
Discerning Edge Influence for Network Embedding
Yaojing Wang

State Key Laboratory for Novel
Software Technology, Nanjing

University, China
wyj@smail.nju.edu.cn

Yuan Yao
State Key Laboratory for Novel
Software Technology, Nanjing

University, China
y.yao@nju.edu.cn

Hanghang Tong*

University of Illinois at
Urbana-Champaign, United States

htong@illinois.edu

Feng Xu
State Key Laboratory for Novel
Software Technology, Nanjing

University, China
xf@nju.edu.cn

Jian Lu
State Key Laboratory for Novel
Software Technology, Nanjing

University, China
lj@nju.edu.cn

ABSTRACT
Network embedding, which learns the low-dimensional represen-
tations of nodes, has gained significant research attention. Despite
its superior empirical success, often measured by the prediction
performance of downstream tasks (e.g., multi-label classification),
it is unclear why a given embedding algorithm outputs the specific
node representations, and how the resulting node representations
relate to the structure of the input network. In this paper, we propose
to discern the edge influence as the first step towards understand-
ing skip-gram basd network embedding methods. For this purpose,
we propose an auditing framework NEAR, whose key part includes
two algorithms (NEAR-ADD and NEAR-DEL) to effectively and effi-
ciently quantify the influence of each edge. Based on the algorithms,
we further identify high-influential edges by exploiting the linkage
between edge influence and the network structure. Experimental
results demonstrate that the proposed algorithms (NEAR-ADD and
NEAR-DEL) are significantly faster (up to 2, 000×) than straight-
forward methods with little quality loss. Moreover, the proposed
framework can efficiently identify the most influential edges for
network embedding in the context of downstream prediction task
and adversarial attacking.

CCS CONCEPTS
• Mathematics of computing→ Graph algorithms; Approxima-
tion algorithms; • Theory of computation→ Dynamic graph al-
gorithms; • Networks→ Topology analysis and generation.

KEYWORDS
Network Embedding, Edge Influence, Network Topological Proper-
ties

*This work was partly done when the author was at Arizona State University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3358044

ACM Reference Format:
Yaojing Wang, Yuan Yao, Hanghang Tong, Feng Xu, and Jian Lu. 2019.
Discerning Edge Influence for Network Embedding. In The 28th ACM Inter-
national Conference on Information and Knowledge Management (CIKM

’19), November 3–7, 2019, Beijing, China. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3357384.3358044

1 INTRODUCTION
Network embedding, which learns the low-dimensional representa-
tions of nodes, has gained significant research attention due to its
strong empirical performance and wide applicability. The learned
node representations have been successfully applied in a variety of
downstream tasks including node classification [37], node cluster-
ing [46], link prediction [18], and visualization [42].

To date, many network embedding methods have been proposed.
The basic idea of existing work is to first construct the context struc-
ture for each node and then design an appropriate objective function
to preserve this structure. For example, the classic DeepWalk [37]
uses truncated random walk to construct the context and applies
the skip-gram model [31] to learn the node representations. Many
sophisticated extensions have also been proposed including whether
to preserve community structure, whether to incorporate node at-
tributes, and whether to use supervision information (see the related
work section for a review). Generally speaking, the existing work
focuses on what kind of node representations can better improve the
performance of the downstream prediction tasks (e.g., multi-label
classification and link prediction). However, it is unclear why a given
embedding algorithm outputs the specific node representations, and
how the resulting node representations relate to the structure of the
input network.

In this paper, instead of developing a new network embedding
method, we propose a network embedding auditing framework
(NEAR) to discern the edge influence, which serves as the first step to-
wards understanding skip-gram based network embedding methods.
Specially, we propose two algorithms (NEAR-DEL and NEAR-ADD)
which can effectively and efficiently quantify the influence of a few
edges on the learned embeddings1, when edges are deleted or added,
respectively. These algorithms can be used to efficiently quantify the
edge influence and update the node embeddings when directly re-
training is computationally too expensive. Furthermore, we propose

1We interchangeably use ‘node representations’ and ‘embeddings’ in this paper.

https://doi.org/10.1145/3357384.3358044
https://doi.org/10.1145/3357384.3358044

1

32

E1. Original Embedding

1

32

32

32

1

1

E2. Retrained Embedding E3. Updated Embedding
by Near-del

E0. Original ZKC’s Network

Deleted

Figure 1: E0, deleting the edge between node 1 and node 32 in
the Zachary’s karate club social network. The nodes are col-
ored according to their communities in the network. E1, two-
dimensional visualization of node representations learned by
the skip-gram model. E2, node representations learned by re-
training the skip-gram model after the edge is deleted. E3, node
representations learned by the proposal NEAR-DEL. The pro-
posed method leads to similar node representations compared
to the retraining method, while it is 10 times faster.

to exploit the linkage between the edge influence and key network
topological properties, and use such linkage/correlations to identify
the high-influential edges.

An illustrative example is shown in Fig. 1 where we use the
famous Zachary’s karate club network as the input. In this example,
we first apply a skip-gram model on the network to learn the node
embeddings (E1 of Fig. 1). Suppose that we are interested in the
influence of the edge between node 1 and node 32. Intuitively, if we
delete this edge, the learned embeddings of the two terminal nodes
would drift apart from each other. A straightforward way to verify
this is to retrain the network embedding model on the new network
(the result is in E2 of Fig. 1). Alternatively, we can directly apply the
proposed NEAR-DEL on the original embeddings and approximately
obtain the updated embeddings (E3 of Fig. 1). As we can see in the
example, for both the retraining method and the proposed NEAR-
DEL, the learned embeddings of node 1 and node 32 drift apart from
each other as compared to E1. Moreover, the learned embeddings
of NEAR-DEL are similar to those of the retraining method. For
instance, the embeddings of node 1 move from a central place to a
peripheral place. Meanwhile, the proposed method is 10 times faster
in terms of training time than the retraining method.

In experiments, we first evaluate the effectiveness and efficiency
of the proposed algorithms (NEAR-ADD and NEAR-DEL) on two
benchmark datasets. The results show that when the network changes,

compared to the retraining method which retrains the network em-
bedding model to obtain the updated node representations, the pro-
posed methods are significantly faster (up to 2, 000× speedup) with
little quality loss. Furthermore, we evaluate the effectiveness of the
proposed auditing framework in terms of identifying the most in-
fluential edges in the context of downstream prediction task and
adversarial attacking. The results demonstrate that the proposed
method is indeed helpful to better understand the embedding re-
sults via effectively identifying influential edges in close relation to
important network topological properties. For example, by consid-
ering edges with certain topological properties (e.g., node degrees
and structural holes [3]), we find that even a single structural hole
edge has a significant impact on the learned node embeddings. This
will not only lead to an efficient pruning strategy for identifying
high-influential edges, but also shed critical light to understand the
key driving factor of a network embedding algorithm as well as de-
sign effective attacking and defending algorithms in the adversarial
setting.

The main contributions of this paper include:

• We propose to discern the influence of edges as the first step
towards understanding network embedding. We propose a net-
work embedding auditing framework with two specific algo-
rithms, which efficiently computes the influence of different
edges and links edge influence with key network topological
properties to identify high-influential edges.
• We conduct experimental evaluations on real datasets show-

ing the effectiveness and efficiency of the proposed audit-
ing framework NEAR. Specially, we demonstrate that the
proposed algorithms NEAR-ADD and NEAR-DEL are signif-
icantly faster with little quality loss, and that the proposed
framework can identify high-influential edges for the multi-
label classification task and the adversarial attacking task.

The rest of the paper is organized as follows. Section 2 presents
the problem statement, and Section 3 describes the proposed auditing
framework. Section 4 shows the experimental results. Section 5
reviews related work, and Section 6 concludes.

2 PROBLEM STATEMENT
Before describing the auditing framework, we first introduce the
problem statement. In this work, we focus on auditing the network
embedding methods built upon the skip-gram model. Examples that
adopt this model include [8, 14, 18, 35, 37, 39, 55].

Preliminary: Skip-gram Model based Network Embedding.
Consider a network G = (V ,E), where V is the set of nodes and E
is the set of edges. The skip-gram model with negative sampling
typically optimizes the following objective function [18, 37],

max
Θ

∑
(u,v)∈E′

logσ (θTu · θv) + k · Ev ′∼P [logσ (−θ
T
u · θv ′)], (1)

where E ′ is the edge set of the context network constructed from
the original network, σ (x) = 1/(1 + exp(−x)), k is the negative
sampling rate, and P is the negative sampling distribution. Note that
the context of a node can be generated by applying various random
walks on the original network. The goal of the above equation is to
learn a d-dimensional representation θv ∈ R

d for each node v. We
use a |V | × d matrix Θ to denote the representations of all nodes.

Network Embedding Auditing Problem. In this work, we are
interested in efficiently identifying the edges that have a relatively
large influence on the learned embeddings. Given the input network
G and the current learned embeddings Θ̂, we aim to (1) quantify the
influence of a small change ∆G of the network structure, and (2)
identify the high-influential edges.

We use Θ̂′ to denote the updated embeddings. Once we efficiently
obtain the new embeddings Θ̂′, we use it to quantify the influence of
∆G, i.e., to what extent ∆G affects the embedding results. Although
we can simply retrain the network embedding model to obtain its
influence when the network changes, such a straightforward method
would be time-consuming especially when the network is large.
Furthermore, even if we could efficiently measure the edge influence,
finding the most influential edges could still be time-consuming if
we have to compute the influence over every edge of the input
network. To this end, we propose to exploit the linkage between
edge influence and key network topological properties, and use such
structural properties as the indicators to identify high-influential
edges.

3 THE AUDITING FRAMEWORK
In this section, we present the proposed network embedding auditing
framework NEAR. We start with quantifying the edge influence, and
then discuss how to identify high-influential edges.

3.1 Quantifying Edge Influence
We first present how to quantify the influence of each edge. The
key intuition behind the proposed NEAR is based on the observation
that the skip-gram model can be naturally decomposed into a set
of subproblems over each edge. Take the model in Eq. (1) as an
example. Given a network G = (V ,E), let us start by assuming
E ′ = E and defining its edges as e1, e2, ..., e |E | . In this case, the
objective function in Eq. (1) can be rewritten as

Θ̂ = argmaxΘ
1
|E |

|E |∑
i=1
J(ei ,Θ), (2)

which can be decomposed into subproblems J(e,Θ) on each edge
e = (u,v), with J(e,Θ) = logσ (θTu ·θv)+k ·Ev ′∼P [logσ (−θTu ·θv ′)].

Based on Eq. (2), we can compute the influence of adding or
deleting a few certain edges. For example, when slightly perturbing
the weight of a certain edge e with some small ϵ (ϵ can be both
positive and negative values), we have the following objective,

Θ̂ϵ,e=argmaxΘ
1
|E |

|E |∑
i=1
J(ei ,Θ) + ϵJ(e,Θ). (3)

Adding/deleting multiple edges can be seen as adding/deleting the
edges one by one. In order to obtain Θ̂ϵ,e based on Θ̂, we resort to
the influence functions [25]. Specially, we obtain the influence I(e),
which determines the difference between Θ̂ϵ,e and Θ̂, of perturbing
edge e as

I(e)
def
=

dΘ̂ϵ,e

dϵ

���
ϵ=0
= −H−1

Θ̂
∇ΘJ(e, Θ̂), (4)

Algorithm 1 The HVP4NE algorithm

Input: network G = (V ,E), embedding Θ̂, edge e, vector д
Output: estimated influence -H−1д

1: list = []
2: for i = 1→ r do
3: define H−10 = I
4: for j = 1→ l do
5: es ← EdgeSample(E, e)
6: H−1j д← д + (I − ∇2ΘJ(es , Θ̂))H

−1
j−1д

7: end for
8: list[i] = H−1t д
9: end for

10: return −Average(list)

where HΘ̂=
1
|E |

∑ |E |
i=1 ∇

2
ΘJ(ei , Θ̂) is the Hessian matrix2. Notice that

both HΘ̂ and J(e, Θ̂) are computed based on the current learned
node embeddings Θ̂.
Scale up the Computation. Directly computing the edge influence
based on Eq. (4) is computationally expensive. Here, we provide
an approximate algorithm to compute H−1

Θ̂
∇ΘJ(e, Θ̂) in Eq. (4).

Specially, we apply Hessian-vector products (HVPs) [2, 36] to ef-
ficiently approximate H−1

Θ̂
д where д = ∇ΘJ(e, Θ̂), ∇2ΘJ(es , Θ̂)h,

and h = H−1j−1д are all vectors. Here, the subtle point of HVPs is that
we actually do not need to compute the multiplication step between
matrix and vector, but rather treat the H−1j д as one vector, and then
update this vector over iterations. In detail, when computing the
HVPs between H−1 and vector д, we first define H−10 д ← д and
recursively compute H−1j д← д+ (I −∇2ΘJ(es , Θ̂))H

−1
j−1д to approx-

imate H−1д, where es is a sampled edge. By doing so, we do not
need to compute the products of H−1j д but only need to treat it as a
vector and update it over iterations. As for the sampling of edge es ,
we sample the edges having a common node with edge e. In other
words, we consider the influence of perturbing edge e in the local
neighborhood of edge e.

The algorithm of HVPs computation for network embedding is
summarized in Alg. 1. In the algorithm, we first iterate r times and
return the average influence to reduce noise (Line 2 and Line 10). In
each iteration, we compute the H−1д. We pick l to be large enough
such that H−1д stabilizes (Line 4). The key steps of the algorithm
are Line 5 and Line 6 which update H−1д. In Line 5, we sample
the edge es in the local neighborhood of edge e. Therefore, instead
of updating all the d × |V | parameters, we only need to update the
learned embeddings of the nodes related to edge es . In Line 6, we
directly update H−1j д without computing the products. The overall
time complexity of Alg. 1 is summarized in the following lemma,
which can be further reduced to O(d) if the number of iterations r
and the number of sampled edges l are small constants. This is much
more efficient than directly computing Eq. (4).

LEMMA 1. Time complexity of HVP4NE. Alg. 1 requiresO(rld)
time to estimate the Hessian-vector product H−1д.

2When deleting edges, we make sure that the network is still connected so that the
Hessian matrix is not singular.

Algorithm 2 The NEAR-DEL algorithm

Input: network G = (V ,E), original embedding Θ̂, edge e
Output: new embedding Θ̂−e

1: д← ∇Θ̂J(e, Θ̂)

2: I(e) ← HVP4NE(G,д, e, Θ̂)

3: Θ̂−e ← Θ̂ −
1
|E |
I(e)

4: return Θ̂−e

PROOF. Omitted for brevity. □
Remarks. Alternatively, we can directly compute the gradients of

the added/deleted edges and then update the related node embed-
dings accordingly. However, as will shown in our experiments, we
found that updating the node embeddings in such a stochastic way
would lead to much less accurate results. Additionally, note that in
the above solution for quantifying edge influence, we assume that
E ′ = E, i.e., the context network equals to the original network. We
can also extend the solution for more general context networks such
as those generated by truncated random walks. We will leave such
extensions as future work.

NEAR-DEL: Deleting Edges. Next, we present the proposed
NEAR-DEL algorithm to deal with the case when edges are deleted
in the network. This would help characterize the importance of
different edges.

Formally, we use Θ̂−e − Θ̂ to denote the influence (or embedding
differences) of removing an edge e = (u,v). By setting ϵ = − 1

|E | in
Eq. (3), and substituting the skip-gram model in Eq. (1) into it, we
approximate the influence as follows,

Θ̂−e − Θ̂ ≈ −
1
|E |
I(e) =

1
|E |

H−1
Θ̂
∇Θ(logσ (θ̂Tu · θ̂v)

+ k · Ev ′∼P [logσ (−θ̂Tu · θ̂v ′)]).

Based on the above equation, deleting multiple edges can be
handled by iteratively deleting one edge each time. For example,
we use Θ̂−Es − Θ̂ to denote the influence of removing a set Es of
m edges, where Es = {es1 , ..., esm } contains the edges to delete. By
defining

Θ̂ϵ,−Es=argminΘ
1
|E |

|E |∑
i=1
J(ei ,Θ) +

m∑
i=1

ϵiJ(esi ,Θ), (5)

and setting ϵi = −
1
|E | for i ∈ {1, ...,m}, we can have the following

approximation.

Θ̂−Es − Θ̂ ≈
1
|E |

m∑
i=1

H−1
Θ̂
∇ΘJ(esi , Θ̂). (6)

Remarks. The proposed algorithm can also be used for the case of
deleting nodes. For example, when deleting a node, we can treat it as
deleting all the edges that connect to this node. Therefore, we only
present the algorithm for deleting a single edge e in Alg. 2, and the
algorithms for deleting nodes and multiple edges can be obtained
in a similar way. In the algorithm, a key step is to invoke Alg. 1 to
obtain the influence.

NEAR-ADD: Adding Edges. Next, we present NEAR-ADD which
can estimate the learned embeddings when some new edges are in-
serted into the network. NEAR-ADD can be used to incrementally

update the existing network embedding model when the network
dynamically grows.

Suppose we are going to add an edge ẽ = (u,v) < E, and the
learned embeddings of G̃ = (Ṽ , Ẽ) is Θ̂+ẽ , where Ẽ = E ∪ {ẽ} and
Ṽ = V ∪ {u,v}. The basic idea is to first assume that the original
objective function in Eq. (2) contains edge ẽ with weight 0, and then
tune the weight from 0 to 1 by setting ϵ = 1

|E | . The remaining steps
are similar to the case of deleting edges, and we omit the detailed
algorithms and equations for brevity.

Algorithm Analysis. Next, we analyze the proposed algorithms
in terms of both effectiveness and efficiency.

A - Approximation Error analysis. We first analyze the effec-
tiveness of NEAR-DEL and NEAR-ADD. As stated in the following
lemma, there are two possible places where we could introduce the
approximation error: one is from the approximation of the parame-
ter change when edges are removed/inserted, and the other is from
HVPs computation in Alg. 1.

LEMMA 2. Effectiveness of NEAR-DEL and NEAR-ADD.
Let Θ∗ϵ,e be the parameters learned by retraining the network em-
bedding model after we tune edge e. We have that Θ̂ϵ,e = Θ∗ϵ,e if
ϵ → 0 in Eq. (3), and it samples all possible edges with iteration
number t →∞ in Alg. 1.

PROOF. Omitted for brevity. □
The above lemma means that when ϵ is sufficiently small (or when

the network size |E| is sufficiently large), and the iteration number t
and sampled edge number l are sufficiently large, our approach will
produce nearly the same embeddings as the retraining method.

B - Complexity analysis. The time complexity of NEAR-DEL and
NEAR-ADD is summarized in the following lemma. It states that the
proposed algorithms scale linearly w.r.t. the network size (i.e., the
node number) when deleting/adding edges.

LEMMA 3. Time complexity of NEAR-DEL and NEAR-ADD.
When m edges are deleted or added, Near-del/Near-add requires
O(md |V |) time to generate the updated embeddings.

PROOF. Omitted for brevity. □

3.2 Identifying High-influential Edges
Although the proposed algorithms in the previous subsection can
efficiently quantify the influence of each edge with an O(md |V |)
time complexity, identifying the most influential edges for network
embedding could still be time-consuming when the network is large.
This is because the overall time complexity would be O(md |V | |E |)
(|V | and |E | being numbers of nodes and edges of the input network),
if we have to compute influence for every edge of the input net-
work. In this subsection, we exploit the correlation between network
topological properties and edge influence to design efficient filtering
method. Specially, we study the edge properties that are related to
node degree, PageRank value, structural hole, and triadic formation.
In addition to speeding-up the computation, the correlation/linkage
between network topology and edge influence can also help answer
key questions to better understand the network embedding, e.g., what
kinds of network topology make or break a network embedding al-
gorithm (explainability)? how can we design effective attacking and
defending algorithms for network embedding (adversarial mining)?

For completeness, we briefly explain how to compute these topo-
logical properties. The first property of node degree (which means
how many edges are connected to the node) is relatively straightfor-
ward to understand. We compute two features related to the node
degree for an edge e = (u,v), i.e., f1 = du + dv , f2 = |du − dv |,
where du and dv are the degrees of node u and v, respectively. Here,
f1 reflects the overall degree related to the edge, and f2 reflects the
balance level of the two terminal nodes. For example, an edge with
both large f1 and f2 means that this edge connects to a high-degree
node and a low-degree node.

The second property PageRank ranks the importance of each
node in a network. We use PRu to indicate the PageRank value of
node u. Similar to the first property, we define f3 = PRu + PRv and
f4 = |PRu − PRv | for edge e = (u,v).

As to the third property, a structural hole edge/node indicates that
the edge/node serves as a mediator (to some extent) among two or
more closely connected sub-networks. Following [3], we use the
effective size ESu to evaluate the strength of structural hole for each
node u. Then, for each edge e = (u,v), we compute its structural
hole features as f5 = ESu + ESv and f6 = |ESu − ESv |.

For the fourth property, we study the triadic formation of edges.
The triadic formation value TFe for edge e = (u,v) is defined as the
number of closed triads that the edge belongs to, and a larger TF
indicates that the edge is strongly clustered in the neighborhood. We
directly use f7 = TFe as the feature.

With the above topological properties computed, we correlate
them with the corresponding edge influence, and build a filtering
pipeline for efficiently identifying high-influential edges. To effi-
ciently compute the correlation, we sample a subset of edges for
each property/feature before computing the edge influence. Take
node degree feature f1 as an example. We randomly select 100 edges,
and then compute the Spearman correlation between the f1 values
and the corresponding edge influence. We found that the node degree
(f1 and f2) and the structural hole (f5) are two significant positive
indicators. Here, both f1 and f2 are positively correlated to edge
influence, meaning that an edge connecting to a high-degree node
and a low-degree node would be more influential than an edge con-
necting to two high-degree nodes. The readers may refer to Table 2
in the next section for detailed correlation results.

To build a filtering pipeline for identifying high-influential edges,
we first filter out most (potentially) low-influential edges based on
the node degree properties (i.e., f1 and f2, which can be computed
very fast), and then compute the structural hole property for the
remaining edges. In detail, if we aim to select K most influential
edges, we first compute f1 and f2 for each edge, and select 5K edges
with the highest f1 and f2 values. Next, we compute the f5 value for
these 5K edges and return the top K of them.

4 EXPERIMENTAL EVALUATIONS
In this section, we present the experimental results.

4.1 Experimental Setup
Datasets. We use two widely-used datasets in network embedding
research: PPI and BlogCatalog [18]. PPI is a sub-graph of the Protein-
Protein Interaction network for Homo Sapiens. The labels stand
for biological states, and each protein may have multiple states.

Table 1: Statistics of datasets.

Dataset # of vertex # of edges # of labels
PPI 3,890 76,584 50

BlogCatalog 10,312 333,983 39

BlogCatalog is a network of social relationships among the bloggers.
The labels represent topic categories, and each blogger may have
multiple topic categories. Both datasets are publicly available, and
the statistics of the datasets are shown in Table 1.

Effectiveness Evaluation Protocol for Quantifying Edge Influ-
ence. To verify the effectiveness of the proposed auditing method
for quantifying edge influence, we use edge deletion as the eval-
uation scenario. Specially, we consider two aspects to verify the
effectiveness. The first aspect is about the accuracy of the updated
embeddings compared to the retraining method. That is, we first
randomly select an edge and delete it in the original network, and
use NEAR-DEL to learn the new embeddings Θ̂C . We also use the
retraining method which retrains the network embedding model
on the new network to obtain the embeddings Θ̂B . The accuracy is
defined over the similarity between Θ̂C and Θ̂B . Ideally, Θ̂C should
be the same with Θ̂B . However, due to the non-convex nature of the
problem and the stochastic nature in both the network embedding
model and the proposed algorithms, the learned embeddings of two
repetitive training processes may deviate from each other. Therefore,
we do not directly compare the absolute embedding differences be-
tween Θ̂B and Θ̂C . Instead, inspired by the kernel method in SVM,
we define a metric called Relative Node Distance (RND) to measure
their relative distance compared to the original embedding Θ̂A.

Take Fig. 2 as an example. We assume that we are interested in
whether the representation update is accurate for node y. Instead of
directly measuring the distance between the two embeddings of node
y, we compare the relative position of node y in the spaces of Θ̂B
and Θ̂C . Specially, we first normalize the learned embeddings, and
then calculate three distance values (i.e., dx,y,A, dx,y,B , and dx,y,C
in Fig. 2) between node y and a randomly selected landmark node
x in the embeddings learned from the original network, from the
retraining method, and from the proposed NEAR-DEL, respectively.
Ideally, the three values should satisfy dx,y,A > dx,y,B ≈ dx,y,C or
dx,y,A < dx,y,B ≈ dx,y,C . Therefore, we use Γy to denote the RND
measurement for the target node y with landmark node x , which is
defined as

Γx,y =

����dx,y,B − dx,y,Cdx,y,A − dx,y,C

���� ,
Γy =

1
L

L∑
x=1

Γx,y , (7)

where we compute the average Γx,y value over L landmark nodes. In
this work, we randomly select 100 landmark nodes for each target
node (i.e., L = 100). Smaller RND value indicates better quality of
the proposed method, meaning that the distance between Θ̂C and
Θ̂B is relatively smaller than that between Θ̂C and Θ̂A.

The second aspect to verify the effectiveness is to use the embed-
dings in the downstream prediction tasks. In this work, we study the

y y

y

x x
x

A B C

Figure 2: An illustration of the Relative Node Distance measurement. A, node embeddings learned on original network. B, node
embeddings learned by the retraining method. C, node embeddings learned by NEAR-DEL.

multi-label classification task. That is, we first calculate the Micro-
F1 and Macro-F1 scores of accurately classifying the nodes based
on the two embeddings of Θ̂B and Θ̂C , and then compute the abso-
lute differences between the scores. To reduce noise, we repeat the
multi-label classification 10 times and return the averaged results of
Micro-F1 and Macro-F1 scores. Further, we repeat the above process
100 times by randomly deleting 100 different edges (deleting one
edge each time)3. Then, we report the mean absolute error (MAE)
as well as its standard deviation over the deleted edges as the fi-
nal results. In this experiment, we will also compare the proposed
method with a baseline that updates the node embeddings by directly
computing the gradients of the deleted edges.

For the second aspect, we also verify the proposed extension
for more general context networks. We take p = 2 in Eq. (??) as
an example, and use the updated embeddings in the multi-label
classification task. In this experiment, we delete/add one edge in
the original network, and sample q edges based on NEAR in the
difference of the context network. Note that the q edges are sampled
based on the filter pipeline described in Subsection 3.2. We set q=10,
20, 30, 40, and 50. Similarly, we repeat the experiments 10 times
and report the averaged MAE results of the prediction differences
between the retrained embeddings (Θ̂B) and the updated embeddings
(Θ̂C).

Effectiveness Evaluation Protocol for Identifying High-influential
Edges. Here, we check if our method can identify more influential
edges than the baselines in the context of both multi-label classifica-
tion and adversarial attacking.

For the multi-prediction task, we check if the downstream pre-
diction performance of the learned embeddings can be significantly
affected by deleting the identified edges by NEAR. For this pur-
pose, we select 1, 10, and 20 edges returned by the proposed audit-
ing framework, and randomly select the corresponding numbers of
edges for comparison (the latter one is denoted as ‘random method’).
We compute the differences of Micro-F1 and Macro-F1 scores on
the multi-label classification task before and after these edges are
deleted. We repeat this process 50 times and report the average
differences of Micro-F1 and Macro-F1 scores to see the effect of
these deleted edges. We also test the significance of the differences
between the results returned by NEAR and the random method using
paired t-test.

3Choosing more edges would be too time-consuming for the retraining method.

For the adversarial attacking task, we conduct a vulnerability
analysis by poisoning the training data. Specially, the attacking
goal is to change a target node’s prediction by manipulating this
node (i.e., adding a few edges). Suppose Θ̂ contains the embeddings
learned from the original networkG, and Θ̂′ contains the embeddings
learned from the network G + ∆G, where ∆G contains the edges we
aim to add. Defining f (Θ̂) and f (Θ̂′) as the prediction results of the
corresponding embeddings, the attacking goal is to maximize the
following objective function,

h(f (Θ̂), f (Θ̂′))

s .t . |∆G | ≤ K , (8)

where h is the function that measures the difference between the
two predictions, and we constrain that there could be at most K
edges to be added. We use the multi-label classification task for
the f function. For the h function, we define two metrics related to
attacking ability (i.e., AA and CAA) as follows.

The first metric is AA, which is defined as the ratio between the
number of misclassified labels and the number of correct labels,

AA = 1 −
|Cc ∩Cm |

|Cc |
, (9)

where Cc contains the correctly classified classes by the original
embeddings and Cm contains the predicted classes after manipula-
tion. We also define the second h function CAA, which measures the
ability to modify any predicted classes compared with the original
ones.

CAA =

{
1, Cc , Cm ;
0, otherwise .

(10)

Basically, these metrics measure the ability to mislead the predic-
tions, and larger AA and CAA mean better attacking ability.

Efficiency Evaluation Protocol. For efficiency, we record and com-
pare the wall-clock time of NEAR-DEL and the retraining method.
All the methods are run on the same machine with 64G memory and
4 CPU cores (at 4.0GHZ using 8 threads). For the parameters of the
proposed algorithms, we set l = 1, 000 and r = 10 in Alg. 1.

4.2 Effectiveness Results
(A) Relative Node Distance Measurement for NEAR-DEL. We first
present the Relative Node Distance (RND) results of the proposed
algorithm NEAR-DEL in terms of updating the node embeddings. We
randomly delete one edge each time, and then repeat this process 100

Figure 3: Relative node distance measurement on the node em-
beddings. NEAR-DEL can accurately update the node represen-
tations.

(a) Deleting multiple edges on PPI (b) Deleting multiple edges on BlogCat-
alog

Figure 4: The effectiveness results of deleting multiple edges.
The proposed method has little quality loss compared to the re-
training method.

times to obtain 100 different RND values. For each RND value, we
compute it 100 times and report the average result. The result on the
PPI data with embedding dimension 128 is shown in Fig. 3. Similar
results are observed on the BlogCatalog data, and are omitted for
brevity. RND = 1 is a reference line where we do not update the
embeddings at all. As we can see from the figure, the median RND
value is around 0.4 and almost all the RND values are between 0 and
0.7, which means that the distance between the embedding updated
by NEAR-DEL and the retrained embedding is relatively smaller
than the distance between the embedding updated by NEAR-DEL

and the original embedding. In other words, NEAR-DEL is accurate
in terms of updating the embedding results from the original place
to the retrained place.

(B) Downstream Prediction Task Measurement for NEAR-DEL.
Next, we measure the effectiveness of the proposed algorithm NEAR-
DEL based on the performance on the downstream prediction task.
The MAE results of the prediction differences between the retrained
embeddings (Θ̂B) and the updated embeddings (Θ̂C) are shown in
Fig. 4. We fix the percentage of training data to 50%, and report
the average results of 100 experiments. The x-axis of the figure
indicates the number of edges to delete each time, and the y-axis is
MAE. We can observe that as the number of deleted edges increases,
the MAE values also increase. This is consistent with our error
analysis as the approximation error might be accumulated over time.
Nonetheless, even with 20 edges deleted, the relative error is smaller
than 1% on both datasets (0.18%-0.96% on PPI and 0.19%-0.74%
on BlogCatalog).

(a) Micro-F1 score

(b) Macro-F1 score

Figure 5: The effectiveness comparisons of NEAR-DEL and
baseline methods on deleting edges. The proposed method out-
performs the baseline methods in terms of obtaining the up-
dated node embeddings.

Table 2: Spearman correlations between edge property and
edge influence.

Property Description Correlation p-value
f1 du + dv 0.6604 <0.001
f2 |du − dv | 0.3803 <0.01
f3 PRu + PRv 0.4084 -
f4 |PRu − PRv | 0.1526 -
f5 ESu + ESv 0.8995 <0.001
f6 |PRu − PRv | 0.1254 -
f7 TFe 0.2153 -

To further show the effectiveness of the proposed algorithm, we
compare it with two baseline methods. The first baseline (denoted
as ‘Gradient’) directly computes the gradients of the deleted edges
and updates the embeddings accordingly [42]. The second base-
line (denoted as ‘Original’) assumes no update with edges deleted.
That is, it computes the MAE between the prediction results of the
original embedding Θ̂A and retrained embedding Θ̂B . The results
on the PPI data are shown in Fig. 5. As we can see, the MAE val-
ues between the original embeddings and retrained embddings are
significantly larger than the proposed NEAR-DEL. This indicates
that even a small number of edges are deleted/added, it would be
crucial to retrain/update the embeddings instead of directly using the
original model. The MAE values of the Gradient baseline are also
relatively larger than NEAR. This result indicates the effectiveness
of the proposed NEAR-DEL. Overall, the proposed algorithm bears
little quality loss compared to the retraining method in terms of
quantifying the edge influence.

(C) Correlation Results of Network Topological Properties. Next,
we check whether the identified high-influential edges would have

Table 3: The effectiveness of NEAR for identifying influential edges for the multi-label classification task. The selected edges by the
proposed NEAR have a relatively larger effect on the learned embeddings. That is, when a few edges are deleted by NEAR, the
performance of the learned emebddings in terms of the downstream prediction task would significantly decrease. (• indicates the
result is significantly smaller than the randomly selected edges with p-value< 0.01, and ◦ indicates no significant difference.)

Edges
1 edge 10 edges 20 edges

Micro-F1 (%) Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%) Macro-F1 (%)
random edges -0.0322 -0.0856 -0.0388 -0.0641 -0.0351 0.1151
Top ND edges -0.0193 ◦ -0.0635 ◦ 0.0445 ◦ 0.1201 ◦ 0.0468 ◦ 0.0514 ◦

selected edges by NEAR -0.1634 • -0.1975 • -0.1462 • -0.1972 • -0.2653 • -0.2256 •

significant impact in terms of multi-label classification and adver-
sarial attacking. Before that, we first present the correlation results
between the edge properties and the edge influence. We compute
the Spearman correlation between each edge property/feature and
the corresponding edge influence. The results are shown in Table 2.
As we can see from the table, the structural hole feature f5 has the
highest correlation with edge influence (the correlation coefficient
is 0.8995). This result indicates that the structural hole is perhaps
the most indicative property for high edge influence. In addition,
the node degree features (f1 and f2) are also positively correlated.
This result indicates that edges connecting to a high-degree node
and a low-degree node tend to have a larger influence on the learned
embeddings, than edges connecting to two high-degree nodes.

(D) Multi-label Classification Results for NEAR. Here, we check
if the identified high-influential edges by NEAR have a significant
effect on the multi-label classification task. That is, we delete the
selected edges by NEAR, update the learned embeddings, and test the
performance of the embeddings in the multi-label classification task.
The results are shown in Table 3, where we also report the results of
the random method and the method of deleting edges based on node
degree feature f1. The random method randomly delete edges, and
the ‘ND’ method deletes edges with highest f1 values.

We can observe from Table 3 that when the deleted high-influential
edges are selected by NEAR, the performance of the learned emeb-
ddings in the multi-label classification task would significantly de-
crease. Recall that NEAR selects edges based on the structural hole
property (f5) in the last step. This means that the structural hole
property has a relatively large impact on the learned embeddings,
i.e., when a few such edges are deleted, the performance of the
learned emebddings would significantly decrease. Moreover, we
can observe from Table 3 that even when a single structural hole
edge is deleted, it can significantly decrease the performance of the
learned embeddings. In contrast, deleting, for instance, the ‘Top ND
edges’ would have little impact of the learned embeddings. This
is consistent with our intuition, i.e., deleting an edge that belongs
to a high-degree node would have less influence on the embedding
results compared to deleting a structural hole edge, as the latter has
a larger influence on the network connectivity.

(E) Adversarial Attacking Results for NEAR. Next, we use NEAR

to add some high-influential edges for a given target node, and check
if such manipulations could mislead the node prediction results in
the multi-label classification task. For a target node, we are allowed
to add K edges where K is set to 1, 3, 7, and 10 in our experiments.
We randomly choose 50 target nodes whose degree is between 30
and 50, and report the average attacking ability results on the PPI

Table 4: The effectiveness of NEAR for identifying influential
edges for adversarial attacking. NEAR can effectively find the
vulnerable edges to manipulate.

K
1 3 7 10

AArand 0.287 0.303 0.311 0.345
AAdeдr ee 0.371 0.384 0.457 0.496

Add K AANEAR 0.403 0.554 0.527 0.631
edges CAArand 0.320 0.340 0.340 0.400

CAAdeдr ee 0.380 0.400 0.480 0.520
CAANEAR 0.500 0.640 0.680 0.740

data in Table 4. For comparison, we also report the results of the
‘random’ method and the ‘degree’ method. The random method
randomly selects edges to add. The degree method selects edges
that have larger f1 values. Note that directly computing the edge
influence for each target node would be computationally expensive
as the time complexity is O(md |V |2).

As we can see from the table, choosing the influential edges as
quantified by the proposed method can significantly mislead the clas-
sification results. For example, when adding one single edge, half of
the node prediction results will be changed, and 40.3% labels cannot
be correctly predicted. When adding 10 edges, 74% node predictions
will be changed, and 63.1% labels cannot be correctly predicted. As
to the competitors, when 10 edge are added, the random method can
only change the predictions of 40% nodes and mislead 34.5% labels,
while the degree method can change the predictions of 52% nodes
and mislead 49.6% labels.

Overall, NEAR can identify high-influential edges that effectively
affect the multi-label classification performance, and locate vulnera-
ble edges to manipulate for adversarial attacking.

4.3 Efficiency Results
Finally, we present the efficiency results. In particular, we delete
several edges each time and report the average wall-clock time of the
retraining method and our methods for quantifying edge influence.
The results are shown in Fig. 6 where the y-axis is in log scale.
As we can see, the proposed methods are significantly faster than
the retraining method. For example, on the BlogCatalog data, the
proposed method achieves 100× to 2, 000× speedup when 1 - 20
edges are deleted each time. Additionally, the proposed method
scales linearly w.r.t. the number of deleted edges, which is consistent
with the algorithm analysis in Subsection 3.1.

Figure 6: Efficiency results of NEAR. The proposed method
achieves up to 2, 000× speedup compared to the retraining
method.

5 RELATED WORK
In this section, we briefly review the related work, including network
embedding models, explainable learning methods, and adversarial
learning methods on network embedding. Since network embedding
is a very active research area, here we only cover the most relevant
existing network embedding models. We refer readers to some recent
surveys [4, 9, 20, 47] for more details.

Network Embedding Models. The basic network embedding
methods take the network structure as input and aim to learn the
node representations via context network construction and differ-
ent objectives. For example, several researchers propose to ap-
ply the skip-gram model [31, 32] to learn the node representa-
tions (e.g., DeepWalk [37], LINE [42], Node2Vec [18] and DP-
Walker [14]). Others apply low-rank matrix approximation (e.g.,
GraRep [5] and NetMF [38]), or neural network models such as
autoencoders (e.g., DNGR [6], NetRA [54] and SDNE [43]) and
adversarial networks (e.g., ANE [11] and GraphGAN [44]).

Built upon the basic network embedding models, various exten-
sions have been proposed in literature. The most studied extensions
include handling node attributes during the embedding process [7,
16, 19, 22, 27, 28, 30, 49–51], and incorporating the supervision
labels under a semi-supervised setting [17, 21, 24, 35, 40, 41, 52].
There also exist other extensions. For example, Wang et al. [46]
propose to preserve the community structure when such information
is available; Ou et al. [34] and Zhou et al. [55] pay special atten-
tion to directed networks by computing direction-aware proximities;
Wang et al. [45] and Kim et al. [23] focus on signed networks where
there exist both positive and negative links; Xu et al. [48], Dong et
al. [13], and Fu et al. [15] target on heterogeneous networks with
nodes/edges of different types. Orthogonal to the above models, our
focus is on how to determine the influence of a small network change
on the learned embeddings.

The most related work is DANE [26], HTNE [58], CTDNE [33],
DynamicTriad [56], and NetWalk [53]. whose focus is to incremen-
tally learn the node embeddings. However, they build their meth-
ods with their own network embedding models (based on eigen-
decomposition, Hawkes process, temporal random walk, triadic
closure process, and network streams, respectively). In contrast,
our proposed method can potentially update many existing network
embedding methods that are built upon the widely-used skip-gram
model. Liu et al. [29] also aim to interpret network embedding. Their

focus is to connect the learned embeddings with the node attributes,
while our focus is to quantify the influence of edges.

Explainable Learning. Understanding and interpreting the com-
plex machine learning models have been receiving tremendous at-
tention in recent years. Typically, existing methods treat machine
learning models as black-box systems and study how a fixed model
leads to particular prediction. For example, researchers propose to
perturb either the test points [1, 12] or the training points [25] to
see how the prediction changes. In this work, we propose a network
embedding auditing framework to help better understand network
embedding models. Based on this framework, we can efficiently
analyze the influence of different edges on the embedding results,
and incrementally update the learned embeddings when the network
changes.

Adversarial Learning. Some recent work has focused on the
adversarial learning of network embedding models. For example,
Zügner et al. [57] learn the adversarial attacks on a surrogate of the
semi-supervised neural network based network embedding models
(e.g., GCN [24]); Dai et al. [10] formulate the problem as a Markov
decision process and propose a reinforcement learning method to
attack against supervised graph neural networks. In contrast to these
two proposals, we study the adversarial attacks on the unsupervised
skip-gram based network embedding.

6 CONCLUSIONS
In this paper, we propose to discern edge influence as the first step
towards understanding network embedding methods built upon the
skip-gram model. We propose a network embedding auditing frame-
work NEAR to efficiently quantify edge influence and identify high-
influential edges. We instantiate two algorithms supporting edge
deletion and addition, and correlate edge influence with network
topological properties to efficiently identify high-influential edges.
The experimental results demonstrate that the proposed method is
accurate in terms of quantifying the edge influence, and in the mean-
while it is much more efficient than the retraining method. Moreover,
the proposed method helps better understand network embedding
and identify high-influential edges in the tasks of multi-label classifi-
cation and adversarial attacking. There are also some interesting find-
ings in the experiments. For example, even when a single structural
hole edge is deleted, it could significantly decrease the performance
of the learned embeddings in the downstream prediction task.

The proposed auditing method could provide a critical building
block for future research in multiple directions, including (1) au-
diting embedding on attributed and/or dynamic networks, (2) more
comprehensive attacking strategies for network embedding, and (3)
robust network embedding.

7 ACKNOWLEDGEMENT
This work is supported by the National Natural Science Foundation
of China (No. 61632021, 61672274, 61702252) and the Collabora-
tive Innovation Center of Novel Software Technology and Industrial-
ization. Hanghang Tong is partially supported by NSF (IIS-1651203,
IIS-1715385), and DHS (2017-ST-061-QA0001). Yuan Yao is the
corresponding author.

REFERENCES
[1] Philip Adler, Casey Falk, Sorelle A Friedler, Tionney Nix, Gabriel Rybeck, Carlos

Scheidegger, Brandon Smith, and Suresh Venkatasubramanian. 2018. Auditing
black-box models for indirect influence. Knowledge and Information Systems 54,
1 (2018), 95–122.

[2] Naman Agarwal, Brian Bullins, and Elad Hazan. 2016. Second-order stochastic
optimization in linear time. stat 1050 (2016), 15.

[3] Ronald S Burt. 2009. Structural holes: The social structure of competition.
Harvard university press.

[4] Hongyun Cai, Vincent W Zheng, and Kevin Chang. 2018. A comprehensive survey
of graph embedding: problems, techniques and applications. IEEE Transactions
on Knowledge and Data Engineering (2018).

[5] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph repre-
sentations with global structural information. In CIKM. 891–900.

[6] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep neural networks for
learning graph representations. In AAAI. 1145–1152.

[7] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and
Thomas S Huang. 2015. Heterogeneous network embedding via deep archi-
tectures. In KDD. ACM, 119–128.

[8] Jifan Chen, Qi Zhang, and Xuanjing Huang. 2016. Incorporate group information
to enhance network embedding. In CIKM. 1901–1904.

[9] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2018. A survey on network
embedding. IEEE Transactions on Knowledge and Data Engineering (2018).

[10] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.
2018. Adversarial Attack on Graph Structured Data. In ICML. 1123–1132.

[11] Quanyu Dai, Qiang Li, Jian Tang, and Dan Wang. 2018. Adversarial Network
Embedding. In AAAI.

[12] Anupam Datta, Shayak Sen, and Yair Zick. 2016. Algorithmic transparency via
quantitative input influence: Theory and experiments with learning systems. In SP.
598–617.

[13] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In KDD. ACM,
135–144.

[14] Rui Feng, Yang Yang, Wenjie Hu, Fei Wu, and Yueting Zhuang. 2018. Represen-
tation Learning for Scale-free Networks. In AAAI.

[15] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. HIN2Vec: Explore Meta-
paths in Heterogeneous Information Networks for Representation Learning. In
CIKM. ACM, 1797–1806.

[16] Hongchang Gao and Heng Huang. 2018. Deep Attributed Network Embedding..
In IJCAI. 3364–3370.

[17] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-scale learnable
graph convolutional networks. In KDD. ACM, 1416–1424.

[18] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In KDD. ACM, 855–864.

[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS. 1025–1035.

[20] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).

[21] Xiao Huang, Jundong Li, and Xia Hu. 2017. Label Informed Attributed Network
Embedding. In WSDM.

[22] Hiroyoshi Ito, Takahiro Komamizu, Toshiyuki Amagasa, and Hiroyuki Kitagawa.
2018. Network-Word Embedding for Dynamic Text Attributed Networks. In
Semantic Computing (ICSC), 2018 IEEE 12th International Conference on. IEEE,
334–339.

[23] Junghwan Kim, Haekyu Park, Ji-Eun Lee, and U Kang. 2018. SIDE: Representa-
tion Learning in Signed Directed Networks. In WWW. 509–518.

[24] Thomas Kipf and Max Welling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

[25] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via
influence functions. arXiv preprint arXiv:1703.04730 (2017).

[26] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. 2017.
Attributed network embedding for learning in a dynamic environment. In CIKM.
ACM, 387–396.

[27] Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. 2018. Attributed so-
cial network embedding. IEEE Transactions on Knowledge and Data Engineering
30, 12 (2018), 2257–2270.

[28] Jie Liu, Zhicheng He, Lai Wei, and Yalou Huang. 2018. Content to node: Self-
translation network embedding. In KDD. ACM, 1794–1802.

[29] Ninghao Liu, Xiao Huang, Jundong Li, and Xia Hu. 2018. On Interpretation of
Network Embedding via Taxonomy Induction. KDD.

[30] Jianxin Ma, Peng Cui, and Wenwu Zhu. 2018. DepthLGP: Learning Embeddings
of Out-of-Sample Nodes in Dynamic Networks. AAAI.

[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NIPS. 3111–3119.

[33] Giang H Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh,
and Sungchul Kim. 2018. Dynamic Network Embeddings: From Random Walks
to Temporal Random Walks. In 2018 IEEE International Conference on Big Data
(Big Data). IEEE, 1085–1092.

[34] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In KDD. ACM, 1105–1114.

[35] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. 2016. Tri-
party deep network representation. In IJCAI. 1895–1901.

[36] Barak A Pearlmutter. 1994. Fast exact multiplication by the Hessian. Neural
computation 6, 1 (1994), 147–160.

[37] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online
learning of social representations. In KDD. ACM, 701–710.

[38] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network Embedding as Matrix Factorization: UnifyingDeepWalk, LINE, PTE,
and node2vec. In WSDM.

[39] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017.
struc2vec: Learning node representations from structural identity. In KDD. ACM,
385–394.

[40] Yu Shi, Qi Zhu, Fang Guo, Chao Zhang, and Jiawei Han. 2018. Easing Embed-
ding Learning by Comprehensive Transcription of Heterogeneous Information
Networks. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2190–2199.

[41] Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. Pte: Predictive text embedding
through large-scale heterogeneous text networks. In KDD. ACM, 1165–1174.

[42] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In WWW. International
World Wide Web Conferences Steering Committee, 1067–1077.

[43] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-
ding. In KDD. ACM, 1225–1234.

[44] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng
Zhang, Xing Xie, and Minyi Guo. 2018. GraphGAN: Graph Representation
Learning with Generative Adversarial Nets. In AAAI.

[45] Suhang Wang, Charu Aggarwal, Jiliang Tang, and Huan Liu. 2017. Attributed
signed network embedding. In CIKM. ACM, 137–146.

[46] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community Preserving Network Embedding. In AAAI. 203–209.

[47] Yaojing Wang, Yuan Yao, Hanghang Tong, Feng Xu, and Jian Lu. 2019. A Brief
Review of Network Embedding. Big Data Mining and Analytics 2, 1 (2019),
35–47.

[48] Linchuan Xu, Xiaokai Wei, Jiannong Cao, and Philip S Yu. 2017. Embedding of
Embedding (EOE): Joint Embedding for Coupled Heterogeneous Networks. In
WSDM. 741–749.

[49] Linchuan Xu, Xiaokai Wei, Jiannong Cao, and Philip S Yu. 2018. On Exploring
Semantic Meanings of Links for Embedding Social Networks. In WWW. 479–488.

[50] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang.
2015. Network Representation Learning with Rich Text Information.. In IJCAI.
2111–2117.

[51] Dejian Yang, Senzhang Wang, Chaozhuo Li, Xiaoming Zhang, and Zhoujun Li.
2017. From Properties to Links: Deep Network Embedding on Incomplete Graphs.
In CIKM. ACM, 367–376.

[52] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting Semi-
Supervised Learning with Graph Embeddings. In ICML. 40–48.

[53] Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei
Wang. 2018. Netwalk: A flexible deep embedding approach for anomaly detection
in dynamic networks. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 2672–2681.

[54] Wenchao Yu, Cheng Zheng, Wei Cheng, Charu C Aggarwal, Dongjin Song, Bo
Zong, Haifeng Chen, and Wei Wang. 2018. Learning deep network representations
with adversarially regularized autoencoders. In KDD. ACM, 2663–2671.

[55] Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. 2017. Scalable
Graph Embedding for Asymmetric Proximity. In AAAI. 2942–2948.

[56] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic
Network Embedding by Modeling Triadic Closure Process. In AAAI.

[57] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial
attacks on neural networks for graph data. In KDD. ACM, 2847–2856.

[58] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.
Embedding Temporal Network via Neighborhood Formation. In KDD. 2857–
2866.

	Abstract
	1 Introduction
	2 Problem Statement
	3 The Auditing Framework
	3.1 Quantifying Edge Influence
	3.2 Identifying High-influential Edges

	4 Experimental Evaluations
	4.1 Experimental Setup
	4.2 Effectiveness Results
	4.3 Efficiency Results

	5 Related Work
	6 Conclusions
	7 Acknowledgement
	References

