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ABSTRACT

In this article, a compressive sensing (CS) reconstruction al-
gorithm is applied to data acquired from a nodding multi-beam
Lidar system following a Lissajous-like trajectory. Multi-beam
Lidar systems provide 3D depth information of the environment
for applications in robotics, but the vertical resolution of these
devices may be insufficient to identify objects, especially when
the object is small and/or far from the robot. In order to over-
come this issue, the Lidar can be nodded in order to obtain
higher vertical resolution with the side-effect of increased scan
time, especially when raster scan patterns are used. Such sys-
tems, especially when combined with nodding, also yield large
volumes of data which may be difficult to store and mange on
resource constrained systems. Using Lissajous-like nodding tra-
jectories allows for the trade-off between scan time and hori-
zontal and vertical resolutions through the choice of scan pa-
rameters. These patterns also naturally sub-sample the imaged
area and the data can be further reduced by simply not collecting
each data point along the trajectory. The final depth image must
then be reconstructed from the sub-sampled data. In this arti-
cle, a CS reconstruction algorithm is applied to data collected

during a fast and therefore low-resolution Lissajous-like scan.
Experiments and simulations show the feasibility of this method
and compare its results to images produced from simple nearest-
neighbor interpolation.

INTRODUCTION
For autonomous robots, having range information about the

environment and objects within it is extremely useful, if not nec-
essary, for the robot to navigate and react to its surroundings. The
data can be used for localization and/or mapping in the forms of
visual odometry [1–3], SLAM [4–6], and more [7–9]. In re-
cent years, Lidar has perhaps become the most widespread way
to collect this information, in large part due to increasing avail-
ability and falling prices as a results of their use in self-driving
automobiles. While Lidar configurations come in many different
forms, recent systems tend to favor multi-beam arrangements,
such as those from Velodyne [10] or Ouster [11] which rotate
multiple beams to provide a more complete 3D view of the scene.

While these rotating multi-beam configurations do provide
3D data, due to limitations on how closely the beams can be
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spaced, the vertical resolution can still be insufficient for spe-
cific applications; due to these limitations, objects can ”disap-
pear” as they pass between visibility of one beam to another. For
example, one of Velodyne’s most affordable models, the VLP-
16 ”Puck”, cannot consistently see objects one meter tall at dis-
tances over 30 meters. Note that at these ranges the Lidar could,
but is not guaranteed to, see the object with one beam at most.
Even if seen, it is unlikely that detection by a single beam would
provide sufficient information to successfully classify the object.
Newer, higher resolution models face the same problem, but with
smaller heights at larger ranges.

Before multi-beam Lidar systems became more widely
available, single-beam planar Lidar units were (and still are, in
some applications) used to collect 3D depth information by plac-
ing them on a nodding or spinning platform, allowing the plane
in which the Lidar scans to be rotated [12–17]. Typically, these
configurations are driven through a raster scan pattern in which
the assembly is rotated in a stair-step pattern between scans of
the Lidar. This method, results in high resolution in the dimen-
sion added due to rotation, but at the expense of significantly
increased scan times. In prior work of two of the authors [18],
the applicability of raster scan patterns for multi-beam Lidar to
help solve the ”disappearing” problem, and how other scan tra-
jectories, such as Lissajous-like scan patterns, can be used to
provide a trade-off between scan period and resolution was ex-
plored. While Lissajous-like scanning could replicate depth im-
ages from the raster scan to some degree, the resulting decrease
in data gathered resulted in smaller objects being more difficult
to identify.

While it is often useful to trade-off some resolution for
higher speed imaging, it is typically still desirable to have the
highest-resolution scan possible to support detection, mapping,
and SLAM. Inspired by recent results of one of the authors on
increasing the imaging rate in atomic force microscopy through
sub-sampling, combined with image reconstruction algorithms
to recover high resolution detail [19–21], in this paper we explore
the use of reconstruction algorithms combined with the Lissajous
sampling pattern in an attempt to get both high speed and high
resolution. The essential idea is to view a high-resolution raster-
scan image as a “ground truth” image that has been sub-sampled
through the Lissajous-like scan. The final image is formed from
the data using a recent optimization algorithm for sparse recon-
struction of 3-D depth images [22]. This approach differs from
common Lidar reconstruction methods, which infer some infor-
mation about the detected objects from segmentation or classifi-
cation to determine how to perform reconstruction on the Lidar
data, such as in [23–25]. Instead, in this work, reconstruction
is performed directly on the raw Lidar data using compressive
sensing techniques, without performing any other processing on
the data.

In this article, experimental results are presented to establish
the feasibility of this method. Specifically, Lissajous-like scans

that sample less than 10% of the full raster scan data can repro-
duce the full raster data set with high fidelity when the CS algo-
rithm is applied. To further show the advantages of this method,
simulated scans at much lower resolution are also used to recon-
struct the full raster data with good results.

LISSAJOUS-LIKE PATTERNS IN NODDING LIDAR
Much of the work relevant to this section was presented

in [18], and as a result will be presented in minimal depth here.
The nodding Lidar system used for this effort is shown in Fig-
ure 1a. The apparatus features a direct drive system for nodding
the Lidar platform and is designed so the distance separation be-
tween the Lidar’s optical center and the axis of rotation is small.
The Lidar used is the Velodyne VLP-16 Puck, which rotates its
beams at a rate of 20 Hz, with a horizontal resolution of 900
points per scan over a full 360◦ range, and a vertical resolution
of 16 equally spaced beams over a 30◦ field of view, which in
total produces a maximum output of 14,400 points per scan in
single return modes.

The relevant axes and geometry of the assembly is shown in
Figure 1b. Note that for this work, the angular velocity fl which
dictates the angle of the beams inside the Lidar θl and the inci-
dent angle of the beams θi are considered fixed; only trajectory
design of the nodding angle θn is discussed. In this work, the
spinning of the beam assembly θl rotates according to:

θl(t) =−π+2π( flt mod 1) (1)

where fl = 20Hz is the fixed rotational velocity of the Lidar, and
the incident angles of the 16 beams θi are fixed:

θi ∈ {−15◦,−13◦, ...−1◦,1◦, ...15◦}. (2)

Because the parameters of the Lidar are fixed, the distribu-
tion of the scan readings is determined by the choice of trajec-
tory for the nodding platform. For a raster scan, the trajectory
is a stair-step pattern, with the Lidar nodding in small angle in-
crements between scans of the Lidar, with a trajectory spanning
from some arbitrary angle −A to A. For Lissajous-like scanning,
the Lidar is nodded with a triangular trajectory between −A to
A with frequency ωn (we call this “Lissajous-like” because Lis-
sajous trajectories are typically sinusoidal in both axes). The
path of one beam of the Lidar for each of these scans trajecto-
ries, as well as the stationary Lidar, is shown in Figure 2. In each
plot, the x-axis represents the spinning of the Lidar beams θl ,
while the y-axis represents the angle due to the nodding motion
applied to the Lidar θn.

In this work, an indoor and an outdoor space were imaged
by the Lidar. The Lidar followed a nodding trajectory of ±20◦,
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Figure 1: Figures showing a) the Lidar/cradle apparatus used in
this research and b) the relevant axes and notation.

which provided a sufficient field of view to visualize the rele-
vant objects in the space (but not things considered unnecessary,
such as the ceiling of the indoor space). The spaces are first
scanned by the Lidar undergoing a raster scan trajectory with a
period of 10 s. Then, the spaces are scanned by the Lidar with
Lissajous-like trajectories with periods of 1 s, 0.5 s, and 0.25 s.
These Lissajous-like scans can be treated as “downsampled” ver-
sions of the raster scan, which is treated as the ground truth, with
downsampling percentages of 10%, 5%, and 2.5%, respectively.

Figure 3 shows the indoor space imaged by a color camera
and the nodding Lidar. A panoramic color image is presented in
Figure 3a to familiarize the reader with the space. The raster scan
is shown in Figure 3b, and the 1 s and 0.25 s Lissajous-like scans
are shown in Figures 3c and 3d respectively. The data from the
Lidar scans are displayed as depth images, with closer objects

(a) (b)

(c) (d)

Figure 2: Trajectories of one beam of the Lidar for a) a single,
stationary scan of the Lidar with a period of 0.05s, b) a raster
scan with a period of 1s, and (c-d) Lissajous-like scans with pe-
riods of c) 0.5s and d) 0.167s. The nodding angle θn is on the
y-axis, and the Lidar’s rotation angle θl is on the x-axis.

being whiter, and black where there is no data from the scan.
Note that, because of how the grid is generated for the depth im-
ages, the downsampling percentages of the Lissajous-like scans
do not correspond to the percentage of populated pixels in the
depth images. This is because of cases where multiple points are
associated with the same pixel, commonly along the sides of the
scan where measurements are more clustered.

RECONSTRUCTION OF LIDAR IMAGES FROM SUB-
SAMPLED DATA

The goal of reconstruction is to fill in the missing pixels in
the depth image (namely, those that were not sampled) with val-
ues that depend on the measured data. Perhaps the simplest way
to do this is nearest neighbor interpolation. Such an approach
can be effective if there is sufficient data, but it does not take into
account any structure in the image and may therefore produce
less than ideal results. An alternative approach is to leverage re-
sults from compressive sensing (CS). CS is a joint measurement
and signal processing technique which can produce good (or
even exact) reconstructions of signals from significantly fewer
measurements than the Nyquist-Shannon sampling theorem re-
quires [26]. At the heart of CS is the assumption of compress-
ibility (or true sparsity) of the signal of interest, that is, when
described in an appropriate basis, most of the coefficients are
negligible (compressibility) or exactly zero (sparsity).
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(a) Indoor color panorama

(b) Raster scan

(c) 1Hz Lissajous-like scan

(d) 4Hz Lissajous-like scan

Figure 3: a) A color image from an RGB camera, and (b-d) depth images of the same space sampled by the nodding Lidar. The depth
images are derived from point clouds generated by b) a raster scan with a scan period of 10s, and (c-d) Lissajous-like scans with periods
of c) 1/10th (10%) and d) 1/40th (2.5%) of that of the raster scan. In the depth images (b-d), closer points are whiter, and the image is
black where no depth information is available. Note that the camera and depth images suffer from different distortion effects, so they
are not perfectly aligned.

In the general setting, a signal is reconstructed from mea-
surements by solving an `1 minimization problem,

min‖η‖1 subject to y = Φx = ΦΨη , Aη (3)

where x ∈ Rn is the true signal, y ∈ Rm is the vector of mea-
surements, Φ is an m× n measurement matrix, Ψ is an n× n
orthonormal basis for Rn (often referred to as the sparsity ba-
sis), and η is the sparse representation of the true signal x in the
domain of Ψ. We define the product ΦΨ as the m×n matrix A.

In the context of reconstruction of the depth image from the
nodding Lidar scan, measurements are restricted to values of the
pixels of the image that lie on the scanned path. As a result,

each row in Φ consists of a single one (indicating which pixel
is measured) with all other entries being zero. Thus, the mea-
surement matrix Φ is given by extracting rows from an n× n
identity matrix. This has implications for a property know as the
mutual coherence [27], generally implying that reconstructions
from data sampled by Φ from solving (3) will not be exact and
in general may have a large error.

As it turns out, in structured environments such as one finds
in indoor environments, the depth profile is often well described
as consisting of many planar regions connected by a few “edges”.
The sparsity of the data, then, is not with respect to a particular
sparsity basis, but rather with respect to these edges. This case
was first considered in [22] where a reconstruction algorithm was
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created using a cosparsity model. We give a brief description
here.

To reflect the fact that we are after a depth profile, let the
underlying signal now be denoted as Z ∈ Rn×n, viewed as a ma-
trix. Since Z is assumed to be formed from (not too many) planar
regions, the goal is to find a profile that fits the data while min-
imizing the number of depth changes in the horizontal, vertical,
and diagonal directions. These changes can be measured using
three different convolutional filters with kernels

Dxx =

0 0 0
1 −2 1
0 0 0

 , Dyy =

0 1 0
0 −2 0
0 1 0

 , Dxy =

−1 0 1
0 0 0
1 0 −1

 . (4)

Reconstruction of the full depth profile from a collection
of measurements y obtained by a measurement matrix Φ comes
from solving the optimization problem

min
Z
‖vec(Z ~Dxx)+vec(Z ~Dyy)+vec(Z ~Dxy)‖1

subject to‖Φvec(Z)− y‖∞ ≤ ε,
(5)

where vec(·) is the vectorization operator which transforms a
matrix into a vector by stacking the columns, ~ is the convolu-
tion operator, and ε is a user-defined parameter that accounts for
noise in the measurements.

EXPERIMENTAL IMAGING AND RECONSTRUCTION
In the following, an experimental investigation of the Lidar

reconstruction algorithm shown above is presented. The goal of
these experiments is to show the efficacy of compressive sensing
reconstruction for Lissajous nodding Lidar scans for different en-
vironments.

EXPERIMENTAL SETUP
Lidar scans of both an indoor and outdoor space were ob-

tained. In both scenarios, the Lidar assembly was controlled to
follow a nodding trajectory with A = 20◦. This provided a suffi-
cient field of view to visualize the relevant objects in the space.
In order to provide a ground-truth example for the reconstruc-
tion, raster Lidar scans of both spaces are performed. The scan
trajectory had a period of 10 s. The spaces are then scanned
by the Lidar with Lissajous-like trajectories with periods of 1 s,
0.5 s, and 0.25 s. These Lissajous-like scans can be treated as
“downsampled” versions of the raster scan with downsampling
percentages of 10%, 5%, and 2.5%, respectively. While these
percentages are already quite low, they still represent a signifi-
cant amount of data. To explore performance at extremely low
sampling, the Lissajous scan data were further sub-sampled by

discarding some of the data. This was done in two ways: first by
keeping only every 10th sample (thus regularly downsampling)
and second by randomly selecting 10% of the sample points.
This second approach is motivated by the fact that in general,
CS-based reconstruction performs best when the sample loca-
tions exhibit some level of randomness. (In practice, of course,
one would not discard data but rather choose to only acquire the
limited set.) Both the regular and the random yield a total down-
sampling of 1%, 0.5%, and 0.25%. Two reconstructions were
performed on the data, one a nearest neighbor interpolation, and
the other the compressive sensing approach discussed in the pre-
vious section. Note that experimental results are only shown for
the 2.5% Lissajous scan since it is the sparsest data and, thus, the
most difficult to reconstruct.

EXPERIMENTAL RESULTS
Reconstructions of the indoor Lidar data from the 2.5% sam-

pling scan in Fig. 3d are shown in Fig. 4. Both the nearest neigh-
bor interpolation (top image) and the CS based reconstruction
(bottom image) are visually quite good. While there are only
minor differences between them, in general, edges are (slightly)
crisper in the CS-based reconstruction.

These differences are accentuated at the very low sampling
rates of 0.25% after either regular or randomly downsampling the
Lissajous data. Reconstructions for the indoor data are shown in
Fig. 5 for the regularly subsampled data and in Fig. 6 for the ran-
domly subsampled set. In both cases, both the nearest neighbor
and the CS reconstructions are remarkably good given the ex-
tremely low sampling, though both are clearly degraded relative
to the higher sampling rate. The CS version, however, now has
significantly better edges and a smoother overall appearance. In
addition, the randomly subsampled image is visually superior to
the regularly-spaced version despite the same level of subsam-
pling.

As a comparison between all the indoor cases presented
above, focus on the electrical bench and chair to the right of the
column at the center of Fig. 3a. Qualitatively speaking, the ap-
pearance of the bench and chair in the 2.5% scans in Fig. 4 is
smoother in the CS reconstruction when compared to the near-
est neighbor reconstruction. In the 0.25% scans in Figs. 5 and
6, the same relation between the CS and nearest neighbor inter-
polations is observed. When comparing the 2.5% to the 0.25%
scans, the electrical bench and chair is less blurry in the 2.5%
scan as expected, with the electrical bench and chair being more
clear in the random sampled 0.25% scan in Fig. 6.

Results from the outdoor Lidar scans are shown in Fig. 7.
An image of the space is shown in Fig. 7(a), followed by a raster
scan in Fig. 7(b), the 2.5% Lissajous image in Fig. 7(c), and the
reconstruction results in Fig. 7(d) and (e). As before, the recon-
structions are fairly faithful to the raster scan, though smaller
features such as the windows in the building on the left which do
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(a) Nearest neighbor interpolation

(b) CS reconstruction

Figure 4: Reconstruction results for the indoor lab space using the 2.5% sampling shown in Fig.3d for a) nearest neighbor interpolation
and b) the compressive sensing reconstruction algorithm. These should be compared to the ground truth in 4b.

(a) Regularly subsampled point cloud

(b) Nearest neighbor interpolation

(c) CS reconstruction

Figure 5: Reconstruction results for the indoor lab space using 10% regularly spaced downsampling of the 2.5% Lissajous scan shown
in Fig.3d (for a net downsampling of 0.25%). (a) Sub-sampled data used in the reconstructions. (b) Nearest neighbor interpolation. (c)
CS reconstruction. These should be compared to the ground truth in 4b.

appear, at least roughly, in the raster scan in (b) are completely
absent in the subsampled data.

Results from the 0.25% sampling data are shown in Fig. 8
for the regularly sub-sampled set and in Fig. 9 for the randomly
sub-sampled data. Both results are similar and clearly much

poorer than the reconstructions based on 2.5% data.
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(a) Randomly subsampled point cloud

(b) Nearest neighbor interpolation

(c) CS reconstruction

Figure 6: Reconstruction results for the indoor lab space using 10% randomly selected downsampling of the 2.5% Lissajous scan shown
in Fig.3d (for a net downsampling of 0.25%). (a) Sub-sampled data used in the reconstructions. (b) Nearest neighbor interpolation. (c)
CS reconstruction. These should be compared to the ground truth in 4b.

DISCUSSION
These results, while admittedly qualitative, are nonetheless

interesting in that reasonably good depth images of the indoor are
generated even for very low levels of subsampling. While there
is loss of detail as one goes from full raster to the 2.5% Lissajous
scan, and again when going down to 0.25% sampling, major fea-
tures are preserved. This could allow, for example, for adaptive
sampling that uses a high speed, very low resolution scan to get
initial information followed by detailed, regional scans to fill out
details in areas of interest.

The results in the outdoor setting are of lower quality, espe-
cially at the lowest sub-sampling. This is driven not only by the
low sampling but also by the fact that the outdoor environment
does not meet the assumption that the depth image is built mainly
from planes with only a few edges. Since the CS reconstruction
algorithm relies on this, it is not surprising that the resulting im-
ages are of low quality.

CONCLUSIONS
The use of CS reconstruction algorithms for Lissajous nod-

ding Lidar was presented. This method allows for very small
small amounts of data, and thus very small data collection times,
to produce high fidelity depth data. Experimental and simulation

results show the feasibility of this approach in both indoor and
outdoor scenarios.
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