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Abstract
The Poisson–Nernst–Planck (PNP) equations is a macroscopic model widely used to
describe the dynamics of ion transport in ion channels. In this paper, we introduce a
semi-implicit finite difference scheme for the PNP equations in a bounded domain. A
general boundary condition for the Poisson equation is considered. The fully discrete
scheme is shown to satisfy the following properties: mass conservation, unconditional
positivity, and energy dissipation (hence preserves the steady state). Solvability of the
semi-discrete scheme is proved and a simple fixed point iteration is proposed to solve
the fully discrete scheme. Numerical examples in both 1D and 2D and for multiple
species are presented to demonstrate the convergence and properties of the proposed
scheme.

Mathematics Subject Classification 35Q84 · 35J05 · 82D37 · 35Q92 · 65L05 · 65L10 ·
65L12

1 Introduction

The Poisson–Nernst–Planck (PNP) equations is a coupled continuum model widely
used to describe the dynamics of ion transport in membrane channels. In this model,
the ions satisfy the Nernst–Planck equation:
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∂t c
(i) = ∇ ·

{
D(i)

(
∇c(i) + zi e

kBT
c(i)∇ψ

)}
, i = 1, . . . ,m, (1.1)

where c(i) = c(i)(t, x) is the local concentration of the i-th ion species, D(i) = D(i)(x)
is the diffusion coefficient, zi is the valence of the ion, e is the unit charge of a proton,
kB is the Boltzmann’s constant, T is the absolute temperature, and ψ = ψ(t, x) is the
electrostatic potential related to ion concentrations via the Poisson equation:

− ∇ · (ε∇ψ) =
m∑
i=1

zi e c
(i) + ρ, (1.2)

where ε = ε(x) is the permittivity of the electrolyte and ρ = ρ(x) is the permanent
charge density of the system. The PNP equations (1.1) and (1.2) are usually posed
in a bounded domain with proper boundary and initial conditions (see Sect. 2.3 for
details). Although termed by Eisenberg et al. [9,10] in the 1990s to study the ion
channels, the PNP equations have a long history in the broader context to describe
charge transport, where they are often called drift-diffusion-Poisson equations, see for
instance in semiconductor modeling [17]. For a review of recent development of more
generalized PNP equations and related models, the readers are referred to [22].

Solutions to the PNP equations satisfy a few important physical properties: mass
conservation, positivity, energy dissipation, etc. When designing numerical methods,
it would be desirable to maintain the same properties at the discrete level, preferably
with a mild constraint on time step �t and spatial size �x , so that the long time
simulation can be done accurately and efficiently. Our goal in this work is to construct
a structure-preserving numerical method for the PNP equations.

Searching the literature, there have been numerous studies in recent years devoted
to numerical simulation of the PNP equations. Many of them also aim to preserve the
structure of the solutions. Without being exhaustive, we mention a few closely related
works. Among the explicit methods, the finite difference scheme in [15] is able to
preserve the positivity under a parabolic CFL condition (�t = O(�x2)), and the
energy decay can be shown for the semi-discrete scheme (time is continuous). Later a
DG version is developed in [16], where the positivity and fully discrete energy decay
can be achieved still under a parabolic CFL condition. Among the implicit methods,
the finite difference scheme in [12] obtains second order in time using a combination
of the trapezoidal rule and backward differentiation formula. The scheme is positive,
however, under a parabolic CFL condition and an additional constraint on spatial
size. An energy-preserving version is recently presented in [11], where the energy
decay rate is shown to be consistent up to O(�x2 + �t2). Finally, the finite element
method in [18] employs the fully implicit backward Euler scheme to obtain the discrete
energy decay.Wemention that this time discretization onlyworks for certain boundary
conditions and would not work (or require extra conditions) for the general boundaries
we considered in this paper (see Remark 3.3).

From the above discussions, we can see that to obtain both unconditional positivity
and discrete energy decay is very difficult and it generally requires one to go from
explicit to implicit schemes. Even so, a delicate treatment for the drift and diffusion
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terms are necessary. Our main contribution in this work is the time discretization,
which is inspired by the recent work [2]. Specifically, we propose a semi-implicit
finite difference scheme for the PNP equations that is first order in time and second
order in space. For generality, we consider an inhomogeneous Robin type boundary
condition for the Poisson equation which includes Dirichlet and Neumann boundaries
as subcases. The fully discrete scheme is proved to be mass conservative, uncondi-
tionally positive and energy dissipative. As a result of fully discrete energy decay, the
numerical solution would converge to the solution of the (time independent) Poisson–
Boltzmann equation, i.e., the scheme is steady-state preserving. To solve the nonlinear
system resulting from the semi-implicit time discretization, we propose a simple fixed
point iteration. Although we are not able to prove the convergence of the iterative
scheme, we demonstrate numerically its fast convergence using a series of examples.
Moreover, we provide a rigorous proof of the solvability of the semi-discrete scheme
(space is continuous). To the best of our knowledge, this is the first numerical method
for the PNP equations that achieves simultaneously unconditional positivity and fully
discrete energy decay, and works for a large class of boundary conditions.

For completeness, let us mention a few analytical work related to well-posedness
and long time behavior of the PNP equations. Using a generalization of the Hopf-Cole
variable transformation, existence of a global classical solution and convergence to
stationary solution was proved in [14] for a simplified 1D single species PNP model.
In [3], the weak solution of a multi-D single species PNP model was studied and the
well-posedness locally in time was proved. This result is improved to the two species
case in [5], where the global in time existence of the solution was obtained. The long
time asymptotic behavior with exponential convergence to steady states was obtained
in [1,4].

The rest of this paper is organized as follows. In Sect. 2.3, we give a brief intro-
duction of the PNP equations in a bounded domain along with the basic properties. In
Sect. 3, we describe in detail the fully discrete scheme in 1D and prove its properties:
mass conservation, unconditional positivity, and energy dissipation. In addition, we
prove the solvability of the semi-discrete scheme and propose a simple fixed point
iteration to solve the fully discrete scheme. Extension to 2D is also discussed. Numer-
ical examples are provided in Sect. 4 to demonstrate the convergence and properties
of the proposed scheme. Concluding remarks are given in Sect. 5.

2 The PNP equations: initial boundary value problem and basic
properties

In this section, we describe the initial boundary value problem of the PNP equations
and summarize its basic properties.
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2.1 Non-dimensionalization

To begin with, we first non-dimensionalize the Eqs. (1.1) and (1.2) by introducing the
following rescaled quantities:

ĉ(i) = c(i)

c0
, ψ̂ = ψ

ψ0
, ρ̂ = ρ

ec0
,

x̂ = x
x0

, D̂(i) = D(i)

D0
, t̂ = t

x20/D0
, ε̂ = ε

ε0
, (2.3)

where c0, ψ0, . . . are the characteristic values of the corresponding quantities. Then
(1.1) and (1.2) can be rewritten as

D0

x20
∂t̂ ĉ

(i) = D0

x20
∇ ·
{
D̂(i)

(
∇ ĉ(i) + ψ0

zi e

kBT
ĉ(i)∇ψ̂

)}
, (2.4)

−ψ0ε0

x20
∇ ·
(
ε̂∇ψ̂

)
= ec0

(
m∑
i=1

zi ĉ
(i) + ρ̂

)
. (2.5)

Define

χ1 := eψ0

kBT
, χ2 := ec0x20

ψ0ε0
, (2.6)

we obtain the non-dimensionalized PNP equations as (droppingˆfor simplicity):

∂t c
(i) = ∇ ·

(
D(i)

(
∇c(i) + χ1zi c

(i)∇ψ
))

, (2.7)

−∇ · (ε∇ψ) = χ2

(
m∑
i=1

zi c
(i) + ρ

)
. (2.8)

Here χ1 is the ratio of the electric potential energy and thermal energy; χ2 is the
inverse square of the scaled Debye length. For more physical background of these
dimensionless parameters, we refer the interested reader to Sect. 2.3 of [12].

2.2 Initial and boundary value problem

When the PNP equations are imposed in a connected bounded domain� ⊂ R
d , proper

initial and boundary conditions need to be supplemented.
For the Nernst–Planck equation (2.7), the initial condition is given by

c(i)(0, x) = c(i),0(x), x ∈ �, i = 1, . . . ,m, (2.9)

and the initial value of ψ is given by solving the Poisson equation (2.8) subject to
(2.9).
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For the boundary, one usually assumes the no-flux boundary condition for the
Nernst–Planck equation, i.e.,

D(i)
(
∇c(i) + χ1zi c

(i)∇ψ
)

· n = 0, x ∈ ∂�, t ≥ 0, i = 1, . . . ,m, (2.10)

where n is the unit outward normal at the boundary point x ∈ ∂�. Boundary condi-
tion for the Poisson equation can be various. Here we consider a general boundary
condition:

αψ + β
∂ψ

∂n
= f , x ∈ ∂�, t ≥ 0, (2.11)

where α, β are some constants and f = f (x) is a given function on ∂�. Note that

• when α �= 0, β �= 0, (2.11) is the Robin boundary condition;
• when α �= 0, β = 0, (2.11) reduces to the Dirichlet boundary condition;
• when α = 0, β �= 0, (2.11) reduces to the Neumann boundary condition. Solution
to the Neumann problem can only be unique up to a constant. Also the following
compatibility condition is required:

χ2

∫
�

(
m∑
i=1

zi c
(i),0 + ρ

)
dx + 1

β

∫
∂�

ε f ds = 0. (2.12)

Putting everything together, we have the following initial boundary value problem
for the PNP equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t c
(i) = ∇ ·

(
D(i)

(
∇c(i) + χ1zi c

(i)∇ψ
))

, x ∈ �, t ≥ 0, i = 1, . . . ,m,

(2.13)

c(i)(0, x) = c(i),0(x), x ∈ �, i = 1, . . . ,m,

(2.14)

D(i)
(
∇c(i) + χ1zi c

(i)∇ψ
)

· n = 0, x ∈ ∂�, t ≥ 0, i = 1, . . . ,m,

(2.15)

−∇ · (ε∇ψ) = χ2

(
m∑
i=1

zi c
(i) + ρ

)
, x ∈ �, t ≥ 0, (2.16)

αψ + β
∂ψ

∂n
= f , x ∈ ∂�, t ≥ 0. (2.17)

2.3 Basic properties

Here we list a few important properties of the problem (2.13)–(2.17), which will serve
as a guidance in designing numerical schemes.
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1. Mass conservation:
∫

�

c(i)(t, x) dx =
∫

�

c(i),0(x) dx, ∀t > 0, i = 1, . . . ,m. (2.18)

2. Positivity:

c(i),0(x) ≥ 0 ⇒ c(i)(t, x) ≥ 0, ∀t > 0, x ∈ �, i = 1, . . . ,m. (2.19)

3. Energy dissipation:

dẼ

dt
= −

m∑
i=1

∫
�

D(i)c(i)
∣∣∣∇( log c(i) + χ1ziψ

)∣∣∣2 dx

+ χ1

2χ2

∫
∂�

ε

(
ψ

∂ψt

∂n
− ψt

∂ψ

∂n

)
ds, (2.20)

where the free energy Ẽ is defined as

Ẽ =
∫

�

m∑
i=1

(
c(i) log c(i)

)
dx + χ1

2

∫
�

(
m∑
i=1

zi c
(i) + ρ

)
ψ dx. (2.21)

Note that using the boundary condition (2.17) and f does not depend on time, the
last term on the right hand side of (2.20) can be written equivalently as

χ1

2χ2

∫
∂�

ε

(
ψ

∂ψt

∂n
− ψt

∂ψ

∂n

)
ds =

⎧⎪⎪⎨
⎪⎪⎩

χ1

2χ2α

∫
∂�

ε f
∂ψt

∂n
ds, if α �= 0,

− χ1

2χ2β

∫
∂�

ε f ψt ds, if β �= 0.

(2.22)

Therefore, to make (2.20) dissipative, one can choose

E = Ẽ +

⎧⎪⎪⎨
⎪⎪⎩

− χ1

2χ2α

∫
∂�

ε f
∂ψ

∂n
ds, if α �= 0,

χ1

2χ2β

∫
∂�

ε f ψ ds, if β �= 0.
(2.23)

Then one has

dE

dt
= −

m∑
i=1

∫
�

D(i)c(i)
∣∣∣∇( log c(i) + χ1ziψ

)∣∣∣2 dx ≤ 0. (2.24)

4. Steady state: the energy dissipation implies that the steady state of the system is
achieved when
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∇
(
log c(i),∞ + χ1ziψ

∞) = 0, i = 1, . . . ,m, (2.25)

which integrates to the equilibrium

c(i),∞ = λi e
−χ1ziψ∞

, with λi =
∫
�
c(i),0 dx∫

�
e−χ1ziψ∞ dx

. (2.26)

Substituting c(i),∞ into the Poisson equation (2.16) leads to

− ∇ · (ε∇ψ∞) = χ2

(
m∑
i=1

λi zi e
−χ1ziψ∞ + ρ

)
, x ∈ �, (2.27)

which together with the boundary condition (2.17) constitute the (nonlinear)
Poisson–Boltzmann equation.

3 Numerical schemes

In this section, we describe the proposed numerical scheme for the initial boundary
value problem (2.13)–(2.17). For simplicity, we assume χ1 = χ2 = 1 in the following.

Before going into detail, we first summarize the key ingredients in our method.

• The first ingredient is to reformulate the Nernst–Planck equation (2.13) as

∂t c
(i) = ∇ ·

(
D(i)M (i)∇

(
c(i)

M (i)

))
, where M (i) = e−ziψ. (3.28)

Accordingly, the no-flux boundary condition (2.15) becomes

∇
(

c(i)

M (i)

)
· n = 0. (3.29)

Note that this is the Scharfetter-Gummel transform widely used in semiconductor
community [20].

• The second ingredient is the spatial discretization. As both (3.28) and the Poisson
equation (2.16) are diffusive type equations, it is simple and natural to use the
central finite difference.

• The third ingredient (which is our main contribution) is a semi-implicit time
discretization

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c(i),n+1 − c(i),n

�t
= ∇ ·

(
D(i)M (i),∗∇

(
c(i),n+1

M (i),∗

))
,

−∇ · (ε∇ψn+1) =
m∑
i=1

zi c
(i),n+1 + ρ,

(3.30)
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where M (i),∗ = e−ziψ∗
and the potential ψ∗ is chosen as

ψ∗ = ψn + ψn+1

2
. (3.31)

3.1 Fully discrete scheme in 1D

We now describe in detail the proposed scheme in 1D. Assume the domain� = [a, b],
then the PNP system reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t c
(i) =

(
D(i)M (i)

(
c(i)

M (i)

)
x

)

x

, x ∈ [a, b], t ≥ 0, i = 1, . . . ,m,

(3.32)

c(i)(0, x) = c(i),0(x), x ∈ [a, b], i = 1, . . . ,m, (3.33)(
c(i)

M (i)

)
x

(t, a) =
(

c(i)

M (i)

)
x

(t, b) = 0, t ≥ 0, i = 1, . . . ,m, (3.34)

−(εψx )x =
m∑
i=1

zi c
(i) + ρ, x ∈ [a, b], t ≥ 0, (3.35)

αψ(t, a) − βψx (t, a) = fa, t ≥ 0, (3.36)

αψ(t, b) + βψx (t, b) = fb, t ≥ 0. (3.37)

Wepartition the interval [a, b] into N uniformcellswithmesh size�x = (b−a)/N .
The cell centers x j = a + ( j − 1/2)�x , j = 1, . . . , N are chosen as the grid points;
and the cell interfaces are given by x j+1/2 = a + j�x , j = 0, . . . , N (note that
x1/2 = a, xN+1/2 = b). Let tn = n�t be the discrete time step and we denote the
numerical approximation of a function u(t, x) at (tn, x j ) by unj .

We first discretize the Nernst–Planck equation (3.32) in space by a second-order
central difference scheme:

∂t c
(i)
j = 1

�x2

(
D(i)

j+ 1
2
M

(i)
j+ 1

2
ĝ(i)
j+ 1

2
− D(i)

j− 1
2
M

(i)
j− 1

2
ĝ(i)
j− 1

2

)
, j = 1, · · · , N ,

(3.38)

where ĝ(i)
j+ 1

2
is defined by

ĝ(i)
j+ 1

2
=
(

c(i)

M (i)

)
j+1

−
(

c(i)

M (i)

)
j

, j = 1, . . . , N − 1. (3.39)

At the boundary ( j = 0, N ), due to the no-flux boundary condition (3.34), we set

ĝ(i)
1
2

= ĝ(i)
N+ 1

2
= 0. (3.40)
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D(i)
j+ 1

2
is the value of the diffusion coefficient D(i) at x j+ 1

2
. M

(i)
j+ 1

2
is an approximation

to M (i) at x j+ 1
2
and we take

M
(i)
j+ 1

2
= M (i)

j + M (i)
j+1

2
, M (i)

j = e−ziψ j , j = 1, . . . , N − 1. (3.41)

Remark 3.1 We remark that the choice of M
(i)
j+ 1

2
is not unique. As long as it is a second

order, positive approximation to M (i) at x j+ 1
2
, all the properties derived in Sect. 3.1.1

can be carried over.

For the Poisson equation (3.35), we also use the central difference scheme:

− 1

�x2

(
ε j+ 1

2
ψ̂ j+ 1

2
− ε j− 1

2
ψ̂ j− 1

2

)
=

m∑
i=1

zi c
(i)
j + ρ j , j = 1, · · · , N , (3.42)

where ε j+ 1
2
is the value of the permittivity ε at x j+ 1

2
, and ψ̂ j+ 1

2
is defined by

ψ̂ j+ 1
2

= ψ j+1 − ψ j , j = 0, . . . , N . (3.43)

To obtain ψ0 and ψN+1, note that the boundary condition (3.36), (3.37) can be dis-
cretized as

α
ψ1 + ψ0

2
− β

ψ1 − ψ0

�x
= fa, α

ψN+1 + ψN

2
+ β

ψN+1 − ψN

�x
= fb, (3.44)

using which we can represent

ψ̂ 1
2

:= ψ1 − ψ0 = 2α�x

α�x + 2β
ψ1 − 2�x

α�x + 2β
fa, (3.45)

ψ̂N+ 1
2

:= ψN+1 − ψN = − 2α�x

α�x + 2β
ψN + 2�x

α�x + 2β
fb. (3.46)

Remark 3.2 ψ̂ 1
2
and ψ̂N+ 1

2
may not be well-defined in the case of Robin boundary

(when α �= 0, β �= 0). In this case, we assume �x �= −2β/α.

For brevity, we write the scheme (3.42) in a matrix vector multiplication form:

P� = h, (3.47)
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where

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

p1,1 −ε 3
2−ε 3

2
(ε 3

2
+ ε 5

2
) −ε 5

2
. . .

. . .
. . .

−εN− 3
2

(εN− 3
2

+ εN− 1
2
) −εN− 1

2−εN− 1
2

pN ,N

⎞
⎟⎟⎟⎟⎟⎟⎠

, � =

⎛
⎜⎜⎜⎝

ψ1
ψ2
...

ψN

⎞
⎟⎟⎟⎠ ,

h =

⎛
⎜⎜⎜⎝
h1
h2
...

hN

⎞
⎟⎟⎟⎠ , (3.48)

with

⎧⎪⎪⎨
⎪⎪⎩
p1,1 = 2α�x

α�x + 2β
ε 1
2

+ ε 3
2
,

pN ,N = εN− 1
2

+ 2α�x

α�x + 2β
εN+ 1

2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1 = �x2
(

m∑
i=1

zi c
(i)
1 + ρ1

)
+ 2�x

α�x + 2β
ε 1
2
fa,

h j = �x2
(

m∑
i=1

zi c
(i)
j + ρ j

)
, j = 2, . . . , N − 1,

hN = �x2
(

m∑
i=1

zi c
(i)
N + ρN

)
+ 2�x

α�x + 2β
εN+ 1

2
fb.

Now let us add the time discretization as outlined in (3.30). Define

M (i),∗
j = e−ziψ∗

j , ψ∗
j = ψn

j + ψn+1
j

2
, (3.49)

then (3.38) with time discretization reads

c(i),n+1
j − c(i),n

j

�t
= 1

�x2

⎧⎨
⎩D(i)

j+ 1
2
M

(i),∗
j+ 1

2

⎡
⎣
(
c(i),n+1

M (i),∗

)
j+1

−
(
c(i),n+1

M (i),∗

)
j

⎤
⎦

−D(i)
j− 1

2
M

(i),∗
j− 1

2

⎡
⎣
(
c(i),n+1

M (i),∗

)
j

−
(
c(i),n+1

M (i),∗

)
j−1

⎤
⎦
⎫⎬
⎭ , j = 2, . . . , N − 1;

(3.50)
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and for j = 1 and N :

c(i),n+1
1 − c(i),n

1

�t
= 1

�x2

{
D(i)

3
2
M

(i),∗
3
2

[(
c(i),n+1

M (i),∗

)
2

−
(
c(i),n+1

M (i),∗

)
1

]}
, (3.51)

c(i),n+1
N − c(i),n

N

�t
= 1

�x2

{
−D(i)

N− 1
2
M

(i),∗
N− 1

2

[(
c(i),n+1

M (i),∗

)
N

−
(
c(i),n+1

M (i),∗

)
N−1

]}
.

(3.52)

Rearranging terms in (3.50) yields

[
M (i),∗

j + �t

�x2

(
D(i)

j+ 1
2
M

(i),∗
j+ 1

2
+ D(i)

j− 1
2
M

(i),∗
j− 1

2

)](
c(i),n+1

M (i),∗

)
j

− �t

�x2
D(i)

j+ 1
2
M

(i),∗
j+ 1

2

(
c(i),n+1

M (i),∗

)
j+1

− �t

�x2
D(i)

j− 1
2
M

(i),∗
j− 1

2

(
c(i),n+1

M (i),∗

)
j−1

= c(i),n
j , j = 2, . . . , N − 1. (3.53)

Similarly, (3.51) (3.52) become

[
M (i),∗

1 + �t

�x2
D(i)

3
2
M

(i),∗
3
2

](
c(i),n+1

M (i),∗

)
1

− �t

�x2
D(i)

3
2
M

(i),∗
3
2

(
c(i),n+1

M (i),∗

)
2

= c(i),n
1 ,

(3.54)

[
M (i),∗

N + �t

�x2
D(i)

N− 1
2
M

(i),∗
N− 1

2

](
c(i),n+1

M (i),∗

)
N

− �t

�x2
D(i)

N− 1
2
M

(i),∗
N− 1

2

(
c(i),n+1

M (i),∗

)
N−1

= c(i),n
N . (3.55)

The schemes (3.53)–(3.55) can be written in a matrix vector multiplication form:

A(i)g(i) = c(i),n, (3.56)

if we define
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A(i) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a(i)
1,1 a(i)

1,2

a(i)
2,1 a(i)

2,2 a(i)
2,3

. . .
. . .

. . .

a(i)
N ,N−1 a(i)

N ,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, g(i) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c(i),n+1
1 /M (i),∗

1

c(i),n+1
2 /M (i),∗

2

...

c(i),n+1
N /M (i),∗

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, c(i),n =

⎛
⎜⎜⎜⎜⎜⎜⎝

c(i),n
1

c(i),n
2

...

c(i),n
N

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(3.57)

where the entries of the matrix A(i) are given by

⎧⎪⎪⎨
⎪⎪⎩
a(i)
1,1 = M (i),∗

1 + �t

�x2
D(i)

3
2
M

(i),∗
3
2

,

a(i)
N ,N = M (i),∗

N + �t

�x2
D(i)

N− 1
2
M

(i),∗
N− 1

2
,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a(i)
j, j = M (i),∗

j + �t

�x2

(
D(i)

j+ 1
2
M

(i),∗
j+ 1

2
+ D(i)

j− 1
2
M

(i),∗
j− 1

2

)
, j = 2, . . . , N − 1,

a(i)
j, j−1 = − �t

�x2
D(i)

j− 1
2
M

(i),∗
j− 1

2
, j = 2, . . . , N ,

a(i)
j, j+1 = − �t

�x2
D(i)

j+ 1
2
M

(i),∗
j+ 1

2
, j = 1, . . . , N − 1;

Therefore, together with the system (3.47), we obtain the following fully discrete
scheme for the PNP system:

⎧⎪⎨
⎪⎩
A(i)

(
M(i),∗) g(i)

(
c(i),n+1,M(i),∗) = c(i),n,

P�n+1 = h
(
c(i),n+1

)
,

(3.58)

where with a little abuse of notations, the dependence of vectors is indicated.
We state the following lemma which will be useful later.

Lemma 3.1 The matrix A(i)
(
M(i),∗) as defined in (3.57) is symmetric positive def-

inite and strictly diagonally dominant, provided M
(i),∗
j+ 1

2
is a second-order, positive

approximation to M (i),∗ at x j+ 1
2
. In particular, the choice

M
(i),∗
j+ 1

2
= M (i),∗

j + M (i),∗
j+1

2
(3.59)

suffices.

Proof By definition, M (i),∗
j = e−ziψ∗

j > 0, and M
(i),∗
j+ 1

2
is required to be positive, then

the entries of A(i) satisfy

a(i)
j, j > 0, a(i)

j,k ≤ 0, j �= k. (3.60)
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Furthermore,

|a(i)
j, j | >

∑
j �=k

|a(i)
j,k |. (3.61)

Hence the conclusion is immediate. �


3.1.1 Properties of the fully discrete scheme

In this section, we prove the properties of the fully discrete scheme (3.58). These are
parallel to the theoretical properties listed in Sect. 2.3.

Define the total mass of the i-th ion species at time step tn as

C (i)
� (tn) = �x

N∑
j=1

c(i),n
j . (3.62)

Then we have

Theorem 3.1 (Mass conservation) The fully discrete scheme (3.58) is always mass
conservative for each ion species:

C (i)
� (tn) = C (i)

� (tn+1), i = 1, . . . ,m. (3.63)

Proof Using (3.50), (3.51) and (3.52), it is easy to see

C (i)
� (tn+1) − C (i)

� (tn) = �x
N∑
j=1

(
c(i),n+1
j − c(i),n

j

)
= 0. (3.64)

This proves the numerical mass conservation. �


Theorem 3.2 (Positivity preserving) The fully discrete scheme (3.58) is uncondition-
ally positivity-preserving, i.e., if c(i),n

j ≥ 0 for all j = 1, . . . , N, then

c(i),n+1
j ≥ 0, j = 1, . . . , N , (3.65)

for each species i = 1, . . . ,m.

Proof Lemma 3.1 implies that the matrix A(i)
(
M(i),∗) in the scheme (3.58) is a M-

matrix, i.e., it is inverse positive ((A(i))−1 exists and each entry of (A(i))−1 is non-
negative). Therefore, if c(i),n

j ≥ 0, by solving the first linear system in (3.58), we have

g(i)
j ≥ 0. Since M (i),∗

j > 0, then c(i),n+1
j = g(i)

j M (i),∗
j ≥ 0. �
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Define the discrete free energy at time step tn as

E�(tn) = �x
N∑
j=1

m∑
i=1

c(i),n
j log c(i),n

j + �x

2

N∑
j=1

(
m∑
i=1

zi c
(i),n
j + ρ j

)
ψn

j

+
ε 1
2
faψn

1 + εN+ 1
2
fbψn

N

α�x + 2β
, (3.66)

where we assume �x �= −2β/α when both α and β are nonzero. Then we have

Theorem 3.3 (Energy dissipation) The fully discrete scheme (3.58) is unconditionally
energy-dissipative:

E�(tn+1) − E�(tn)

≤ − �t

�x

N−1∑
j=1

m∑
i=1

D(i)
j+ 1

2
M

(i),∗
j+ 1

2

⎡
⎣
(
c(i),n+1

M (i),∗

)
j+1

−
(
c(i),n+1

M (i),∗

)
j

⎤
⎦

×
⎡
⎣log

(
c(i),n+1

M (i),∗

)
j+1

− log

(
c(i),n+1

M (i),∗

)
j

⎤
⎦

≤ 0. (3.67)

Proof Using the definition (3.66), we have

E�(tn+1) − E�(tn)

= �x
N∑
j=1

m∑
i=1

(
c(i),n+1
j log c(i),n+1

j − c(i),n
j log c(i),n

j

)

+ �x

2

N∑
j=1

m∑
i=1

zi
(
c(i),n+1
j ψn+1

j − c(i),n
j ψn

j

)

+ �x

2

N∑
j=1

ρ j

(
ψn+1

j − ψn
j

)
+

ε 1
2
fa(ψ

n+1
1 − ψn

1 ) + εN+ 1
2
fb(ψ

n+1
N − ψn

N )

α�x + 2β

= �x
N∑
j=1

m∑
i=1

[
c(i),n+1
j log c(i),n+1

j − c(i),n
j log c(i),n

j +
(
c(i),n
j − c(i),n+1

j

)
log c(i),n+1

j

]

+ �x
N∑
j=1

m∑
i=1

(
c(i),n+1
j − c(i),n

j

) (
log c(i),n+1

j + ziψ
∗
j

)
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+ �x
N∑
j=1

m∑
i=1

zi

[
1

2

(
c(i),n+1
j ψn+1

j − c(i),n
j ψn

j

)
+
(
c(i),n
j − c(i),n+1

j

)
ψ∗

j

]

+ �x

2

N∑
j=1

ρ j (ψ
n+1
j − ψn

j ) +
ε 1
2
fa(ψ

n+1
1 − ψn

1 ) + εN+ 1
2
fb(ψ

n+1
N − ψn

N )

α�x + 2β

= I + I I + I I I , (3.68)

where the three parts are defined as:

I := �x
N∑
j=1

m∑
i=1

[
c(i),n+1
j log c(i),n+1

j − c(i),n
j log c(i),n

j +
(
c(i),n
j − c(i),n+1

j

)
log c(i),n+1

j

]
,

I I := �x
N∑
j=1

m∑
i=1

(
c(i),n+1
j − c(i),n

j

) (
log c(i),n+1

j + ziψ
∗
j

)
,

I I I := �x
N∑
j=1

m∑
i=1

zi

[
1

2

(
c(i),n+1
j ψn+1

j − c(i),n
j ψn

j

)
+
(
c(i),n
j − c(i),n+1

j

)
ψ∗

j

]

+ �x

2

N∑
j=1

ρ j (ψ
n+1
j − ψn

j ) +
ε 1
2
fa(ψ

n+1
1 − ψn

1 ) + εN+ 1
2
fb(ψ

n+1
N − ψn

N )

α�x + 2β
. (3.69)

For part I ,

I =�x
N∑
j=1

m∑
i=1

c(i),n
j

(
log c(i),n+1

j − log c(i),n
j

)
= �x

N∑
j=1

m∑
i=1

c(i),n
j log

c(i),n+1
j

c(i),n
j

≤�x
N∑
j=1

m∑
i=1

c(i),n
j

(
c(i),n+1
j

c(i),n
j

− 1

)
= 0, (3.70)

where log x ≤ x − 1 (x > 0) is used in the inequality and mass conservation is used
in the last equality.

For part I I ,

I I = �x
N∑
j=1

m∑
i=1

(
c(i),n+1
j − c(i),nj

) (
log c(i),n+1

j − logM(i),∗
j

)

= �x
N∑
j=1

m∑
i=1

(
c(i),n+1
j − c(i),nj

)
log

(
c(i),n+1

M(i),∗

)
j

= �t

�x

N−1∑
j=1

m∑
i=1

D(i)
j+ 1

2
M

(i),∗
j+ 1

2

⎡
⎣
(
c(i),n+1

M(i),∗

)
j+1

−
(
c(i),n+1

M(i),∗

)
j

⎤
⎦ log

(
c(i),n+1

M(i),∗

)
j
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− �t

�x

N∑
j=2

m∑
i=1

D(i)
j− 1

2
M

(i),∗
j− 1

2

⎡
⎣
(
c(i),n+1

M(i),∗

)
j

−
(
c(i),n+1

M(i),∗

)
j−1

⎤
⎦ log

(
c(i),n+1

M(i),∗

)
j

= �t

�x

N−1∑
j=1

m∑
i=1

D(i)
j+ 1

2
M

(i),∗
j+ 1

2

⎡
⎣
(
c(i),n+1

M(i),∗

)
j+1

−
(
c(i),n+1

M(i),∗

)
j

⎤
⎦ log

(
c(i),n+1

M(i),∗

)
j

− �t

�x

N−1∑
j=1

m∑
i=1

D(i)
j+ 1

2
M

(i),∗
j+ 1

2

⎡
⎣
(
c(i),n+1

M(i),∗

)
j+1

−
(
c(i),n+1

M(i),∗

)
j

⎤
⎦ log

(
c(i),n+1

M(i),∗

)
j+1

= − �t

�x

N−1∑
j=1

m∑
i=1

D(i)
j+ 1

2
M

(i),∗
j+ 1

2

⎡
⎣
(
c(i),n+1

M(i),∗

)
j+1

−
(
c(i),n+1

M(i),∗

)
j

⎤
⎦

×
⎡
⎣log

(
c(i),n+1

M(i),∗

)
j+1

− log

(
c(i),n+1

M(i),∗

)
j

⎤
⎦

≤ 0, (3.71)

where M (i),∗ = e−z jψ∗
j is used in the first equality and the schemes (3.50)–(3.52) are

used in the third equality. Using log is a non-decreasing function, we obtained the last
inequality.

For part I I I ,

I I I =�x
N∑
j=1

m∑
i=1

zi

[
1

2

(
c(i),n+1
j − c(i),n

j

) (
ψn+1

j + ψn
j

)
+
(
c(i),n
j − c(i),n+1

j

)
ψ∗

j

]

+ �x

2

N∑
j=1

[(
m∑
i=1

zi c
(i),n
j + ρ j

)
ψn+1

j −
(

m∑
i=1

zi c
(i),n+1
j + ρ j

)
ψn

j

]

+
ε 1
2
fa(ψ

n+1
1 − ψn

1 ) + εN+ 1
2
fb(ψ

n+1
N − ψn

N )

α�x + 2β

=�x

2

N∑
j=1

[(
m∑
i=1

zi c
(i),n
j + ρ j

)
ψn+1

j −
(

m∑
i=1

zi c
(i),n+1
j + ρ j

)
ψn

j

]

+
ε 1
2
fa(ψ

n+1
1 − ψn

1 ) + εN+ 1
2
fb(ψ

n+1
N − ψn

N )

α�x + 2β

= − 1

2�x

N∑
j=1

[(
ε j+ 1

2
ψ̂n

j+ 1
2

− ε j− 1
2
ψ̂n

j− 1
2

)
ψn+1

j

−
(

ε j+ 1
2
ψ̂n+1

j+ 1
2

− ε j− 1
2
ψ̂n+1

j− 1
2

)
ψn

j

]
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+
ε 1
2
fa(ψ

n+1
1 − ψn

1 ) + εN+ 1
2
fb(ψ

n+1
N − ψn

N )

α�x + 2β

= 0, (3.72)

where ψ∗
j = ψn

j +ψn+1
j

2 is used to obtain the second equality and the scheme (3.42) is
used in the third one. The last equality is obtained by using the following formula. For
a sequence {φ j }Nj=1, one has

N∑
j=1

φ j

(
ε j+ 1

2
ψ̂ j+ 1

2
− ε j− 1

2
ψ̂ j− 1

2

)

=
(
φN εN+ 1

2
ψ̂N+ 1

2
− φ1ε 1

2
ψ̂ 1

2

)
−

N−1∑
j=1

ε j+ 1
2
ψ̂ j+ 1

2
(φ j+1 − φ j )

= − 2α�x

α�x + 2β

(
ε 1
2
φ1ψ1 + εN+ 1

2
φNψN

)
−

N−1∑
j=1

ε j+ 1
2
(ψ j+1 − ψ j )(φ j+1 − φ j )

+ 2�x

α�x + 2β

(
ε 1
2
φ1 fa + εN+ 1

2
φN fb

)
, (3.73)

where the summation by parts is used in the first equality; (3.43), (3.45) and (3.46)
are used in the second equality.

Combing parts I , I I , and I I I , the theorem is proved. �

Remark 3.3 If one considers the fully implicit time discretization, i.e., ψ∗

j = ψn+1
j , a

similar calculation as above would also show the energy decay property, but based on
the additional assumption that α and β have the same sign. To be precise, the energy
estimate of the semi-discrete scheme would read

E(tn+1) − E(tn) ≤ TB − �t
m∑
i=1

∫
�

c(i),n+1
∣∣∣∇ (log c(i),n+1 + ziψ

∗)∣∣∣2 dx,
(3.74)

where the boundary term is given as

∂ψn+1

∂n
TB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∫

∂�

ε
β

2α

(
∂ψn+1

∂n
− ∂ψn

∂n

)2

ds, if α �= 0,

−
∫

∂�

ε
α

2β

(
ψn+1 − ψn

)2
ds, if β �= 0.

(3.75)

This is exactlywhat proposed in [18].We point out thatα andβ come from the physical
boundary condition and their signs are not definite. Therefore, our semi-implicit time
discretization is more general and works for a larger class of boundary conditions.
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As a consequence of the fully discrete energy decay, we have the following

Theorem 3.4 (Steady-state preserving) Assume the discrete energy E�(tn) is bounded
from below, the fully discrete scheme (3.58) is steady-state preserving, i.e., for fixed
�x, when time step n → ∞, the numerical solutions c(i),∞

j and ψ∞
j become the

(second order) numerical solutions to the limiting Poisson–Boltzmann equation

⎧⎪⎪⎨
⎪⎪⎩

−(εψ∞
x )x =

m∑
i=1

zi c
(i),∞ + ρ, x ∈ [a, b],

αψ∞(a) − βψ∞
x (a) = fa, αψ∞(b) + βψ∞

x (b) = fb,

(3.76)

where

c(i),∞ = λi e
−ziψ∞

, λi =
∫ b
a c(i),0 dx∫ b

a e−ziψ∞ dx
. (3.77)

Proof Since the discrete energy sequence {E�(tn)} is monotonically decreasing and
bounded from below, the limit limn→∞ E�(tn) = E�(t∞) exists. Taking n → ∞ in
(3.67), we have

c(i),∞
j = λi M

(i),∞
j = λi e

−ziψ∞
j , for all i = 1, . . . ,m, j = 1, . . . , N , (3.78)

where λi is some constant depending only on i and can be obtained by

λi =
∑N

j=1 c
(i),∞
j∑N

j=1 e
−ziψ∞

j
=

∑N
j=1 c

(i),0
j∑N

j=1 e
−ziψ∞

j
, (3.79)

where we used the mass conservation. Finally substituting c(i),∞
j into the system

(3.47), we have

P�∞ = h
(
c(i),∞) , (3.80)

which is a second order finite difference discretization to the limiting Poisson–
Boltzmann equation (3.76). �

Remark 3.4 We mention that there is a different line of research to develop schemes
that preserve the steady state directly. The so-called Chang-Cooper scheme for the
linear Fokker–Planck equation is the one of the pioneer work [8]. See also [7,19] for
recent development on nonlinear Fokker–Planck equations.

3.1.2 Fixed point iteration to solve the fully discrete scheme

The system (3.58) is implicit and fully coupled. To solve it, we propose a simple fixed
point iteration. The following algorithm describes how the iterations are performed at
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time step tn to compute the solutions c(i),n+1
j andψn+1

j (i = 1, . . . ,m; j = 1, . . . , N )
at time step tn+1.

Note that in each iteration, we need to solve two linear systems (3.82) and (3.84).
Both of them can be solved efficiently using sparse linear solvers. Furthermore, the
matrix A(i)

(
M(i),(l)

)
is a M-matrix (by Lemma 3.1), hence the solution ci,(l) obtained

in internal steps is guaranteed to be positive. For the Poisson equation, special care
is needed for the Neumann boundary condition since the solution is unique up to a
constant. Here we choose one solution by setting ψ1 = 0.

The above fixed point iteration is just one strategy to solve the nonlinear system and
our numerical experiments show that it generally converges in several steps (less than
10).One could also useNewton’smethod to achieve potentially faster convergence.We
leave the convergence studies of different iterative methods to future work (see [6] for
a related study). Nonetheless, to better understand the proposed time discretization,
we do provide in this work a proof of the solvability of the semi-discrete scheme
(3.30).

Algorithm 1 Fixed point iteration to solve the system (3.58)

1: procedure Given c(i),nj , ψn
j � concentration and potential at time tn

2: l = 0, c(i),(0)j ← c(i),nj , ψ(0)
j ← ψn

j . � initial guess
3: Define

M(i),(l)
j = e

−ziψ
(l)
j , ψ

(l)
j =

ψn
j + ψ

(l)
j

2
, (3.81)

and accordingly the matrix A(i)
(
M(i),(l)

)
. Solve the Nernst–Planck equation

A(i)
(
M(i),(l)

)
g(i)

(
c(i),(l+1),M(i),(l)

)
= c(i),n (3.82)

to obtain g(i)
j . Then c(i),(l+1)

j is computed by

c(i),(l+1)
j = g(i)

j M(i),(l)
j . (3.83)

4: Solve the Poisson equation

P�(l+1) = h
(
c(i),(l+1)

)
(3.84)

to obtain ψ
(l+1)
j .

5: l = l + 1;
6: repeat Steps 3-5 until ‖c(i),(l+1)

j − c(i),(l)j ‖ ≤ tol for all 1 ≤ i ≤ m.

7: return c(i),n+1
j ← c(i),(l+1)

j , ψn+1
j ← ψ

(l+1)
j . � concentration and potential at time tn+1
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3.1.3 Solvability of the semi-discrete scheme

To prove the solvability of the semi-discrete scheme (3.30), we consider D(i) = ε = 1
for simplicity and rewrite it as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c(i),n+1 − c(i),n

�t
= �c(i),n+1 + 1

2
∇ ·
(
zi c

(i),n+1∇
(
ψn + ψn+1

))
,

−�ψn+1 =
m∑
i=1

zi c
(i),n+1 + ρ.

(3.85)

The boundary condition is given as

⎧⎪⎨
⎪⎩

(
∇c(i),n+1 + 1

2
zi c

(i),n+1∇
(
ψn + ψn+1

))
· n = 0,

∇ψn+1 · n = 0.

(3.86)

Note that the homogeneous Neumann boundary condition is assumed for the Poisson
equation in our analysis, which is a bit less general than what we considered for the
rest of the paper.

Definition 3.1 Given
({c(i),n}mi=1, ψ

n
) ∈ H1(�), we say that

({c(i),n+1}mi=1, ψ
n+1
) ∈

H1(�) is a weak solution of (3.85), (3.86), if it satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

�t

∫
�

(
c(i),n+1 − c(i),n

)
φ dx +

∫
�

∇c(i),n+1 · ∇φ dx

= − 1
2

∫
�
zi c(i),n+1∇ (ψn + ψn+1

) · ∇φ dx,
∫

�

∇ψn+1 · ∇φ dx =
∫

�

(
m∑
i=1

zi c
(i),n+1 + ρ

)
φ dx,

(3.87)

for all test function φ ∈ H1(�).

We now state the solvability theorem for problem (3.85), (3.86).

Theorem 3.5 Let � be a bounded, open subset of Rd (d ≤ 3), and ∂� is C1, then the
semi-discrete scheme (3.85), (3.86) has a weak solution

({c(i),n+1}mi=1, ψ
n+1
)
when

�t is sufficiently small.

The proof of this theorem is provided in the Appendix, which follows a similar line
of the well-posedness theory for the PNP equations [3,5,21].

3.2 Fully discrete scheme in 2D

The extension of the 1D scheme to multi-D in the rectangular domain is straightfor-
ward. Here for completeness, we briefly present the scheme in 2D.

Consider the domain � = [a, b] × [c, d], then the 2D PNP system reads
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t c
(i) =

(
D(i)M (i)

(
c(i)

M (i)

)
x

)

x

+
⎛
⎝D(i)M (i)

(
c(i)

M (i)

)
y

⎞
⎠

y

, (x, y) ∈ �, t ≥ 0,

(3.88)

c(i)(0, x, y) = c(i),0(x, y), (x, y) ∈ �,

(3.89)(
c(i)

M (i)

)
x

(t, a, y) =
(

c(i)

M (i)

)
x

(t, b, y) = 0, y ∈ [c, d], t ≥ 0,

(3.90)(
c(i)

M (i)

)
y

(t, x, c) =
(

c(i)

M (i)

)
y

(t, x, d) = 0, x ∈ [a, b], t ≥ 0,

(3.91)

−(εψx )x − (εψy)y =
m∑
i=1

zi c
(i) + ρ, (x, y) ∈ �, t ≥ 0,

(3.92)

αψ(t, a, y) − βψx (t, a, y)

= fa, αψ(t, b, y) + βψx (t, b, y) = fb, y ∈ [c, d], t ≥ 0,

(3.93)

αψ(t, x, c) − βψy(t, x, c)

= fc, αψ(t, x, d) + βψy(t, x, d) = fd , x ∈ [a, b], t ≥ 0.

(3.94)

We partition � into Nx and Ny uniform cells in each dimension with mesh size
�x = (b − a)/Nx ,�y = (d − c)/Ny , respectively. The interior grid points are
chosen as (a + ( j − 1/2)�x, c+ (k − 1/2)�y), j = 1, . . . , Nx , k = 1, . . . , Ny , and
the numerical approximation of a function u(t, x, y) at this point and time step tn is
denoted by unj,k . Cell interface values are defined similarly as in 1D.

The fully discrete scheme for theNernst–Planck equation (3.88) is given as follows:

c(i),n+1
j,k − c(i),n

j,k

�t
= 1

�x2

[
D(i)

j+ 1
2 ,k

M
(i),∗
j+ 1

2 ,k ĝ
(i),n+1
j+ 1

2 ,k
− D(i)

j− 1
2 ,k

M
(i),∗
j− 1

2 ,k ĝ
(i),n+1
j− 1

2 ,k

]

+ 1

�y2

[
D(i)

j,k+ 1
2
M

(i),∗
j,k+ 1

2
ĝ(i),n+1
j,k+ 1

2
− D(i)

j,k− 1
2
M

(i),∗
j,k− 1

2
ĝ(i),n+1
j,k− 1

2

]
,

(3.95)

where

ĝ(i),n+1
j+ 1

2 ,k
= c(i),n+1

j+1,k

M (i),∗
j+1,k

− c(i),n+1
j,k

M (i),∗
j,k

, ĝ(i),n+1
j,k+ 1

2
= c(i),n+1

j,k+1

M (i),∗
j,k+1

− c(i),n+1
j,k

M (i),∗
j,k

, (3.96)

M
(i),∗
j+ 1

2 ,k = 1

2

(
M (i),∗

j,k +M (i),∗
j+1,k

)
, M

(i),∗
j,k+ 1

2
= 1

2

(
M (i),∗

j,k +M (i),∗
j,k+1

)
, (3.97)
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and

M (i),∗
j,k = e−ziψ∗

j,k , ψ∗
j,k = 1

2

(
ψn

j,k + ψn+1
j,k

)
. (3.98)

At the boundary

ĝ(i),n+1
1
2 ,k

= ĝ(i),n+1
Nx+ 1

2 ,k
= 0, ĝ(i),n+1

j, 12
= ĝ(i),n+1

j,Ny+ 1
2

= 0. (3.99)

For the Poisson equation (3.92), the scheme is given as

m∑
i=1

zi c
(i),n+1
j,k + ρ j,k

= − 1

�x2

[
ε j− 1

2 ,kψ
n+1
j−1,k − (ε j− 1

2 ,k + ε j+ 1
2 ,k)ψ

n+1
j,k + ε j+ 1

2 ,kψ
n+1
j+1,k

]

− 1

�y2

[
ε j,k− 1

2
ψn+1

j,k−1 − (ε j,k− 1
2

+ ε j,k+ 1
2
)ψn+1

j,k + ε j,k+ 1
2
ψn+1

j,k+1

]
, (3.100)

where the boundary terms are defined through

α
ψn+1
1,k + ψn+1

0,k

2
− β

ψn+1
1,k − ψn+1

0,k

�x
= fa,

α
ψn+1
Nx+1,k + ψn+1

Nx ,k

2
+ β

ψn+1
Nx+1,k − ψn+1

Nx ,k

�x
= fb, (3.101)

α
ψn+1

j,1 + ψn+1
j,0

2
− β

ψn+1
j,1 − ψn+1

j,0

�y
= fc,

α
ψn+1

j,Ny+1 + ψn+1
j,Ny

2
+ β

ψn+1
j,Ny+1 − ψn+1

j,Ny

�y
= fd . (3.102)

For the 2D scheme, we can also show the following properties: mass conservation,
positivity preserving, and energy dissipation, which we give without proof.

Theorem 3.6 (Mass conservation) The fully discrete scheme (3.95), (3.100) is always
mass conservative:

C (i)
� (tn) = C (i)

� (tn+1), i = 1, . . . ,m. (3.103)

where

C (i)
� (tn) = �x�y

Nx∑
j=1

Ny∑
k=1

c(i),n
j,k (3.104)

is the total mass of the i th ion species at tn.

123



A fully discrete positivity-preserving and energy-dissipative… 99

Theorem 3.7 (Positivity preserving)The fully discrete scheme (3.95), (3.100) is uncon-
ditionally positivity-preserving, i.e., if c(i),n

j,k ≥ 0 for all j = 1, . . . , Nx , k =
1, . . . , Ny, then

c(i),n+1
j,k ≥ 0, j = 1, . . . , Nx , k = 1, . . . , Ny, (3.105)

for each i = 1, . . . ,m.

Theorem 3.8 (Energy dissipation) The fully discrete scheme (3.95), (3.100) is uncon-
ditionally energy-dissipative:

E�(tn+1) ≤ E�(tn), (3.106)

where the discrete free energy at tn is defined as

E�(tn) =�x�y
m∑
i=1

Nx∑
j=1

Ny∑
k=1

c(i),n
j,k log c(i),n

j,k

+ �x�y

2

Nx∑
j=1

Ny∑
k=1

ψn
j,k

(
m∑
i=1

zi c
(i),n
j,k + ρ j,k

)

+
Ny∑
k=1

ε 1
2 ,k faψ

n
1,k + εNx+ 1

2 ,k fbψ
n
Nx ,k

α�x + 2β

+
Nx∑
j=1

ε j, 12
fcψn

j,1 + ε j,Ny+ 1
2
fdψn

j,Ny

α�y + 2β
. (3.107)

4 Numerical examples

In this section, we perform several numerical tests to demonstrate the convergence and
properties of the proposed scheme.We will consider both 1D and 2D examples, and in
particular, a practical example with physical parameters specifically suited toward the
modeling of ion channels. The tolerance for fixed point iteration is set as tol = 10−8

for all the tests except the tolerance test in Sect. 4.2.
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Table 1 Table of errors with different time step sizes �t

‖cerror‖l2 Order ‖ψerror‖l2 Order

�t = 1/10 1.6698e−03 – 4.7973e−04 -

�t = 1/20 8.3752e−04 0.9955 2.3949e−04 1.0023

�t = 1/40 4.1952e−04 0.9974 1.1965e−04 1.0011

�t = 1/80 2.1005e−04 0.9980 5.9794e−05 1.0007

�t = 1/160 1.0519e−04 0.9977 2.9880e−05 1.0008

This test is performed with fixed spatial mesh �x = 0.001

4.1 Accuracy test: manufactured solution

We first examine the accuracy of our scheme using a manufactured solution. Consider
the following 1D single-species PNP system with a source term

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t c = ∂x (∂x c + c∂xψ) + h, x ∈ [0, 1], t ≥ 0,

c(0, x) = x2(1 − x)2, x ∈ [0, 1],
−∂xxψ = c, x ∈ [0, 1], t ≥ 0,

ψ(t, 0) = 0, ψ(t, 1) = − 1
60e

−t , t ≥ 0,

∂xc + c∂xψ = 0, x = 0, 1, t ≥ 0,

(4.108)

where h is given by

h(t, x) =
(
9

5
x8 − 36

5
x7 + 161

15
x6 − 7x5 + 5

3
x4
)
e−2t

−
(
x4 − 2x3 + 13x2 − 12x + 2

)
e−t .

For this system, one can construct the exact solution as

c(t, x) = x2(1 − x)2e−t , ψ(t, x) = −
(

1

30
x6 − 1

10
x5 + 1

12
x4
)
e−t . (4.109)

We verify the order of the proposed scheme in both space and time. The results are
shown in Tables 1 and 2, where the error of a numerical solution unj is computed as

‖unum − uext‖l2 :=
⎛
⎝�x

∑
j

|unj − uext(tn, x j )|2
⎞
⎠

1/2

(4.110)

at time tn = 0.5. These results imply that our scheme is indeed first order accurate in
time and second order accurate in space.
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Table 2 Table of errors with different spatial mesh sizes �x

‖cerror‖l2 Order ‖ψerror‖l2 Order

�x = 1/10 3.9332e−03 – 3.9158e−04 –

�x = 1/20 9.8417e−04 1.9987 9.6947e−05 2.0140

�x = 1/40 2.4686e−04 1.9952 2.3963e−05 2.0164

�x = 1/80 6.2541e−05 1.9808 5.7674e−06 2.0548

�x = 1/160 1.6495e−05 1.9228 1.2613e−06 2.1930

This test is performed with fixed time step �t = 0.0001

4.2 1Dmultiple species

Next we apply our scheme to solve the 1D two-species PNP system (3.32)–(3.37) and
verify its properties. Two different tests are performed:

Case 1 The Dirichlet boundary value problem in domain [−1, 1] with D(1) =
D(2) = ε = 1, z1 = 1, z2 = − 1, ρ = 0, the initial and boundary con-
ditions are chosen as

{
c(1)(0, x) = 2 − x2, c(2)(0, x) = x2,

ψ(t,−1) = − 1, ψ(t, 1) = 1.
(4.111)

Case 2 The Neumann boundary value problem in domain [0, 1]with D(1) = D(2) =
ε = 1, z1 = 1, z2 = − 2, ρ = x , the initial and boundary conditions are
chosen as

{
c(1)(0, x) = 2 + x + sin(2πx), c(2)(0, x) = 1 + x,

∂xψ(t, 0) = ∂xψ(t, 1) = 0.
(4.112)

Figure 1 shows the time evolution of the ion concentrations c(1), c(2) and the elec-
trostatic potential ψ . One can see that the proposed scheme works well with a large
time step and spatial mesh size in both cases.

To verify the energy dissipation and mass conservation, we plot in Fig. 2 the time
evolution of the discrete free energy E�(tn) and the total mass C (1)

� (tn), C
(2)
� (tn).

Although not shown here, the positivity of the ion concentrations is also checked and
no negative values are detected.

Next, we check how the tolerance threshold in the fixed point iterationwill affect the
accuracy. The numerical solution with tolerance tol = 10−10 is chosen as a reference
solution. For Case 1, we check the maximum error for the ion concentrations and
electrostatic potential at time t = 0.2. For Case 2, the maximum error is inspected at
time t = 0.1. The results in Tables 3 and 4 indicate that our scheme will achieve better
accuracy with lower tolerance.
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Fig. 1 Time evolution of the ion concentrations c(1), c(2) and the potential ψ . Top row: Case 1 �t = 0.05,
�x = 0.05. Bottom row: Case 2 �t = 0.01, �x = 0.05
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Fig. 2 Time evolution of the discrete energy E�(tn) and the total massC(1)
� (tn),C(2)

� (tn). Top row: Case 1.
Bottom row: Case 2. Spatial mesh size is fixed at �x = 0.001. Different time steps are chosen as indicated
in the figures

In [4], the exponential convergence towards the steady states was proved for the
PNP system

W (t) ≤ W (0)e−λt , for λ = λ(�), (4.113)
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Table 3 Table of errors for Case 1 at time t = 0.2 with different tolerance tol = 10−2, 10−3, 10−4, 10−5

‖c(1)num − c(1)ref ‖l∞ ‖c(2)num − c(2)ref ‖l∞ ‖ψnum − ψref‖l∞

tol = 10−2 2.7232e−04 7.0131e−05 5.2871e−05

tol = 10−3 2.0099e−05 3.5110e−06 3.5359e−06

tol = 10−4 6.9042e−07 1.0994e−07 1.1688e−07

tol = 10−5 3.8027e−07 6.2615e−08 5.6451e−08

This test is performed with fixed time step �t = 0.05 and spatial mesh size �x = 0.01

Table 4 Table of errors for Case 2 at time t = 0.1 with different tolerance tol = 10−2, 10−3, 10−4, 10−5

‖c(1)num − c(1)ref ‖l∞ ‖c(2)num − c(2)ref ‖l∞ ‖ψnum − ψref‖l∞

tol = 10−2 1.5739e−04 1.9239e−04 1.0790e−04

tol = 10−3 5.9846e−05 7.4411e−05 4.0508e−05

tol = 10−4 5.4075e−06 6.8027e−06 3.7434e−06

tol = 10−5 3.7434e−06 2.9617e−07 2.9617e−07

This test is performed with fixed time step �t = 0.01 and spatial mesh size �x = 0.01
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 t = 1/300
 t = 1/400

Fig. 3 Time evolution of the discrete entropy functional W�(t) in semi-log plot. Left: Case 1. Right: Case
2. Spatial mesh size is fixed at �x = 0.001. Different time steps are chosen as indicated in the figures. For
both cases, we consider the numerical solution at t = 5 as the steady state

where W (t) is the entropy functional defined as W (t) = Ẽ(t) − Ẽ(t∞). Here we try
to verify such a property for our numerical solution. In Fig. 3, the discrete entropy
functionalW�(tn) = E�(tn)−E�(t∞) is plotted for both cases, where the exponential
convergence is evident.

Finally, to demonstrate the convergence of the fixed point iteration, we record the
number of iterations at each time step in Fig. 4. We can see that the method converges
in less than 10 iterations, and this number decreases as the solution approaches the
steady state.
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Fig. 4 Number of fixed point iterations needed at each time step (the convergence tolerance is set as

max j |c(i),(l+1)
j − c(i),(l)j | ≤ 10−8). Left: Case 1. Right: Case 2. Spatial mesh size is fixed at �x = 0.001.

Different time steps are chosen as indicated in the figures

4.3 2D single species

We now apply our scheme to solve the 2D single-species PNP system (3.88)–(3.94).
Let � = [0, 1] × [0, 1] be the computational domain and D(1) = ε = z1 = 1, ρ = 0.
Two different boundary and initial conditions are considered:

Case 1 c(0, x, y) = 4, α = 0, β = 1, fa = fb = fc = fd = − 1;
Case 2 c(0, x, y) = 2, α = 0, β = 1, fa = fb = − 1, fc = fd = 0.

The time evolution of the ion concentration in both cases are shown Figs. 5 and 6,
respectively. The energy dissipation is demonstrated in Fig. 7. Finally, the positivity
of the ion concentration is also checked and no negative values are detected.

4.4 KcsAmodel with spatially dependent diffusion coefficients

In the ion channels, values of the diffusion coefficients depend on ion species and
channels. They affect only the convergence rate of the system to the steady state. In
this test, we apply our scheme to a simplified KcsA model with spatially dependent
diffusion coefficients [13] to verify the impact of diffusion coefficients.

We consider the KcsAmodel in domain [−1, 1]with ε = 1, z1 = 1, z2 = − 1, ρ =
0, the initial and boundary conditions are chosen as

{
c(1)(0, x) = 2 − x2, c(2)(0, x) = x2,

ψ(t,−1) = − 1, ψ(t, 1) = 1.
(4.114)

Then we separate the domain into three regions:

(a) channel outside (CO): 0.7 ≤ |x | ≤ 1;
(b) selectivity filter (SF): −0.1 < x < 0.7;
(c) intracellular (IC): −0.7 < x < −0.1.
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Fig. 5 Case 1: time evolution (contour plot) of the ion concentration c. Time step and spatial mesh size are
chosen as �x = 0.01 and �t = 0.01

Outside the channel the diffusion coefficients are set as D(1) = D(2) = 1. We test
three diffusion coefficient profiles:

(i) D(i) is reduced to 0.4 in SF;
(ii) D(i) is reduced to 0.4 in SF and 0.8 in IC;
(iii) D(i) is reduced to 0.4 in both SF and IC.

The time evolution of the ion concentrations and energy are presented in Figs. 8
and 9. These three systems do converge to the same steady state with different rates.

4.5 Gouy–Chapmanmodel

In this final test, we simulate the so-called Gouy-Chapman model widely used to
describe the double layer structure in ion channels.

We consider the 1D two-species PNP system (3.32)–(3.37) in domain [−1, 1] with
D(1) = D(2) = ε = 1, z1 = 1, z2 = − 1, and ρ = 0. The dimensionless parameters
χ1 and χ2 are chosen as χ1 = 3.1, χ2 = 125.4, which are taken from the work [12]. A
uniform initial condition is assumed c(i)(x, 0) = 1, i = 1, 2 for all−1 ≤ x ≤ 1and the
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Fig. 6 Case 2: time evolution (contour plot) of the ion concentration c. Time step and spatial mesh size are
chosen as �x = 0.01 and �t = 0.01
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Fig. 7 Time evolution of the discrete free energy E�(tn). Left: Case 1. Right: Case 2. Spatial mesh size is
fixed at �x = 0.01. Different time steps are chosen as indicated in the figures
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Fig. 8 Time evolution of the ion concentrations in KcsA model. First column: case i. Second column: case
ii. Third column: case iii. Time step and spatial mesh size are chosen as �t = 0.05 and �x = 0.05

Fig. 9 Time evolution of the
energy in KcsA model. Time
step and spatial mesh size are
chosen as �t = 0.05 and
�x = 0.05
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boundary condition for the Poisson equation is given byα = 1, β = 4.63×10−5, fa =
1, fb = − 1.

Figure 10 shows the time evolution of the ion concentrations and the electrostatic
potential. Beginning with the linear profile, the electrostatic potential becomes zero
in the bulk region (away from the boundary) and increases drastically in the diffuse
layers (close to the boundary) at the steady state. Notice that the presence of diffuse
layers requires a small spatial mesh size in numerical simulations. The solution will be
far away from the thin layer solution if the mesh size is large, for example,�x > 0.05.
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Fig. 10 Time evolution of the ion concentrations and the electrostatic potential in Gouy-Chapman model.
Time step and spatial mesh size are chosen as �t = 0.00125 and �x = 0.02

5 Conclusion

We have introduced a semi-implicit finite difference scheme for the PNP equations
in a bounded domain. A general boundary condition for the Poisson equation which
includes (nonhomogeneous) Dirichlet, Neumann, and Robin boundaries as subcases
were considered. The proposed scheme is first order in time and second order in
space. The fully discrete scheme was proved to be mass conservative, unconditionally
positive and energy dissipative (hence preserving the steady state). The solvability of
the semi-discrete scheme was investigated and a fixed point iteration was proposed to
solve the fully discrete scheme. Numerical examples were presented to demonstrate
the accuracy and efficiency of the proposed scheme. Note that the fixed point iteration
employed in this work is not necessarily the best method to solve the implicit scheme.
We will investigate different iterative methods such as Newton’s method in future
work. Also, it would be interesting and challenging to develop a high order in time
scheme which preserves the same properties as the first order one.
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A Proof of Theorem 3.5

In this appendix, we provide the complete proof of Theorem 3.5.
Define the set Y as

Y :=
{
{u(i)}mi=1

∣∣∣ u(i) ∈ L2(�), 1 ≤ i ≤ m
}

. (1.115)

We construct a mapping T from Y to Y such that T : y := {u(i)}mi=1 → y := {u(i)}mi=1,
where y is the weak solution of the system decoupled through given y

⎧⎪⎪⎨
⎪⎪⎩

−�ψ =
m∑
i=1

zi u
(i) + ρ, x ∈ �,

∇ψ · n = 0, x ∈ ∂�.

(1.116)

⎧⎪⎪⎨
⎪⎪⎩

u(i) − c(i),n

�t
= �u(i) + 1

2
∇ ·
(
zi u

(i)∇(ψn + ψ)
)

, x ∈ �,(
∇u(i) + 1

2
zi u

(i)∇ (ψn + ψ
)) · n = 0, x ∈ ∂�.

(1.117)

We will show that the mapping T is well defined on an appropriate space N with the
following three properties:

• self-mapping: T maps N into itself;
• continuity: T is continuous on N ;
• precompact: the image T (N ) is precompact (its closure is compact).

Then the existence of a fixed point is given by the Schauder’s Fixed Point Theorem,
i.e. T (y) = y ∈ N exists. This fixed point is a weak solution of the coupled system
(3.85), (3.86).

Let N be a subset of Y that

N :=
{
y ∈ Y

∣∣∣
m∑
i=1

∥∥∥u(i)
∥∥∥
2

≤ R < ∞
}

,

where R is some constant to be fixed later on.We claim that T mapsN into itself when
�t > 0 is small enough and R > 0 is large enough. Multiplying the NP equation
(1.117) by u(i)�t and integrating with respect to x yields

1

2

∥∥∥u(i)
∥∥∥2
2
+ 1

2

∥∥∥u(i) − c(i),n
∥∥∥2
2
− 1

2

∥∥∥c(i),n
∥∥∥2
2
+ �t

∥∥∥∇u(i)
∥∥∥2
2

= − zi�t

2

∫
�

u(i)∇u(i)∇(ψn + ψ) dx, (1.118)
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where the terms on the left are obtained using integration by parts and no-flux boundary
condition. Applying the Hölder’s inequality, the right hand side has the estimate

− zi�t

2

∫
�

u(i)∇u(i)∇(ψn + ψ) dx

≤ |zi |�t

2

∥∥∥u(i)
∥∥∥
3

∥∥∥∇u(i)
∥∥∥
2

∥∥∇ (ψn + ψ
)∥∥

6 . (1.119)

To estimate the right hand side, we introduce the following L p interpolation inequality
(a special case of Gagliardo–Nirenberg interpolation inequality)

‖v‖3 ≤ K1 ‖v‖1−μ
2 ‖∇v‖μ

2 , μ =

⎧⎪⎪⎨
⎪⎪⎩

1/2, when d = 3,

1/3, when d = 2,

1/6, when d = 1,

(1.120)

and the following Sobolev embedding theorem (d ≤ 3) for v ∈ W 1,2
0 (�)

‖v‖6 ≤ K2 ‖∇v‖2 , (1.121)

where K1 and K2 are constants.
From (1.120) and (1.121), the right hand side of (1.119) is now estimated as

|zi |�t

2

∥∥∥u(i)
∥∥∥
3

∥∥∥∇u(i)
∥∥∥
2

∥∥∇ (ψn + ψ
)∥∥

6

≤ |zi |�t K

2

∥∥∥u(i)
∥∥∥1−μ

2

∥∥∥∇u(i)
∥∥∥1+μ

2

∥∥∥∥∥
m∑
i=1

zi
(
c(i),n + u(i)

)
+ 2ρ

∥∥∥∥∥
2

≤ |zi |�t K

2

⎛
⎜⎝
∥∥∇u(i)

∥∥2
2

2
1+μ

γ
2

1+μ

+ γ
2

1−μ
∥∥u(i)

∥∥2
2

∥∥∑m
i=1 zi

(
c(i),n + u(i))+ 2ρ

∥∥ 2
1−μ

2

2/(1 − μ)

⎞
⎟⎠ ,

(1.122)

for some constant K , where the last line follows Young’s inequality.

Choosing γ =
(

(1+μ)|zi |K
4

) 1+μ
2

gives

|zi |�t

2

∥∥∥u(i)
∥∥∥
3

∥∥∥∇u(i)
∥∥∥
2

∥∥∇ (ψn + ψ
)∥∥

6

≤ �t
∥∥∥∇u(i)

∥∥∥2
2
+ �t

(1 − μ)|zi |K
4

(
(1 + μ)|zi |K

4

) 1+μ
1−μ ∥∥∥u(i)

∥∥∥2
2

×
∥∥∥∥∥

m∑
i=1

zi
(
c(i),n + u(i)

)
+ 2ρ

∥∥∥∥∥
2

1−μ

2

. (1.123)
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Combining (1.118), (1.119) and (1.123), we get

1

2

∥∥∥u(i)
∥∥∥2
2
+ 1

2

∥∥∥u(i) − c(i),n
∥∥∥2
2
− 1

2

∥∥∥c(i),n
∥∥∥2
2

≤ �t
(1 − μ)|zi |K

4

(
(1 + μ)|zi |K

4

) 1+μ
1−μ

∥∥∥u(i)
∥∥∥2
2

∥∥∥∥∥
m∑
i=1

zi
(
c(i),n + u(i)

)
+ 2ρ

∥∥∥∥∥
2

1−μ

2

, (1.124)

which is

(
1 − �t

(1 − μ)|zi |K
2

(
(1 + μ)|zi |K

4

) 1+μ
1−μ

∥∥∥∥∥
m∑
i=1

zi
(
c(i),n + u(i)

)
+ 2ρ

∥∥∥∥∥
2

1−μ

2

⎞
⎠∥∥∥u(i)

∥∥∥2
2

≤
∥∥∥c(i),n

∥∥∥2
2
. (1.125)

Thus, if �t > 0 is sufficient small and R > 0 is sufficient large, we can conclude that

m∑
i=1

∥∥∥u(i)
∥∥∥2
2

≤ R. (1.126)

In other words, T maps N into itself.
Similar to (1.125), we can get the estimate for H1 norm of u(i) that

|zi |�t

2

∥∥∥u(i)
∥∥∥
3

∥∥∥∇u(i)
∥∥∥
2

∥∥∇ (ψn + ψ
)∥∥

6

≤ |zi |�t K

2

∥∥∥u(i)
∥∥∥1−μ

2

∥∥∥∇u(i)
∥∥∥1+μ

2

∥∥∥∥∥
m∑
i=1

zi
(
c(i),n + u(i)

)
+ 2ρ

∥∥∥∥∥
2

≤ |zi |�t K

2

⎛
⎜⎝
∥∥u(i)

∥∥2
2

2
1−μ

γ
2

1−μ

+ γ
2

1+μ
∥∥∇u(i)

∥∥2
2

∥∥∑m
i=1 zi

(
c(i),n + u(i))+ 2ρ

∥∥ 2
1+μ

2

2/(1 + μ)

⎞
⎟⎠ .

(1.127)

Choosing γ =
(

(1−μ)|zi |�t K
2

) 1−μ
2

gives

|zi |�t

2

∥∥∥u(i)
∥∥∥
3

∥∥∥∇u(i)
∥∥∥
2

∥∥∇ (ψn + ψ
)∥∥

6

≤ 1

2

∥∥∥u(i)
∥∥∥2
2
+ (1 + μ)|zi |�t K

4

(
(1 − μ)|zi |�t K

2

) 1−μ
1+μ ∥∥∥∇u(i)

∥∥∥2
2
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∥∥∥∥∥
m∑
i=1

zi
(
c(i),n + u(i)

)
+ 2ρ

∥∥∥∥∥
2

1+μ

2

. (1.128)

Combining (1.118), (1.119) and (1.128), we get

1

2

∥∥∥u(i) − c(i),n
∥∥∥2
2
− 1

2

∥∥∥c(i),n
∥∥∥2
2
+ �t

∥∥∥∇u(i)
∥∥∥2
2

≤ (1 + μ)|zi |�t K

4

(
(1 − μ)|zi |�t K

2

) 1−μ
1+μ ∥∥∥∇u(i)

∥∥∥2
2∥∥∥∥∥

m∑
i=1

zi
(
c(i),n + u(i)

)
+ 2ρ

∥∥∥∥∥
2

1+μ

2

, (1.129)

which is

⎛
⎝1 − (1 + μ)|zi |K

4

(
(1 − μ)|zi |�t K

2

) 1−μ
1+μ

∥∥∥∥∥
m∑
i=1

zi
(
c(i),n + u(i)

)
+ 2ρ

∥∥∥∥∥
2

1+μ

2

⎞
⎠

∥∥∥∇u(i)
∥∥∥2
2

≤ 1

2�t

∥∥∥c(i),n
∥∥∥2
2
. (1.130)

Note that if �t is sufficient small, we get

m∑
i=1

∥∥∥∇u(i)
∥∥∥2
2

≤ R′, (1.131)

here R′ is some constant. Thenwe can say that each component of y belongs to H1(�).
Next, to prove the continuity of T , we define T : yl := {u(i)

l }mi=1 → yl := {u(i)
l }mi=1

for l = 1, 2. Then the NP equation (1.117) for yl gives

1

�t

(
u(i)
1 − u(i)

2

)
= �

(
u(i)
1 − u(i)

2

)
+ 1

2
∇
(
zi
(
u(i)
1 − u(i)

2

)
∇ (ψn + ψ1

))

+1

2
∇
(
zi u

(i)
2 ∇ (ψ1 − ψ2

))
. (1.132)

Multiplying by
(
u(i)
1 − u(i)

2

)
and integrating with respect to x leads to

1

�t

∥∥∥u(i)
1 − u(i)

2

∥∥∥2
2
+
∥∥∥∇ (u(i)

1 − u(i)
2

)∥∥∥2
2

= − zi
2

∫ (
u(i)
1 − u(i)

2

)
∇
(
u(i)
1 − u(i)

2

)
· ∇ (ψn + ψ1

)
dx

− zi
2

∫
u(i)
2 ∇ (ψ1 − ψ2

) · ∇
(
u(i)
1 − u(i)

2

)
dx

123



A fully discrete positivity-preserving and energy-dissipative… 113

≤ |zi |
2

(∥∥∥u(i)
1 − u(i)

2

∥∥∥
3

∥∥∥∇ (u(i)
1 − u(i)

2

)∥∥∥
2

∥∥∇ (ψn + ψ1
)∥∥

6

+
∥∥∥u(i)

2

∥∥∥
3

∥∥∇ (ψ1 − ψ2
)∥∥

6

∥∥∥∇ (u(i)
1 − u(i)

2

)∥∥∥
2

)
, (1.133)

the last line follows Hölder’s inequality and boundary integral vanishes because of the
non-flux condition.By L p interpolation (1.120) andYoung’s inequalitywith parameter

γ =
(

(1+μ)|zi |K
2

) 1+μ
2
, the estimate for first term is given as

|zi |
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∥∥∥u(i)
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(1.134)

For the second term, by Cauchy inequality, we have

|zi |
2

∥∥∥u(i)
2

∥∥∥
3

∥∥∇ (ψ1 − ψ2
)∥∥

6

∥∥∥∇ (u(i)
1 − u(i)

2

)∥∥∥
2

≤ 1

2

∥∥∥∇ (u(i)
1 − u(i)

2

)∥∥∥2
2
+

|zi |2
∥∥∥u(i)

2

∥∥∥2
3

∥∥∇ (ψ1 − ψ2
)∥∥2

6

8
. (1.135)

Hence we arrive at the following estimate

(
1

�t
− (1 − μ)|zi |K

4

(
(1 + μ)|zi |K

2

) 1+μ
1−μ ∥∥∇ (ψn + ψ1

)∥∥ 2
1−μ

6

)∥∥∥u(i)
1 − u(i)

2

∥∥∥2
2

≤ 1

8
|zi |2

∥∥∥u(i)
2

∥∥∥2
3

∥∥∇ (ψ1 − ψ2
)∥∥2

6

≤ K

8
|zi |2

∥∥∥u(i)
2

∥∥∥2−2μ

2

∥∥∥∇u(i)
2

∥∥∥2μ
2

∥∥∥∥∥
m∑
i=1

zi
(
u(i)
1 − u(i)

2

)∥∥∥∥∥
2

2

, (1.136)
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the last inequality follows the L p interpolation (1.120) and Sobolev embedding

(1.121). Therefore, the difference
∥∥∥u(i)

1 − u(i)
2

∥∥∥
2
can be controlled via

∥∥∥u(i)
1 − u(i)

2

∥∥∥
2

when �t is sufficient small. In other words, we proved the uniformly Lipschitz con-
tinuity of mapping T .

Note thatN is a closed and convex subset of Y . The precompact property of T (N )

is an immediate consequence of the continuity and estimate (1.126).
Thus, the existence of a fixed point in N is guaranteed by the Schauder’s Fixed

Point Theorem. Therefore, we proved the existence of weak solution to the system
(3.85), (3.86) for �t > 0 small enough, which belongs to H1(�).
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