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A SECOND-ORDER ASYMPTOTIC-PRESERVING AND
POSITIVITY-PRESERVING EXPONENTIAL RUNGE–KUTTA
METHOD FOR A CLASS OF STIFF KINETIC EQUATIONS⇤

JINGWEI HU† AND RUIWEN SHU‡

Abstract. We introduce a second-order time discretization method for sti↵ kinetic equations.
The method is asymptotic-preserving—can capture the Euler limit without numerically resolving the
small Knudsen number—and positivity-preserving—can preserve the non-negativity of the solution
which is a probability density function for arbitrary Knudsen numbers. The method is based on
a new formulation of the exponential Runge–Kutta method and can be applied to a large class of
sti↵ kinetic equations including the Bhatnagar–Gross–Krook equation (relaxation type), the Fokker–
Planck equation (di↵usion type), and even the full Boltzmann equation (nonlinear integral type).
Furthermore, we show that when coupled with suitable spatial discretizations the fully discrete
scheme satisfies an entropy-decay property. Various numerical results are provided to demonstrate
the theoretical properties of the method.

Key words. sti↵ kinetic equation, exponential Runge–Kutta method, asymptotic-preserving,
positivity-preserving, entropy-decay
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1. Introduction. Kinetic equations describe the nonequilibrium dynamics of
a gas or system comprised of a large number of particles. In multiscale modeling
hierarchy, they serve as a bridge that connects microscopic Newtonian mechanics and
macroscopic continuum mechanics. In this paper, we are concerned with the following
class of kinetic equations:

(1.1) @tf + v ·rxf =
1

"
Q(f), t � 0, x 2 ⌦ ⇢ Rdx , v 2 Rdv ,

where f = f(t, x, v) is the one-particle probability density function (PDF) of time
t, position x, and particle velocity v (dx and dv are the dimensions of x and v,
respectively). Q is the collision operator that acts only in the velocity space and
models the interactions between particles. Examples of Q include: the Boltzmann
collision operator (a nonlinear integral operator) [6], the Bhatnagar–Gross–Krook
(BGK) operator (a relaxation type operator) [3], the kinetic Fokker–Planck operator
(a di↵usion type operator) [26], among others. Finally, " is the Knudsen number
defined as the ratio of the mean free path and typical length scale. The magnitude of
" indicates the degree of rarefaction of the system. When " is small, collisions happen
very frequently so that the system is close to the fluid regime. In fact, one can
derive the compressible Euler equations from (1.1) as the leading-order asymptotics
by sending "! 0.

When " is small, numerically solving (1.1) is challenging due to the sti↵ collision
term on the right-hand side. Any explicit time discretization would su↵er from severe
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1124 JINGWEI HU AND RUIWEN SHU

stability constraint (time step �t has to be O(")). As such, schemes that can remove
this constraint are highly desirable. The so-called asymptotic-preserving (AP) scheme
[18] is exactly designed for this kind of problem: it solves the kinetic equation without
resolving small scales (�t can be chosen independent of "), yet when " ! 0 while
keeping�t fixed, it automatically becomes a macroscopic fluid solver, i.e., a consistent
discretization to the limiting Euler equations (see [19, 14] for a comprehensive review
of AP schemes).

The AP property is certainly a desired feature when handling multiscale kinetic
equations, especially in the near fluid regime. However, most of AP schemes require
some implicit treatment or reformulation of the equation such that the positivity of
the solution is lost during the construction. This is unphysical since f is a PDF, and
sometimes even causes the simulation to break down. The design of high order (at
least second order) schemes that are both AP and positivity-preserving turns out to
be highly nontrivial and needs to be handled in a problem-dependent basis. Recently,
we developed a family of second-order AP and positivity-preserving schemes for the
sti↵ BGK equation [15]. The method is based on the implicit-explicit (IMEX) Runge–
Kutta framework plus a key correction step utilizing the special structure of the BGK
operator. It also works for some hyperbolic systems but is limited to relaxation type
operators.

In this paper, we propose a more general time discretization method based on a
new exponential Runge–Kutta formulation that can be applied to a large class of sti↵
kinetic equations including the BGK, the Fokker–Planck, and even the full Boltzmann
equations. To summarize, our method possesses the following features:

• The scheme is second-order accurate in the kinetic regime " = O(1);
• The scheme is AP: For fixed �t, when " ! 0, it reduces to a second-order
scheme for the limiting Euler equations (in fact, the limiting scheme can be
made as the optimal second-order strong-stability-preserving (SSP) Runge–
Kutta method, i.e., the Heun’s method [10, 9]);

• The scheme is positivity-preserving for any " � 0: If fn � 0, then fn+1 � 0;
• The time step of the scheme is only constrained by the transport part and
can be chosen the same as in the forward Euler method;

• The scheme satisfies an entropy-decay property when coupled with suitable
spatial discretizations.

The rest of this paper is organized as follows. In section 2, we construct the nu-
merical method for the general kinetic equation (1.1) without specifying the collision
operator. The emphasis is to make the method second order and positivity preserving.
In section 3, we consider the application of the method to specific kinetic equations
and discuss its AP property. In section 4, we address the issue of solving the homoge-
neous equation ((1.1) without transport term) which is an important building block
of the proposed method. A comparison with existing similar methods is given in sec-
tion 5. In section 6, we prove the entropy-decay property of the method when coupled
with suitable spatial discretizations. Some remarks regarding the spatial and velocity
domain discretizations are given in section 7. Numerical examples are presented in
section 8. The paper is concluded in section 9.

2. A new exponential Runge-Kutta method for general sti↵ kinetic
equations. We now present the procedure to construct the new exponential Runge–
Kutta method. Since the method is quite general and can be applied to a large class
of kinetic equations, we will start with (1.1) without specifying the collision operator
and derive a scheme that is both second-order accurate and positivity preserving.
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AP AND PP SCHEMES FOR STIFF KINETIC EQUATIONS 1125

Then in section 3, we will consider specific collision operators and discuss the AP
property of the scheme as this latter part is problem dependent.

To begin with, let us introduce the following notation: For the autonomous ODE

(2.1)
d

dt
f = A(f), f |t=t0 = g,

where A is an operator, being either linear or nonlinear, we use 's
Ag, s � 0 to represent

its exact solution at t = t0+s. In the following, whenever it is clear from the context,
the subscript A is dropped for notational simplicity.

We now consider an ODE resulting from the semidiscretization of (1.1) (only
space x is discretized while time t and velocity v are left continuous):

(2.2)
d

dt
f = T (f) +

1

"
Q(f).

Here T (f) is a discretized operator for the transport term �v ·rxf and Q(f) is the
collision operator which may take various forms depending on the application. We
assume the operators T (f) and Q(f) are positivity preserving. To be precise,

• for T (f), we assume
(2.3)
f � 0 =) f+a�t T (f) � 0 8 constant a such that (s.t.) 0  a�t  �tFE,

where �tFE is the maximum time step allowance such that the forward Euler
method is positivity preserving;

• for Q(f), we assume the solution to the homogeneous equation

(2.4)
d

dt
f = Q(f)

satisfies f � 0 8 t � t0 if the initial data f |t=t0 = g � 0. In other words,

(2.5) g � 0 =) 'sg � 0 8 constant s � 0.

Remark 2.1. The condition (2.3) can be easily satisfied if a positivity-preserving
spatial discretization is used, as was done in [15]. The condition (2.5) is a theoretical
property that holds for any kinetic equations.

We are ready to construct the numerical method for (2.2). We propose an expo-
nential Runge–Kutta scheme of the following form:

f (0) = 'a0�t/"fn,

f (1) = 'a1�t/"
⇣
f (0) + b1�tT (f (0))

⌘
,

f (2) = f (1) + b2�tT (f (1)),

fn+1 = 'a2�t/"
h
wf (2) + (1� w)'(1�a2)�t/"fn

i
,

(2.6)

where the constants a0, a1, a2, b1, b2, and w are to be determined. Note that in the
above, 'a0�t/" denotes the solution map by solving the homogeneous equation (2.4)
with time step a0�t/", or equivalently, 'a0�t/"fn is the exact solution to (2.4) at
time tn+a�t/" with initial condition fn. Other terms of the similar form in (2.6) are
understood analogously. Of course this step relies on the specific collision operator
Q, and we will get back to this issue in section 4. For the time being, we assume that
this solution map is known.

With the previous assumptions on T and Q, it is easy to see the following.
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1126 JINGWEI HU AND RUIWEN SHU

Proposition 2.2. The scheme (2.6) is positivity-preserving, i.e., if fn � 0, then
fn+1 � 0 provided

(2.7) a0, a1, b1, b2 � 0, 0  a2, w  1,

under the Courant–Friedrichs–Lewy (CFL) condition

(2.8) �t  �tFE

max(b1, b2)
,

and the ratio is understood as infinite if the denominator is zero.

We next derive the conditions for (2.6) to be second order in the kinetic regime.
Without loss of generality, we assume " = 1.

First of all, given the solution fn = f(tn), if we Taylor expand the exact solution
of (2.2) at tn+1 around tn, we have

fn+1
exact = fn +�t(@tf)

n +
1

2
�t2(@ttf)

n +O(�t3)

= fn +�t[T (fn) +Q(fn)]

+
1

2
�t2[T 0(fn)T (fn)+T 0(fn)Q(fn)+Q0(fn)T (fn)+Q0(fn)Q(fn)]+O(�t3),

(2.9)

where Q0, T 0 are the Fréchet derivative of Q and T , given by

(2.10) Q0(f)g = lim
�!0

Q(f + �g)�Q(f)

�
,

and similarly for T .
On the other hand, given fn = f(tn), if we Taylor expand the exact solution of

(2.4) at tn +�t around tn, we have

'�tfn = fn +�t(@tf)
n +

1

2
�t2(@ttf)

n +O(�t3)

= fn +�tQ(fn) +
1

2
�t2Q0(fn)Q(fn) +O(�t3).

(2.11)

Using this in the first equation of (2.6), we have

f (0) = fn + a0�tQ(fn) +
1

2
a20�t2Q0(fn)Q(fn) +O(�t3).(2.12)

Continuing the Taylor expansion of f (1), f (2), and fn+1 in (2.6), we have

f (1) =(f (0) + b1�tT (f (0))) + a1�tQ(f (0) + b1�tT (f (0)))

+
1

2
a21�t2Q0(f (0) + b1�tT (f (0)))Q(f (0) + b1�tT (f (0))) +O(�t3)

= fn +�t((a0 + a1)Q(fn) + b1T (fn))

+�t2
✓
b1a0T 0(fn)Q(fn)+a1b1Q0(fn)T (fn) +

1

2
(a0 + a1)

2Q0(fn)Q(fn)

◆

+O(�t3).

(2.13)
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f (2) = f (1) + b2�tT (f (1))

= fn +�t((a0 + a1)Q(fn) + b1T (fn))

+�t2
✓
b1a0T 0(fn)Q(fn) + a1b1Q0(fn)T (fn) +

1

2
(a0 + a1)

2Q0(fn)Q(fn)

◆

+ b2�tT (fn) + b2�t2T 0(fn)((a0 + a1)Q(fn) + b1T (fn)) +O(�t3)

= fn +�t((a0 + a1)Q(fn) + (b1 + b2)T (fn))

+�t2
⇣
b1b2T 0(fn)T (fn) + (b1a0 + b2a0 + b2a1)T 0(fn)Q(fn)

+ a1b1Q0(fn)T (fn) +
1

2
(a0 + a1)

2Q0(fn)Q(fn)
⌘
+O(�t3).

(2.14)

wf (2) + (1� w)'(1�a2)�tfn = w
h
fn +�t((a0 + a1)Q(fn) + (b1 + b2)T (fn))

+�t2
⇣
b1b2T 0(fn)T (fn) + (b2a1 + b1a0 + b2a0)T 0(fn)Q(fn)

+ a1b1Q0(fn)T (fn) +
1

2
(a0 + a1)

2Q0(fn)Q(fn)
⌘i

+ (1� w)


fn + (1� a2)�tQ(fn) +

1

2
(1� a2)

2�t2Q0(fn)Q(fn)

�
+O(�t3)

= fn +�t[(w(a0 + a1) + (1� w)(1� a2))Q(fn) + w(b1 + b2)T (fn)]

+�t2
h
wb1b2T 0(fn)T (fn)+w(b2a1+b1a0+b2a0)T 0(fn)Q(fn)+wa1b1Q0(fn)T (fn)

+
1

2
(w(a0 + a1)

2 + (1� w)(1� a2)
2)Q0(fn)Q(fn)

i
+O(�t3).

(2.15)

Finally,

fn+1 = fn +�t[(w(a0 + a1) + (1� w)(1� a2))Q(fn) + w(b1 + b2)T (fn)]

+�t2

wb1b2T 0(fn)T (fn) + w(b2a1 + b1a0 + b2a0)T 0(fn)Q(fn)

+ wa1b1Q0(fn)T (fn) +
1

2
(w(a0 + a1)

2 + (1� w)(1� a2)
2)Q0(fn)Q(fn)

�

+ a2�t[Q(fn) +�tQ0(fn)((w(a0 + a1) + (1� w)(1� a2))Q(fn)

+ w(b1 + b2)T (fn))] +
1

2
a22�t2Q0(fn)Q(fn) +O(�t3)

= fn +�t[(w(a0 + a1 + a2) + (1� w))Q(fn) + w(b1 + b2)T (fn)]

+�t2

wb1b2T 0(fn)T (fn) + w(b2a1 + b1a0 + b2a0)T 0(fn)Q(fn)

+ w(a1b1 + a2b2 + a2b1)Q0(fn)T (fn) +
1

2
(w(a0 + a1 + a2)

2

+ (1� w))Q0(fn)Q(fn)

�
+O(�t3).

(2.16)

Comparing (2.9) and (2.16), we arrive at the following order conditions:
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1128 JINGWEI HU AND RUIWEN SHU

w(a0 + a1 + a2) + (1� w) = 1; w(b1 + b2) = 1; wb1b2 =
1

2
;

w(b2a1 + b1a0 + b2a0) =
1

2
; w(a1b1 + a2b2 + a2b1) =

1

2
;

w(a0 + a1 + a2)
2 + (1� w) = 1.

(2.17)

Further simplification yields the following.

Proposition 2.3. The scheme (2.6) is second-order accurate for " = O(1) pro-

vided

a0 + a1 + a2 = 1,(2.18)

w(b1 + b2) = 1,(2.19)

wb1b2 =
1

2
,(2.20)

w(b2a1 + (b1 + b2)a0) =
1

2
.(2.21)

Combining the positivity conditions and order conditions found in Propositions
2.2 and 2.3, one can obtain a second-order positivity-preserving scheme for (2.2). To
find a set of parameters satisfying these conditions, first notice that (2.19) and (2.20)
imply b1, b2 are the solutions of the quadratic equation

(2.22) b2 � 1

w
b+

1

2w
= 0,

whose solutions are given by

(2.23) b1,2 =
1

1±
p
1� 2w

for 0 < w  1

2
.

In order to obtain the best CFL condition (minimize max(b1, b2) in (2.8)), we choose

(2.24) w =
1

2
, b1 = b2 = 1;

hence the CFL condition (2.8) is the same as the forward Euler method. Then (2.18)
and (2.21) reduce to

(2.25) a0 + a1 + a2 = 1, a0 = a2.

To insure positivity, we only need additionally a0, a1 � 0, 0  a2  1 (see (2.7)).
However, to obtain a good AP property, we require

(2.26) a0, a1 > 0, 0 < a2 < 1.

This will be further elaborated in section 3. One choice of a0, a1, a2 is

(2.27) a0 = a1 = a2 =
1

3
.

Remark 2.4. For a0, a1 > 0 and 0 < a2 < 1, (2.6) would require 4 times evaluation
of the operator 's in each time step. However, similar to the Strang splitting, one
can combine the operator 'a2�t/" in the last stage of the nth step with the operator
'a0�t/" in the first stage of the (n + 1)th step, so that e↵ectively one only needs 3
times of such evaluations in each time step.
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Remark 2.5. Note that in (2.6) (with the choice (2.24)–(2.26)), if one sets T =
0, then the scheme becomes fn+1 = '�t/"fn, which is the exact solution to the
homogeneous equation @tf = 1

"Q(f). On the other hand, if one sets Q = 0, then
the scheme just becomes Heun’s method applied to the purely transport equation
@tf = T (f), which is optimal among all second-order explicit SSP Runge–Kutta
schemes of two stages [10, 9].

3. Application to specific kinetic equations and AP property. By now,
we have obtained a second-order positivity-preserving scheme ((2.6) with coe�cients
satisfying (2.24)–(2.26)) for the general sti↵ kinetic equation (2.2). In this section, we
apply the scheme to some specific kinetic equations and discuss its AP property.

We will consider (2.2) with the following collision operators:
• The BGK operator [3], a simple relaxation type operator used to mimic the
complicated Boltzmann collision operator:

(3.1) Q(f) = ⌘(M[f ]� f),

where M[f ] is the Maxwellian defined by

(3.2) M[f ] =
⇢

(2⇡T )
dv
2

exp

✓
� |v � u|2

2T

◆
,

with the density ⇢, bulk velocity u, and temperature T given by the moments
of f ,

(3.3) ⇢ =

Z

Rdv

f dv, u =
1

⇢

Z

Rdv

f dv, T =
1

dv⇢

Z

Rdv

f |v � u|2 dv,

and ⌘ is some positive function depending only on ⇢ and T .
• The ellipsoidal statistics-BGK (ES-BGK) operator [13], a generalized BGK
model used to fit realistic values of the transport coe�cients:

(3.4) Q(f) = ⌘(G[f ]� f),

where G[f ] is a Gaussian function defined by

(3.5) G[f ] = ⇢p
det(2⇡T̄ )

exp

✓
�1

2
(v � u)T T̄�1(v � u)

◆
,

with ⇢, u, and T given in (3.3) and

(3.6) T̄ = (1� ⌫)TI + ⌫⇥, ⇥ =
1

⇢

Z

Rdv

f(v � u)⌦ (v � u) dv,

where � 1
2  ⌫ < 1 is a parameter and I is the identity matrix. ⌘ is again

some positive function of ⇢ and T .
• The Boltzmann collision operator [6], a fundamental equation in kinetic the-
ory describing the binary collisions in a rarefied gas:

(3.7) Q(f) =

Z

Rdv

Z

Sdv�1

B(v � v⇤,�)[f(v
0)f(v0⇤)� f(v)f(v⇤)] d� dv⇤,

where v0 and v0⇤ (postcollisional velocities) are defined in terms of v and v⇤
(precollisional velocities) as

(3.8) v0 =
v + v⇤

2
+

|v � v⇤|
2

�, v0⇤ =
v + v⇤

2
� |v � v⇤|

2
�,

with � being a vector varying on the unit sphere Sdv�1. B is the collision
kernel characterizing the scattering rate and is a non-negative function.
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• The kinetic Fokker–Planck operator [26], a kinetic model describing the drift
and di↵usion e↵ects of particles:

(3.9) Q(f) = rv ·
✓
M[f ]rv

f

M[f ]

◆
,

where M[f ] is the same as in the BGK model. Using the definition (3.2),
(3.9) can be written equivalently as

(3.10) Q(f) = rv ·
✓
rvf +

(v � u)

T
f

◆
,

with u and T given by (3.3). This is the more commonly seen drift-di↵usion
type equation in the literature.

All of the above collision operators Q satisfy the following properties that can be
found in many standard textbooks [6, 26] with perhaps the ES-BGK operator as an
exception whose proof is given in [1].

• Conservation of mass, momentum, and energy:

(3.11) hQ(f)�i = 0, h ·�i :=
Z

Rdv

·� dv, �(v) =

✓
1, v,

|v|2

2

◆T

for any function f .
This implies that 'sg, the solution to the homogeneous equation (2.4) at
t = t0 + s with initial data f |t=t0 = g, satisfies the conservation property

(3.12) h('sg)�i = hg�i 8s � 0.

• Decay of entropy

(3.13)

Z

Rdv

Q(f) log f dv  0,

and

(3.14)

Z

Rdv

Q(f) log f dv = 0 () Q(f) = 0 () f = M[f ],

where M[f ] is the Maxwellian defined in (3.2).
This implies that 'sg, the solution to the homogeneous equation (2.4) at
t = t0 + s with initial data f |t=t0 = g, has the long time behavior

(3.15) lim
s!1

'sg = M[g],

i.e., 'sg approaches the Maxwellian determined by the moments of the initial
condition.

Using these properties, it is easy to (formally) show that the spatially inhomogeneous
equation (1.1) has the compressible Euler equations as the leading-order asymptotics
when "! 0. Indeed, taking the moments h ·�i on both sides of (1.1), one obtains

(3.16) @thf�i+rx · hfv�i = 0,

by the conservation property of Q. On the other hand, when " ! 0, (1.1) formally
implies Q(f) ! 0; hence f ! M[f ]. Substituting f = M[f ] := M[U ] into (3.16)
yields

(3.17) @tU +rx · hM[U ]v�i = 0,
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where we used the vector U to denote the first dv +2 moments of f : U = (⇢, ⇢u,E)T

with E = 1
2⇢u

2 + dv
2 ⇢T being the total energy. The closed system (3.17) is nothing

but the compressible Euler equations
8
>><

>>:

@t⇢+rx · (⇢u) = 0,

@t(⇢u) +rx · (⇢u⌦ u+ pI) = 0,

@tE +rx · ((E + p)u) = 0,

(3.18)

where p = ⇢T is the pressure.
We now prove the AP property of the proposed scheme. Note that this proof is

only formal as the rigorous transition from the Boltzmann equation to the compress-
ible Euler equations even at the continuous level is an open problem.

Proposition 3.1. The scheme (2.6) (with coe�cients satisfying (2.24)–(2.26))
applied to the sti↵ kinetic equation (2.2) with the collision operator Q being the BGK

operator (3.1), the ES-BGK operator (3.4), the Boltzmann collision operator (3.7), or
the kinetic Fokker–Planck operator (3.9) is asymptotic-preserving, i.e., for any initial

data and fixed �t, in the limit " ! 0, (2.6) becomes a second-order Heun’s method

applied to the limiting Euler system (3.18). Furthermore,

(3.19) lim
"!0

fn+1 = M[Un+1],

i.e., after each time step, fn+1
is driven to its corresponding Maxwellian.

Proof. First of all, taking the moments h ·�i on (2.6) and using (3.12), one obtains

U (0) = Un,

U (1) = U (0) + b1�thT (f (0))�i,
U (2) = U (1) + b2�thT (f (1))�i,
Un+1 = wU (2) + (1� w)Un.

(3.20)

On the other hand, for a0, a1, a2 > 0, using (3.15), it can be seen from (2.6) that as
"! 0, f (0), f (1), and fn+1 are driven to their corresponding Maxwellian:

f (0) ! M[Un] = M[U (0)],

f (1) ! M[U (0) + b1�thT (f (0))�i] = M[U (1)],

fn+1 ! M[wU (2) + (1� w)Un] = M[Un+1].

(3.21)

Finally, substituting f (0) and f (1) into (3.20), one has

U (1) = Un + b1�thT (M [Un])�i,
U (2) = U (1) + b2�thT (M [U (1)])�i,
Un+1 = wU (2) + (1� w)Un.

(3.22)

With the coe�cients (2.24) and T a discretized operator for �v · rx, this is just a
kinetic scheme for the limiting Euler equations (3.17) using Heun’s method for time
discretization.

Remark 3.2. Note that the requirement for nonzero a1, a2, a3 plays an important
role here. In order for the scheme to have a nice AP property (working for any initial
data, driving f to the corresponding Maxwellian after each time step, the limiting
scheme maintains second-order accuracy, etc.), we need all these coe�cients to be
nondegenerate. See also the discussion in section 5.
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4. Solving the homogeneous equation. A key assumption we made in sec-
tion 2 is that the solution to the homogeneous equation (2.4), or equivalently, the
solution map 's, can be found exactly. Since we are content with the second-order
scheme, this can be relaxed by finding an approximate solution, or an approximate
map �s, such that it is

• at least second-order accurate in time, i.e.,

(4.1) 'sg ⇡ �sg +O(s3) for s ⇠ O(�t);

• positivity preserving, i.e.,

(4.2) g � 0 =) �sg � 0 8 constant s � 0;

• AP, for which to hold we need �s satisfy the same long time behavior as 's,
i.e.,

(4.3) lim
s!1

�sg = M[g].

In the following, we will provide the strategy to construct the exact map 's or
the approximate map �s for all the kinetic equations discussed in section 3. Then
using 's or �s as a building block in (2.6), the whole scheme is completed.

4.1. The BGK equation. For the homogeneous BGK equation

(4.4) @tf = Q(f) = ⌘(M[f ]� f), f |t=t0 = g,

since Q conserves mass, momentum, and energy, M[f ] = M[g] does not change with
time, neither does ⌘. Hence the solution at t = t0 + s can be found exactly:

(4.5) 'sg = e�⌘sg + (1� e�⌘s)M[g].

Remark 4.1. Instead of solving the BGK equation exactly, one can also find an
approximate solution at t = t0 + s using the scheme

f (1) = g + sQ(f (1)),

f1 = f (1) � 1

2
s2Q0(f (1))Q(f1),

(4.6)

and define the approximate map �s as

(4.7) �sg = f1.

Note that the map �s such defined is second-order accurate, positivity preserving, and
AP. Using this �s in (2.6) would give an IMEX Runge–Kutta type scheme, similar to
our previous work [15].

4.2. The ES-BGK equation. For the homogeneous ES-BGK equation

(4.8) @tf = Q(f) = ⌘(G[f ]� f), f |t=t0 = g,

since Q conserves mass, momentum, and energy, ⇢, u, T do not change with time,
neither does ⌘. Taking the moment h · 1

⇢ (v� u)⌦ (v� u)i on both sides of (4.8) gives

(4.9) @t⇥ = ⌘

✓
1

⇢
h(v � u)⌦ (v � u)G[f ]i �⇥

◆
= ⌘(T̄ �⇥) = ⌘(1� ⌫)(TI �⇥),
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whose solution is given by

(4.10) ⇥(t0 + s) = e�⌘(1�⌫)s⇥(t0) + (1� e�⌘(1�⌫)s)TI.

Hence

(4.11) T̄ (t0 + s) = ⌫e�⌘(1�⌫)s⇥(t0) + (1� ⌫e�⌘(1�⌫)s)TI.

On the other hand, (4.8) can be integrated to yield

(4.12) 'sg = f(t0 + s) = e�⌘sg +

Z t0+s

t0

⌘e�⌘(t0+s�⌧)G[f(⌧)] d⌧,

where G[f(⌧)] only depends on ⇢, u, T̄ (⌧). Rather than solving (4.12) exactly, we
propose to use a quadrature to approximate the integral part. We adopt the two-
point Gauss–Lobatto quadrature; that is,

(4.13)

Z t0+s

t0

⌘e�⌘(t0+s�⌧) (⌧) d⌧ ⇡ w1 (t0) + w2 (t0 + s),

where the weights w1, w2 are determined by requiring this approximation to be exact
for  (⌧) = 1, ⌧ . A simple calculation gives

(4.14) w1 =
1� e�⌘s

⌘s
� e�⌘s, w2 = 1� 1� e�⌘s

⌘s
.

The quadrature in (4.13) has an error O(s3) for general functions.
Therefore, we approximate the solution in (4.12) as

(4.15)

�sg = e�⌘sg +

✓
1� e�⌘s

⌘s
� e�⌘s

◆
G[⇢, u, T̄ (t0)] +

✓
1� 1� e�⌘s

⌘s

◆
G[⇢, u, T̄ (t0 + s)],

with T̄ (t0 + s) given by (4.11). This approximate map is positivity preserving since
(4.15) is a convex combination of positive functions. It is AP since s ! 1 one has
T̄ (t0 + s) ! TI, thus G[⇢, u, T̄ (t0 + s)] ! M[g]; also three weights in (4.15) converge
to 0, 0, 1, respectively, hence �sg ! M[g].

4.3. The Boltzmann equation. For the homogeneous Boltzmann equation
(4.16)

@tf = Q(f) =

Z

Rdv

Z

Sdv�1

B(v � v⇤,�)[f(v
0)f(v0⇤)� f(v)f(v⇤)] d� dv⇤, f |t=t0 = g,

we adopt the exponential Runge–Kutta method introduced in [7] to find an approxi-
mate solution. Since Q conserves mass, momentum, and energy, M[f ] = M[g] does
not change with time. Thus we can rewrite (4.16) as

(4.17) @t((f �M)eµt) = (P (f)� µM)eµt,

where P (f) := Q(f) + µf , µ > 0 being a constant, large enough so that P (f) � 0 (a
simple choice is µ = supv

R
Rdv

R
Sdv�1 B(v � v⇤,�)f(v⇤) d� dv⇤). Then, by applying

the midpoint method to (4.17), one obtains a second-order scheme

(f (1) �M)e
�
2 = (g �M) +

�

2

✓
P (g)

µ
�M

◆
,

(f1 �M)e� = (g �M) + �e
�
2

✓
P (f (1))

µ
�M

◆
,

(4.18)D
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with � = µs, which simplifies to

f (1) = e�
�
2 g +

✓
1� e�

�
2 � �

2
e�

�
2

◆
M+

�

2
e�

�
2

P (g)

µ
,

f1 = e��g +
⇣
1� e�� � �e�

�
2

⌘
M+ �e�

�
2

P (f (1))

µ
.

(4.19)

Therefore, we choose f1 to be the approximate solution at t = t0 + s, i.e.,

(4.20) �sg = f1.

This approximate map is positivity preserving since both f (1) and f1 are convex
combinations of positive functions. It is AP since s ! 1 implies � ! 1, thus
f1 ! M.

Remark 4.2. As an alternative to the above described method, one can also use
the so-called Wild sum expansion of the Boltzmann collision operator, which leads
to another class of exponential method for the homogeneous Boltzmann equation
possessing the desired properties; see, for instance [8, 23].

Remark 4.3. Here we did not address the issue of velocity domain discretization.
To get a fully discrete scheme, one also needs an e�cient and positivity-preserving
solver for the Boltzmann collision operator (to evaluate the term P (f) in the scheme).
Available choices are the direct simulation Monte Carlo (DSMC) method [4], the
discrete velocity method [22], or the recently proposed entropic Fourier method [5].

4.4. The kinetic Fokker–Planck equation. For the homogeneous kinetic
Fokker–Planck equation

(4.21) @tf = Q(f) = rv ·
✓
M[f ]rv

f

M[f ]

◆
, f |t=t0 = g,

since Q conserves mass, momentum, and energy, M[f ] = M[g] does not change with
time. We adopt the approximation proposed in [20] to discretize Q. Define f̃ = fp

M ;

then f̃ solves

(4.22) @tf̃ = Q̃(f̃) :=
1p
M

rv ·
 
Mrv

f̃p
M

!
, f̃ |t=t0 = g̃ :=

gp
M

.

Hence

(4.23) 'sg =
p
M's

Q̃g̃.

Now it su�ces to approximate 's
Q̃g̃. To do so, we first discretize the velocity and

then use the matrix exponential to solve the resulting ODE system. Specifically, we
truncate the velocity domain (consider dv = 1 for simplicity) into a large enough
interval [�|v|max, |v|max] and discretize it into Nv grid points with vi = �|v|max+(i�
1/2)�v, i = 1, . . . , Nv, �v = 2|v|max/Nv. Then the operator Q̃ can be approximated
by a tridiagonal symmetric matrix Q̃h with the entries given by

Q̃h
i,i = � 1

�v2

p
Mi�1 +

p
Mi+1p

Mi
,

Q̃h
i,i�1 = Q̃h

i,i+1 =
1

�v2
,

(4.24)D
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where Mi = M(vi). Define the vector g̃h = (g̃1, . . . , g̃Nv )
T with g̃i = g̃(vi); then we

approximate 'sg by

(4.25) (�sg)i =
p
Mi

⇣
exp(sQ̃h)g̃h

⌘

i
,

where exp(sQ̃h) is the matrix exponential and can be computed very accurately by
existing matrix exponential algorithms (we assume there is no error occurring at this
step). The approximate map �s is accurate in time as time evolution is solved exactly.
It is positivity preserving since the o↵-diagonal entries of Q̃h are non-negative. It is

AP since s ! 1 implies
p
Mi

⇣
exp(sQ̃h)g̃h

⌘

i
! Mi. To see this, note that the

discretization (4.24) for (4.22) is equivalent to the following:

(4.26) @tfi =
Fi+1/2 � Fi�1/2

�v
, Fi+1/2 :=

p
MiMi+1

�v

✓
fi+1

Mi+1
� fi

Mi

◆
.

Define the discrete relative entropy as

(4.27) H =
X

i

fi log
fi
Mi

�v;

then

@tH =
X

i

@tfi

✓
log

fi
Mi

+ 1

◆
�v =

X

i

(Fi+1/2 � Fi�1/2)

✓
log

fi
Mi

+ 1

◆

= �
X

i

Fi+1/2

✓
log

fi+1

Mi+1
� log

fi
Mi

◆

= �
X

i

p
MiMi+1

�v

✓
fi+1

Mi+1
� fi

Mi

◆✓
log

fi+1

Mi+1
� log

fi
Mi

◆
 0,

(4.28)

and the equality holds if and only if fi/Mi is independent of i. This implies fi = Mi

by conservation.

Remark 4.4. Although we only discussed the kinetic Fokker–Planck operator in
this paper, it is clear from the above analysis that for any Fokker–Planck operator,
as long as its steady state M is explicitly known so that it can be written in the form

(4.29) @tf = rv ·
✓
Mrv

f

M

◆
and

it can be treated in a similar fashion using matrix exponential.

5. Comparison with existing methods. Searching the literature, there have
been several methods available to solve the sti↵ kinetic equation (1.1) or equations of
a similar structure. Therefore, we devote this section to a careful comparison of our
method with some of the existing methods. For a general discussion on exponential
integrators, the readers are referred to the review article [12].

• The following two existing second-order methods for (2.2) are special cases of
(2.6):
1. If one considers the second-order Strang splitting

(5.1) '�t
T +Q = '�t/2

Q '�t
T '�t/2

Q +O(�t3),
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and discretizes '�t
T by Heun’s method, then one arrives at (2.6) with

(5.2) a0 = a2 =
1

2
, a1 = 0, b1 = b2 = 1, w =

1

2
.

2. For the case Q(f) = �µf with µ > 0 a constant, [16] rewrites (2.2) as

(5.3) @t(fe
µ
" t) = T (f)e

µ
" t

and applies Heun’s method to (5.3) directly. Then one arrives at (2.6)
with

(5.4) a0 = a2 = 0, a1 = 1, b1 = b2 = 1, w =
1

2
.

These two methods would su↵er from order degeneracy in the fluid regime
when applied to (1.1). In fact, in the first method a1 = 0, and thus f (1) is not
at local Maxwellian. Therefore, the flux term b2�thT (f (1))�i in (3.20) only
approximates the flux in the limiting system up to first-order accuracy, which
makes the limiting scheme first order. This order degeneracy of the Strang
spliting was discovered already in an early work [17]. Similarly in the second
method a0 = a2 = 0, and thus f (0) = fn is not at local Maxwellian, which
means the flux term b1�thT (f (0))�i in (3.20) is only first-order accurate in
the limiting scheme. Moreover, even one starts with a consistent initial data,
i.e., fn = M[fn], this method will not drive fn+1 to the local Maxwellian
since a2 = 0. Hence this error will pollute the solution as well in the next
time step.
For the second method, [16] showed that the limiting scheme is second order
with consistent initial data, in the case of Q(f) = �µf and T satisfying a
maximum principle. Their proof is based on the following fact: If f is at local
equilibrium (say f�f eq = O(")), then f+�tT (f) is also at local equilibrium
((f +�tT (f)) � (f eq +�tT (f eq)) = O(")). This is clearly not the case for
(1.1), since generally speaking f � �tv · rxf is O(�t) away from its local
Maxwellian, even if f itself is at local Maxwellian.

• In [7], an exponential Runge–Kutta method was proposed for the homoge-
neous Boltzmann equation. This method is high order, AP, and positivity
preserving. But it is extended to the nonhomogeneous equation (1.1) based on
the Strang splitting, hence su↵ering from the order degeneracy as mentioned
above.

• A nonsplitting version of the exponential Runge–Kutta method was proposed
in [21] by applying an explicit Runge–Kutta scheme to a reformulated spa-
tially inhomogeneous Boltzmann equation. There are two types of schemes
proposed. One uses the time varying Maxwellian (called “ExpRK-V” in the
paper) which cannot guarantee the positivity of f except for the density ⇢.
The other one is based on a fixed Maxwellian (called “ExpRK-F” in the
paper) and can preserve the positivity of f provided a separate fluid equation
is solved simultaneously and the underlying Runge–Kutta scheme satisfies
certain conditions. However, the existence of such schemes (second or third
order) that satisfy these conditions as well as AP remains to be discovered.
Indeed, the second-order midpoint method and third-order Heun’s method
cannot satisfy these conditions, unlike what was claimed in [21].
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To summarize, by a careful choice of the coe�cients (2.24)–(2.26), our scheme
(2.6) is di↵erent from any existing exponential Runge–Kutta type methods. It is
second-order accurate, positivity preserving, and AP (capturing the Euler limit with
second-order accuracy for any initial data).

6. Entropy-decay property. In this section, we discuss the entropy-decay
property of our scheme. First of all, we recall the following well-known result in
kinetic theory. For the kinetic equation (1.1) with the collision operator being the
BGK operator (3.1), the ES-BGK operator (3.4), the Boltzmann collision operator
(3.7), or the kinetic Fokker–Planck operator (3.9), one has

(6.1)
d

dt

ZZ

Rdx⇥Rdv

f log f dv dx  0

under a periodic boundary condition in x. This is the famous H-theorem that says
that the total entropy of the system is always nonincreasing.

We would like to show that our scheme (2.6) coupled with the first-order up-
wind discretization for the transport term and the homogeneous solvers discussed in
section 4 satisfies a discrete entropy-decay property (a discrete analog of (6.1)). In
order to do so, we assume the velocity space is continuous, in particular, this means
the Fokker–Planck operator is not discretized and the solution to its homogeneous
equation can be found analytically.

For simplicity, we consider (1.1) with dx = 1, dv � 1 (i.e., x 2 R, v = (v1, . . . ) 2
Rdv ):

(6.2) @tf + v1@xf =
1

"
Q(f).

We truncate the velocity domain to a large enough box Dv = [�|v|max, |v|max]dv and
discretize the transport term by the upwind method (j is the spatial index):

(6.3) (v1@xf)j = �v1�0v1
fj � fj�1

�x
+ �v1<0v1

fj+1 � fj
�x

.

Define the discrete entropy as

(6.4) S[f ] := �x
X

j

S[fj ], S[fj ] :=

Z

Dv

fj log fj dv;

then we claim that (2.6) satisfies a discrete entropy-decay property,

(6.5) S[fn+1]  S[fn],

provided the error coming from the velocity domain truncation is negligible (this
assumption is reasonable since the distribution function often decays exponentially at
large velocity).

To prove (6.5), we need two building blocks; one is the exponential step decays
entropy, i.e., for either the exact 's or approximate �s, one has

(6.6) S['sg]  S[g] or S[�sg]  S[g] 8 constant s � 0;

the other is the transport step decays entropy, i.e., for step of the form g = f +
a�tT (f), one has

(6.7) S[g]  S[f ], under the CFL condition �t  �x

a|v|max
.

We now prove (6.6) and (6.7), respectively.
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1138 JINGWEI HU AND RUIWEN SHU

• For the BGK and Fokker–Planck operators, we have the exact 's; hence
S['sg]  S[g] follows directly from the analytical result (3.13).
For the ES-BGK operator, note that (4.15) is a convex combination of g, G[g]
and G['sg]. One has S[G[g]]  S[g] from [1]; hence S[G['sg]]  S['sg]  S[g]
(the second inequality comes from the analytical result (3.13)). Therefore,
S[�sg]  S[g] follows from the convexity of S.
For the Boltzmann operator, note that in the approximation (4.19), f (1) is
a convex combination of g, M and P (g)/µ, and f1 is a convex combination
of g, M and P (f (1))/µ. In [25], it is proved that S[P (f)/µ]  S[f ] for
Maxwell molecules (see Corollary 4.3 on page 825 of [25]). Therefore, by the
convexity of S and S[M[g]]  S[g], one has S[f (1)]  S[g], hence S[f1]  S[g].
Therefore, S[�sg]  S[g].

• The transport step g = f + a�tT (f) with (6.3) plugged in reads

gj = fj � a�t

✓
�v1�0v1

fj � fj�1

�x
+ �v1<0v1

fj+1 � fj
�x

◆

=

✓
1� a

|v1|�t

�x

◆
fj + a

|v1|�t

�x
(�v1�0fj�1 + �v1<0fj+1) .

(6.8)

Hence the right-hand side is a convex combination of fj and �v1�0fj�1 +
�v1<0fj+1 under the CFL condition �t  �x

a|v|max

. Then using the convexity
of function f log f , one has

S[gj ] 
Z

Dv

✓
1� a

|v1|�t

�x

◆
fj log fj dv

+

Z

Dv

a
|v1|�t

�x
(�v1�0fj�1+�v1<0fj+1) log (�v1�0fj�1+�v1<0fj+1) dv

=S[fj ]� a
�t

�x

�
Fj+1/2 � Fj�1/2

�
,

(6.9)

where

(6.10) Fj+1/2 :=

Z

Dv

|v1| (�v1�0fj log fj � �v1<0fj+1 log fj+1) dv

is the discrete entropy flux. Summing over j in (6.9) and assuming the peri-
odic boundary condition in x, one obtains

(6.11) S[g]  S[f ].

Now applying the previous two results in (2.6), we have

(6.12) S[f (2)]  S[f (1)]  S[f (0)]  S[fn];

hence

(6.13) S[fn+1]  wS[f (2)] + (1� w)S[fn]  S[fn].

The assertion is proved.
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7. A remark on spatial and velocity discretizations. Most of the spatial
and velocity discretizations follow our previous paper [15]; namely, we use a finite
volume method for the x-variable and finite di↵erence method for the v-variable.

For the transport term, we adopt the fifth-order finite volume WENO method [24]
with a bound-preserving limiter [27, 28] to insure the positivity. Since the treatment
of this part is standard and has been described in [15], we omit the detail.

For the collision term, special care needs to be paid when switching between the
finite volume and finite di↵erence framework. We briefly describe the procedure in the
following. For convenience, we regard v as continuous and omit it in the discussion.

Let Ij = [xj�1/2, xj+1/2] be the jth spatial cell and {xj,l} (l = 1, 2, 3) denote the
three Gauss–Legendre quadrature points in this cell and {wl} be the corresponding
quadrature weights. For a fixed v, suppose we are given the cell average fj � 0 in Ij ,
we would like to construct a polynomial fj(x) of degree four such that

• fj(x) is a fifth-order accurate approximation to f(x) in Ij with fj being its
cell average, i.e.,

(7.1)
1

�x

Z xj+1/2

xj�1/2

fj(x) dx = fj .

• fj(x) is non-negative at the Gauss quadrature points, i.e.,

(7.2) fj,l := fj(xj,l) � 0, l = 1, 2, 3.

The construction of such a polynomial can be done similarly as described in section
3.2.2 of our previous paper [15]. Provided with fj(x), it is easy to see (7.1) reduces
to

(7.3)
3X

l=1

wlfj,l = fj ,

since the three-point Gauss–Legendre quadrature is exact for polynomials with degree
no more than five.

Then we approximate the jth cell average of 'sf by

(7.4) ('sf)j =
3X

l=1

wl'
sfj,l.

This approximation is fifth-order accurate in x since the reconstruction fj,l is. It is
also conservative, since

(7.5) h('sf)j�i =
3X

l=1

wlh'sfj,l�i =
3X

l=1

wlhfj,l�i =
*

3X

l=1

wlfj,l�

+
= hfj�i,

where we used (3.12) in the second equality and (7.3) in the last one.
For the mixed regime problem where " = "(x), one needs to compute 's(x)f with

s(x) a given function depending on x. To do this, we use the same reconstruction fj,l
and approximate 's(x)f by

(7.6) ('s(x)f)j =
3X

l=1

wl'
s(xj,l)fj,l,

which is still fifth-order accurate and conservative.
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1140 JINGWEI HU AND RUIWEN SHU

8. Numerical examples. In this section we demonstrate numerically the prop-
erties of the proposed scheme (2.6) with coe�cients (2.24) and (2.27). We will mainly
use the 1D1V (dx = dv = 1) BGK and Fokker–Planck equations as prototype ex-
amples since the main purpose of this work is to develop a generic time integrator
that can be potentially applied to a large class of equations rather than to study a
particular kinetic equation.

Unless otherwise specified, we consider the spatial domain x 2 [0, 2] with periodic
boundary condition (except the test in section 8.2, where the Dirichlet boundary
condition is assumed) and a large enough velocity domain v 2 [�|v|max, |v|max] with
|v|max = 15. The x-space is discretized into Nx cells with �x = 2/Nx and cell center
xj = (j � 1/2)�x, j = 1, . . . , Nx. The v-space is discretized into Nv grid points with
�v = 2|v|max/Nv and vi = �|v|max + (i � 1/2)�v, i = 1, . . . , Nv. Nv = 150 is used
so that the discretization error in v is much smaller than that in x and t.

To compute the matrix exponential (4.25) resulting from the discretization of the
Fokker–Planck operator, we used the code by Guttel [11] for the test in section 8.1,
and the MATLAB function “expm” for other tests.

8.1. Accuracy test. We first verify the second-order accuracy of the scheme.
We consider inconsistent initial data

(8.1) f(0, x, v) = 0.5M⇢,u,T + 0.3M⇢,�0.5u,T ,

with

(8.2) ⇢ = 1 + 0.2 sin(⇡x), u = 1, T =
1

1 + 0.2 sin(⇡x)
,

and compute the solution to time t = 0.1. We choose di↵erent values of ", ranging
from the kinetic regime (" = 1) to the fluid regime (" = 10�10). We choose di↵erent
�x and set �t = 0.5�x/|v|max. This CFL number is not small enough to guarantee
the positivity which is pretty restrictive due to the spatial discretization. We will
consider the positivity-preserving property in the following test. For the same reason,
the positivity-preserving limiter is turned o↵ here. Since the exact solution is not
available, the numerical solution on a finer mesh �x/2 is used as a reference solution
to compute the error for the solution on the mesh size �x:

(8.3) error�t,�x := kf�t,�x � f�t/2,�x/2kL2
x,v

.

The results are shown in Tables 1 and 2. For the Fokker–Planck equation, due to the
second-order discretization error in the velocity space, one has to choose a larger Nv

in order to see the temporal error. In all these results, the spatial error dominates for
small Nx, and the temporal error dominates for large Nx. One can clearly see that
in both the kinetic regime " = O(1) and the fluid regime "⌧ 1, the scheme is second
order. Note that there is some extent of order reduction in the intermediate regime
" = O(�t). The uniform accuracy of the AP scheme is an open problem, and we do
not attempt to address this issue in the current work.

We also perform a similar test for the ES-BGK equation to validate the approx-
imation (4.15) proposed in section 4.2. Note that for this equation, one needs to
consider dv > 1 as the ES-BGK operator reduces to the BGK one when dv = 1.
Therefore, we consider the ES-BGK equation with dx = 1 and dv = 2. The param-
eter ⌫ is taken as �1/2. We take Nv = 150 in each velocity dimension, and other
discretization is the same as before. The initial data is

(8.4) f(0, x, v) = 0.5M⇢,u,T + 0.3M⇢,�0.5u,T ,
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with

(8.5) ⇢ = 1 + 0.2 sin(⇡x), u = (1, 0), T =
1

1 + 0.2 sin(⇡x)
.

The results are similar to the previous two tests, and are shown in Table 3.

Table 1
Accuracy test of the scheme for the BGK equation.

" = 1e+ 00 " = 1e� 02 " = 1e� 04 " = 1e� 06 " = 1e� 08 " = 1e� 10
Nx=10 5.60e-04 4.64e-04 4.67e-04 4.67e-04 4.67e-04 4.67e-04
Nx=20 5.91e-05 3.93e-05 3.65e-05 3.65e-05 3.65e-05 3.65e-05
Order 3.25 3.56 3.68 3.68 3.68 3.68
Nx=40 4.33e-06 2.83e-06 4.46e-06 2.46e-06 2.46e-06 2.46e-06
Order 3.77 3.80 3.03 3.89 3.89 3.89
Nx=80 2.11e-07 2.86e-07 5.24e-06 1.10e-07 1.10e-07 1.10e-07
Order 4.36 3.31 -0.23 4.49 4.49 4.49
Nx=160 1.27e-08 6.24e-08 3.25e-06 6.29e-09 6.29e-09 6.29e-09
Order 4.05 2.19 0.69 4.12 4.12 4.12
Nx=320 2.89e-09 1.55e-08 1.23e-06 1.45e-09 1.45e-09 1.45e-09
Order 2.14 2.01 1.40 2.11 2.11 2.11
Nx=640 7.30e-10 3.88e-09 3.74e-07 3.68e-10 3.68e-10 3.68e-10
Order 1.99 2.00 1.72 1.98 1.98 1.98
Nx=1280 1.83e-10 9.71e-10 1.03e-07 2.82e-10 9.20e-11 9.20e-11
Order 2.00 2.00 1.86 0.38 2.00 2.00

8.2. Positivity-preserving property. We now illustrate the positivity-
preserving property of the scheme. Consider the initial data

(8.6) f(0, x, v) = M⇢,u,T ,

with

(8.7) (⇢, u, T ) =

(
(1, 0, 1), 0  x  1,

(0.125, 0, 0.25), 1 < x  2.

With the positivity-preserving limiter, the CFL condition of our scheme is �t 
1
12

�x
|v|max

(note that 1/12 comes from the spatial discretization and the forward Euler

method also has the same constraint). We choose �t = 1
24

�x
|v|max

and Nx = 80.
For the BGK equation, no negative cells are detected in the simulation. For the

Fokker–Planck equation, one technical issue is that we are not aware of any algorithms
that can guarantee the numerically computed matrix exponential is positive if the
exact matrix exponential is. To demonstrate that no negative values are caused by
our time discretization, we use “expm” function in MATLAB to compute the matrix
exponential and set the negative entries of the resulting matrix to zero. With this
modification, no negative cells are detected in the simulation.

As a comparison, we solve the same equations with the same initial data and
spatial/velocity discretization, but using the ARS(2,2,2) scheme in time [2], which is a
standard second-order accurate IMEX scheme without positivity-preserving property.
The number of negative cells during the simulation is tracked. The result for the BGK
equation is already included in the previous paper [15] and is omitted here. The result
for the Fokker–Planck equation is shown in Figure 1. Here to make the comparison
fair, when we compute (I�sQ̃h)�1gh (an operator needs to be evaluated in the IMEX
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Table 3
Accuracy test of the scheme for the ES-BGK equation.

" = 1e+ 00 " = 1e� 02 " = 1e� 04 " = 1e� 06 " = 1e� 08 " = 1e� 10
Nx=10 1.56e-04 1.52e-04 1.57e-04 1.57e-04 1.57e-04 1.57e-04
Nx=20 1.50e-05 9.69e-06 8.86e-06 8.83e-06 8.83e-06 8.83e-06
Order 3.38 3.97 4.15 4.16 4.16 4.16
Nx=40 8.05e-07 6.10e-07 1.38e-06 3.88e-07 3.88e-07 3.88e-07
Order 4.22 3.99 2.68 4.51 4.51 4.51
Nx=80 2.81e-08 9.30e-08 1.97e-06 9.04e-09 9.04e-09 9.04e-09
Order 4.84 2.71 -0.51 5.42 5.42 5.42
Nx=160 2.35e-09 2.26e-08 1.21e-06 5.33e-10 5.10e-10 5.10e-10
Order 3.58 2.04 0.71 4.08 4.15 4.15
Nx=320 5.65e-10 5.67e-09 4.48e-07 1.87e-10 1.34e-10 1.34e-10
Order 2.06 2.00 1.43 1.51 1.93 1.93

scheme), we first compute the matrix (I � sQ̃h)�1 which is not necessarily positive
at the numerical level, and then set the negative entries to zero in this matrix. This
is to make sure that no negative values are generated due to the failure of positivity-
preserving in the matrix inversion. In Figure 1 one can still see a lot of negative cells
in the fluid regime.
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Fig. 1. Total number of negative cells for the ARS(2, 2, 2) scheme applied to the Fokker–Planck
equation during time evolution. Blue line: " = 10�6. Red line: " = 10�8.

8.3. AP property. Finally, to illustrate the AP property, we use the proposed
scheme to solve the BGK and Fokker–Planck equations in a mixed regime (" is a
function of x so that in part of the domain the problem is in kinetic regime and while
in other part it is in fluid regime). We take the same initial data as in (8.1)–(8.2) and
Nx = 40.

For the BGK equation, we consider " = "(x) as follows:

(8.8) "(x) = "0 + (tanh(1� 11(x� 1)) + tanh(1 + 11(x� 1))), "0 = 10�5.
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We compare the macroscopic quantities at time t = 0.5 with a reference solu-
tion computed by Heun’s method with Nx = 80. Note that for our scheme, �t =
1
24

�x
|v|max

⇡ 7⇥10�5; while for the (explicit) Heun’s method, �t = 1
240

�x
|v|max

⇡ 7⇥10�6

which needs to resolve ". One can see a good agreement with the reference solution
in Figure 2.
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Fig. 2. The BGK equation in a mixed regime. Left to right: density ⇢, velocity u, and tem-
perature T . Solid line: reference solution computed by the explicit Heun’s method. Dots: solution
computed by the proposed scheme.

For the Fokker–Planck equation, we consider the following "(x):

(8.9) "(x) = "0 + (tanh(1� 11(x� 1)) + tanh(1 + 11(x� 1))), "0 = 5⇥ 10�4.

The numerical parameters are chosen the same as the BGK case, except in the refer-
ence solution we need �t = 1

540
�x

|v|max

⇡ 3 ⇥ 10�6 in order to satisfy the explicit
parabolic CFL condition. The result is shown in Figure 3 and again with good
agreement.
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Fig. 3. The Fokker–Planck equation in a mixed regime. Left to right: density ⇢, velocity u,
and temperature T . Solid line: reference solution computed by the explicit Heun’s method. Dots:
solution computed by the proposed scheme.
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9. Conclusion. We introduced a new exponential Runge–Kutta time discretiza-
tion method (2.6) for a class of sti↵ kinetic equations (1.1). The main contribution
is a careful blend of the transport term and the collision term so that the method
is second order, AP, and positivity preserving. With suitably chosen homogeneous
solvers, the method can be applied to the relaxation type equation (BGK and ES-BGK
equations), the di↵usion type equation (kinetic Fokker–Planck equation), and the full
Boltzmann equation. Further, we showed that the method satisfies an entropy-decay
property when coupled with upwind discretization for the transport term. A series
of numerical examples were presented to demonstrate the properties of the proposed
method.

Acknowledgement. The first author would like to thank Prof. Lili Ju for helpful
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