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Abstract—Subgraph matching is a core primitive across a
number of disciplines, ranging from data mining, databases,
information retrieval, computer vision to natural language pro-
cessing. Despite decades of efforts, it is still highly challenging to
balance between the matching accuracy and the computational
efficiency, especially when the query graph and/or the data graph
are large. In this paper, we propose an index-based algorithm
(G-FINDER) to find the top-k approximate matching subgraphs.
At the heart of the proposed algorithm are two techniques,
including (1) a novel auxiliary data structure (LOOKUP-TABLE)
in conjunction with a neighborhood expansion method to effec-
tively and efficiently index candidate vertices, and (2) a dynamic
filtering and refinement strategy to prune the false candidates at
an early stage. The proposed G-FINDER bears some distinctive
features, including (1) generality, being able to handle different
types of inexact matching (e.g., missing nodes, missing edges,
intermediate vertices) on node attributed and/or edge attributed
graphs or multigraphs; (2) effectiveness, achieving up to 30%
F1-Score improvement over the best known competitor; and (3)
efficiency, scaling near-linearly w.r.t. the size of the data graph
as well as the query graph.

Index Terms—subgraph matching, approximate matching, sub-
graph index

I. INTRODUCTION

(Approximate) Subgraph matching is a core primitive across
a number of disciplines, ranging from data mining, databases,
information retrieval, computer vision to natural language
processing. In data mining, frequent patterns can be found
by approximate subgraph isomorphism [1]; in databases and
information retrieval, a query to search for a set of inter-
correlated research papers can be treated as a subgraph match-
ing problem [2]; in computer vision, the symbol and object
recognition can be formulated as an approximate subgraph
matching problem with a tolerance of node merging and
splitting, due to object overlapping or segmentation error [3];
in natural language processing, words in a lexical resource can
be viewed as nodes in a graph, their relations can be viewed
as edges between nodes, and paraphrases can then be seen as
matching graphs [4].

Generally speaking, the existing work can be grouped into
two categories, including the exact matching methods and the
inexact matching methods. Each of these two types of methods
has its own pros and cons, which we elaborate below.

On one hand, extensive research effort has been devoted
to exact matching, e.g., [5] [6] [7] [8] . The key ideas

Fig. 1. An illustrative example. Left is the data graph and right is the query
graph. Different node shapes and colors represent node attributes. Red dash
arrows show the matching steps of TALE [12] which selects one important
node at the first step. The proposed G-FINDER finds a matching subgraph
induced by (v0, v2 v3 ,v6, v7, v9, v10, v11).

behind these methods are either pruning false candidates at an
early stage and/or building indexes for promising candidates
to accelerate the search. Through some effective pruning
conditions, the search space can often be greatly reduced.
However, many real graphs are noisy and incomplete. Con-
sequently, the observed data graph might not contain any
exact matching subgraph at all. In this case (i.e., whether
or not exact matching exists is unknown), existing index-
based exact matching methods (e.g., [6]) might iterate over all
possible candidates in the index, which has an exponential time
complexity before returning nothing. Moreover, in progressive
search [9] [10], the user might not know what exactly s/he
is looking for. In this case, exact matching, even if it exists,
might not be desirable.

On the other hand, existing inexact subgraph matching
methods often rely on certain heuristics to identify important
seed nodes, and then progressively expand to neighbors of
seeds [11] [12] [13]. Usually, these methods can return
an approximate matching subgraph in a relatively short time.
However, the greedy strategy of expanding the partial match-
ing subgraph step by step could easily be diverted to a sub-
optimal search path. For example, in Figure 1, assuming that
the seed node is v0. Many algorithms (e.g. [12], [13]) will
choose v1 as the next candidate node because v1 can be
perfectly mapped to u1. After that, it will expand to v4 and
v5, and finally, return the subgraph induced by (v0, v1 ,v4, v5,
v8). But obviously, (v0, v2 v3 ,v6, v7, v9, v10, v11) is a better
result because it only contains one intermediate vertex v2.

Due to the noise and incompleteness of the data graph, and
the uncertainty of the query graph, exact matching subgraphs978-1-7281-0858-2/19/$31.00 c©2019 IEEE



may not exist or may not be desirable. Therefore, in this
paper, we mainly focus on approximate subgraph matching
although our proposed algorithm is also capable to find exact
matching. In particular, we propose a new algorithm called
G-FINDER. The main idea of G-FINDER is to improve the
matching accuracy by building index on data graph according
to the query graph structure. Compared with existing inexact
matching algorithms, the proposed G-FINDER embraces a
novel auxiliary data structure called LOOKUP-TABLE (LTB),
in conjunction with a neighborhood expansion method to
index the candidate vertices of the query graph, and in the
meanwhile it maintains the topology structure of the query
graph. Furthermore, the proposed LTB can effectively prune
false-positive candidates of query nodes for the purpose of
computing an effective matching order.

The main contributions of the paper are

(1) Data Structure. We propose a novel auxiliary data
structure (LOOKUP-TABLE), in conjunction with a neigh-
borhood expansion method to effectively and efficiently
index candidate vertices.

(2) Algorithm. We propose an algorithm (G-FINDER) which
can handle a variety of different types of inexact matching
on node attributed and/or edge attributed graphs. By
further integrating LTB with a dynamic filtering and
refinement strategy, G-FINDER can effectively prune the
false candidates at an early stage to reduce the search
space.

(3) Empirical Evaluations. We conduct extensive experi-
ments on various real datasets, and demonstrate that G-
FINDER (1) is up to 30% better than the best baseline
in F1-Score; and (2) scales near-linearly w.r.t. the size of
the data graph as well as the query graph, for the data
graph with rich attribute information.

II. PROBLEM DEFINITION
Table I summarizes the main symbols and notations used

in the paper. For clarity, we refer to nodes in Q as nodes and
that in G as vertices. Likewise, we call edges in Q as edges
and that in G as links. We use u and û to refer to nodes of
the query graph Q; and use v, v̂ to refer to vertices of the
data graph G. A graph is denoted as a tuple {V , E, L}, where
V is the node/vertex set, E is the edge/link set and L is an
attribute function which maps a node/vertex or an edge/link
to an attribute value. Given a query graph Q and a data graph
G, we say Q is the subgraph of G if there exists an exact
subgraph matching from Q to G which satisfies the following
condition.

Definition 1: Exact Subgraph Matching [14]. An exact sub-
graph matching (subgraph isomorphism) is an injective func-
tion m(): V (Q) −→ V (G), which satisfies: (1) ∀ u ∈ V (Q),
m(u) ∈ V (G) and L(u) = L(m(u)); (2) ∀ (ua, ub) ∈ E(Q),
(m(ua),m(ub)) ∈ E(G) and L(ua, ub) = L(m(ua),m(ub)),
where L is the attribute function.

Next, we introduce some basic concepts of approximate
subgraph matching. Compared with exact subgraph matching,
approximate subgraph matching can tolerate some missing

query nodes, missing query edges and intermediate data ver-
tices. We say a node u is a missing query node, if u ∈ V (Q),
but m(u) /∈ V (G). We say an edge (ua, ub) is a missing query
edge, if (ua, ub) ∈ E(Q), but (m(ua),m(ub)) /∈ E(G). We
say a data vertex vi returned by G-FINDER is an intermediate
data vertex if it satisfies: (1) two nodes ua, ub in V (Q)
and (ua, ub) ∈ E(Q), but (m(ua),m(ub)) /∈ E(G); (2)
(m(ua), vi) ∈ E(G) and (vi,m(ub)) ∈ E(G). Last but not
least, the remaining non-missing query nodes in Q and non-
intermediate data vertices in the resulting subgraph returned
by a matching algorithm which satisfy the mapping function
m() are referred to as matching pairs. For example, in Figure
1, assuming the subgraph return by a matching algorithm is
(v0, v2, v3, v6, v7, v9, v10, v11), then v2 is an intermediate data
vertex. If the matching subgraph is (v0, v1, v4, v5, v8), then
u5 and u6 are missing query nodes, and (u3, u4), (u4, u5),
(u4, u6), (u5, u6) are missing query edges, and (u0, v0) is a
matching pair.

Another subtle difference between exact subgraph matching
and approximate subgraph matching is the methodology to
measure the goodness of a matching. For approximate match-
ing, an intuitive way to measure the quality of a resulting
matching subgraph H (e.g., found by G-FINDER) is to use a
loss function to quantify the difference between the matching
subgraph and the query graph Q. If the resulting matching
subgraph has more intermediate data vertices, and the query
graph Q has more missing query nodes and missing query
edges, the loss function cost should be higher. In this paper,
we use a linear loss function defined as below.

Definition 2: Linear Loss Function. Consider a query graph
Q and a resulting matching subgraph H. The linear loss
function f(Q, H) is defined as f(Q,H) = w1×MN +w2×
ME +w3× IN , where MN is the number of missing query
nodes in Q, ME is the number of missing query edges in Q,
and IN is the number of intermediate data vertices in H.

In the above loss function, w1, w2, w3 are the weights
for different types of inexact matching. By changing these
weights, we can adjust the tolerance of the number of missing
query nodes/edges and intermediate data vertices. For exam-
ple, if w1 is small, the results could tolerance more missing
query nodes, and if w2 =∞, the results cannot tolerance any
missing query edges. If an exact matching subgraph exists, the
loss function cost should be 0.

In exact subgraph matching, a node u inQ can be mapped to
a vertex v in G only if each of u’s neighbors could be mapped
to some of v’s neighbors. However, this hard constraint can
be relaxed in approximate subgraph matching. That is, a node
u can be mapped to a vertex v even though their neighbors
could not be perfectly matched with each other. For example,
in Figure 1, u1 could be mapped to v3, even though u0 cannot
match to any of v3’s neighbors. In the proposed G-FINDER,
we allow a node in Q and a vertex in G to be mapped to each
other if they satisify the following conditions: (1) have the
same attribute value, (2) bear a high node-vertex similarity,
and (3) their neighbors also bear high node-vertex similarity,
where the node-vertex similarity is defined as follows.



TABLE I
NOTATIONS AND DEFINITION

Symbols Definition
Q={VQ, EQ, LQ} an attributed query graph
G={VG, EG, LG} an attributed data graph

Hi a partial matching with i nodes
Qi a partial query graph with i nodes
u, û nodes in query graph
v, v̂ vertices in data graph

m(ui) = vi matching function
N(u) neighborhood of query node u
C(u) candidate set of query node u

LTB(u) LOOKUP-TABLE of query node u
LTBG LOOKUP-TABLE-GRAPH formed by all LTBs

f(Q, H) the loss function

Definition 3: Node-Vertex Similarity is defined as
sim(vi, ui) = |(m(N(ui))∩N(vi))|

|N(ui)| , where N(vi) denotes
the neighbors of vi, and m(N(ui)) ∩ N(vi) represents the
nodes in N(ui) that are mapped to N(vi).

For example, in Figure 1, since u2 can be mapped to v6, and
u3 can be mapped to v7, the node-vertex similarity between
v3 and u1 is sim(v3, u1) = 2/3.
Remarks. For both loss function (Definition 2) and node-
vertex similarity (Definition 3), there exist alternative choices.
For example, there are a wealth of different graph similarity
measures, e.g., graph edit distance [15], graph kernel [16]
and embedding based graph similarity [17]. Likewise, there
are also rich node similarity measures in the literature, e.g.,
matrix based method [10], graph neural networks based sim-
ilarity [18]. In principle, the proposed G-FINDER algorithm
can admit these alternative graph similarity as well as node
similarity measures. In this paper, we use these two relatively
simple forms due to the efficiency consideration.

Finally, the top-k approximate subgraph matching problem
can be formally defined as follows.

Problem Definition 1: top-k Approximate Subgraph Match-
ing: 1

Given: (1) An attributed data graph G, (2) an attributed
query graph Q, (3) the number of desired matching subgraphs
k, and (4) a loss function f();

Find: k approximate matching subgraphs that match the
query graph Q as well as possible (have the smallest loss
function cost).

III. PROPOSED G-FINDER: OVERVIEW

The overall framework of G-FINDER contains four major
steps which are illustrated in Figure 2. Algorithm 1 presents
the corresponding pseudo code, and Table II compares G-
FINDER and existing algorithms, in terms of the input data
graph, the ability for exact matching, the types of inexact
matching, and computational efficiency.

First (Root Selection, Lines 3-4), G-FINDER selects a root
node from the query graph. Second (LOOKUP-TABLE-GRAPH
Construction, Line 7), a dynamic filtering and refinement
strategy is used to construct LOOKUP-TABLE-GRAPH (short

1The data graph and query graph can be multi-graph. For easier under-
standing, we mainly focus on graph with node attribute in this paper.

Fig. 2. The overall framework of G-FINDER.

for LTBG) for the query graph. Third (Matching Identifi-
cation, Line 8), a matching order is calculated based on
the constructed LOOKUP-TABLE-GRAPH. Finally (Subgraph
Enumeration, Line 9), G-FINDER searches LOOKUP-TABLE-
GRAPH according to the matching order to return the top-
k results which have the smallest loss function cost. In the
remaining of this section, we highlight each of these four steps.

Algorithm 1 G-FINDER

1: Input: a query Q, a data graph G, the number of desired
matching subgraphs k and a loss function f().

2: Output: top-k approximate matching subgraphs
3: (Vc, Vt) ← Core-Forest-Decompose(Q) // Vc is the core

structure, and Vt is the forest structure.
4: (Query root ur, Data root vertices Sroot) ← Root-

Selection
5: Initialize top-k heap
6: for each rooti ∈ Sroot do
7: LTBG ← LTBG-Builder(Q, ur, rooti, G)
8: M ← calculating matching order by LTBG
9: Subgraph-Enumeration(k, LTBG, Q, G, M, f())

10: end for
11: Return top-k approximate matching subgraphs

A. Step 1: Root Selection

Given a query graphQ, we first select a root node to start the
matching process. For example, in Figure 1, we can choose u0

as the root. Many existing root selection methods can be used
in the proposed G-FINDER algorithm. Basically, we would
like to choose the root node which (1) has as few candidates
as possible, and (2) is at the center of the query graph so
that the diameter of the search space could be minimized [5].
With these two design objectives in mind, we first decompose
the query graph into the core-forest structure 2. After that, we
choose the node ur ← argminu

|C(u)|
deg(u) from the core structure

as the root, where |C(u)| is the size of the candidate set of u
in the data graph, and deg(u) is the degree of node u in the
query graph. 3

2The core structure of a graph Q is a maximum subgraph of Q where
each node has at least 2 neighbors [6]. The remaining parts of the query
graph is called the forest-structure of Q. Figure 3(a-b) gives an example of
the core-forst decomposition.

3For Figure 1 in practice, G-FINDER will choose u4 as the root node.
However in order to explain the details of G-FINDER, we assume u0 is the
root node for all examples in this paper. Moreover, the root node could not
be a missing vertex.



TABLE II
COMPARISON OF SUBGRAPH MATCHING METHODS. ROWS ARE METHODS

AND COLUMNS ARE DESIRED PROPERTIES.
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G-FINDER 3 3 3 3 3 3 3 3 3
CFL [1] 3 7 3 7 7 7 3 3 7
G-Ray [2] 3 7 7 3 3 3 7 7 7
FIRST [3] 3 3 7 3 3 3 7 7 7
MAGE [4] 3 3 7 3 3 3 7 7 7
FilM [5] 7 7 3 7 7 7 7 3 3
NeMa [6] 3 3 3 3 3 3 3 3 7

B. Step 2: LOOKUP-TABLE-GRAPH Construction

Following the root selection, the next step is to traverse
the query graph to build index node by node. The key of
this step is a novel data structure called LOOKUP-TABLE
(short for LTB), which stores the information of the candidate
vertices. Each node u in the query graph has a corresponding
LTB(u), and all the LTBs will form a graph which shares
the same topology as the query graph. We call this new graph
as LOOKUP-TABLE-GRAPH (short for LTBG). For example,
in column 3 of Figure 2, LTB(u0), LTB(u1), LTB(u2), and
LTB(u3) form a LOOKUP-TABLE-GRAPH for the input query.

The LTBG is built according to the traversing order of the
query graph. Figure 3(c-d) gives an example of two traversal
strategies, including BFS Tree and Dynamic-Tree. BFS is
a common traversal strategy used by several existing exact
subgraph matching methods [5] [6]. There are two kinds of
edges in this strategy, including tree edges (TE) and non-tree
edges (NTE). The edges that exist in both the BFS tree and the
query graph are called tree edges. The edges that only exist
in the query graph but not in the BFS tree are called non-tree
edges. For example, in Figure 3(c), (u2, u4) is a tree edge,
and (u3, u4) is a non-tree edge.

Although BFS is a common method for exact subgraph
matching to traverse the query graph, it may not be suitable
for approximate matching. For example, suppose we use BFS
traversal strategy for the data graph in Figure 1 and the query
graph in Figure 3(a). Since u7 has no candidates in the data
graph, LTB(u7) is empty, and consequently, both u5 and u6

will be ignored. Finally, the result graphs found by G-FINDER
will be bad 4.

To tackle this issue for approximate subgraph matching,
we propose a heap based dynamic traversal strategy to build
LOOKUP-TABLE-GRAPH. We maintain a heap to store the
current processing LTB and each time we pop the LTB
with the smallest |C(u)|

deg(u) from the heap. We recursively build
LOOKUP-TABLE for its un-visited neighbors and push them
into the heap. We repeat this procedure until all nodes in
the query graph are processed. More details will be further
presented in Section 4.1.

4See the performance of G-FINDER in Human dataset for details (section
V-B).

Fig. 3. The core-forest decomposition (a-b) and two traversal strategies (c-d).
The dash lines represent non-tree edges.

C. Step 3: Matching Identification

A matching order is the node sequence of the query graph,
based on which we match the candidates in LTBG to the query
nodes. For example, in Figure 2, the matching order is (u0, u1,
u2, u3). G-FINDER will first choose a good candidate v0 in
LTB(u0), and then choose a good candidate v1 in LTB(u1)
which connects to v0. Next, G-FINDER will choose a good
candidate v2 in LTB(u2) which connects to both v0 and
v1. Finally, G-FINDER will choose a good candidate v3 in
LTB(u3) which connects to both v0 and v2.

There are several methods for choosing matching order,
such as the least frequent path first [19], greedy approach
to order paths [6], and the least frequent node first [20].
The general idea behind these methods is to select the node
or path with the smallest number of candidate vertices first,
which will make the search space compact. In this paper, we
found that these methods lead to similar performance in terms
of matching accuracy for G-FINDER, and we use the greedy
approach to order the paths for its computational efficiency.

D. Step 4: Subgraph-Enumeration

In this step, we search candidates in the LTBG accord-
ing to the matching order from Step 3, and find the top-
k approximate matching subgraphs which have the smallest
loss function cost. During the matching process, we maintain
another heap to store the k best matching results so far, and
update the heap when we find a better result. The details of
subgraph enumeration will be introduced in Section 4.2.

IV. PROPOSED G-FINDER: DETAILS

In this section, we presents the details of LOOKUP-TABLE-
GRAPH construction and subgraph enumeration, which
are the two most complicate steps in the proposed G-
FINDER(Figure 2). At the end of this section, we analyze the
time and space complexity of G-FINDER.



A. LOOKUP-TABLE-GRAPH Construction
A - Lookup Table Structure. We design a novel data

structure called LOOKUP-TABLE to store the information
of the candidate vertices, including a candidate set, parent-
child relationship, the number of intermediate vertices and
the node-vertex similarity. Figure 4 gives an example, which
illustrates the LTBs of (u0, u1, u2, u3, u4, u7) for the query
graph in Figure 3 w.r.t. the data graph in Figure 1, where
each LTB is visualized as a table. The black solid arrows
represent the parent-child relationship between different LTBs.
For example, LTB(u1) is the parent of both LTB(u2) and
LTB(u3). The black dash arrows represent the prior-visited
neighborhood relationship. For example, there is a non-tree
edge between u3 and u4, and LTB(u3) is built before
LTB(u4). Therefore, there is a prior-visited neighborhood
relationship between LTB(u3) and LTB(u4). The red solid
arrows represent the parent-child relationship of candidate
vertices in the data graph. For example, v0 is the parent of both
v1 and v3. In the LOOKUP-TABLE, the node-vertex similarity
(SIM) and intermediate vertex number (IVN) are recorded.
For example, there is an intermediate vertex between v0 and
v3 in the data graph (Figure 1). Therefore, the entry at the third
row and the third column of LTB(u1) is 1. When building the
LTB, the candidate vertices will be sorted by their intermediate
vertex number (IVN) and node-vertex similarity (SIM). During
the matching process, we first choose the vertex with the high
node-vertex similarity (SIM) and small intermediate vertex
number (IVN) so that the corresponding linear loss function
cost would be small.
B - LTB Construction. Following the root node selection
(Step 1 of Figure 2), we dynamically explore the data graph
to select the candidates for each query node. When building
LOOKUP-TABLE, we design several refinement and filtering
strategies to prune unpromising candidates so as to minimize
the size of candidates. These refinement strategies include
node-vertex similarity, intermediate vertex number and miss-
ing node/edge tolerance. To make it easier to understand, we
first introduce how to construct a single LTB, followed by
how to build the entire LTBG dynamically.

The key of building a single LOOKUP-TABLE is to effec-
tively find candidate vertices. We use Figure 1 as an example
to explain this process. Suppose we have a partial matching
Hi, e.g., (v0, v1, v4) in Figure 1, where i means that there are
i vertices in the partial matching (i.e., i = 3 in this case). The
corresponding query graph is Qi, e.g., (u0, u1, u2) in Figure 1,
and we want to find the matching vertex in the data graph
for the next node uj (e.g., u3). Intuitively, if vj is a good
candidate of uj , for each node un ∈ Qi ∩N(uj), vj must be
adjacent to un’s candidate vn, where vn ∈ Hi. For example,
v5 is a good candidate of u3 because it is adjacent to both v1
and v4. However, for approximate matching, vj does not need
to satisfy such a hard constraint if we are willing to tolerate
some missing query nodes/edges. For example, in Step 4 of
Figure 2, (v9, v0, v2, v3) is also a good approximate matching
of query graph (u0, u1, u2, u3), even though there is no direct
link between v9 and v2 (missing edge).

Fig. 4. An example of LOOKUP-TABLE-GRAPH for the data graph in Figure
1 w.r.t. the query graph in Figure 3. We omit the LTBs of u5 and u6 for
brevity. An empty LTB means it is absent.

Algorithm 2 LTB-Construction
1: Input: a data graph G, a query graph Q, a query node ui

and its parent up.
2: Output: the LOOKUP-TABLE of ui over G
3: Mark ui as visited;
4: for each visited neighboring query vertex û of ui do
5: for each vertex v̂ ∈ C( û ) do
6: S ← Neighbor-Expander(v̂, L(ui), G)
7: end for
8: end for
9: Set LTB(ui).parent = up

10: for each vertex vn ∈ C(up) do
11: for each vertex n ∈ (Neighbor-Expander(vn, L(ui), G)

∩ S) and n.connection ≥ (|N(ui)|-d) do
12: // d is the the number of missing edges the algorithm

is willing to tolerate.
13: Add n to LTB(ui).adj[vn] and record IVN and SIM.
14: end for
15: end for
16: Sort C(ui) by IVN and SIM.
17: Return LOOKUP-TABLE of ui

Based on the ideas above, we introduce a Neighbor-
Expander strategy as follows. Assuming up is the parent of
uj and its corresponding data vertex is vp. Neighbor-Expander
first selects all of vp’s t-hop neighbors5 with attribute L(uj).
Then, it adds these vertices into set M . For each vertex vm ∈
M , we calculate the node-vertex similarity between vm and uj .
If the similarity is at least s, which is a pre-defined threshold,
vm is treated as a good candidate. For example, in Figure 1,
v3 is a 2-hop neighbor of v0 and the node-vertex similarity
sim(v3, u1) is 2/3. We treat it as a good candidate if the
threshold s = 0.5. Finally, for each vm, we calculate how
many vertices in Hi it connects to. If the number is bigger

5t = 2 in this paper for approximate subgraph matching, and users can
choose a different t.



than |N(uj)|−d, where d is the number of missing edges the
algorithm is willing to tolerate, we consider it is good.

Likewise, we build a LOOKUP-TABLE by exploiting its
prior-visited neighbors’ LTB information. For example, as-
sume ui is a node in Q, and up is ui’s parent. When building
LTB for ui, let Nvisited(ui) denote the set of all visited
neighbors of ui ∈ Q. Notice that all visited nodes have already
built the corresponding LTBs. The candidate vertices of ui are
therefore generated from the sets of candidates in Nvisited(ui).

The full algorithm for building a single LOOKUP-TABLE
is summarized in Algorithm 2. First, for each vertex uj

in Nvisited(ui), we iterate uj’s candidates. For each vertex
vj ∈ C(uj) , we use Neighbor-Expander to select the good
candidates v with high node-vertex similarity with respect
to ui (i.e., sim(v, ui) ≥ s) and insert them into vertex
set S (Lines 4-6). For the example in Figure 4, LTB(u4)
is built according to LTB(u2) and LTB(u3). The candidate
sets of LTB(u2) and LTB(u3) are (v4, v6) and (v5, v7),
respectively. Their 2-hop neighbors with attribute L(u4) are
(v1, v8), (v3, v9), (v1) and (v3, v9), respectively. Assume the
threshold s = 1/4. Then, all of them are good candidates
for node u4, i.e., S = (v1, v8, v3, v9). Second, we iterate
each candidate vertex in C(up), and record its parent-child
relationship. For each node, we select all its t-hop neighbors
in S and store these vertices in LTB(ui).adj[vn], which
means that vn is these vertices’ common parent in the data
graph. Finally, we record the number of intermediate vertices
(Line 12). For the example in Figure 4, the parent node of
u4 is u2 and C(u2) = (v4, v6). Therefore, we have that
LTB(u4).adj[v4]=(v8, v1) and LTB(u4).adj[v6]=(v3, v9).
C - LTBG Construction. Besides LTB construction, another
key issue of building LTBG is to select the LTBG building
order for the query graph Q. The pseudo code for building
LOOKUP-TABLE-GRAPH is shown in Algorithm 3. We dy-
namically build LTBG with a min heap to store the LTBs of
all current processing nodes. First, we build LTB for the root
node (Line 4), and push its LTB into the min heap (Line 5).
Each time we pop a LTB from the min heap, we build LTB for
its un-visited children (Lines 7, 9). Then, we push its children
LTB into the min heap (Line 11). We repeat this procedure
until all nodes in the query graph are processed. During this
process, a subtle issue is how to pop the next LTB from the
min heap. We select the LTB with the minimum |C(u)|

deg(u) for

the following reason. If a LTB has smaller |C(u)|
deg(u) , its children

will be more likely to have less candidate vertices.
B. Subgraph-Enumeration

In this subsection, we describe the top-k search algorithm
(i.e., Step 4 of Figure 2). First, a new top-k max heap is
maintained to store the best k answers that have been seen so
far. During the search process, we calculate the current linear
loss function cost between the partial query graph Qi (i means
that there are i nodes in the partial query graph Qi) and the
partial matching graph Hi. Then, we compare the linear loss
function cost with the maximum loss function cost in the heap.
If the current loss function cost is higher than the maximum

Algorithm 3 LTBG-Builder
1: Input: a query Q, its root node ur and the candidate

vertex vr, and a data graph G.
2: Output: the LOOKUP-TABLE-GRAPH of Q over G
3: Mark ur as visited.
4: Initialize LTB(ur) by adding vr to its candidate set.
5: Push LTB(ur) into the min heap
6: while min heap is not empty do
7: currentLTB ← Pop a LTB from the min heap
8: curQueryId ← currentLTB.Id
9: for each un-visited neighboring query node u of cur-

QueryId do
10: nextLTB ← LTB-Construction(G, Q, u, curQueryId)
11: LTB-heap.push(nextLTB)
12: end for
13: end while
14: Return LOOKUP-TABLE-GRAPH.

Algorithm 4 Subgraph-Enumeration
1: Input: a parameter k, the LTBG, a query graph Q, a

data graph G, the matching order M , and the linear loss
function f().

2: Output: the top-k approximate subgraphs
3: while Hi ← search subgraph by M do
4: cost = f(Qi, Hi)
5: if cost > max loss function cost in the max heap then
6: backtrace, stop further expanding Hi.
7: end if
8: if Hi can not be further expanded then
9: if cost < max loss function cost in the max heap

then
10: Add Hi to top-k heap
11: end if
12: end if
13: end while
14: Return the top-k approximate subgraphs

loss function cost in the max heap, we stop further expanding
the current partial matching to allow earlier termination.

Let us take Figure 5 as an example. Suppose the matching
order is < u0, u1, u7, u2, u3, u4, u5, u6 > and we have gotten a
partial matching H5 = (v0, v2, v3, v6, v7). The corresponding
partial query graph is Q5 = (u0, u1, u2, u3, u7). If w1 = w2 =
w3 = 1, the loss function cost is 2 with one intermediate data
vertex v2 and one missing query node u7. If this is higher
than the maximum loss function cost in the max heap, we
stop further expanding the current partial matching. Otherwise
we continue to expand the current partial matching subgraph.
The full algorithm of Subgraph-Enumeration is shown in
Algorithm 4.
C. Complexity Analysis

The complexity of G-FINDER mainly come from two
parts: LTBG-Builder (Step 2) and Subgraph-Enumeration
(Step 4). The worst-case space complexity of LTBG-Builder
for a query Q over a data graph G is O(|V (Q)| × |E(G)|)



Fig. 5. An example of partial matching.

and its time complexity is O(|E(Q)| × |E(G)| × |V (G|).
For Subgraph-Enumeration, its time complexity in the worst
case is O(

∏|V (Q)|−1
i=0 |V (G)− i|). However, the worst case

only happens when the data graph is a complete graph,
which is extremely unlikely for any real graph. The best
case time complexity is O(|V (Q)|), which happens when
all nodes have distinct attributes. On average, for a data
graph G with D attributes, its worst time complexity is

O(
∏D

i=0

∏ |V (Q)|
D −1

j=0 | |V (G)|
D − j|). Empirically, we find the to-

tal running time of G-FINDER scales near-linearly with respect
to the number of nodes of the data graph and that of the query
graph, for the data graph with rich attribute information.

V. EXPERIMENTS

In this section, we conduct empirical studies to evaluate the
effectiveness and efficiency of the proposed algorithm. The
experiments are designed to answer the following questions:

• Q1. Effectiveness: How accurate is the proposed G-
FINDER algorithm for subgraph matching?

• Q2. Efficiency: How fast and scalable is the proposed
G-FINDER algorithm?

A. Experimental Setup

Datasets. We use 8 real-world datasets in our experiments,
which are summarized in Table III. Human and HPRD are
two protein-protein interaction networks used by [6]. DBLP
is a dataset which represents the relationship between authors
and papers. Flickr shows the friendship of users on Flickr.
LastFm contains the following relationships of users on
LastFm. AMiner represents the academic social network,
where undirected edges represent co-authorship and the node
attribute vector is extracted from the number of published
papers. PNNL-V4 is created by Pacific Northwest National
Laboratory (PNNL). IMDB is the same movie dataset used in
NeMa [21].
Baseline Methods. Five algorithms are used as the baselines,
including G-Ray [13], MAGE [22], FIRST [10], FilM [7]
and NeMa [21]. Source codes of the baseline methods are
provided by the original authors. For the proposed G-FINDER
algorithm, we have two variants based on different traversing
strategies outlined in Section 3.2, including G-FINDER-BFS
and G-FINDER-Dynamic.

TABLE III
SUMMARY OF DATASETS

Name # of Nodes # of Edges Attribute # of Attribute
Human 4,674 86,282 Node only 44
HPRD 9,460 37,081 Node only 307
DBLP 9,143 16,338 Node only 29
Flickr 12,974 16,149 Node only 3
LastFm 136,421 1,685,524 Node only 3
AMiner 1,274,360 4,756,194 Node only 300
PNNL-V4 22,154 460,196 Edge only 259,917
IMDB 2,932,657 11,040,263 Node & Edge # of Nodes + # of Edges

Evaluation Metrics. We use the F1-Score to evaluate the
matching accuracy and total running time 6 to evaluate the
efficiency of different algorithms. Other alternative accuracy
metrics include (1) the linear loss function defined in Section
2; (2) % Extra nodes in MAGE and FIRST; (3) % Exact
Matching Nodes in FIRST. The proposed G-FINDER outper-
forms the baseline methods on these alternative metrics as
well. Due to the space limitation, we only show the results of
F1-Score.
Reproducibility. G-FINDER is implemented in C++. Exper-
iments are conducted on a machine with an Intel Core-i7
3.20GHz CPU and 32GB memory. We will release the source
code after the paper is published.

B. Effectiveness Results

Here, we compare G-FINDER-Dynamic and G-FINDER-
BFS against three baseline algorithms, including G-Ray,
MAGE and FIRST. For the query graph, it is generated as
follows. We select a connected subgraph of the data graph,
and then inject a variety of different types of noise, e.g.,
node addition, node attribute alteration, edge deletion. More
specifically, we find a induced subgraph in the data graph,
and treat it as the query graph. This means that there is
at least one exact matching for the query graph. Then, we
will add some noises into the query graph. For example, we
randomly delete some edges in the query graph, change some
nodes’ attributes or add some extra nodes into the query graph.
These extra nodes don’t exist in the data graph. The ground
truth is the induced subgraph. The main parameters are set
as k = 10, w1 = w2 = w3 = 1 7. Figure 6 shows the F1-
Score of these 5 algorithms on 6 datasets, including Human,
HPRD, DBLP, Flickr, Lastfm and AMiner. The X-axis
is the number of query nodes, and the Y -axis shows the F1-
Scores. We can see that the proposed G-FINDER-Dynamic
consistently outperforms all the three baseline methods in
all cases. For example, on DBLP, G-FINDER-Dynamic is
30% better than the best baseline method (MAGE) with 7,
9 and 13 query nodes. Between the two variants of the
proposed G-FINDER, G-FINDER-Dynamic wins or achieves
the similar high score in almost all cases, with the only three
exception on (1) HPRD with 7 query nodes, (2) Lastfm with

6The index construction time is smaller, compared to the query runtime.
7This means that G-FINDER has no bias. For example, if w1 is larger, G-

FINDER perfers to find more result nodes, but the result graph may contain
a lot of intermediate nodes.
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(d) Flickr (e) Lastfm (f) Aminer

Fig. 6. Matching accuracy (F1-Score) comparison. Higher is better. The proposed G-FINDER-Dynamic is the rightmost bar.

(a) FilM (b) G-FINDER

Fig. 7. Comparison between G-FINDER-Dynamic and FilM. Numbers are
the candidate numbers for the corresponding query nodes.

9 nodes and (3) AMiner with 10 query nodes. The relatively
lower F1-Score of G-FINDER-BFS in Human is due to the
following reason. The noise nodes are close to the root
node. After transforming the query graph into a BFS tree,
these nodes of the BFS tree do not have any candidate in the
data graph. Consequently, their children nodes are ignored.
This is consistent with our analysis in Section 3.2. That is,
despite its wide usage in exact subgraph matching, BFS-
tree traversing strategy might be sub-optimal for approximate
subgraph matching. Rather, the proposed dynamic-tree is a
much more effective traversing strategy.

Although G-FINDER is primarily designed for approximate
subgraph matching, by (1) setting t = 1 (i.e., only consid-
ering the direct neighbors in LOOKUP-TABLE-GRAPH) and
(2) only retaining the resulting matching subgraphs with a
0 linear loss function value, it can also be used for exact
subgraph matching. Here, we compare G-FINDER-Dynamic
with FilM [7]. It is worth pointing out that for each query node,
FilM returns a candidate set which contains all the possible
candidates, including potential false positives. For example,
Figure 7(a) is the result generated by FilM on PNNL-V4

Fig. 8. Running time comparison: G-FINDER-Dynamic vs. NeMa.
dataset. The number inside each query node is the number of
candidate vertices for it (e.g., a query node with 6 means that
it has 6 candidates). The total number of resulting matching
subgraphs by FilM are more than 100 (i.e., the multiplication
of the candidate numbers for all query nodes). In this case,
there is actually only one exact matching subgraph in the
underlying data graph. Therefore, the F1-Score of FilM is
close to 0. On the other hand, as we can see from Figure
7(b), the proposed G-FINDER-Dynamic generates exactly one
candidate for each query node, precisely finding the only exact
matching subgraph8.

We also compare G-FINDER-Dynamic with another algo-
rithm NeMa [21]. NeMa is for approximate matching, which
aims at finding top-k matching subgraphs. Different from
other baseline methods, NeMa treats each node attribute value
as a set of words and uses Jaccard similarity to measure
the similarity between attribute values. When comparing G-
FINDER-Dynamic with NeMa, to make a fair comparison,
we use the same dataset (IMDB) and the same query graphs
with node addition noise as NeMa. For each attribute value

8We also found that G-FINDER-Dynamic is faster than FilM (134s vs. 199
s, total running time). There is only one query graph in the PNNL dataset.



Fig. 9. Matching accuracy and running time trade-
off.

(a) G-FINDER-Dynamic Running time vs. data
graph size. 80, 160 and 240 mean the size of
the query graph.

(b) Running time vs. query graph size.

Fig. 10. Scalability of G-FINDER-Dynamic.

in IMDB, we map it to an integer value when running G-
FINDER-Dynamic.

Since both the data graph and query graph have distinct
attribute values, these two algorithms find the same matching
subgraphs, so they have the same F1-Score (the same effective-
ness). Figure 8 compares the total running time of NeMa and
G-FINDER-Dynamic. We can see that G-FINDER-Dynamic is
6 ∼ 8 times faster than NeMa.
C. Efficiency Results

Figure 9 shows the trade-off between the total running time
and matching accuracy (measured by F1-Score) of different
methods. Each point in the figure represents a pair of F1-
Score and running time, and we present 5 pairs (i.e., points)
for each method. As we can see, G-Ray, MAGE and G-
FINDER are fastest, all of which can find matching results in a
quite short time. However, the matching accuracy (X-axis) of
the proposed G-FINDER-Dynamic is much higher than other
methods. In most cases, F1-Scores of G-FINDER-Dynamic are
greater than 0.8.

Figure 10(a) and Figure 10(b) show the scalability of
G-FINDER-Dynamic. We can see that the running time of
G-FINDER-Dynamic scales near-linearly w.r.t. the number of
nodes of the data graph as well as that of the query graph.

VI. RELATED WORK

In this section, we review the related work, which can be
categorized into two groups.
A - Exact subgraph matching. Depending on the specific
problem to solve, the exact subgraph matching algorithms
can be further divided into two sub-groups. The algorithms
in the first sub-group aim to find subgraphs in a database
with many data graphs. Representative algorithms include
gIndex [14], FG-Index [23], Tree+delta [24] and so on.
They typically use graph mining techniques to find small
frequent subgraphs (e.g. path, tree) from the database, and
then use a filter-and-refine strategy to prune false data graphs.
In this way, the search space can often be greatly reduced. The
algorithms in the second sub-group mainly focus on finding an
exact subgraph from a very large data graph. Representative
algorithms includes Ullmann [25], CFL [6] and so on. The
main idea behind these algorithms is iteratively trying to map
nodes one by one from a query graph to a data graph, and
backtracing if the attempt fails.

B - Inexact subgraph matching. Inexact subgraph matching
focuses on finding approximate subgraphs on a large data
graph. There have been extensive studies on this problem.
To name a few, Tong et al. [13] propose the best-effort
pattern matching, which aims to maintain the topology of
the query. Tian et al. [12] propose an approximate subgraph
matching tool TALE with efficient indexing. Khan et al. [21]
propose a heuristic approach NeMa based on a new definition
of matching cost metric. Pientar et al. [22] propose an
algorithm called MAGE which is an improved version of
G-Ray. Different from G-Ray, it supports graphs with both
node and edge attributes. Zhang et al. propose an inexact
subgraph matching algorithm SAPPER [26] which utilizes the
hybrid neighborhood unit structures in the index. Tian et al.
[11] propose an approximate graph matching algorithm SAGA
which employs a flexible graph distance model to measure
similarities between graphs. He et al. [27] propose an index
based algorithm called Closure-Tree to support both subgraph
queries and similarity queries.

VII. CONCLUSION
In this paper, we study the approximate attributed subgraph

matching problem and develop an effective and scalable algo-
rithm (G-FINDER). First, we propose a data structure called
LOOKUP-TABLE (LTB) to efficiently index the candidates of
the query graph. Second, we propose an effective algorithm to
build and search LOOKUP-TABLE-GRAPH (LTBG) in order
to find the top-k approximate subgraphs. Finally, we conduct
extensive experiments on real world data, which demonstrate
that the proposed G-FINDER (1) achieves an up to 30% F1-
Score improvement over the best baseline method, and (1)
scales near-linearly to large data graphs with 1M+ vertices
and large query graphs with hundreds of nodes. Future work
includes generalizing the proposed G-FINDER to (a) interac-
tive subgraph matching (b) knowledge graph matching.
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IX. APPENDIX

Fig. 11. Graph transformation for G-FINDER.

When we run G-FINDER on multigraph, we first convert the
original graph into a directed graph. Figure 11 gives a simple
example. In the original graph, there are 3 edges from node1
to node2 whose labels are A, A and B, and 1 edge from
node2 to node1 whose label is B. After the transformation,
there will be only two edges between node1 and node2. For
example, the directed edge from node1 to node2 has attribute
Out : {A : 2, B : 1}.In : {B : 1}. This means that there are
two edges labeled ”A” and one edge labeled ”B” from node1
to node2. And one edge labeled ”B” from node2 to node1.


