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Compressive Sensing-Based
Reconstruction of Lissajous-Like
Nodding Lidar Data

In this article, a compressive sensing-based reconstruction algorithm is applied to data
acquired from a nodding multibeam Lidar system following a Lissajous-like trajectory.
Multibeam Lidar systems provide 3D depth information of the environment, but the vertical
resolution of these devices may be insufficient in many applications. To mitigate this issue,
the Lidar can be nodded to obtain higher vertical resolution at the cost of increased scan
time. Using Lissajous-like nodding trajectories allows for the trade-off between scan time
and horizontal and vertical resolutions through the choice of scan parameters. These pat-
terns also naturally subsample the imaged area. In this article, a compressive sensing-based
reconstruction algorithm is applied to the data collected during a relatively fast and there-
fore low-resolution Lissajous-like scan. Experiments and simulations show the feasibility of
this method and compare the reconstructions to those made using simple nearest-neighbor
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Introduction

For autonomous robots, having range information about the envi-
ronment and the objects within it is extremely useful, if not neces-
sary, for the robot to navigate and react to its surroundings. The data
can be used for localization and/or mapping in the forms of visual
odometry [1], SLAM [2], and more [3]. In recent years, Lidar has
perhaps become the most widespread way to collect this informa-
tion in large part due to increasing availability and falling prices
as a result of their use in self-driving automobiles. While Lidar con-
figurations come in many different forms, recent systems tend to
favor multibeam arrangements, which rotate multiple beams to
provide a 3D view of the scene. However, due to limitations on
how closely the beams can be spaced, the vertical resolution can
be still insufficient for specific applications, as the insufficient ver-
tical resolution can cause objects to “disappear” as they pass
between visibility of one beam to another. Even if seen, it is
unlikely that detection by a single beam would provide sufficient
information to successfully classify the object. Newer, higher reso-
lution Lidar models partially mitigate, but do not completely over-
come, this issue.

Before multibeam Lidar systems became more widely available,
single-beam planar Lidar units were (and still are, in some applica-
tions) used to collect 3D depth information by placing them on a
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nodding or spinning platform, allowing the plane in which the
Lidar scans to be rotated [4]. Typically, these configurations are
driven through a raster scan pattern in which the assembly is
rotated in a stair-step pattern between scans of the Lidar. This
method results in high resolution in the dimension added due to
rotation, but at the expense of significantly increased scan times.
In the prior work, two of the authors explored the applicability of
raster scan patterns for multibeam Lidar to help solve the “disap-
pearing” problem and how other scan trajectories, such as
Lissajous-like scan patterns, can be used to provide a trade-off
between scan period and resolution [5]. While Lissajous-like scan-
ning could replicate depth images from the raster scan to some
degree, the resulting decrease in the data gathered resulted in
smaller objects being more difficult to identify.

While it is often useful to trade-off some resolution for higher fre-
quency sampling, it is typically still desirable to have the highest
resolution scan possible to support detection, mapping and
SLAM. Inspired by recent results of one of the authors on increas-
ing the imaging rate in atomic force microscopy through subsam-
pling, combined with image reconstruction algorithms to recover
high resolution detail [6], in this paper, we explore the use of recon-
struction algorithms combined with the Lissajous-like sampling
pattern in an attempt to get both high speed and high resolution.
The essential idea is to view a high-resolution raster scan image
as a “ground truth” image that has been subsampled through the
Lissajous-like scan. The final image is formed from the data
using a recent optimization algorithm for sparse reconstruction of
3D depth images [7]. This approach differs from common Lidar
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reconstruction methods, which infer some information about the
detected objects from segmentation or classification to determine
how to perform reconstruction on the Lidar data, such as in
Ref. [8]. Instead, in this work, reconstruction is performed directly
on Lidar depth images using compressive sensing (CS) techniques,
without performing any other processing on the data.

In this article, experimental results are presented to establish the
feasibility of this method. Specifically, Lissajous-like scans that
sample less than 10% of the full raster scan data can reproduce
the full raster data set with high fidelity when the CS algorithm is
applied. To further the advantages of this method at very low sam-
pling levels, the experimental data are subsampled further and then
used to reconstruct the full raster data with good results. The recon-
structed images are compared both visually and numerically by
computing the mean squared error (MSE) between the reconstruc-
tions and the ground truth image.

Lissajous-Like Patterns in Nodding Lidar

Much of the work relevant to this section was presented in
Ref. [5] and as a result will be presented in minimal depth here.
The nodding Lidar system used for this effort is shown in
Fig. 1(a). The apparatus features a direct drive system for
nodding the Lidar platform and is designed so the distance separa-
tion between the Lidar’s optical center and the axis of rotation is
small. The Lidar used is the Velodyne VLP-16 Puck, which
rotates its beams at a rate of 20 Hz, with a horizontal resolution
of 900 points per scan over a full 360 deg range and a vertical res-
olution of 16 equally spaced beams over a 30 deg field of view,
which in total produces a maximum output of 14,400 points per
scan in single return modes.

The relevant axes and geometry of the assembly is shown in
Fig. 1(b). Note that for this work, the angular velocity 6, that dic-
tates the angle of the beams inside the Lidar 6, and the incident
angle of the beams 6; are considered fixed; only trajectory design
of the nodding motion 6, about the y-axis is discussed. In this
work, the spinning of the beam assembly 6, rotates according to:

0,(t) = —x + 27(@;r mod 1) M)

where @, = 20Hz is the fixed rotational velocity of the Lidar, and
the incident angles of the 16 beams 0; are fixed:
0; € {—15 deg, —13 deg,.

..—1 deg,1deg,...15deg} (2)
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Because the parameters of the Lidar are fixed, the distribution of
the scan readings is determined by the choice of trajectory for the
nodding motion. For a raster scan, the trajectory is a stair-step
pattern, with the Lidar nodding in small angle increments
between scans of the Lidar, with a trajectory spanning from some
arbitrary angle —A to A. For Lissajous-like scanning, the Lidar is
nodded with a triangular trajectory between —A and A with fre-
quency w,, (we call this “Lissajous-like” because Lissajous trajecto-
ries are typically sinusoidal in both axes). Both the raster and
Lissajous-like trajectories are used to create depth images in this
work, with the data from a high-resolution raster scan treated as
the “ground truth” and data from low-resolution Lissajous-like
scans treated as downsamples of the ground truth data.

Reconstruction of Lidar Images From Subsampled Data

The goal of the reconstruction is to fill in the missing pixels in
the depth image (namely, those that were not sampled) with
values that depend on the measured data. Perhaps the simplest
way to do this is nearest-neighbor (NN) interpolation. Such an
approach can be effective if there are sufficient data, but it does
not take into account any structure in the image and may therefore
produce less than ideal results. An alternative approach is to lever-
age results from CS. CS is a joint measurement and signal-
processing technique, which can produce good (or even exact)
reconstructions of signals from significantly fewer measurements
than the Nyquist-Shannon sampling theorem requires [9]. At the
heart of CS is the assumption of compressibility (or true sparsity)
of the signal of interest, that is, when described in an appropriate
basis, most of the coefficients are negligible (compressibility) or
exactly zero (sparsity).

While there are many reconstruction algorithms, the essential
ideas can be understood from the basis pursuit algorithm in which
a signal is reconstructed from measurements by solving the £; min-
imization problem:

min ||5]|; subjectto y=dx=>®%y 2 Ay 3)
where x € R" is the true signal, y € R™ is the vector of measure-
ments, ® is an m X n measurement matrix, W is an n x n orthonormal
basis for R" (often referred to as the sparsity basis), and 7 is the
sparse representation of the true signal x in the domain of ¥. We
define the product ®Y as the m x n matrix A.

(b)

Fig. 1 (a) The Lidar/cradle apparatus used in this research and (b) the relevant axes and notation

Transactions of the ASME



Fig.2 (a) A color image of the indoor space; (b)—(f) depth images of the same space from
different scans and reconstructions: (b) a raster scan with a period of 10 s; Lissajous-like
scans with periods of (c) 1/10th (10%) and (d) 1/40th (2.5%) that of the raster scan; and
reconstructions based on data from the 2.5% Lissajous-like scan via (e) nearest-neighbor
interpolation and (f) compressive sensing-based reconstruction

In the context of reconstruction of a depth image from the
nodding Lidar scan, measurements are restricted to values of the
pixels of the image that lie on the scanned path. As a result, each
row in ® consists of a single one (indicating which pixel is mea-
sured) with all other entries being zero. Thus, the measurement
matrix ® is given by extracting rows from an nxn identity
matrix. This has implications for a property known as the mutual
coherence [10], generally implying that reconstructions from the
data sampled by @ from solving Eq. (3) will not be exact and in
general may have a large error. The metric of mutual coherence is
in general improved by using random sampling, and experience
in many applications has shown good performance (see, e.g.,
Refs. [11,12]).

ASME Letters in Dynamic Systems and Control

As it turns out, in structured environments such as one finds in
indoor environments, the depth profile is often well described as
consisting of many planar regions connected by a few “edges.”
The sparsity of the data, then, is not with respect to a particular
sparsity basis, but rather with respect to these edges. This case
was first considered in Ref. [7] where a reconstruction algorithm
was created using a cosparsity model. We give a brief description
here.

To reflect the fact that we are after a depth profile, let the under-
lying signal now be denoted as Z € R™", viewed as a matrix. Since
Z is assumed to be formed from (not too many) planar regions, the
goal is to find a profile that fits the data while minimizing the
number of depth changes in the horizontal, vertical, and diagonal
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2.5% 0.25% 0.25% (Random)
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Fig. 3 Reconstructions of the highlighted region in Fig. 2(b)
from the left column: 2.5% Lissajous-like scan, middle column:
0.25% regularly subsampled data, and the right column: 0.25%
randomly subsampled data

directions. These changes can be measured using three different
convolutional filters with kernels:

0 0 0 01 0 -10 1
Do=|1 -2 1|, Dy=[0 -2 0|, Dy=| 0 0 0
0 0 0 01 0 10 -1
(C))

Reconstruction of the full depth profile from a collection of mea-
surements y obtained by a measurement matrix ® comes from
solving the optimization problem:

mZin vec(Z®Dx.) + vec(Z@Dyy) + vec(Z@Dyy )
(&)
subject to [|[DPvec(Z) —yll, < €

where vec(-) is the vectorization operator, which transforms a
matrix into a vector by stacking the columns, ® is the convolution
operator, and € is a user-defined parameter that accounts for noise in
the measurements.

Experimental Imaging and Reconstruction

In this work, an indoor and an outdoor space were imaged by the
Lidar. The Lidar followed a nodding trajectory of +20 deg, which
provided a sufficient field of view to visualize the relevant objects in
the space (but not things considered unnecessary, such as the ceiling
of the indoor space). The spaces are first scanned by the Lidar
undergoing a raster scan trajectory with a period of 10 s. Then,
the spaces are scanned by the Lidar with Lissajous-like trajectories
with periods of 1s and 0.25 s. These Lissajous-like scans can be
treated as “‘subsampled” versions of the raster scan, which is
treated as the ground truth, with downsampling percentages of
10% and 2.5%, respectively.

Figure 2 shows the indoor space imaged by a color camera and
the nodding Lidar. A panoramic color image is presented in
Fig. 2(a) to familiarize the reader with the space. The raster scan
is shown in Fig. 2(b), and the 1-s and 0.25-s Lissajous-like scans
are shown in Figs. 2(c) and 2(d), respectively. The data from the
Lidar scans are displayed as depth images, with closer objects
being whiter and regions where there are no data from the scan
showing as black. Note that, because of how the grid is generated
for the depth images, the downsampling percentages of the
Lissajous-like scans do not correspond to the percentage of popu-
lated pixels in the depth images. This is because of cases where mul-
tiple points are associated with the same pixel, commonly along the
sides of the scan where measurements are more clustered.

Reconstructions of the indoor Lidar data from the 2.5%
Lissajous-like scan in Fig. 2(d) are shown in Fig. 2(e) for the NN
interpolation and Fig. 2(f) for the CS-based reconstruction. Both
the NN- and CS-based reconstructions are visually quite good.
While there are only minor differences between them, in general,
edges are (slightly) crisper in the CS-based reconstruction, espe-
cially on linear edges like the pillars at the middle and far right of
the images.

To explore performance at extremely low sampling, the
2.5% Lissajous-like scan data were further subsampled by dis-
carding some of the data. This was done in two ways: first by
keeping only every 10th sample (thus regularly subsampling)
and second by randomly selecting 10% of the sample points,
both resulting in a total subsampling of 0.25% from the raster
scan. (In practice, of course, one would not discard data but

Fig.4 (a) A color image of the outdoor space; depth images of the same space from (b) a
raster scan with a period of 10 s and (c) a Lissajous-like scan with a period of 1/40th (2.5%)
that of the raster scan
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Fig. 5 Reconstructions of the highlighted region in Fig. 4(b)
from the left column: 2.5% Lissajous-like scan, middle column:

0.25% regularly subsampled data, and the right column: 0.25%
randomly subsampled data

rather choose to only acquire the limited set.) The NN- and
CS-based reconstructions were performed again on these 0.25%
downsamples.

To compare all the reconstructions, we consider the focus area
bound by a red rectangle in Fig. 2(b) containing a workbench and
a chair. Each reconstruction of this region from the 2.5% Lissajous-
like scan, as well as from the 10% downsamples of the 2.5%
Lissajous-like scan, is shown in Fig. 3. Qualitatively speaking,
the appearance of the bench and the chair seems to have more
detail, but are more prone to noise around the edges, in the 2.5%
reconstructions in Fig. 3 (left column). In the middle and right
columns of Fig. 3, both the nearest neighbor and CS reconstructions
of the 0.25% are remarkably good given the extremely low sam-
pling, but clearly are degraded relative to the reconstructions from
the 2.5% data. For the 0.25% reconstructions, the same relationship
between the CS and NN reconstruction is observed as earlier: the
edges tend be slightly more crisp in the CS reconstruction. In addi-
tion, for the CS reconstructions, the randomly subsampled image is
visually superior to the regularly subsampled version despite the
same level of subsampling. Interestingly, the nearest-neighbor inter-
polation seems to have darkened the randomly subsampled 0.25%
scan during the reconstruction process, while the compressive
sensing-based method retained the original intensity (and hence,
depth values).

Figure 4 shows the outdoor space imaged by a color camera
and depth images from the raster and 2.5% Lissajous-like
scans. While the full reconstruction results are not shown here,
the reconstructions of the 2.5% subsampled data behave similarly
as the indoor case, in that both algorithms have comparable per-
formance but the CS reconstruction tends to have sharper edges.
The reconstructions for the region highlighted in Fig. 4(b) are
shown in Fig. 5. This is an especially difficult region for the
reconstruction techniques to resolve as the trees are very close
to each other but not touching. As before, the NN and CS tech-
niques applied to the 2.5% Lissajous-like scan data, shown in
Fig. 5 (left column), have comparable performance although the
edges of the trees are slightly more distinct in the CS reconstruc-
tion. Further, downsampling in Fig. 5 (middle and right columns)

Table 1 MSE’ values of depth image reconstructions
0.25%
2.5% 0.25% (Random)

Subsampling

reconstruction NN CS NN CS NN CS
Indoor full 27.43 27.29 16.15 17.01 20.49 15.14
Indoor bench 13.96 13.9 13.22 14.29 18.55 12.54
Outdoor full 15.77 15.31 15.99 15.65 15.92 159
Outdoor trees 23.11 20.78 23.1 22.49 20.84 18.97
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significantly degrades the reconstruction performance, with the
trees being merged into one object in both reconstructions of
the regularly subsampled data. When reconstructing the randomly
subsampled data, the CS method almost manages to resolve the
two middle trees as separate objects, while the NN interpolation
resolves them into a single shape with a few holes.

Discussion

In order to compare the reconstruction results numerically, the
MSE between the reconstructed image I, and the ground truth
(raster) image [ is computed,

MSEzlz(Vec(l,)[p]—vec(l)[p])z ©)
=
where p={p1,..., pn:vec()[p;] > 0 Vp;} is the set of indices for
which the corresponding pixels of I are nonzero. The MSE is
then divided by the mean of the nonzero points in the ground
truth image to scale the results to a reasonable range:

n - MSE
>_ vec(D)[p]

PEP

MSE' = 7

The values of MSE' are presented in Table 1 for reconstructions
from the 2.5% and 0.25% data. The MSE’ results are shown not
only for the full images (indoor full, outdoor full) but also for the
regions of the images highlighted in Figs. 2(b) and 4(a). Both recon-
structions from the 2.5% (nonsubsampled) scan have comparable
performance, except the outdoor trees subsection, in which the
CS technique resolved the edges of the trees significantly better
than NN for that particular region. The results for the reconstruc-
tions start to diverge when the scans are subsampled further.
When the 2.5% data are regularly subsampled, the nearest-neighbor
interpolation outperforms the compressive sensing-based recon-
struction by a small margin (5-10%) indoors and by a smaller
margin outdoors. However, when the 2.5% data are randomly
subsampled instead, the compressive sensing-based reconstruction
outperforms the nearest-neighbor interpolation by a large margin
(25-35%) indoors, and a smaller performance improvement
(~10%) outdoors for the trees region outdoors, but not for the full
outdoor image.

In general, it appears that the CS reconstruction has comparable
or better performance than the NN technique for indoor environ-
ments, with significant improvement when the data are randomly
sampled. The CS reconstruction also typically appears to have
better performance in regions with straight edges, such as the
pillars in the indoor space or the highlighted region of the outdoor
space. This is likely a result of the choice of convolutional
kernels, which were designed to fit the data profile while minimizing
the number of depth changes in the horizontal, vertical, and diagonal
directions. This indicates that perhaps appropriate kernels could be
designed for other environments with known, but structure that is
more complicated than simple planes and straight lines.

In all cases but the full outdoor image, the CS technique per-
formed significantly better on randomly subsampled data than reg-
ularly subsampled data, highlighting that randomness is important
in subsampling. In fact, it has been shown that random sampling
matrices are maximally incoherent with any fixed sensing matrix
[13] and should thus be expected to outperform deterministic sam-
pling in the general setting.

Conclusions

The use of CS reconstruction algorithms for Lissajous-like
nodding Lidar was presented. This method allows for very small
amounts of data and thus very small data collection times to

JANUARY 2021, Vol. 1 / 011009-5



produce high fidelity depth data. Experimental and simulation
results show the feasibility of this approach in both indoor and
outdoor scenarios.
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