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We show that the multi-dimensional compressible Euler system for isothermal flow of an ideal,
polytropic gas admits global-in-time, radially symmetric solutions with unbounded amplitudes due
to wave focusing. The examples are similarity solutions and involve a converging wave focusing at
the origin. At time of collapse, the density, but not the velocity, becomes unbounded, resulting in an
expanding shock wave. The solutions are constructed as functions of radial distance to the origin r
and time t. We verify that they provide genuine, weak solutions to the original, multi-d, isothermal
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Compressible While motivated by the well-known Guderley solutions to the full Euler system for an ideal gas,

Inviscid the solutions we consider are of a different type. In Guderley solutions an incoming shock propagates

g“;’?';gded solution toward the origin by penetrating a stationary and “cold” gas at zero pressure (there is no counter
adial riow

pressure due to vanishing temperature upstream of the shock), accompanied by blowup of velocity
and pressure, but not of density, at collapse. It is currently not known whether the full system
admits unbounded solutions in the absence of zero-pressure regions. The present work shows that
the simplified isothermal model does admit such behavior.

Similarity solution
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1. Introduction uniform variation estimates when the data have sufficiently small
total variation, there is currently no corresponding existence re-

We consider isothermal flow in n = 2 or 3 space dimensions sult available for general multi-d systems. In particular, this is

as described by the compressible Euler equations which express
conservation of mass and linear momentum in the absence of
viscous effects. The governing equations are:

pe + divg(pu) =0 (L1)
(pu); + divy[pu ® u] + grad, p = 0, (1.2)

where the independent variables are time t and position x € R",
and the primary dependent variables are the density p and the
fluid velocity u. In isothermal flow the pressure p is a linear
function of density:

p(p) = a®p (a > 0 constant). (1.3)

As a nonlinear system of conservation laws, shock waves will typ-
ically be present in the solution, and one must therefore consider
weak solutions that allow for propagating discontinuities in the
primary flow variables. In contrast to 1-d flow, where Glimm'’s
theorem [1] provides global existence for Cauchy problems via
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the case for the isothermal Euler model (1.1)-(1.2). (We comment
further on existence results for multi-d Euler flows below.)

Multi-d flows of a compressible fluid can be exceedingly com-
plicated, and it is reasonable to restrict attention to special types
of solutions. One such class of solutions, of both theoretical and
practical interest [2,3], is provided by radial flows. These are
solutions in which the variables depend on position only through
the distance r = |x| to the origin, and in addition the velocity
field is purely radial: u = u%. For such flows (1.1)-(1.2) reduce
to

o + (" pu) =0 (1.4)

r"(pu): + (r"(pu® + p))y = mr™'p, (1.5)
where m = n — 1. For smooth flows (1.4)-(1.5) reduce further to
pe +upr + p(u + %) =0 (1.6)
ue + uuy + %pr =0. (1.7)

While this is formally a 1-d system, r being the only spatial
variable, the multi-d character of the flow is reflected in the
geometric source term @ in (1.6). The presence of this term ex-

plains why there is no straightforward generalization of Glimm’s
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theorem to multi-d flows: no matter how small total variation
the data have initially, waves moving toward the origin may gain
in strength, precluding a priori estimates for the total variation
at later times. In fact, the presence of the unbounded factor } in
the geometric source term indicates that the Euler model allows
for amplitude blowup - as opposed to the well-known fact that
gradient blowup (i.e., shock formation) can occur.

The present work is concerned with the construction of un-
bounded radial solutions to the isothermal Euler system. The
blowup solutions we exhibit are “converging-diverging flows”
in which a weak discontinuity (i.e., a discontinuity in the first
derivatives of the flow variables) converges toward the origin,
“collapses” there at some instant in time, and reflects off an
expanding shock wave which interacts with the incoming flow.
The blowup occurs at, and only at, the origin at the time of
collapse. Thanks to invariance under translations in time, one is
free to choose the time of collapse to be t = 0, and this choice
is built into the type of solutions we consider. The constructed
solutions are globally defined on all of space-time.

In this work we restrict attention to similarity solutions of the
form

p(t, 1) = sgn(t)|tlP2(€),  u(t,r)=U(§), (18)
where the similarity variable & is given by
r
= -, 19
§ ; (1.9)

and with the similarity exponent S suitably chosen; see
Theorem 1.1. It is well-known ([3-6]) that the Euler system
admits similarity solutions, and (1.8)-(1.9) represent the special-
ization of these to the isothermal model.

Substitution of (1.8) into (1.6)-(1.7) yields an ODE system
for £2 and U, the similarity ODEs (2.1)-(2.2), and our goal is to
generate particular solutions of these which provides unbounded
solutions of the original, isothermal Euler system (1.1)-(1.2).
Specifically, the solutions we build suffer blowup of the density
field, but not the velocity field, at the origin r = 0 at time t = 0.

To describe the relevance of our results we need to review in
more detail what is known about radial solutions of the Euler
system. In fact, the seminal work [4] by Guderley showed that
already the physically more relevant full Euler system (i.e., includ-
ing conservation of energy) for an ideal, polytropic gas, admits
unbounded radial solutions of similarity type where a converging
shock invades a quiescent state near the origin (i.e., the fluid is
at rest and at constant density and pressure there), collapses at
the origin with infinite speed, and generates an expanding shock
wave. The work by Guderley has been revisited and extended by
many researchers. E.g., Hunter [7] provided examples of similarity
solutions describing the collapse of spherical cavities. The work
of Lazarus [8] (building on earlier, joint work with Richtmyer,
see the references in [8]) provided a detailed treatment of both
the shock and the cavity problems, and also addressed the issue
of stability of the blowup solutions. See also [9] which employs
Guderley solutions as benchmarks for computational codes. We
refer to the latter work for an extensive bibliography on Guderley
solutions.

On the other hand, it is only recently that it has been demon-
strated, in a mathematically rigorous manner, that the Guderley
solutions provide weak solutions to the original, multi-d Euler
system. As the flow involves unbounded quantities, this requires
a careful argument, see [10]. (For what is required of a “weak
solution”, see Definition 5.1).

However, there is a further aspect of Guderley solutions that
requires attention, and which directly motivates the present
work. Namely, while these solutions unequivocally demonstrate
the possibility of amplitude blowup in Euler flows, they are also

at the borderline of the regime where one expects the Euler
system to be physically accurate. More precisely, for the Guderley
solutions to be exact weak solutions of the full Euler system, the
sound speed must vanish identically within the quiescent region
invaded by the converging shock. As remarked by Lazarus (p. 318
in [8]), this is the only unphysical aspect of the setup. For the
ideal gas case under consideration, it follows that the incoming
shock does not experience any upstream counter-pressure. The
gas is at zero temperature there, and this is sometimes referred
to as a “cold gas” assumption. We note that the lack of upstream
counter-pressure is often formulated as a reasonable simplifying
assumption, a “strong shock approximation”. The present work
concerns exact, weak solutions of the Euler system. We are not
aware of rigorous results justifying the use of a strong shock
approximation in this context.

It appears reasonable that this absence of counter-pressure
in Guderley solutions facilitates unbounded growth of the shock
speed, with concomitant increases in pressure and temperature in
the immediate wake of the converging shock wave. It is therefore
unclear whether this is the (or part of the) mechanism that drives
the amplitude blowup in Guderley solutions for the full Euler
system. The alternative is that the blowup is purely (or mainly) a
geometric effect driven by wave focusing, much like what occurs
for radial solutions of the linear, multi-d wave equation.

The main goal of the present work is to clarify the mechanism
for amplitude blowup in radial Euler flows by showing that blowup
can occur in radial isothermal flows (of similarity type) even in the
presence of an everywhere strictly positive pressure field.

The isothermal solutions we construct are qualitatively dif-
ferent from the Guderley solutions described above. First, our
flows are continuous up to collapse, involving a converging weak
discontinuity (i.e., a jump in radial derivatives rather than a jump
in primary flow variables), and second, the converging weak
wave, as well as the reflected shock wave, propagate at finite,
constant speed. The density remains strictly positive everywhere
at all times. In fact, the density, and thus pressure, ahead of the
converging weak discontinuity grows without bound as t 1 0.
This demonstrates that the geometric effect of wave focusing is
sufficiently strong, on its own, to cause amplitude blowup — even
in the presence of an increasing upstream pressure.

We expect that the same conclusion applies to the isentropic
Euler model (i.e., (1.1)-(1.2) with p(p) = a®p? and y > 1),
as well as to the full Euler model. However, it appears more
challenging to build explicit examples of unbounded flows with
strictly positive pressure fields for these models. As we shall see
below, the isothermal model yields a particularly simple system
of similarity ODEs where the equation for U(¢) decouples and can
be analyzed in isolation.

It is a remarkable fact, first observed by Guderley [4] (ac-
cording to [3], p. 420), that the similarity ODEs for even the
full Euler model can be reduced to a single, first order ODE.
However, this is an ODE for one dependent similarity variable
(C, monitoring the sound speed) in terms of another dependent
similarity variable (U, monitoring the fluid velocity). It does not
involve the independent similarity variable & = rL)L (where A > 1)
in this case. To generate solutions of convergent-divergent flows
of physical interest in this context is more involved, and requires
the resolution of a non-linear eigenvalue problem: for a given
adiabatic constant y, only particular similarity exponents A are
admissible. In contrast, for the isothermal model we consider in
this work, we can analyze the similarity ODEs more directly. In
particular, by directly constructing U and 2 as functions of &, we
obtain a one-parameter family of blowup solutions.

The solutions we construct meet the following natural require-
ments:
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(A) the velocity vanishes at all times at the center of motion
r=0:u(t,0)=0;

(B) at any fixed location away from the origin the density and
velocity approach finite limits as time tends to the time of
collapse: for each fixed r > 0 the limits

limu(t, r) and lim p(t, 1) (1.10)
t—0 t—0

exist as finite numbers u(0,r) and p(0, r), respectively.
Equivalently, t — u(t,r) and t +— p(t,r) are continuous

at t = 0 for each fixed r > 0.

Note that requirement (B) leaves open the possibility that p(0, r)
and/or u(0, r) may blow up as r | 0. In addition, as discussed
above, a key requirement in this work is that the density, and
hence the pressure, is strictly positive:

(C) the density is everywhere strictly positive: p(t,r) > 0 for
all (t,r) e R x R,

With these preparations our main result can be stated as follows
(see Theorem 6.4 for a more detailed statement):

Theorem 1.1. The isothermal Euler system (1.1)-(1.2) in space
dimension n = 2 or 3 admits radial similarity solutions that suffer
amplitude blow up. More precisely, for each similarity exponent 8 €
(1—n, 1;—”), there are radial similarity solutions of the form
p(t, %) = sgn()|tP 2(5),  u(e,x) = U(%),
in which a weak discontinuity converges toward the origin fort < 0
and generates unbounded density at the origin at time t = 0,
resulting in a single, compressive and expanding circular (n = 2)
or spherical (n = 3) shock wave for t > 0. The velocity remains
globally bounded.

These solutions are weak solutions of the multi-d isothermal Euler
system (1.1)-(1.2) (in the sense of Definition 5.1) and satisfy the
requirements (A), (B), (C) above.

The proof of the theorem entails a study of the critical points
of the similarity ODEs, as well as the Rankine-Hugoniot rela-
tions and admissibility conditions across the shock wave that
emerges at the time of collapse. For the latter we use Lax’ entropy
condition, which in the present context amounts to compressibil-
ity: the density increases as the fluid crosses the shock surface
(see [11], Section 8.3).

Having built the solutions (p(t, X), u(t, X)), for all (t, X) € R; x
Ry, from the (U(£), £2(&))-solutions of the similarity ODEs, we
finally need to verify that they are indeed genuine weak solutions
of the original, multi-d Euler system. For this we require that:
(i) the conserved quantities map time continuously into L}OC(RQ);
(ii) all terms in the weak forms of the equations are locally inte-
grable in space-time; and (iii) the weak forms of the equations
are satisfied (see Definition 5.1).

Regarding the last requirement, we stress that what we ver-
ify is the weak form of the equations (1.1)-(1.2) themselves,
i.e., without terms corresponding to initial data. Of course, given
a weak solution (p,u) defined on R; x Ry, in the sense of
Definition 5.1, one may restrict it to any time interval [ty, +00),
to € R, and ask if it also provides a weak solution to the Cauchy
problem with initial data (p(to, -), u(to, -)). It is straightforward
to verify that this is automatically satisfied because of require-
ment (i): p and pu define strongly continuous maps from R;
into L}OC(R,'}). The continuity property (i) is explicitly verified in
Lemma 6.1 for the similarity solutions under consideration in this
work.

We do not address the general issue of uniqueness of flows in
this work. This is a challenging question for hyperbolic conserva-
tion laws in general, and particularly in the setting of unbounded

solutions. For the similarity solutions we consider below, the
blowup in amplitude occurs only at time t = 0, with a density
of the form p(0, X) = const.|x|?, (8 < 0) and a globally bounded
velocity u(0, x). We stress that we do not know that the solution
we construct for t > 0 provides the unique, physically acceptable
continuation of these initial data. All we can say is that, subject
to requirements (A) and (B), it provides the unique continuation
to t > 0 within the class of similarity solutions (1.8) with a fixed
similarity exponent 8.

The solutions we build have the property that the flow is
“strictly converging” at time of collapse: u(0, x) = U*%, where
U* is a strictly negative number. Combined with the presence of
an infinite density (and thus infinite pressure) at the center of
motion at time t = 0, it is reasonable to expect the emergence
of an expanding shock wave. Our analysis demonstrates the ex-
istence of exact solutions of this type. However, we stress that
other types of blowup solutions, of similarity type, are possible for
other choices of the similarity exponent g. E.g., it is not necessary
to have a weak discontinuity focusing on the origin — even a
smooth, converging wave can produce blowup. Second, there are
cases in which the converging flow blows up, but does not gener-
ate an outgoing shock wave and instead a smooth flow emerges
for t > 0. As a limiting case a weak, outgoing discontinuity can
also be generated. See Remark 3.2.

We end this introduction with some remarks on what is
known about existence of radial Euler flows with “general” initial
data. First, there is currently no result for the full, multi-d Euler
system, radial or not, that guarantees global-in-time existence.
For radial isentropic flows (i.e., the pressure law is p(p) =
a’p?” with y > 1) results by Chen-Perepelitsa [12] and Chen-
Schrecker [13] provide existence of weak, finite energy solutions
via the method of compensated compactness. In fact, the recent
work [14] by Schrecker is the first to show that the solutions
one obtains in this manner provide genuine weak solutions to
the original, multi-d isentropic Euler system (1.1)-(1.2) on all
of space (i.e., including the origin). These works provide weak
solutions for general, finite energy data; however, they yield
no information about the possibility/impossibility of amplitude
blowup. There appears to be little hope of extending the com-
pensated compactness approach to the radial full system, or even
(for technical reasons related to a lack of entropies, [15]) to the
radial, isothermal system we consider in the present paper.

As far as we know, the currently strongest, global existence
result for the radial isothermal system applies to the case of
external flows, i.e., for flows outside of a fixed ball, see [16-18].
The results of the present paper show that, in order to extend
these results to solutions defined on all of space (i.e., including the
origin), one must necessarily contend with unbounded solutions.

For results closer to the present work, which concerns con-
crete Euler flows in several space dimensions, we refer to Chapter
7 of Zheng’s monograph [19] on multi-d Riemann problems, some
of which generate purely radial flows. However, we stress that
the radial flows we construct below are not solutions to multi-
d Riemann problems. Specifically, the solutions we display are
necessarily non-constant in the radial direction at all times.

The rest of the present paper is organized as follows. In
Section 2 we record the similarity ODEs and provide the Rankine-
Hugoniot relations and entropy conditions as expressed in terms
of the similarity variables &, £2, and U. Sections 3 and 4 provide
the details of the construction of the radial velocity and the
corresponding density for converging-diverging similarity flows
of the type described above. In Section 5 we briefly recall the
definition of weak solutions to the barotropic Euler system, in-
cluding its formulation for the special case of radial solutions.
In Section 6 we verify that the radial similarity flows we con-
struct provide genuine weak solutions to the original, multi-d
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isothermal Euler system. A detailed statement of the main result
is given in Theorem 6.4. Finally, Section 7 collects a few additional
observations about the flows constructed in this paper. Some
proofs of technical results are collected in Appendix.

2. Similarity ODEs and jump relations
2.1. Similarity ODEs

Substituting the ansatz (1.8)-(1.9) into (1.6)-(1.7), with
isothermal pressure p(p) = a’p, yields the following system of
similarity ODEs for £2(&) and U(&):
U s)g/+u’+(ﬂ+mu)—o 2.1)

Q £ /) )
e L w-eu 22)

5 = .
where ' = di. At this stage the parameter 8 € R is free. A
simplifying feature of the isothermal case is that the system of
simila/rity ODEs provides a single, decoupled ODE for U: solving
for % in (2.2) and substituting into (2.1) yield

;L a? mU
U= m(“?) (2.3)
Using this in (2.2) gives
Q U—¢ mu
= walPr ) (24)

Before analyzing the similarity ODEs further we deduce the jump
conditions for propagating discontinuities, expressed in similarity
variables.

2.2. Rankine-Hugoniot and entropy conditions

Consider the radial isothermal Euler system (1.4)-(1.5), and
assume that a discontinuity propagates along the path r =
R(t). The Rankine-Hugoniot relations that express conservation
of mass and momentum across the discontinuity are given by

R[[,o]] = [[pu]] (2.5)
R[[pu]] = [[/ou2 +r]l. (2.6)

where = d[ Here and below we use the convention that, for any
quantity g = q(t, r), [[q]] denotes the jump in q as r decreases,

Le,,

[all == g+ — a- = a(t, R()}+) — q(t, R(1)-).

Next, as the local sound speed c in isothermal flow is constant,
¢ = a (where a is as in (1.3)), the characteristic speeds are u £ a.
It follows that the Lax entropy condition (characteristics run into
the shock as time increases, [11]) takes the following forms:

u_>mR+a>u, fora l-shock, (2.7)
and
u_>mR-—a>uy fora2-shock. (2.8)

We next specialize to “similarity shocks” in radial isothermal
flow: the shock is assumed to propagate along a path of the form
& =¢£,ie, R(t) = &t. Furthermore, it is assumed that the density
and velocity on either side of the shock are of the form (1.8),
with g taking the same value on both sides. Letting (U, £2)
and (U_, £2_) denote the parts of the solution on the outside
and inside of the shock, respectively (“outside” and “inside” refer
to further away from and closer to r = 0, respectively), the
Rankine-Hugoniot relations (2.5)-(2.6) reduce to

s[2] = [«u]

g[eu] = [’ +d)].

where [[ ]] now denotes jump across £ = £. The entropy condi-

tions (2.7)-(2.8) take the form

U_(§)>&+4+a>U.(&) fora 1-shock (2.9)
U(§)>&—a>U.E) fora 2-shock. (2.10)
Finally, setting V. := U, — &, where Uy denotes Uy(€), the

Rankine-Hugoniot conditions take the form [[2V]] = 0 and
[2VU + a>2]] = 0. It follows from these that V. V_ = a?, and
that an equivalent form of the jump conditions is given by

. @ (U- &)
Uy, = = and 2, =——-290 2.11
=&+ U_ + 2 (211)
Alternatively, solving for V_ and £2_, we have
P a Uy — £)
_ =&+ - and R =—""0.. 2.12
§ T z + (212)

3. Construction of the velocity field

To construct relevant examples of converging-diverging
isothermal similarity flows, we start with the ODE (2.3) for the
velocity U(&), which we now write as

F(§,U)

U'g) = CEU)

(3.1)

where
F(&,U)=d* (g +mU) and G U)=£((U —£) —d).

We shall make use of three solutions of (3.1), which together
define, via (1.8);, the velocity field u(t, r) for all (¢,7) € R x
(0, 00). The three U-solutions, denoted Uy, U, U, will be defined
on certain intervals, (—oo, &w], [Ew, &), and [&, +00), respec-
tively. The values &, < 0 and & > O will give the paths
{r = &ut, t < 0} and {r = &t, t > 0} of the converging weak
discontinuity and expanding shock in our solutions, respectively;
they are determined as part of the construction below. Then:

o Uy will determine u within the sector

Sci={(r,t) | —oo < { < &u}, (3.2)
e U will determine u within the sector
S:={(r.t)| & < ¢ < +oo}, while (3.3)
o U will determine u within the two sectors
S_={(r,t) 6w <L <0} and S, :={(r.,t)|0 <"’ <&}
(3.4)

Remark 3.1. As the following analysis shows, once we decide
to search for similarity solution in which a weak discontinuity
approaches the origin for t < 0, followed by an expanding shock
for t > 0, then the requirements (A) and (B) in Section 1 will put
certain constramts on the similarity exponent 8. The constraints
1—n < B < 52 in Theorem 1.1 provide sufficient conditions for
generating the sought for solution structure.

To determine the Uy, U, U solutions we start by analyzing the
critical points of (3.1).
3.1. Critical points

The number and locations of the critical points of (3.1) (i.e., the
points where F and G vanish simultaneously) vary with the values
of 8 and m = n— 1. It turns out that for our purpose of generating
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particular blowup solutions, it suffices to restrict attention to the

following cases:
—-m<pB<0 and m=1 or m=2, (3.5)

and we do so from here on; a further restriction will be added
later (see Lemma 3.4). It is convenient to introduce the ratio

u= % so that u € (—1, 0),
and the straight lines in the (¢, U)-plane given by
={¢. U)IU=£&+a and ow:={(§ U)|U=—nué}

The critical points of (3.1) are the points of intersection of w
(where F vanishes) with the U-axis and the lines [. (where G
vanishes). For the case (3.5) under consideration it follows (see
Fig. 1) that (3.1) has three critical points: the origin (0, 0) and the
points +Py, := (+&, £Uy), where

ap
= — 0, Uy = 0. 3.6
&w T+ < w T+ < (3.6)
(The subscript “w” is for “weak” as a weak discontinuity will
propagate along r = &ut, for t < 0, in the solutions to be

constructed.) We also note that solutions of (3.1) are symmetric
about the origin in the (&, U)-plane: if & — U(&) is a solution,
then so is & —> —U(-&).

3.2. Solution behavior near critical points
For each critical point (£, U) of (3.1) we linearize the ODE
about it; the result is the ODE
C(¢ —&)+DWU -0)
U's) = = = (3.7)
A§ —§)+BU-U)
where the coefficients are given by

A=(U—-§P-286(U—&)—d’, B=28U-&),
C =d®B, D = a®m.

The type of the critical point (£, U) is thus determined by the
eigen-structure of the matrix

: - A B
=M(&,U) = [ c D ]
This is detailed in the following two lemmas for (£, U) = (0, 0)
and (£, U) = Py, respectively. By symmetry of solutions of (3.1)
about the origin, the type of the critical point —P,, is the same
as that of P,. As we shall see, the three critical points of (3.1)
under consideration are all hyperbolic (i.e., the real part of the
eigenvalues of M are non-zero). It follows that the local behavior

of solutions to (3.1) near the critical points agrees with that of its
linearization.

Lemma 3.1. Consider the ODE (3.1) and assume (3.5) is satisfied.
Then the critical point (§,U) = (0,0) is a saddle point for the
linearized equation (3.7); the eigen-directions in the (&, U)-plane
corresponding to the negative and positive eigenvalues of M(0, 0)
are along (n, —pB) and (0, 1), respectively.

Proof. Evaluating the matrix M at (£, U) =

—a> 0
@ a*m |’
which has eigenvalues —a? < 0 and a’>m > 0, with corresponding

right eigenvectors [n, —8]" and [0, 1], respectively. The result
follows. O

(0, 0) gives

M=M(0,0)=[

Lemma 3.2. Consider the ODE (3.1) and assume (3.5) is satisfied.
Then the critical point (&, U) = (&w, Uy) is a node for the linearized
equation (3.7). More precisely, the eigenvalues of M(&,,, Uy,) are
given by

2
Ai:%[quﬁ:I: (m+ 12, —8m|. (3.8)

Under assumption (3.5), Ay are real and satisfy 0 < A_ < A,. The
eigen-directions in the (¢, U)-plane corresponding to A_ and A, are

along
(®m—xr_,—a’8) and  (&®m— iy, —a’B), (3.9)

respectively.

Proof. Evaluating the matrix M at (&, U) =

2d0%  _ 2d%
M = M(éw, Uy) = 1u I+u ,

(Ew, Uy) gives

g d’m

whose eigenvalues are given by (3.8). Assumption (3.5) yields

m > 1, and since m?> + 4m + 4 > 8mar1dm > 0, we obtain

that (m + 2.7 = m* + {5 + o5 > 8m. It follows that
the radicand in (3.8) is strictly positive and that 0 < A_ < A, . A
direct calculation yields the eigen-directions recorded in (3.9). O

We record the following inequalities which will be used to
deduce information about the structure of solutions to (3.1).

Lemma 3.3. With the notation as in Lemma 3.2, and under
assumption (3.5), the following inequalities hold:
2 2
a a
—7'B<0<—,u,<—7ﬂ<1. (3.10)
a’m— Ay atm — A_

Proof. See Appendix. O

We proceed to employ the preceding lemmas to identify the
solutions Uy, U, and U of (3.1) that will be used to build the
velocity field u(t, r).

3.3. Step 1: Solving (3.1) on (—o00, &y]

It follows from Lemmas 3.2 and 3.3 that there is a unique
solution of (3.1) that approaches P,, from the left (i.e., as & 1 &)
with negative slope ~m- A+ We denote this particular solution
curve by Ui(£); “k” is for “kink” as it provides the velocity of
our solution on one side of the kink (weak discontinuity) that
converges toward the origin. We shall argue that the solution
Uk(&¢) is defined for all & < &,, and furthermore that, under
certain conditions, it tends to a finite and strictly negative value
U* as & | —oo. See Fig. 1.

To analyze Uy in more detail we first introduce the region

U={&.U):§ <& U>—p&}

We note that ¢/ has P, as corner point, and that F|;,> 0 and
Gly< 0. Since Uy approaches P,, from within ¢/, and since
F(&,U)/G(&, U) is a bounded function on ¢/ \ B, for any ball B,
centered at P, it follows that the solution Uy(&¢) is defined for
all £ < &, and that Uy(&) < O for all such &. In particular, Uy(§)
remains inside ¢/ and satisfies

Uk(§) > Uy for & < &y. (3.11)

We next analyze how Ui(&) behaves for large, negative &-values.

We shall see that it will tend to a finite limit at £ = —oo. Note

that, since § = £ — —oo for r > 0 fixed as t 4 0, this finiteness

t
of U* = Uy(—o0) is required by the first part of requirement (B)
in Section 1.




6 H.K. Jenssen and C. Tsikkou / Physica D 410 (2020) 132511

Ev

U

-U-§)

U(E)

B e |

U(e)

H(E)

Fig. 1. Complete U(&)-profile (schematic).

However, for the subsequent analysis we shall also need that
U* < 0. (Specifically, this is required to build a solution in which
an expanding shock is present for t > 0; see Remark 3.2.) We
proceed to show that there are solutions satisfying this constraint
(as well as the constraints in (3.5)). We start by observing that for
(E,U)eudwehave U — & —a > U+ ué > 0, so that

U+ ué
U-&—a
The solution Uy therefore satisfies

CmUE) +pE)
§(UE) — & — a)ULE) — & +0)

Since Uy(&) also satisfies (3.11), we obtain

<1 within /.

a*m

E(UE) — & +a)

U(§) =

a’m a*m

T EHUGE) € +a) EUw—£+a)
Integrating from & < &, to &, gives

Ew dg
¢ EE—(a+UW)

Since Ui(&) increases as & decreases, and since the last integral
converges as & | —oo, we conclude that the limit

U(&) for all & < &,.

Ur(§) < Uw + a’m § <éw.

U* := Uy(—o0) exists as a finite number.
Sending & | —oo and evaluating the resulting integral, we obtain

that

§w

U* < U +a2mf 4@
v o E(E — (a+ Uy))

MO 1og(att + w)

AT20 (3.12)

=da
1 1%

Lemma 3.4. The function
© m(1+ )
1+p  (1+42up)

appearing in (3.12) satisfies Ly,(1) < 0 for u € (—1, —%)for each
ofm=1and m = 2.

Ln(p) == log(2(1 4 )

Proof. See Appendix. O

We note that, in terms of n = m + 1 and B, the requirement
1= "5 e(-1,-1) takes the form (cf. Theorem 1.1)

‘17
Be(l—n,5"),
and this is assumed from now on.

(3.13)

Lemma 3.5. Under the requirement (3.13), we have that the kink-
solution Uy(&) tends to a finite and strictly negative limit as & |
—00:

U* := Ug(—0o0) < 0.
Proof. This is a direct consequence of Lemma 3.4 and (3.12). O
3.4. Step 2: Solving (3.1) on & € [&w, &]

It follows from Lemmas 3.2 and 3.3 that among the solutions

of (3.1) that emanate from P,, as & increases from &, all but one
2

starts out from P,, with positive slope —HZ; _ﬂL. (The exception
is the solution which starts out with the slope U (&); it will play
no role in our analysis.) The two last inequalities in Lemma 3.3
further show that they all initially (i.e., for & > &) enter the
triangle

A={¢&U)|éw<§<0, —pus <U<é&+a}

i.e,, the triangle bounded by the U-axis, and the lines w and I,
(the shaded region in Fig. 1). An inspection of the phase portrait of
(3.1) within A shows that, as & increases from &,, toward 0, each
of these solutions, with one exception, meets the boundary of A
either with infinite slope along the upper edge along I, or with
slope 0 at along the lower edge along w. The sole exception is the
unique solution (separatrix) which starts at P, remains inside
A, and /gaccording to Lemma 3.1) reaches (0, 0) with positive
slope — . By exploiting the symmetry of solutions to (3.1) about
the origin in the (&, U)-plane, this solution may be continued
(smoothly) up to § = —§, > 0. However, in our subsequent
construction we shall only use U(§) for & € (&w, &), where & €
(0, —&y), yet to be determined, gives the path r = &t of the
reflected shock wave; see Fig. 1. We denote the solution under
consideration, viewed as a function defined for § € (&, &), by
ueé).

We stress that the use of U is dictated, via (1.8);, by the
physical requirement (A) above: we must have U(0) = 0 in order
that the fluid at the center of motion be at rest. The value of &
will be determined once we have identified the relevant solution
U(&) of (3.1) to be used for large positive values of &.




H.K. Jenssen and C. Tsikkou / Physica D 410 (2020) 132511 7

3.5. Step 3: Solving (3.1) on & € [&;, +00)

Recall that Uy and U are to determine the velocity field u(t, r)
within the two adjacent sectors Sy and S, respectively, which are
separated by the positive r-axis; see (3.2) and (3.3). According to
requirement (B) in Section 1, u(t, r) should be continuous across
the positive r-axis. Since approaching a point (r, 0) on the positive
r-axis from below or above, corresponds to & approaching —oo or
+oo, respectively, and u(t, r) = U(), we must have U(+o00) =
Ux(—o0) = U*. Therefore, the relevant solution U of (3.1), to be
used for & € (&, +00), is determined by the requirement that

U(+o00) = U*. (3.14)

Next, as we integrate (3.1) along decreasing &-values from
& = +o0 in the (&, U)-plane, the graph of the solution U(§) will
remain below the graph of the function —Uy(—£&). This follows
since the latter is a solution of (3.1) (recall that solutions of (3.1)
lie symmetrically about the origin), which starts out from & =
400 with the value —U* > 0 > U*.

Since the graph of —Uy(—§) passes through —P, € L, it
follows that the solution U(£) intersects the straight line [_ (with
slope —o0) at some £-value £* with 0 < £* < —&y; see Fig. 1. The
entire graph of U(§), for £* < & < 400, is therefore located below
the line I_ and in the right half of the (&, U)-plane. (In particular,
it follows from (3.1) that U’'(§) < 0 for all & € (§*, +00).)

Next, to determine the shogk location & we argue as fol-
lows. Returning to the solution U(&) determined earlier, but now
considered only for arguments & € (0, —&,], we let 7 denote
its associated “Hugoniot locus”. That is, 7 is the set of points
(&, H(§)) in the (&, U)-plane that connect to a point on the solu-
tion curve (§, U(§)) through a jump discontinuity with U_ = U(§)
and U, = H(&) (recall the notation from Section 2.2). According
to (2.11)y, H is the graph of the function

2

0 -
The following lemma follows from the properties of the solution

U(&). (See Fig. 1 where the graph of H is drawn as a thin, solid
curve.)

AE)=¢+ for 0 < & < —&,.

Lemma 3.6. The function I:I(i-‘) has the following properties:

(i) HE) <& —afor0 <& < —&,
(ii) lAimgu) H(§) = —o0, and

(iit) H(—éw) = —Uw-

Proof. See Appendix. O

We conclude from Lemma 3.6 that the graphs of the functions

I:I(S) and 0(‘;‘) intersect for at least one £-value between 0 and

Ew.

Remark 3.2. It is for this part of the argument that we require
U* = Ug(—o0) < 0: only in this case does the solution contain
an expanding shock for t > 0. If instead U* > 0, then the
solution U(&) (obtained by integrating (3.1) in from § = +o0 with
U(+4o00) = U*) will connect smoothly with U(¢) at § = —&, > O;
no shock appears in the resulting flow. The limiting case where
U* = 0is special: U(¢) then coincides with the solution —Uy(—§&)
for &€ € (—&w,+00); no shock appears, but there is a weak
discontinuity expanding along r = —&,t for t > 0.

Also, in our setup above, we have chosen to use the “kink-
solution” Uy(€) for & < &,. We could just as well have used one
of the (infinitely many) solutions to (3.1) that connects smoothly
with U(§) at & = &,,. The resulting flow would exhibit a smooth,
converging wave. We omit the detailed arguments for these prop-
erties.

(As in Fig. 1, numerical calculations indicate that I:I(E) is
strictly increasing on (0, —&,,); if so, the point of intersection is
uniquely determined. However, we have not been able to provide
an analytic proof that H'(£) > 0. On the other hand, should there
be multiple &-values where H(¢) and U(£) agree, any one of these
will work in the following argument.) Let & € (0, —&,) be any
value for which H(&;) = U(&s). We use this &s-value to define the
expanding shock path r = &t in the (r, t)-plane across which
the U-solution jumps from the value U_(&) := U(&) on the
inside, to the value U, (&) := U(&;) on the outside. This defines a
propagating jump discontinuity which, by construction, satisfies
the first of the Rankine-Hugoniot jump conditions in (2.11). (The
second one will be addressed in the construction of the similarity
variable £2(&).) .

Fipally, it follows from the construction of the function U that
E>U()> & —afor& € (0, —£y). In particular,

£ > U (&)= U(&) > & —a > H(&) = UL) = Uy (&),

where the second inequality follows from part (i) of Lemma 3.6.
We conclude from (2.10) that the jump discontinuity constructed
above satisfies the entropy condition for a 2-shock.

We summarize the properties of the constructed velocity field
in the following proposition.

(3.15)

Proposition 3.7.  For space dimensions n = 2 orn = 3, let
Be(1—n, 1%"). Consider the solutions Uy, U, U of the similarity
ODE (3.1) constructed above, and let the values &, < 0 and & > 0
be determined as in (3.6) and in the present section, respectively.
Then the functions u(t, r) and U(&) defined by

Uk(%) —0 < % < &w

ut, N =ul) =1 0() &<

~=

<& (3.16)

U5 & <1t<oo,

together with

u(0, 1) i= U* = U(—00), (3.17)

provides a globally bounded velocity field in which a weak discon-
tinuity converges toward the origin along r = &yt fort < 0, and a
diverging jump discontinuity, satisfying the Rankine-Hugoniot jump
condition in (2.11); and the entropy condition (2.10) for a 2-shock,
diverges from the origin along r = &t for t > 0. Finally,

u(t,0)=0 and u(0,r)=U*, (3.18)

and u(t,r) satisfies the physical requirements (A) and (B) in
Section 1.

Remark 3.3. With the setup of Proposition 3.7 the function U(&)
is strictly decreasing on (&, c0) and tends to U* < 0 as § —
oo. Numerical calculations show that there are cases for which
U(&) > 0. It follows that there exists a &-value for which U(&)
vanishes. This shows that stagnation (vanishing flow velocity)
may occur upstream of the expanding shock. On the other hand,
under the assumptions in Proposition 3.7, no stagnation occurs in
the solution for t < 0.

4. Construction of the density field

Having constructed the velocity field u as described in
Proposition 3.7, we proceed to build a corresponding density field
p(t, r) of the similarity type

p(t. 1) = sen()[t1P (&), £ = ; (4.1)
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where 2 solves the second similarity ODE (2.2), repeated here for
convenience in the form:

2'(8) = V(§)82(8), (4.2)
where, according to (3.1),
1
V() = —afz(U(%‘) —&U'(E)
NUGE CRRC - 43)

E(UE)— &) —a?)
Here, U(§) is given by Proposition 3.7 and consists of the three
parts Uy, U, and U, defined on (—o0, &y], (éw, &), and [&;, co), re-
spectively. It follows from the analysis in Section 3 that the func-
tion V(&) in (4.2)-(4.3) is well-defined and globally bounded on
R~ {&}, and continuous on each of the open intervals (—o0, &),
(6w, &s), (&5, 00). The restrictions of V to these intervals are de-
noted Vi, V, and V, respectively.

The obvious approach to building the density profile is to use
(4.2) to construct $2-solutions corresponding to Uy, U, and U, on
their respective intervals of definition. Essentially, this is what we
do, and we shall find that £2, just like U, has a weak discontinuity
(kink) at &,, and a jump discontinuity at &;.

However, as a first step in the analysis, we note that the situ-
ation is slightly more involved: according to the next lemma, for
the §2-variable there must necessarily be a discontinuity present
also at the origin.

Lemma 4.1. If £2(§) is a continuous solution of (4.2) on an open
interval I C (&, &) about the origin, then the corresponding density
field p(t, r) in (4.1) cannot satisfy requirement (C) in Section 1.

Proof. Assume for contradiction that requirement (C) is satisfied,
i.e, p(t,r) > 0 for all (t,r) withr > 0 and % € I. It then follows
from (4.1), and sgn(t) = sgn(&), that sgn($2(£)) = sgn(&) for all
& € I{0}. As £2 is continuous at & = 0, it follows that £2(0) = 0.
But then (4.2) implies that £2(&) vanishes identically on I, which,
according to (4.1), contradicts requirement (C). O

We also observe from the previous proof that, as a conse-
quence of requirement (C), the entire £2-solution must satisfy
sgn($2(&)) = sgn(§). In particular, by Lemma 4.1, the one-sided
limit £2(0—) must be a strictly negative number. _

So, differently from the three U-solutions Uy, U, and U deter-
mined above, we now need to build four §2-solutions, one on
each of the intervals (—o0, &), (§w,0), (0, &;), and (&, 00). To
avoid introducing additional notation, we let §2(¢£) denote the
£2-solution on both of the intervals (§y, 0) and (0, &), and refer
to these as the left and right parts of 2, respectively.

Since the function V : R \ {£&} — R in (4.2) is bounded and
continuous, the existence of solutions to (4.2) on each of the in-
tervals (—oo, &), (w, 0), (0, &), (&, oo) is unproblematic once an
initial condition is prescribed at some finite point of the interval
in question. While we shall utilize this fact, there remains two key
issues: the £2-solutions we build should satisfy the requirements
(B) and (C) in Section 1; and, it should include a compressive
discontinuity satisfying the Rankine-Hugoniot relation (2.12), at
§ =6

With these preparations, we proceed to construct the sought-
for function £2(&) according to the following steps.

4.1. Step 1: solving (4.2) on [£y, 0]

We start by assigning any number £2 < 0, and solve (4.2),
with V(§) = V(§), for £2(§) on [y, 0] with initial condition
£2(0) = £29. We note that 2, is a free parameter, up to its sign.
This “indeterminacy” reflects a special feature of the isothermal
Euler system: whenever (o, u) is a solution of (1.1)-(1.2)-(1.3),
then so is (« p, u) for any « > 0.

4.2. Step 2: solving (4.2) on (—o0, &y]

We solve (4.2), with V(§) = V(§), for £2(§) on (—o0, &l
with the initial condition 2y (&) = fz(gw) ‘where the latter value
is obtained from Step 1. Since V(&) # v/ (éw) while V(&) =
V(gw) it follows from (4.2) that also £2,(&y) # Q' (Ew); i.e., the
§2-solution inherits a kink from the U-solution at this point.

As noted above, the existence of §2y(&) is unproblematic on
the whole interval (—oo, &,]. However, to address requirement
(B) we shall need more precise information about the behavior of
21(&) as & | —oo, which corresponds to the behavior of p(t, r)
as t 1 0 at a fixed location r > 0. We have:

Lemma 4.2. The solution $2,(&) to (4.2) on (—

im -Qk(g)
§l-oo [E]F

00, &y] satisfies

=C_, (4.4)

for a finite, negative constant C_. As a consequence, the correspond-
ing density field p(t, r) given by (4.1) satisfies

"{5‘ plt,r)=—C_r? at each fixed location r > 0. (4.5)
t
Proof. We first argue that the function Vi(§) = —aiz(Uk(é) —
&)U (&) satisfies
/3 C
IVi(§) — £l = =) for & € (—o0, &wl, (4.6)
for some constant C. Since Vi(&) is bounded on (—oo, &,], to
verify (4.6) it suffices to show that the quantity
E2Vi(&) — §| remains bounded as £ | —oo. (4.7)
For this we use (4.3) to write
2 _ By £2 | (Uk(E)-E)BE+mUK(E)) | B
EIVE) — €1 =8 | T Go o TE ‘
_ (m-+B) Uy (§)—(m+B)Uy (5 +Ba®
- |%‘| (U({-‘)—%‘)Z—az (4'8)

Sending & | —oo in (4.8) and using Lemma 3.5, yield (4.7), and
thus (4.6).

Next, writing (4.2) in the form
2,(8)
()
and integrating from & < &, to &, yield

2u(E) 2w / oy
= —— -exp == V(n)dn|,
Hi |&wl? [ g ]
where £2,, .= £2¢(&w) < 0. Sending & | —oo yields (4.4) with

Q Ew
= .exp[/
[Ewl —00

which is finite according to (4.6). Finally, applying this in (4.1) we
obtain, for any fixed location r > 0,

=+ -4,

==

~ Vi(mdn] <0

lim p(t, 1) = lim sgn(t)[t]” 2(f)
t10 t10

-Qk(s)
— B . — B
=—r (Etm G >_ c_r?,

verifying (4.5). O

Remark 4.1. We note that, since 8 < 0, (4.5) shows that the
density field suffers blowup at the center of motion at time t = 0.
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4.3. Step 3: solving (4.2) on [&;, +00)

It follows from Lemma 4.2 and requirement (B) in Section 1
that the density field we seek should satisfy

li%l p(t,r)=—C_r?  foreachr > 0. (4.10)
t

We use this condition to select the appropriate solution $2(¥)
of (4.2) on [, +00). This is most easily done by repeating the
argument in the proof of Lemma 4.2. We first write (4.2) on

[&, +00) in the form

(4.11)

and observe that, as in the proof above, there is a constant C such
that

~ C

V() - £l < g foréelftoo) (4.12)

Integrating (4.11) from & we obtain that

2 Q(& .

% = ;SE ) ~exp[/$s V() — gdn]. (4.13)

Thanks to (4.12), we can now define

25) = ~C el -e [ 8- Tonan] (414)
&

where C_ < 0 is given by (4.4). This selects a unique solution of
$2(&) of (4.2) on [&, +00), which, according to (4.13) and (4.14),
satisfies

lim —— = —-C_ 4.15
£rtoo EP ( )
Finally, in terms of (4.1) with £ = £, this gives

. —lim (BT
l[lfglp(t,r) ltlg)l t782(%)

=—C_r?  atany fixed location r > 0. (4.16)

Thus, requirement (B) in Section 1 selects a unique $§2-solution
for continuing the density field p(t, r) across t = 0.

4.4. Step 4: solving (4.2) on (0, &]

The solution (&) constructed in the previous step provides
the value §2(&;) at the immediate outside of the expanding shock-
wave which is to propagate along r = &;t. Applying the Rankine-
Hugoniot condition (2.12), with & = &, U, = U(&), 2, = (&),
and 2_ = (&), yields

A _GE)P
o= 5,

The latter value provides the initial data at § = &; for the solution
Q(s) of (4.2) on (0, &). As noted above, since V(&) is bounded on
(0, &], it is unproblematic to integrate (4.2) there.

Finally, let us verify that the resulting shock is compressive. It
follows from (3.15) that U(&s) < & < & — q, so that: (a) the fluid
crosses the expandmg shock from its outside to its inside, and (b)
(& — U(&))* > d?. Using (b) in (4.17) yields $2(&) > $2(&), s
that (via (1.8)1) the density of the fluid is higher on the lmmedlate
inside of the shock, compared to on the immediate outside. Thus,
the density of a fluid particle increases as it passes through the
shock, and the shock is compressive.

This concludes the construction of the function £2(¢) to be
used for defining the density in radial similarity flows for isother-

(4.17)

mal Euler; see Fig. 2. We sum up the properties of the resulting
density field in the following proposition.

Proposition 4.3. For space dimensions n = 2 orn = 3, let
Be(l—n, —) Consider the solutions 2y, £2, 2 of the similarity
ODE (4.2) constructed above by using the parameter 2o < 0 and the
solutions Uy, U0 of the similarity ODE (3.1). Finally, let the values
&w < 0 and & > 0 be determined as in (3.6) and in Section 3.5,
respectively. Define the functions p(t, r) and $2(£) by

—tlP2u(t) —oo< i <&

—|ti2(f) &w<t<O
p(t, ) = sgn(t)|t) (%) = )

th2(%) 0<% <&

tP2(%) £ < < oo,

(4.18)

together with
p(0,1) = —C_rP, (4.19)

where C_ < 0 is given by Lemma 4.2. Then $2(&) is globally
bounded and (4.18)-(4.19) yield a density field p(t, r) in which a
weak discontinuity converges toward the origin along r = &t for
t < 0, and a compressive jump discontinuity, satisfying the Rankine-
Hugoniot jump condition in (2.11),, diverges from the origin along
r = &t for t > 0. The function r — p(t, r) is bounded at each time
t # 0. Finally, p satisfies the physical requirements (B) and (C) in
Section 1.

Proof. The presence of the weak discontinuity and the jump dis-
continuity follows by construction, as do the boundedness of r —
p(t,r) at times t # 0. Also, as detailed in Section 4.3, require-
ments (B) is satisfied by construction. Compressibility was argued
for above. It remains to argue for requirement (C), i.e., p(t, 1)
is positive almost everywhere. According to (4.18) it suffices to
verify that

2(8) =

Observing that continuous solutions of (4.2) cannot change sign,
we consider each of the subintervals [&y, 0), (—o0, &], (&, 00),
and (0, &;) in turn. First, from Section 4.1, 29 < 0 provides initial
data for £2 at &€ = 0. Thus, Q is negative on [&,,, 0). In particular,
the initial data £2i(&w) == .Q(;-‘W) is negative, and it follows that
$2¢(&) < 0 for all § € (—o0, &,]. Next, recall that the constant C_
given by Lemma 4.2 is negative. It follows from (4.16) that $2(&)
must be positive on [&;, 0o). Finally, according to (4.17), the initial
value 9(55) for £2 on (0, &] is then also positive, and it follows
that £2(¢) > 0 throughout (0, &]. This completes the proof of
(4.20), and requirement (C) follows. O

0 when & = 0, respectively. (4.20)

5. Weak and radial weak Euler solutions

It remains to verify that the functions p(t, r) and u(t, r) given
by Propositions 3.7 and 4.3 provide genuine, weak solutions to
the original, multi-d isothermal Euler system (1.1)-(1.2). The
argument for this is detailed in Section 6. However, we first
define exactly what is meant by a weak solution to the Euler
system: first for general, multi-d solutions, and then specialized
to the case of radial solutions. The relationship between these
is given by Proposition 5.4. We formulate the definitions at the
level of general barotropic flows, specializing to isothermal flows
in Section 6.
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Fig. 2. Complete $2(&)-profile (schematic).

5.1. Multi-d weak solutions

We write p(t) for p(t, -) etc.,, u = (uy, ..., uy), u := |u|, and let
X = (X1, ..., X,) denote the spatial variable in R", while r = |x|
varies over Rj = [0, o0).

Definition 5.1. Consider the compressible, barotropic Euler
system (1.1)-(1.2) in n space dimensions with a given pres-
sure function p = p(p) > 0. Then the measurable functions
P, Ui, ..., up ¢ Ry x Rf — R constitute a weak solution to
(1.1)-(1.2) provided that:

(1) the maps t +— p(t) and t > p(t)u(t) belong to CO(R,; L},

(R
(2) the functions pu? and p(p) belong to L] (R, x RY);

loc
(3) the conservation laws for mass and momentum are satisfied

weakly in sense that

f/ p@r + pu - Vyp dxdt =0
R JR?

and

(5.1)

/ / U@+ put- Vyo+p(p)py, dxdt =0 fori=1,...,n,
R JRM
(5.2)

whenever ¢ € C)R, x R!) (the set of C! functions with
compact support).

Remark 5.1. In this definition, condition (1) guarantees that
the conserved quantities define continuous maps into L} (RD),
which is the natural function space in this setting. Taken together,
conditions (1) and (2) ensure that all terms occurring in the weak
formulations (5.1) and (5.2) are locally integrable in space and

time.

5.2. Radial weak solutions
We next rewrite Definition 5.1 for radial solutions. For this we
use the following notation. As above m :=n — 1 and we set

R =(0,00), Ry =10, 00),
Liey(dt x 1™dr) = Ll (R x Ry, dt x r™dr).

Definition 5.2. With the notation introduced above, C}(R x Ra“ )
denotes the set of real-valued functions ¥ : R x Rg — R that are
C' smooth on RxR; and vanishes outside [, £]x [0, 7] for some
t, T € R, Also, Cj(R x R7) denotes the set of those functions
6 € C}(R x R{) with the additional property that 6(t, 0) = 0.

Using these function classes, the weak formulation of the
multi-d Euler system (1.1)-(1.2), for radial solutions, takes the
following form.

Definition 5.3. Consider the radial version (1.4)-(1.5) of the
compressible Euler system (1.1)-(1.2) with a given pressure func-
tion p = p(p) > 0. Then the measurable functions p, u : R; x
R — R constitute a radial weak solution to (1.4)-(1.5) provided
that:

(i) the maps t — p(t) and t > p(t)u(t) belong to CO(Ry; L},
(rdr));
(i) the functions pu® and p(p) belong to L} (dt x r™dr);
(iii) the conservation laws for mass and momentum are satisfied
in the sense that

/ / (oY + puyry) r"drdt =0 V¢ € C/(R x RY)

e (5.3)
/ /+ (pub; + pu?6r + p(p)(6r + ™)) r™drdt =0
foeme Co(R x RY). (5.4)

We now have:

Proposition 5.4. Assume that (p(t, r), u(t,r)) is a radial weak
solution of (1.4)-(1.5) according to Definition 5.3, and define the
functions

X
u(t, x) := u(t, r);.

p(t, x) = p(t, ), (5.5)
Then (p(t, x), u(t,X)) is a weak solution of the multi-d system
(1.1)=(1.2) according to Definition 5.1.

Proof. This result was proved by Hoff ([20], Theorem 5.7) in
the setting of the isothermal Navier-Stokes system; the same
argument applies to the Euler system. O
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6. Radial converging-diverging similarity solutions as weak
solutions

In this section we return to isothermal flow (p(p) = a®p) and
the radial converging-diverging similarity solutions u(t, r), p(t, r)
constructed in Sections 3 and 4. The goal is to establish properties
(i), (ii), and (iii) in Definition 5.3 for these solutions, and we
first consider the integrability and continuity requirements in (i)
and (ii). The weak forms of the equations are then treated in
Section 6.2.

6.1. Integrability and continuity
Lemma 6.1. Assume that § € (1 —n, ]2;”)for n=2orn=3,
and the isothermal pressure law p(p) = a*p. Then the density field

p(t, r) and the velocity field u(t, r) given by Propositions 3.7 and
4.3, respectively, satisfy parts (i) and (ii) of Definition 5.3.

Proof. We first claim that p maps into L,OC( Mdr), i.e., for any
r > 0 and for any t € R, we have

;
/ o(t,r)rmdr < oo. (6.1)
0
According to Proposition 4.3 the function r — p(t, r) is bounded
at all times t # 0. Thus, the only issue is at time t = 0, where
p(0, 1) = —C_r? according to (4.19). Since, by assumption, —m =
1—n < B, we have § +m > 0, so that (6.1) is satisfied also at
time 0.
Since the velocity u(t, r) given by Proposition 3.7 is globally
bounded, it follows that also pu belongs to L,loc(r'"dr) at all times.
Next, consider the continuity of t — p(t). For concreteness fix
a time t > 0, so that for any t > 0,

-
lo(t) — (Tl g0,71,rmar) =/ lo(t, 1) — p(z, r)Ir™dr
0

.
= / 1t 2(E) — P (L) dr.
0

Since £2 is a bounded function and almost everywhere contin-
uous, it follows from the dominated convergence theorem that
llo(t) — p(T)llro. 1 mary — 0 as T — t. For t = 0 we have,
according to (4.19), that

7

1200) = POl q0.51.mar) = f IC_r? + 2P (D)™ dr. (6.2)
0

Consider first the case when t | 0. Then, for a fixed r > 0 and

for0 <t < gLS the integrand in (6.2) is given by (4.18) as

|C_rf + P 2( L), (6.3)

Substituting for §2 from (4.13) we obtain
;SS) exp[/r LOEE dn]’rﬂ”’.
&s

From (4.12) it follows that the last expression is bounded by
a constant times r#+™ for v near zero. As § + m > 0 by
assumption, this shows that the integrand in (6.2) is bounded
by a fixed L'([0, 7], dr) function. Finally, for each fixed r > 0,
the integrand (6.3) tends to zero as t | 0 according to (4.16).
The dominated convergence theorem thus gives that ||p(0) —
p(T)go,,rmary — 0 @s T | 0. A similar argument applies for
7 1 0, establishing continuity of t — p(t) as a map into L,loc(rmdr).
Also, since u(t, r) = U(%), with U(&) globally bounded and almost
everywhere continuous, the argument for the continuity of t —
p(t)u(t) is essentially the same as that for t — p(t); we omit the
details. This establishes part (i) of Definition 5.3.

Finally, since the pressure p(p) is linear in p and u is globally
bounded, Part (ii) follows directly from part (i). O

IC_rf + P ()M = |-+

For later use we record the following direct consequence of
the previous lemma.

Corollary 6.2. Forr > 0 let

P P
M(t;7) = / p(t, ryrmdr, It r) = / o(t, D)u(t, r)|%r™dr
0 0
forqg=1, 2.

Then, under the assumptions of Lemma 6.1, the maps t — M(t; 1),
t — Ii(t;r), and t — Iy(t; r) are continuous at all times t € R.

6.2. Weak form of the equations

Lemma 6.3. Under the assumptions of Lemma 6.1 the density field
p(t, r) and the velocity field u(t, r) given by Propositions 3.7 and
4.3, respectively, satisfy part (iii) of Definition 5.3.

Proof. We exploit that the local integrability properties in parts
(i) and (ii) of Definition 5.3 have been verified, and specifically
that Corollary 6.2 applies. The issue will then reduce to estimating
the fluxes of the conserved quantities across spheres of vanishing
radii.

We fix ¢ € C}(R x R}) and 6 € CJ(R x R) with supp v,
suppfd C [-T,T] x [0,r] (recall Definition 5.2). As in
Definition 5.3, ¢ and 6 will be test functions for the mass and
momentum equations (5.3) and (5.4), respectively. Next, for any
8§ < min(Té&s, T|&y|, 7), we define the open regions

Js={(t,r)|—T<t<T S§<r<r, §<Els}
and

Kg:{(t,r)|—T<t<T,8<r<r §>§ls}

(see Fig. 3), and set

M(y) = // (oY + puypy) rdrdt
RxRT

{/f +// +// }(m/ff+pu1/fr)rmdrdt
Rx[0,8] s Ks
o+ [[ + [[ J vt oo rmarae
Js Ks
and

- f/M+ (oub; + pu?6; + p(6; + 7)) r"drde

//W//,;//KJ

(oub; + pu®6; + p(6; + 22)) rdrdt

o { [+ []]

x (pub; + pu*6; + p(6; + 22)) rdrdt.

(6.4)

(6.5)

We shall verify the claim of the lemma by verifying that M(y)
and I(0) vanish. This is carried out in the following by showing
that the right hand sides of (6.4) and (6.5) vanish as § | 0.

We first note that the continuity of the maps t — M(t; ),
t — IL(t;r), and t — I(t; 1), which was established above,
implies the local r™drdt-integrability of p, p o p, pu, and pu?. As
a consequence, both Ms(v) and I5(@) tend to zero as § | 0. (Note
that for I5(6), we make use of the fact that 6 belongs to the space
C(}(R X R*) in particular, ™ is a globally bounded function.)
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E=Es

A E=EW

Fig. 3. Regions of integration in the weak formulation.

It remains to estimate the integrals over J; and K; in (6.4)
and (6.5). For this we first recall that (p, u), by construction, is
a classical (Lipschitz continuous) solution of the isothermal Euler
system (1.4)-(1.5) within each of the open regions J; and Kj, and
that the Rankine-Hugoniot relations (2.5)-(2.6), with R = &, are
satisfied across their common boundary along the straight line
r = &t. Applying the divergence theorem to each region we
therefore have,

T
(] + [ Vot oup rmarae=om [ e, o)
Js Ks =T

(6.6)

and
{// +/f } (oub; + pu®6; + p(6; + 22)) r™drdt
Js Ks

T
=5'"/ [(pu® + p)](t, 8)dt. (6.7)
-T

The goal is to show that the terms on the right-hand sides of (6.6)
and (6.7) both tend to zero as § | 0. Since the velocity u(t, r) is
globally bounded, ¥ and 6 are bounded functions, and p « p, it
suffices to show that the quantity 6™ f_TT p(t, §)dt tends to zero
with 4. Using (4.18) and switching to & as integration variable, we
have

T sw —3/T & 00 Q&)
sm ) dt:5"+f‘/ +/ +/ +/ | d
/—Tp( ) { —oo  Jew s Je JIEIPT? :

, S| 2(£)| T2
=0 +B[/_oo e T e

3

5 Q) > (&)
+) +/§S i de . (6.8)

According to (4.4) and (4.15), we have, for a suitable constant C,

|2u(€) < CIEIP for & < &y, and Q(§) < CEF for & > &,

Using these bounds in (6.8), together with the boundedness of Q
and the assumption that 8 € (1 — n, 12;”), we obtain

T
8’"/ p(t, 8)dt < const.8"P(1+ 1),
T

so that

T
lims'"/ o(t,8)dt = 0.
510 7

As noted above, this implies that the integrals in (6.6) and (6.7)
tend to zero as § |, 0. This concludes the proof that (p, u) satisfies
part (iii) of Definition 5.3. O

We summarize our findings in the following theorem.

Theorem 6.4. Consider the radial, isothermal Euler system (1.4)-
(1.5) with pressure function p = a?p inn = 2 or n = 3 space
dimensions. Fix any numbers g € (1 —n, 12;”) and 29 < 0.
Then there exists a radial weak solution (p(t, r), u(t,r)) to (1.4)-
(1.5), in the sense of Definition 5.3, of similarity type
r

pt,1) =sgn(t)|t|’2(€),  ut,r)=UE), &= ra

where U(&) and $2(&) are as described by Propositions 3.7 and 4.3,
respectively. In particular, the following holds:

(1) The functions U(&) and $2(&) are globally bounded and ap-
proach limits U* < 0 and 0, respectively, as |£] — o0;
U(&) and $2(&) have a weak discontinuity at &€ = &, < 0
(determined by (3.6)) and a jump discontinuity at § = & > 0
(determined in Section 3.5); $2(&) has a jump discontinuity
also at £ = 0, with 2(0—) = £2,.

(2) The resulting solution (p(t, 1), u(t,r)) describes a flow in
which a weak discontinuity converges toward the origin along
the straight path r = &yt for t < 0, an infinite density
(and thus pressure) is generated at the origin r = 0 at time
t = 0, and an outgoing shock emerges and propagates along
the straight path r = &t for t > 0.

(3) The density and velocity profiles at time t = 0 are given by

p(0,r)=Crf,  u(0,r)=U*,

where C is a positive constant.

(4) The emerging shock wave is compressive: as fluid passes
through the shock, its density increases.

(5) The flow satisfies the requirements (A), (B), and (C) in Sec-
tion 1.

Finally, any such solution provides a weak solution

u(t, x) = u(t, x|)— (6.9)
x|

(1.1)-(1.2),

p(t, x) = p(t, |x]),

of the multi-d isothermal system
Definition 5.1.

according to

Proof. The properties (1)-(5) hold according to Propositions 3.7
and 4.3. Lemmas 6.1 and 6.3 show that (p, u) is a weak radial
solution of (1.4)-(1.5). Finally, Proposition 5.4 shows that the
density and velocity fields given by (6.9) define a weak solution
of (1.1)-(1.2) according to Definition 5.1. O

7. Additional remarks

We collect some further properties of the radial similarity
solutions constructed above. In the following we fix a radial weak
solution of the type described by Theorem 6.4.
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First, consider the behavior of characteristics ¥ = u 4 a and
particle trajectories ¥ = u in the constructed solutions.

We first note that the only possibility for a path of the form
r = &t (with & constant) to be a characteristic for the type of
flow described by Theorem 6.4, is for € = &,, in which case it
is a 1-characteristic. (This follows, since the graph of & +— U(&),
where U is given by Proposition 3.7, intersects the straight line
U = & 4+ aif and only if £ = &, while it does not intersect the
line U = £ —a; see Fig. 1.) Indeed, the path r = &,t is the “critical”
1-characteristic in the lower half of the (r, t)-plane in the follow-
ing sense. If r = ¢(t) is a 1-characteristic which at some time
t < 0 is located inside of r = &yt (ie., o(f) < &nt), then r = ¢(t)
reaches the center of motion r = 0 at some strictly negative time.
On the other hand, if r = ¢(t) is any 1-characteristic which at
some time t < 0 is located outside of r = &,t, then it crosses the
r-axis at a strictly positive location (i.e., ¢(0) > 0), with the speed
U* — a, and subsequently disappears at some positive time into
the expanding shock wave propagating along r = &t.

Also, all particle trajectories cross the critical characteristic
from below (in the (r, t)-plane) and proceed to cross the r-axis
with the common speed U* < 0. It follows that there is no
“accumulation” of particles at the center of motion; in particular,
the trivial particle trajectory r(t) = 0 is the unique one passing
through the origin. Consequently, the density p(t,r) does not
“contain a Dirac delta” at time of collapse. (Solutions of “cumu-
lative” type where all, or part, of the mass accumulates at the
origin, were considered in [2,21]. However, a rigorous analysis
of such solutions would require a more general notion of weak
solutions than the one employed in the present work.)

Next, recall from Lemma 6.1 that the mass is locally finite at
all times: any ball of finite radius contains only a finite amount
of mass at any time, including t = 0. Although the density p(t, r)
decays to zero at any fixed time t as r 1 oo, this decay is too slow
to give bounded total mass: the mass density p(t, r)r™ grows like
rf+m for t fixed as r 1 oo, and the assumption 8 +m > 0
yields unbounded total mass. Since the velocity u(t, r) tends to
the constant U* at any fixed time t as r 1 oo, the same applies
to the total momentum present in the solution.

On the other hand, we note that the type of blowup behavior
described by Theorem 6.4 does not depend on the infinite total
mass or momentum in the solutions. Indeed, let r = ¢(t) be any
1-characteristic located outside of the critical 1-characteristic r =
&wt, so that ¢(0) > 0. We could now replace the given similarity
solution in the outer region {(r,t) | r > c¢(t)}, with a solution
(e.g., a simple wave with the same values along r = ¢(t)) of finite
mass in this outer region, without affecting the behavior of the
solution in the interior region {(r, t) | r < ¢(t)}. This shows that
the type of amplitude blowup exhibited by the original similarity
solution, is possible also in solutions with finite mass.
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Appendix
A.1. Proof of Lemma 3.3

We treat the four inequalities in (3.10) in turn, starting form
the left. We recall that —m < 8 < 0, such that u .= % e (—1,0).

. . B
For the inequality —

a?m—iy
this is equivalent to a>m < A,. Substituting from (3.8) for A,
and rearranging, yield the equivalent inequality

< 0, we observe that, as 8 < 0,

m— 2 < /(m+ %) —8m.

1+n T+up (A'l)

(Recall from Lemma 3.2 that the radicand is positive for all m and
B under consideration.) Since m <2 and 0 < 1+ < 1, we have
that the left-hand side of (A.1) is negative. As the right-hand side
is positive, we conclude that the first inequality of Lemma 3.3 is
satisfied.

The second inequality of Lemma 3.3, i.e.,, 0 < —u, isimmediate
as u = % < 0.

For the inequality —u < —02:7_‘17, substituting % for u, and
rearranging, yield the equivalent inequality

1< 2

'm (A2)

a?m-r_"

Recalling from Lemma 3.2 that A_ is positive, we get that (A.2) is
satisfied if and only if A_ < a®m. Substituting from (3.8) for A_,
and rearranging, yield the equivalent requirement that

2 _—m< J(m+ 22 —8m,

T+u 1+p (A.3)

where the left-hand side is positive due to the argument for (A.1).
Squaring both sides in (A.3), and simplifying, give the equivalent
requirement that © < 0, which is satisfied.

Finally, for the fourth inequality of Lemma 3.3, i.e., — uzf_ﬂ_

1, we first use that (as verified above) a®m < A_ to rewrite the
inequality as A_ < a?(m + B). Substituting from (3.8) for A_, and
rearranging, yield the equivalent inequality

<

(15 —m)—2B < /(m+ 2.2 —8m.

The expression in parenthesis on the left-hand side was shown
above to be positive; as B < 0, it follows that the left-hand
side is a positive number. Thus, by squaring both sides, canceling
terms, and simplifying, we obtain that the fourth inequality of
Lemma 3.3 is satisfied if and only if

2_p(2 _ 2m — _2mp _ 28
B ﬂ(Hu m)<1+u 2m = T+ = 14w

which reduces further to the inequality m + 8 > 0, which is sat-
isfied by assumption. This concludes the proof of Lemma 3.3. O

A.2. Proof of Lemma 3.4

The claim is that the function
_ K m(1+ )
1+p  (1+42p)

satisfies L(u) < 0 for € (—1, —1), for both m = 1 and m = 2.
To see this, we first apply L’'Hopital’s rule to obtain that

Lin(p) log(2(1 + )

lim Ly(p) = —oo, lim Ly(u) =% —-1<0.
wl-1 ut—3
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The claim will therefore follow once we establish that L,(u) is
strictly increasing on (—1, —%). We have,

’ _ 1 _
L,(pn)= WA + 5207 [(1+2u) —log(2(1 + w))]
> REEME [(1+2u) —log(2(1 + w))].

A calculation shows that the function u +— (142ux)—log(2(1+wu))
is strictly positive on (—1, —3), showing that L/ ,(x) > 0 on
(_ 1 s T % )' o

A.3. Proof of Lemma 3.6

Recall that the function H is defined by
2

. a

HE)=§ + ——
ueE)—¢
We first observe that, by construction, U satisfies E—a< U(g) <
& for 0 < & < —&,. Part (i) of Lemma is a direct consequence of
this double inequality. For part (ii) we first recall that, according
to Lemma 3.1 and the fact that U(§) is symmetric about the origin
in the (&, U)-plane, U(&¢) approaches 0 with (positive) slope —%
as & | 0. Since —m < B < 0, the slope —% is less than unity, so
that (U(S) — &)1 0as & | 0. It follows that I:I(S) tends to —oo as
& | 0. Finally, Part (iii) is verified by substituting the values for
&w and Uy, given in (3.6). O

for0 < & < —&,.
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