable collection C of monomials such that m � #C � d (note
that the case d0 D 0 is explicitly allowed; omitting any UNTF terms in Lemma 8 still
solves the critical point equations (32)).

Let S be the set of cardinalities #C for any set of multi-indices of order � which
is closed under cyclic permutations and containing only monomials with at least
two nonzero entries. The smallest element of S is of course zero, and the largest is
dim PP �

d
� d , which corresponds to C being all monomials with at least two nonzero

entries. The size of any gap (i.e., the difference between consecutive values in S ) must
be strictly less than d for the simple reason that no equivalence class of monomials
modulo cyclic permutation has cardinality greater than d . In other words, if any non-
pure power polynomials happen not already to belong to the collection C , including
any such monomial together with its cyclic permutations (which is a total of d or
fewer new monomials) will again make a larger admissible set. Since the gaps in S
are of size strictly less than d and since d0 can be chosen as desired in ¹1; : : : ; dº,
for any d and n there must be a collection C and UNTF ¹'j ºjD1;:::;d0 to which
Lemma 8 applies. Consequently, the associated f given by (2) must be well curved
and have affine measure �A which equals a nonzero constant times the pushforward
of Lebesgue measure via the embedding f .

Appendix: Uniform bounds on the number of solutions of real analytic systems
of equations
We finish with a brief discussion of the problem of uniformly bounding the number of
nondegenerate solutions to any system of equations that arises in a geometric function
system. The precise statement that is needed is the following.

LEMMA 9
For arbitrary positive integers d and n (no longer retaining their previous defini-
tions), when f1; : : : ; fd are real analytic functions on a neighborhood of the unit
cube Œ0; 1�n, then any system of equations�

ˆ1.x/; : : : ;ˆn.x/
�
D .y1; : : : ; yn/

must have bounded nondegenerate multiplicity when the functions ˆi are rational
functions of the fi ’s and finitely many derivatives of each fi . Here bounded nonde-
generate multiplicity is defined to mean that the number of solutions in Œ0; 1�n at which
the Jacobian determinant of the system is nonzero is bounded above by a constant that
depends only on the functions fi and the complexity of the system, that is, the degrees
of the numerators and denominators and the order of the highest derivative of an fi .

Proof
To see why this lemma must be true, let S be the Cartesian product of ¹1; : : : ; dº with
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the set of multi-indices ˛ WD .˛1; : : : ; ˛n/ such that j˛j WD ˛1 C � � � C ˛n � N . For
any ˇ which is a multi-index on S (i.e., a map from S into nonnegative integers), we
define sˇ WD

Q
.j;˛/2S .sj;˛/

ˇj;˛ for every s 2 RS in analogy with the usual notation.
Lastly, define P to be the Cartesian product of ¹1; : : : ; nº and multi-indices ˇ of size
at most N on the set S . We can then define a mapping F from Œ0; 1�n 	Rn 	RP 	

RP 	RS into Rn 	Rn 	RP 	RP 	RS by means of the formula

F.x;y;p; q; s/

WD
�� X
.1;ˇ/2P

.p1;ˇ � y1q1;ˇ /s
ˇ ; : : : ;

X
.n;ˇ/2P

.pn;ˇ � ynqn;ˇ /s
ˇ
�
; y;p; q;

®
sj;˛ � @

˛fj .x/
¯
.j;˛/2S

�
:

For a given triple .y0; p0; q0/ 2Rn 	RP 	RP and any positive scalar C , nondegen-
erate solutions of the systemP

jˇ j�N .p0/j;ˇ
Q
.j 0;˛/2S .@

˛fj 0.x//
ˇj 0;˛P

jˇ j�N .q0/j;ˇ
Q
.j 0;˛/2S .@

˛fj 0.x//
ˇj 0;˛

D .y0/j ; j D 1; : : : ; n; (51)

will also be nondegenerate solutions of the system

F.x;y;p; q; s/D
�
0;
1

C
y0;

1

C 2
p0;

1

C
q0; 0

�
:

Choosing C so that the right-hand side always belongs to a fixed neighborhood
of the origin with compact closure, we may use the fact that F is itself real-
analytic in all parameters and so the number of connected components of the fiber
F �1.0; y0=C;p0=C

2; q0=C;0/ is bounded uniformly in y0; p0, and q0 (which holds,
in fact, for any analytic-geometric category in the sense of van den Dries and Miller
[34]), which gives exactly the desired property that there is also a uniform bound
on the number of isolated solutions of (51). If the functions fj are all polynomial,
Bézout’s theorem gives a similar global bound on the number of nondegenerate solu-
tions, that is, for all nondegenerate solutions x 2Rn rather than simply Œ0; 1�n.
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