
Towards Real Time Team Optimization
Qinghai Zhou

University of Illinois at Urbana-Champaign
qinghai2@illinois.edu

Liangyue Li
Amazon

liliangy@amazon.com

Hanghang Tong
University of Illinois at Urbana-Champaign

htong@illinois.edu

Abstract—Teams can be often viewed as a dynamic system
where the team configuration evolves over time (e.g., new mem-
bers join the team; existing members leave the team; the skills of
the members improve over time). Consequently, the performance
of the team might be changing due to such team dynamics. A
natural question is how to plan the (re-)staffing actions (e.g.,
recruiting a new team member) at each time step so as to max-
imize the expected cumulative performance of the team. In this
paper, we address the problem of real-time team optimization by
intelligently selecting the best candidates towards increasing the
similarity between the current team and the high-performance
teams according to the team configuration at each time-step. The
key idea is to formulate it as a Markov Decision process (MDP)
problem and leverage recent advances in reinforcement learning
to optimize the team dynamically. The proposed method bears
two main advantages, including (1) dynamics, being able to model
the dynamics of the team to optimize the initial team towards the
direction of a high-performance team via performance feedback;
(2) efficacy, being able to handle the large state/action space
via deep reinforcement learning based value estimation. We
demonstrate the effectiveness of the proposed method through
extensive empirical evaluations.

I. INTRODUCTION

Teams can be often viewed as a dynamic system where
the team configuration evolves over time (e.g., new members
join the team; existing members leave the team; the skills
of the members improve over time). It is hypothesized that
newly formed teams evolve through a series of development
stages, notably forming, where the formation of the team starts;
storming, where team members explore the situation; norming,
where members accommodate, form and accept roles; and
performing, where the team produces effective outcomes [1].
Although teams might take different paths towards maturity,
research suggests that the effective cooperation and coordi-
nations among team members generally bring the team from
initial ineptness to the final levels of skilled performance [2].
In the context of sports teams and software development teams,
research efforts have been on the relationship between team
dynamics and team performances [3], [4].

Due to the team dynamics, the performance of the team
is very likely to be changing over time. If a team struggles
to achieve satisfactory performance or external demands for
adjustments are required, changes to the team are necessary.
A natural question is how to plan the team optimization/re-
staffing actions (e.g., recruiting a new team member) at each

time step so as to maximize the expected cumulative perfor-
mance of the team. Most existing work on team optimization
(e.g., team replacement [5] and team enhancement [6]) treat
teams as a static system and recommend a single action to
optimize a short-term objective. However, these approaches
might fail due to the unique challenges brought about by the
dynamics in team processes. First (team dynamics), the teams
are constantly changing in their compositions and existing
methods are not designed to learn the kind of changes that
are effective in producing the teams’ high performances. A
straightforward way of applying existing methods for team
optimization is to recommend one action at a time. However,
this treatment is problematic in two ways: (1) the existing
methods are optimizing a different objective and they cannot
adjust their strategy based on the feedback (e.g., performance
evaluation, team cohesion) to the team; and (2) the existing
methods can not be computed on the fly in situations where
real time decisions are required. Second (long-term reward),
teams are expected to deliver constantly good performance in
the long run. The actions recommended by existing methods
are purposed to optimize the short-term feedback, but might
be sub-optimal in terms of the long-term reward.

In this paper, we treat the actions a team takes during its de-
velopment cycles as sequential interactions between the team
agent and the environment and propose to leverage the recent
advances in deep reinforcement learning to automatically learn
the optimal staffing strategies. Such team optimization based
on reinforcement learning have two advantages. First, it is
able to continuously update its staffing strategy during the
interactions from the feedback at each time step, until it con-
verges to the optimal strategy. Second, the models are trained
via estimating the current value for a state-action pair with
delayed rewards. The optimal strategy is able to maximize the
expected cumulative rewards from the environment. In other
words, it might recommend an action with small short-term
rewards but have a big impact of the team performance in the
long run. One challenge here is that the state/action space (e.g.,
the possible enhancement operations and their combinations
over time) could be large. It is thus infeasible to evaluate the
value for every state-action pair. Instead, we leverage value
based approach and use a function approximator to estimate
the state-action value. This model-free approach does not
estimate the transition probability nor explicitly store the Q-
value table, making it flexible to handle the large state/action
space in the team optimization scenarios. We summarize our
main contributions as follows,978-1-7281-0858-2/19/$31.00 c©2019 IEEE



• Problem Formulation We formally define and formu-
late the real-time team optimization problem. Given the
template teams with high performance, the key idea is
to continuously maximize the long term performance of
the optimized teams through a sequence of actions, e.g.,
adding/removing team members, establishing new collab-
orations.

• Algorithm and Analysis We propose a deep reinforcement
learning based framework, which can continuously learn
and update its team optimization strategy by incorporating
both skill similarity and structural consistency.

• Empirical Evaluations We perform extensive experimen-
tal evaluations on real-world datasets to test the efficacy of
our proposed framework in the task of real-time team op-
timization. The evaluations demonstrate that the proposed
reinforcement learning framework can achieve significant
performance in optimizing the initial team towards a high-
performing one.

The rest of this paper is organized as follows. In Section II,
we review the Deep Reinforcement Learning (DRL) as well
as the Graph Neural Network family models as the prelimi-
naries, after we formally define the problem of real-time team
optimization. Section III introduces our proposed framework.
We present the evaluation results in Section IV, and review
related work in Section V. We finally conclude this paper in
Section VI.

II. PROBLEM DEFINITIONS AND PRELIMINARIES

In this section, we introduce the notations used throughout
this paper (summarized in Table I), formally define real-time
optimization problem and then present preliminaries on Deep
Reinforcement Learning as well as Graph Neural Network.

A. Notations and Problem Definition

1) Notations. In this paper, we use bold lower case letters for
vectors (e.g., v), lower case letters for scalars (e.g., α), Ti for
a team configuration at the ith time step.

Symbols Definition
G = {V,E,N} an attributed social network

V = {v1, v2, . . . , vn} a set of n vertices of a network G
E = {(vi, vj)|vi, vj ∈ V} a set of edges

N ∈ Rn×l attribute matrix
T = {a1, a2, . . . , ak|ai ∈ V} a team of members from the network

G(T )
the team network indexed by its

members T
f(T ) skill representation of the team T
v(vi) the attribute/skill vector of vertex vi
µ(vi) vector representation of vertex vi
l the total number of skills

n = |V| the total number of individuals in G
α, γ learning rate and discount factor

TABLE I: Symbols and Definitions

2) Problem Definition In our problem setting, we are given
a large social network of n individuals (i.e., G = {V,E}),
consisting of subgraphs (i.e., teams represented by T ). The
attribute/skill vector v(vi) for an individual vi ∈ V represents
the strength of the skills possessed by the corresponding

individual. We consider a team which has high performance to
be a template team, denoted as Ts. We detail how we choose
template teams in the experimental setting in Section IV-B.

We study the real-time team optimization problem in which
a team agent interacts with the environment by sequentially
taking some enhancement actions (e.g., hiring a new team
member, removing an existing team member) over a sequence
of time steps, so as to maximize its cumulative reward (see
Figure 1 for an illustrative example). We model this problem as
a Markov Decision Process (MDP), which includes a sequence
of states, actions and rewards. More formally, MDP consists
of a tuple of five elements (S,A,R,P, γ) as follows:

• State space S . The state st ∈ S is defined as the team
configuration at time step t, i.e., Tt = {a1, a2, . . . } where
a1, a2, . . . are the members of the current team, µ(st) is
the representation of the state:

µ(st) =
∑
v∈Tt

µ(v) (1)

where µ(v) is the representation of the individual v in
team Tt. In this paper, we use two types of representations
for individuals, including (1) the attribute/skill vector, i.e.,
v(v); and (2) the node embedding which is obtained by
the graph neural network models, i.e., µ(v).

• Action space A. The action at ∈ A ⊆ V at the tth

time step is to take enhancement actions to the team, e.g.,
expand/shrink the team, establish collaboration between
two team members, etc. Formally, at could be ∆E(T , T )
(perturbation to the team network structure), ∆N(T , :)
(perturbation to the team skill configuration), +q (hiring
q to join the team), and −q (remove q from current team).
In this paper, we focus on the enhancement actions of
adding new members to the team and removing existing
team members from the team if the member represented
by the action at already exists in the team.

• Reward R. After the team takes an action at under the
state st, i.e., the team configuration changes at time t, the
optimization agent receives rewards r(st, at) according to
the feedback it receives (e.g., performance evaluation, team
cohesion). At time step t, the reward function is defined
as,

r(st, at) = sim(µ(Tt), µ(Ts)) (2)

where sim(µ(Tt), µ(Ts)) represents the similarity between
the representation of the template team and the repre-
sentation of the current team configuration. For example,
when hiring a new team member, we often consider that
a qualified candidate who has not only had collaborations
with the existing team members (i.e., team structural con-
sistency) but also possesses a set of skills required by the
team function (i.e., attribute/skill similarity). The details of
computing simf is presented in Section III.

• Transition probability P: Transition probability
p(st+1|st, at) defines the probability of state
transitioning from st to st+1 when the team
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Fig. 1: An illustrative running example of real-time team optimization. A team optimization agent receives the feedback from
the action made to the team and then updates the policy network which will affect the decision of actions.

takes action at. We assume that the MDP satisfies
p(st+1|st, at, . . . , s1, a1) = p(st+1|st, at).

• Discount factor γ: γ ∈ [0, 1] is the discount factor which
is used to measure the present action-state value of future
reward. In particular, when γ = 0, the team agent only
considers the immediate reward and when γ = 1, all future
rewards are fully taken into the consideration of calculating
the action-state value of the current action at.

• Terminal: Once the team expands to have a certain number
of members, the team agent stops exploring or selecting
candidates from the network G. For simplicity, we specify
the size of the team with a fixed number in both training
and testing.

With the notations and definitions above, the problem of real
time team optimization can be formally defined as follows,

Problem 1: Real Time Team Optimization
Given: given an initial configuration of a team (i.e., T0),

the historical MDP, i.e., (S,A,P,R, γ), a specified team
size k, and a set of selected template teams M =

{T (1)
s , T (2)

s , . . . };
Find: an optimization policy π : S → A for a team agent to

construct a team from the initial team configuration (i.e.,
T0) of size k which maximizes the similarity between
the finalized team configuration, Tπ and the given set of
template teams.

We can formally formulate the above problem as,

argmax
π

f =
∑
T (i)
s ∈M

sim(T , T (i)
s )

s.t. T0 ⊆ Tπ and |Tπ| = k

Given the above problem definition, a sample
trajectory of this Markov Decision Process will be:
(s0, a0, r0, . . . , sm−1, am−1, rm−1, sm), where s0 = G(T0),
si = G(Ti), i ∈

{
1, . . . ,m − 1

}
and sm = G(Tπ). After

action ai (e.g., adding a new member to the team) at every

step i, we will receive the reward ri = r(si, ai). Because
this is a discrete optimization problem with a finite searching
space (i.e., the number of candidates in a network G is
finite), we propose to leverage Q-learning to learn this MDP,
of which the technical details are described in Sec. III.

B. Preliminaries

1) Deep Reinforcement Learning. Research achievements
have been made on utilizing reinforcement learning in many
high-impact applications, ranging from recommender sys-
tems [7], [8], agent controlling in Atari games [9] to traffic
signal control system [10]. In Q-Learning [11], the optimal
action-state value function directly follows the Bellman equa-
tion, of which the intuition is: if the optimal value Q∗(s′, a′)
of the state s′ at the next time-step is known for all possible
actions a′ in the action space A, then the optimal strategy is
to select the action a′ which maximizes the expected value of
r + γQ∗(s′, a′),

Q∗(s, a) = Es′∼ε
[
r + γmax

a′
Q∗(s′, a′)|s, a

]
(3)

where r is the immediate reward of action a′ and γ is the
discount factor. The basic idea behind many reinforcement
learning algorithms is to estimate the action-state value func-
tion by iteratively updating the value, i.e., Qt+1(s, a) = E

[
r+

γmaxa′ Qt(s
′, a′)|s, a

]
and store the triple, (value, action,

state) in a look-up table, denoted as Q-value table. However,
the Q-value table will become extraordinarily large with the
increasing number of states to be stored, making the traditional
Q-learning method infeasible in the real world large-scale
recommender systems. A follow-up work [9] proposes to
leverage the convolutional neural network, i.e., Q-network,
to approximate the action-state value function, which can be
trained by minimizing the following loss function at each
iteration i,

Li(θi) = Es,a
[
(yi −Q(s, a; θi))

2
]

(4)



where yi = Es′∼ε
[
r + γmaxa′ Q(s′, a′; θi)|s, a

]
is the target

for the i-th iteration. As a result, the modified neural network
serves as a non-linear approximator to the action-state value
function, which provides a model-free method for reinforce-
ment learning. The advantage of this method is that it does
not require the calculation of the transition probability and
the storage of the Q-value table. This promotes the flexibility
of reinforcement learning to support a variety of application
scenarios and also enriches the generalizability of the system
compared to the traditional training approaches to estimate the
action-state value function.
2) Graph Neural Network models.
The Graph Neural Networks (GNN) are useful neural network
architectures in many applications, e.g., network embedding,
node classification anomaly detection [12], [13]. For a graph
G = (V,E), we can obtain the vector representation of nodes
v ∈ V by an iterative process,

µ(v)(i) = h(i)(
{
w(u, v),v(u), µ(i−1)}

u∈N(v)
,

v(v), µ(v)(i−1)) (5)

where h is a parametric function, µ(v)(i) is the representation
of node v at the ith iteration, i ∈ {1, 2, 3, . . . }, w(u, v) is
the weight of edge (u, v) ∈ E, v(u), v(v) are the attribute
vectors of the node u, v respectively and N(v) represents the
set of neighborhood of node v ∈ V [14]. At each iteration,
features information of the nodes of the neighborhood are used
to computer the hidden representation of the specific node v.
The initial node representation µ

(0)
v ∈ Rd can be set to zero

and for the simplicity of notation, after M iterations, we obtain
the consequent node representation as µ(v) = µ(v)(M). After
we get the node representations, we can further obtain the
graph-level representation by applying pooling over all the
obtained node embeddings. Recently, the Variational Graph
Auto-encoder (VGAE), which utilizes a similar idea of the
Variational Auto-encoder (VAE) on graph data, has shown
impact on the node representation learning in an unsupervised
setting. The Variational Graph Auto-Encoder is an unsuper-
vised framework based on graph convolutional network for
learning node representations. Similar to the variational au-
toencoder [15], in this framework, the encoder uses a two-layer
GCN, denoted as function g(N,A) = ÃReLU(ÃNW0)W1

with two learnable matrices W0 and W1, where A is the
adjacency matrix, Ã = D−

1
2 (A + I)D−

1
2 is the normal-

ized adjacency matrix, N is the node attribute matrix and
ReLU(·) = max(0, ·), to compute the mean vector µi and the
standard deviation vector σ2

i of a latent variable Zi of normal
distribution for each node i, i.e., q(zi|N,A) = N (zi|µi, σ2

i ).
The decoder uses the following equation to reconstruct the
normalized adjacency matrix Ã and for each entry Aij , we
have p(Aij = 1|zi, zj) = sigmoid(z′izj). The loss we want
to minimize is as follows,

Eq(Z|X,A)

[
log p(A|Z)

]
− KL

[
q(Z|X,A)||p(Z)

]
(6)

where KL
[
q(·)||p(·)

]
is the Kullback-Leibler divergence be-

tween the two distribution.

III. PROPOSED MODEL

In this section, we introduce our proposed model based on
reinforcement learning framework for the purpose of real time
team optimization. We propose to use a function approximator
to estimate the state-action value without explicitly storing
them into a lookup table.

A. The Proposed Real Time Team Optimization Framework

In order to achieve the optimal real time team optimization,
we propose to take the enhancement actions (e.g., adding a
member from the network G or removing a team member from
the current team configuration Tt) according to the feedback
from the environment (i.e., the reward as defined in the MDP).
In this paper, as mentioned above, we consider optimizing
the current team to become similar to the template teams
with outstanding performance through a sequence of actions
(i.e., adding/removing members). More specifically, we give
detailed description of the reward and the transition process
of the MDP as follows,
• Reward R. The reward r(st, at) is defined as the average

similarity between the vector representations of the team
configuration at tth time step and the representation of
teams in the set of the template teams,

r(st, at) =
1

|M|
∑
Ts∈M

sim(µ(Tt), µ(Ts)) (7)

where µ(Ts) is the representation of one template team
from the set M (i.e., M = {T (1)

s , T (2)
s , . . . }) and µ(Tt) is

the current team representation. According to the definition
in Eq. 1, the representation of a team is the linear aggre-
gation of the representations of all members, we then have
µ(Tt) =

∑
ai∈Tt µ(ai). We leverage the cosine similarity

to calculate the similarity between the two vectors, as
presented below,

sim(µ(Tt), µ(Ts)) =
µ(Tt)µ(Ts)

‖µ(Ts)‖‖µ(Ts)‖
(8)

• Transition from st to st+1. As mentioned, in this paper,
we consider two types of team enhancement actions, i.e.,
adding a new member to the current team from the network
G and removing an existing member from the current
team. Therefore, the state at the next time step can be
expressed as µ(st+1) = µ(Tt+1) = µ(Tt) + µ(at) when a
new team candidate at is selected and added to the current
team and µ(st+1) = µ(Tt+1) = µ(Tt) − µ(at) when an
existing member in the current team is leaving.

B. The Standard DQN Model

We follow the standard assumption that delayed rewards are
discounted by a factor of γ per time step, and define the state-
action value function Q(s, a) as the expected rewards from
state st and action at. Using Bellman optimality equation [16],
the optimal state-action function Q∗(s, a) can be written as
follows via one-step lookahead:

Q∗(st, at) = r(st, at) + γmax
a′

Q∗(st+1, a
′) (9)



This implicitly indicates a greedy policy of selecting actions:

π(at|st;Q∗) = argmax
at

Q∗(st, at) (10)

We can use Q-learning control algorithm to update the Q
values toward the optimal ones at each step of each episode
as follows:

Q(st, at)← Q(st, at) +α[r+ γmax
a′

Q(st+1, a
′)−Q(st, at)]

(11)
where α is the learning rate and st+1 is the next state after
action at is taken, e.g., µ(st+1) = µ(st) + µ(at).

The limitations with the above standard reinforcement learn-
ing model are two folds: (1) in the real time team optimization
scenarios, the state/action space are enormous, which makes
it infeasible to estimate Q∗(s, a) for every state-action pair
using the above update equation; and (2) many state and action
pairs may not appear in the log of the team development, in
which case we will not have an accurate estimate for them.
In practice, the action-state value function is often highly
nonlinear. We therefore refer to a non-linear approximator
which is parameterized by neural networks to estimate the
action-state value function, i.e., Q∗(s, a) ≈ Q(s, a; θ) where
θ is the parameter of the neural networks. Specifically, the Q
function can be parameterized as,

Q∗(st, at) = ReLU(W
(2)
θ2

(ReLU(W
(1)T
θ1

[
µ(st), µ(at)

]
)))
(12)

where W
(1)
θ1

, W (2)
θ2

are the parameters of the corresponding
layer in the network, ReLU(·) is the activation function for
each layer, µ(st), µ(at) are the vector representation of the
current state st (i.e., current team configuration µ(st) = µ(Tt))
and of the selected member at.

The Q-network which approximates the action-state value
function is trained to minimize the following loss function
L(θ),

L(θ) = Est,at,r,st+1
[(y −Q(st, at; θ))

2] (13)

where y = Est+1 [r + γmaxa′ Q(st+1, a
′; θt)|st, at] is the

expected action-state value for the current episode and θt is
the parameters from the last episode. The derivatives of the
loss function L(θ) with respect to θ can be written as:

∇θL(θ) = Est,at,r,st+1 [(r + γmax
a′

Q(st+1, a
′; θ)−

Q(st, at; θ))∇θQ(st, at; θ)] (14)

To optimize the loss function, it is more efficient to apply
the stochastic gradient descent instead of the full expectations
in the above gradient.

C. Off-policy training

With the proposed Q-network, we train the parameters of
the model from the offline log of different teams’ development,
including the actions the team agent takes and the reward
it receives. To be specific, we train two separate team op-
timization agents with two types of representation for the

individuals in the network, (1) attribute/skill vector and (2)
node representation obtained by the VGAE model. For each
episode in the training process, the agent starts with making
actions, e.g., selecting candidates from the network G, and
then receive reward from the environment before updating the
state. We also apply the ε−greedy policy in selecting actions,
which enables the agent to explore more qualified candidates
rather than always selecting the best candidate at present. The
value of ε decreases for every certain number of episodes,
and the discount factor γ is set to 1. The off-policy training
algorithm is presented in Algorithm 1.

Algorithm 1 Off-policy Training for Real Time Team Opti-
mization
Input: (1) vector representations of all nodes in graph G, (2)

a set of template teams M, (3) the learning rate α, (4)
the discount factor γ, (5) initial and end probabilities of
accepting the current selection, εi and εe (6) the size of a
team k;

Output: a model of policy for real time team optimization.
1: Initialize replay memory D with the capacity of m;
2: Initialize action-state value function Q with random

weights θ;
3: Initialize target action-state value function Q̃ with random

weights θ̃ = θ;
4: for episode = 1, . . . , T do
5: Initialize a zero state representation µ(s0) and a team

configuration T0 with empty members;
6: while |T | 6= k do
7: Select a random action at with probability ε,

otherwise select at = argmaxaQ(st, a; θ)
8: Execute action at, compute reward r(st, at) using

Eq. 7;
9: Update team configuration by adding at to T if
at 6∈ T or removing at if at ∈ T and set st+1 = st;

10: Store the transition (st, at, st+1, r(st, at)) into the
memory D;

11: Sample a mini-batch of transitions (st, at, st+1, r)
from D;

12: Optimize the network parameter θ via stochastic
gradient decent on the loss defined in Eq. 13;

13: end while
14: Set the network parameter Q̃ = Q every 10 episodes;
15: Update the ε value as ε = εe + (εi − εe)e−

episode
200 ;

16: end for

D. Other team optimization methods

1) Random Walk Graph Kernel [5] proposes to apply ran-
dom walk graph kernel to recommend the best team candidate
if one team member becomes unavailable. It selects the best
candidate member c by choosing the one who maximizes the
similarity between the old and the new teams embedded in
social networks as follows,

argmax
c
K(G∗,Gc) = q′× (I− αA×)

−1
N×p× (15)

where G∗ is original team, Gc is the new team after selecting



member c, A× = N×(A∗ ⊗ Ac) is the matrix of the two
networks’ Kronecker product, ⊗ represents the Kronecker
product of two matrices, α is a decay factor, q× = q∗⊗qc and
p× = p∗ ⊗ pc are two vectors representing the stopping and
starting probability of random walk respectively, N× is a di-
agonal matrix and can be expressed as N× =

∑l
i=1 diag(N∗(:

, i)) ⊗ diag(Nc(:, i)) and N ∈ Rn×d is the attribute matrix.
This team recommendation strategy works as follow, at each
time-step, it selects the member from the entire social network
which maximizes the similarity between the optimized team
and the predefined high-performance team.
2) Skill based team recommendation selects a team candi-
date which maximizes the average cosine similarity between
the skill representation of the current team f(Tt) and that
of the template teams, i.e., argmaxc

1
|M|

∑
T ′∈M sim(f(Tt) +

v(c), f(T ′)).

IV. EMPIRICAL EVALUATIONS

In this section, we conduct extensive experiments to evaluate
our proposed algorithms in order to answer the following two
questions:
• Structural consistency. From the perspective of the topol-

ogy of the network, do the members in the newly optimized
teams have similar collaboration networks as the members
in template teams?

• Skill similarity. Are the skills possessed by the new mem-
bers close to the skills presented by the template teams?

A. Datasets

We use two real-world datasets, which are publicly avail-
able. Table II summarizes the statistics of these datasets and
the detailed description of these datasets are as follows.

Dataset Nodes Edges Attribute # of teams
DBLP 18,674 64,089 7 30,145
Movie 13,678 416,874 20 2,578

TABLE II: Statistics of the graph datasets used for experiment

• DBLP is a dataset which provides bibliographic informa-
tion in major computer journals and proceedings. It has
(1) one co-authorship network where each node represents
an author, and there is an edge between two nodes if
two authors have ever published a paper together and the
weight of this specific edge is the number of papers the
two corresponding authors have co-authored. The authors’
skills are represented by conferences in 7 different areas
(i.e., DM, VIS, DB, NLP, AI, SYSTEM, MULTIMEDIA)
where for a given author and a conference, the skill
level of this author is defined as the percentage of the
papers that s/he has published in this specific area; (2)
one paper-author network which provides information of
all the coauthors for a given paper and we treat the authors
that have published the same paper as a team. In our
experiment, we define the performance of the team as the
number of citations that the corresponding paper has and

we select a number of teams (i.e., papers) that have a good
performance.

• Movie is an extension of the MovieLens dataset, which
links movies from MovieLens to their corresponding IMDb
webpages and Rotten Tomatoes review system. It contains
information of 10,197 movies, 95,321 actors/actress and
20 movie genres (e.g., action, comedy, horror, etc.). Each
movie has on average 22.8 actors/actress and 2.0 genres
assignments. We establish the social network of the ac-
tors/actresses where each node represents one actor/actress
and an edge exists if two actors/actresses have ever collabo-
rated in the same movie with the corresponding weight be-
ing the number of movies the two linking actors/actresses
have co-stared. We use the movie genres that a person has
played as his/her skills and for a certain genre, the skill
level of this specific person is defined as the percentage
of the movies that belongs to this genre. Similarly, for a
given movie, we treat all of its actors/actress as a team.

B. Experimental Design

In this subsection, we introduce the quantitative metrics and
the experimental settings we apply in the evaluation of the
proposed algorithm.
1) Evaluation metric. We quantify the effectiveness of the
proposed algorithms by measuring the following two metrics,
including (1) the consistency in the collaboration structure of
the team members, where we compare the degree distributions
of the members of the teams optimized by the trained agent,
and (2) the similarity of the skills possessed by the optimized
team and the template teams. The detailed description is as
follows,
• Structural consistency. One essential objective of team

optimization is to find a new team where the members have
a similar collaboration network as the template teams (e.g.,
the number of collaborations that the members have in the
newly optimized team is close to that of the members in
the template teams). In real-world scenarios, the number of
members in one team is comparatively small. For example,
in DBLP dataset, the average number of authors in one
paper (i.e., the size of team) is usually less than 10, and
the number of actors/actresses in the cast of a movie is
approximately 25 in Movie dataset. Therefore we present
the distribution of the degrees of all members from the
teams obtained by the proposed algorithms and comparison
methods in the evaluation.

• Skill similarity. Another goal of team optimization is to
construct a team which possesses a similar skill set as the
template teams. In our experiment, we define the skill set
of the team as the aggregation of the skill vectors of each
member that belongs to the team, i.e., f(T ) =

∑
v∈T v ∈

Rd where d is the dimension of the attribute/skill vector.
We then use cosine similarity to measure the similarity
between two teams w.r.t. attribute/skill, denoted as simf ,
where simf (T1, T2) = f(T1)·f(T2)

‖f(T1)‖2‖f(T2)‖2 .
2) Experimental setting. In the experiment on DBLP dataset,
we consider a paper (i.e., a team of authors) of which the



number of citations is larger than 40 to be a highly-cited
publication and the authors in the corresponding paper are
considered to be a high-performance team (denoted as one
template team). In the training phase of the proposed algo-
rithm, we randomly select 500 template teams and perform
the off-policy training according to Algorithm 1. We apply two
types of node representations, attribute/skill vectors and VGAE
node embeddings respectively in both training and testing,
and we use a suffix ’A’ and ’G’ to represent either variant.
The average number of members in one template team is 4.56
and the average degree of the members in the template teams
is 15.13. Accordingly, we set the parameter, m = 5, where
one episode terminates after the number of selected members
reaches 5. In the testing phase, we perform the evaluation
of the trained team optimization agent in the following three
types of settings of the initial configuration of the testing team,
(1) two initial members with the same top skill that exist in
our selected template teams (setting 1), (2) two initial members
from non-template teams (setting 2) and (3) no initial member
exists (i.e., starting from scratch) (setting 3). For each of the
three settings, the evaluation is performed on 600 different
randomly configured initial teams. The eventual team size (i.e.,
k) in the testing phase is set to be 4 and 6 respectively (i.e., 300
teams of size 4 and 6 respectively), the training and testing
of the proposed algorithm are performed for ten times. The
results presented in the next subsection are the average of
evaluation metrics. For the experiment on the Movie dataset,
a similar evaluation procedure is conducted. We consider a
movie with an average rating of 8.0 as a top-rated movie and
its actors/actresses in the cast are considered template movie
teams. Because the statistics of the Movie dataset differs from
the DBLP dataset, e.g., the average number of actors/actresses
in one top-rated movie is 25.52 and the average number of
collaborations for one individual actor/actress is 36.72. Thus
in the training phase, we randomly select 360 movies to be
the template teams and set k = 24 in order for one episode to
terminate; in the testing phase, the same three settings of the
initial team configuration are employed but the differences are
(1) six initial members are given for the first two types of test
settings and (2) the eventual size of testing teams is defined to
be 24, which approximates the average size of template teams.
3) Repeatability and Machine Configuration. The experi-
ments are performed on a virtual environment on Windows
10 - Intel Core i5-7300 at 2.60 GHz and 16GB RAM and are
implemented in Python 3.6. All datasets are publicly available.
We will release the code upon the publication of this paper.

C. Quantitative Results

1) Evaluation on DBLP. We first compare the degree distribu-
tion of all the members from the teams that are obtained by the
proposed algorithms and the comparison methods. The result
is summarized in Figure 2a. We can see the three lines (red
dash-dotted, purple solid and green dashed) which represent
the degree distributions of members from the teams obtained
by Algorithm-G under three different settings. These three
lines approach the degree distribution of the members from

the template teams (i.e., the blue solid line) to a greater extent
compared with the other three lines (yellow dashed, green solid
and pink dotted), which represents the degree distribution of
the members from the teams obtained by Algorithm-A. This is
because in the process of obtaining the node representations
using VGAE, the structural information is embedded in the
node representation. As a result, the trained team agent is able
to select team members having a more similar collaboration
structure as the members from the template teams. Another
observation is that, the degree distributions representing the
first type of setting (i.e., orange dashed line and red dash-
dotted line) have shown the best performance w.r.t structural
consistency compared with other two types of settings. In
addition, the distributions representing the third type of set-
ting (i.e., pink and green dotted line) demonstrate a better
structural consistency than that of the second type of setting
(i.e., green and purple solid line). This is because compared
with constructing a team from scratch, an initial team of
members with mediocre performance will actually impede the
team agent from optimizing a team towards the direction of
selecting outstanding members. The result of the graph kernel
(i.e., brown dotted line) shows that it has an inclination of
selecting members with a larger number of collaborations. This
is because as Eq. 15 shows, a network of team with more
collaborations (i.e., higher degree of node) will have a larger
graph kernel, and thus team candidates with large degrees are
more likely to be selected by this strategy.
The results of the measurement of skill similarity are presented
on the left side of Figure 3. We have the following observa-
tions, (1) under the same type of evaluation setting, leveraging
the attribute vector in training can achieve a better similarity
of skills. For example, 72.35% obtained by Algorithm-A (the
orange bar), is larger than the score, 67.47% obtained by
Algorithm-G (the red bar), this is consistent with our intuition
because when we use the attribute/skill vector as the node rep-
resentation, the objective of optimization becomes maximizing
the skill similarity; (2) under setting 1, the skill similarity is
higher than that under other two settings. For example, 72.35%
(the orange bar) is higher than 70.58%, 69.08% (the green,
pink bars respectively) and 67.47% (the red bar) is higher than
65.76%, 63.98% (the purple, grey bars respectively) where
the latter two bars represent the skill similarity under the
other two testing settings; (3) the graph kernel-based team
optimization strategy achieves a skill similarity of 48.33%,
which is consistent with the result of degree distribution in
Figure 2a because it selects a large portion of candidates with
large degree as well as skill vectors with large values, and thus
causes a low score of skill similarity; (4) although the skill-
based method achieves the best performance since it computes
the similarity for each team candidate and selects the member
with the largest value, it is very time-consuming.
2) Evaluation on Movie. The degree distribution of all
members from the testing teams on the Movie dataset is
presented in Figure 2b. We can see that even though the pattern
of these distributions are different from those on DBLP dataset,
leveraging VGAE node representations can still achieve a



closest degree distribution (i.e., the red dotted-dashed line)
to the distribution of the template team members (i.e., the
blue line). In addition, under the same type of evaluation
setting, the model trained using VGAE node representation
is more capable of optimizing the teams towards the template
teams than the model which uses attribute/skill vectors. For
example, the purple solid line is closer to the blue line than
the green solid line (under setting 2), and the grey solid line
is also closer than the pink dotted line (under setting 3). The
graph kernel method shows a similar results to Figure 2a
and there is a large portion of members who have higher
degrees. For the skill similarity on Movie, from the right
side of Figure 3, we have the following observations that are
consistent with the results on DBLP: (1) the team agent trained
using attribute/skill vector under setting 1 achieves the highest
similarity in skill (i.e., 69.98% in orange bar) among the
results obtained by other proposed methods; (2) the team agent
trained with attribute/skill vectors always outperforms the
agent trained with VGAE node representations, for example,
under the second type of setting, 68.86% (the green bar) is
higher than 64.32% (the purple bar) and 68.43% (the pink
bar) is higher than 62.91% (the grey bar) under the third type
of evaluation setting.
3) Parameter study. Figure 4 summarizes the comparison of
degree distributions on the Movie dataset under two new types
of settings which alter the evaluation parameter. We first fix
the size of initial team configuration to be 12 and increase
the number of members that are originally in the template
teams from 0 to 12. From figure 4a, we can see that (1) when
no members from the template teams exist in the initial team
configuration, the degree distribution (i.e., the yellow dashed
line) is apparently the most contrasting distribution comparing
with the distribution of the template teams; (2) as we increase
the number of members that are from the template teams, the
distribution is gradually approaching the original distribution.
Second, we alter the size of the initial team (from 3 to 12)
with all members from the template teams and summarize the
results in Figure 4b. It can be seen that as the size of initial
team increases, the distribution is also getting closer to the
original distribution (i.e., the blue line), which is consistent
with our intuition. If we compare these two settings, we can
see that when the size of the initial team is the same as the
number of members from template teams in Figure 4a, the
degree distribution of the former setting is closer to the original
distribution. For example, the green solid line in Figure 4b
approaches the original distribution to a greater extent than
the red dotted-dashed line in Figure 4a because there are none
non-template members in the initial members in the second
setting.
We also compare the skill similarity when altering the pa-
rameters in the same way and Figure 5 present how the skill
similarity changes. We have the following observations, (1)
for both settings, as the number of members in the initial
team configuration increases, the skill similarity also improves;
(2) when the number of members from the template teams
is the same in both settings, the initial teams with only

members from the template teams achieves a higher score of
skill similarity. For example, when the number of members
from the template teams is 6 and the attribute vectors are
leveraged in training, 69.98% (Figure 5b) is higher than
69.15% (Figure 5a).
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Fig. 2: Aggregated degree distribution of the teams. (a) The
number of seed (size of initial team) is randomly selected as
one or two if existed and the eventual size of the team is
defined as 4 and 6 respectively in the experiment (k = 4, 6).
(b) Six members exist initially in every testing team and the
size of the team is set as 24 (k = 24).
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Fig. 3: The average skill similarity (in percentage) of the teams
optimized by the proposed algorithms and the comparison
methods. Higher is better. Best viewed in color.
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Fig. 4: Comparison of the degree distribution of the teams opti-
mized by the proposed algorithm and the comparison methods.
The more the line approaches the original distribution (i.e., the
blue dotted line), the better. Best viewed in color. (a) the size
of T0 is 12 of which the number of members from the template
increases. (b) the size of T0 increases.
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(a) Skill similarity vs. the fraction
of members from the template
teams (the size of initial team is
fixed to be 12).
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teams (the size of initial team
increases).

Fig. 5: Parameter analysis of skill similarity on Movie dataset.
The higher the value is, the better. Best viewed in color.

D. Case study

1) Case study on DBLP. In this subsection, we present a
case study of real-time team optimization using our proposed
method. First, we apply the model trained with VGAE node
representations to an initial team with two members, Kunal
Punera and Byron Dom. After the optimization has finished,
the team includes the following new members, John Langford,
Thomas Hofmann, Alexandar Smola, and Yi Chang. We find
that the new team largely overlaps with this template team,
which includes Hans Kriegel, Alexandar Smola, Kunal Punera,
Yi Chang and Byron Dom. We can see that both teams consist
researchers in the area of Machine Learning and AI, among
which, Dr. Alexandar Smola and Dr. Byron Dom are highly
reputed researchers in these areas, which demonstrates that
the proposed algorithm can recommend team candidates with
similar collaboration network as well as similar types of skills
present in the template team.
2) Case study on Movie. One representative example of
team obtained by the proposed method includes the following
actors/actresses, Christian Bale, Gary Oldman, Morgan Free-
man, Aaron Eckhart, Gwyneth Paltrow and Joseph Gordon-
Levitt (only a subgroup of actors/actresses in this team are
listed). We can observe that the listed members in these
team are popular movie actors/actresses and they have starred
in several well-known highly rated movies. For example,
Christian Bale, Gary Oldman, Morgan Freeman and Aaron
Eckhart are in the main cast of the movie, The Dark Knight of
which the rate is 9.0 on IMDB. Morgan Freeman is a Golden
Globe Award winner with many highly rated movie, including
The Shawshank Redemption and Dark Knight Trilogy, and
he has also collaborated with Gwyneth Paltrow and Joseph
Gordon-Levitt in the movie Seven and The Dark Knight Rises,
respectively.

V. RELATED WORK

In this section, we review the related work in terms of (a)
reinforcement learning, and (b) team recommendation.

Reinforcement Learning studies the problem how an agent
takes actions in an environment in order to maximize the
cumulative reward until it reaches the terminal state. To
date, reinforcement learning has been widely studied in the

applications ranging from control system to recommendation.
The MDP-based CF model can be viewed as approximating a
partial observable MDP (POMDP) by applying a finite rather
than an unbounded window of previous history to define the
current state [7]. To better reduce the high computational and
representational complexity of the POMDP, three methods
have been successfully developed, including value function
approximation [17], policy based optimization [18], [19], and
stochastic sampling [20]. Furthermore, [21] proposes to adopt
the reinforcement learning technique to observe the responses
of users in a conversational recommender, with the goal of
maximizing a numerical cumulative reward function which
models the benefit that the users get from each recommen-
dation session. [8], [22] model web page recommendation as
a Q-Learning problem and learn to make recommendations
according to the web usage data as the actions instead of
mining explicit patterns from the data. To address the high-
dimensional combinatorial state and action spaces, the solution
based on deep reinforcement learning is introduced [23]. [9]
adopts deep neural networks as an approximator of the action-
value function (Q-function) and successfully implements the
framework in the game of Atari. In order for better general-
ization as well as better performance, [24] proposes double
Q-learning that can be generalized to work with large-scale
function approximation.

Team Recommendation is a very active research area in
data mining and information retrieval, either to recommend
products a user is mostly interested in or to identify the most
knowledgeable people in a specific field.This work is related
to this in the sense that we consider the scenario of finding the
optimal team recommendation strategy which could maximize
the performance of the current team. To ensure a successful
recommendation, the selected team members should possess
the desired skills and have strong team cohesion, which is first
illustrated in [25]. [26] studies forming teams to accommodate
a sequence of tasks arriving in an online fashion. A popular
method in recommendation (collaborative filtering) is latent
factor model [27]–[29] where the fundamental idea is to
identify the latent factors. The factorization based technique
can be naturally extended by adding biases, temporal dynamics
and varying confidence level. [30] proposes a decision support
system based on a relational recommendation approach which
provides an automated pre-selection of candidates that best
match the future team members. In many areas, identifying
experts in a research field is of great benefit. For example,
assigning papers to the right reviewers in a peer-review
process [31], [32], which can be done by building the co-
author network [33] or using language model and topic-based
model [34], [35]. In business, hiring the desired specialists is a
cost-efficient way to facilitate the on-going project, and many
methods have been proposed to search for an expert through
an organization’s document repository [36].

VI. CONCLUSION

In this paper, we formally define and formulate the problem
of real time team optimization and propose deep reinforcement



learning based algorithms to model the dynamics of the team
and the feedback from the environment. To demonstrate the
effectiveness of the proposed algorithm, we conduct extensive
empirical experiments and show that it can achieve the goal of
optimizing teams towards the direction of a high-performing
team. Future work includes extending the proposed algorithm
to other recommendation scenarios, e.g., list-wise recommen-
dation in online shopping and social recommendation.
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