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Abstract—Network alignment is a fundamental task in many
high-impact applications. Most of the existing approaches ei-
ther explicitly or implicitly consider the alignment matrix as
a linear transformation to map one network to another, and
might overlook the complicated alignment relationship across
networks. On the other hand, node representation learning based
alignment methods are hampered by the incomparability among
the node representations of different networks. In this paper,
we propose a unified semi-supervised deep model (ORIGIN)
that simultaneously finds the non-rigid network alignment and
learns node representations in multiple networks in a mutually
beneficial way. The key idea is to learn node representations by
the effective graph convolutional networks, which subsequently
enable us to formulate network alignment as a point set alignment
problem. The proposed method offers two distinctive advantages.
First (node representations), unlike the existing graph convo-
lutional networks that aggregate the node information within
a single network, we can effectively aggregate the auxiliary
information from multiple sources, achieving far-reaching node
representations. Second (network alignment), guided by the high-
quality node representations, our proposed non-rigid point set
alignment approach overcomes the bottleneck of the linear
transformation assumption. We conduct extensive experiments
that demonstrate the proposed non-rigid alignment method
is (1) effective, outperforming both the state-of-the-art linear
transformation-based methods and node representation based
methods, and (2) efficient, with a comparable computational
time between the proposed multi-network representation learning
component and its single-network counterpart.

Index Terms—network alignment, non-rigid, graph convolu-
tional networks

I. INTRODUCTION

Multiple networks naturally appear in many areas, ranging
from social networks on various platforms, protein-protein
interaction networks of different species, transaction networks
at different financial institutes to the knowledge graphs con-
structed by different knowledge bases and the sensored net-
works derived from multimodal sensors (e.g., Lidar). Network
alignment which aims to find the node correspondence across
multiple networks is a fundamental task to integrate multiple
networks into a worldview of what the input data represents.
Consequently, it has drawn much attention in numerous appli-
cations. For example, by identifying the overlapping entities
across multiple incomplete knowledge graphs, a unified knowl-
edge graph can be constructed to aid knowledge completion
[1]. Since many adversarial activities (e.g., smuggling) in

different contexts are often covert in multiple domains, they
are not quite detectable in each of the input networks alone.
Network alignment can integrate these isolated networks and
amplify the deceptive adversarial activities, so that they are
more detectable in the composite network [2].

Despite the extensive works on network alignment, many
of them explicitly or implicitly consider the alignment matrix
as a linear transformation matrix. For example, many tradi-
tional graph matching based methods attempt to solve the
Koopmans-Beckmann’s quadratic assignment problem [3] or
its relaxations, i.e., to maximize Tr(STA1SA2) + Tr(HTS)
where S,H are the alignment matrix and prior cross-network
node similarity matrix respectively, and A1,A2 are the ad-
jacency matrices. Existing works following this path include
Umeyama [4], BigAlign [5], NetAlign [6] and FINAL [7].
Since Tr(STA1SA2) =

∑
i,j(S

TA1)i,j(A2S
T )i,j , it can be

alternatively viewed as first generating node feature vectors
by linear transformations based on the adjacency matrices
themselves (i.e., by STA1 and A2S

T respectively) and then
maximizing the inner product similarities between the gener-
ated feature vectors (e.g., the i-th row of STA1 and A2S

T ).
However, these methods bear some fundamental limitations,
including (1) the alignment matrix S is leveraged as a lin-
ear transformation matrix and thus might oversimplify the
complicated alignment relationships across networks; and (2)
the generated feature vectors of nodes are high-dimensional
and may fall short in their representation power. To mitigate
these issues, instead of directly solving for the alignment
matrix, IONE [8] and PALE [9] learn the low-dimensional
node embedding vectors in different networks, based on which
the alignment can be further inferred. Nevertheless, these
methods ignore the node attributes that are often accompanied
in real-world networks. Besides, these approaches suffer from
the obstacle that node representations could be arbitrarily and
imperfectly rotated and/or translated across different networks
so that they might not be directly comparable.

To tackle these limitations, we propose to go beyond the
linear transformation assumption, and hypothesize that net-
work alignment and node representation learning are mutually
beneficial with each other due to the following reasons.
First, network alignment helps node representation learning.
Intuitively, if nodes are aligned across networks, the structural
and attribute information of the nodes in one network can be
integrated with the nodes in the other network as the auxiliary
information, leading to a far-reaching representation learning978-1-7281-0858-2/19/$31.00 c©2019 IEEE



strategy. Second, node representation learning helps network
alignment. With the premise that node representations are of
high qualities, finding node alignment in the non-Euclidean
space (i.e., directly across networks) can be translated to the
point set alignment problem1 in the Euclidean space. This
naturally renders the possibility of unveiling the alignment of
nodes by inferring the non-rigid transformations which are
expected to lead to the more accurate alignment.

Armed with these hypotheses, we propose to solve the non-
rigid network alignment problem by simultaneously learning
node representations across multiple networks. The key ideas
are two-fold. First, to learn node representations of multiple
networks, we design a new convolutional operator that can
aggregate the multi-sourced information. Second, in order
to align node representations, we propose a semi-supervised
multi-view non-rigid point set alignment algorithm that first
learns the point set transformation function and then infers
the alignment based on the transformed node representations.
The main contributions are summarized as follows.
• Problem Definition. To our best knowledge, we are the

first to address the non-rigid network alignment problem.
• Model and Algorithms. We propose a semi-supervised

model ORIGIN which is able to simultaneously (1) learn
node representations of different networks by multi-graph
convolutional networks (Multi-GCN) and (2) unveil the
non-rigid network alignment across multiple networks.

• Evaluations. Extensive experiments on real-world net-
works demonstrate that our proposed alignment approach
(1) outperforms both the existing linear transformation
based methods and node representation based methods,
and (2) is efficient for node representation learning with
a comparable computational time between the proposed
Multi-GCN and its single-network counterpart.

II. PROBLEM DEFINITION

Table 1 summarizes the main symbols and notations used
throughout the paper. We use the bold uppercase letters to
denote matrices (e.g., X), bold lowercase letters (e.g., x) for
vectors and letters not in bold for scalars (e.g., α). We use
X(u, v) to denote the entry at the intersection of the u-th
row and v-th column of the matrix X. Besides, we express
xu = X(u, :) as the u-th row of X and X(:, v) as the v-th
column of X. We denote the transpose of matrix X as XT

and the trace of matrix X as Tr(X).

A. Non-Rigid Network Alignment Problem

The concept of non-rigid transformation is rooted in the
point set alignment problem to align the 2D or 3D point sets
such that one point set can be maximally overlapped with an-
other point set [10]. Unlike the linear or affine transformations
which are restricted to some explicitly expressed transforma-
tion functions, non-rigid transformation has more flexibility to
unveil the complicated alignment among point sets as it does
not require any specific form of the transformation functions.

1We consider node representations as the point sets in the Euclidean space.

TABLE I: Symbols and Notations
Symbols Definition
G1, G2 the input undirected networks
A1,A2 the adjacency matrices of G1 and G2
X0,Y0 the node attribute matrices of G1 and G2

H an optional n1 × n2 cross-network node similarity matrix
I an identity matrix
S the output n1 × n2 alignment matrix

S1,S2 sampled alignment matrices
d the dimension of the output node representations

X̃, Ỹ the node representation matrices by Inter-GCNs
X,Y the node representation matrices by Multi-GCN

f the non-rigid transformation function on X
Z the transformed node representation matrix of G1 by f

κ1, κ2 the kernel function for the point view and graph view
κ,K the combined kernel function and its kernel matrix
L+ the labeled node pairs which are aligned a priori

n1, n2 # of nodes in G1,G2
α, α1, α2, λ the regularization parameters

Inspired by this, we translate the network alignment problem
to the point set alignment problem. That is, given the input
networks that are known to be the non-Euclidean data [11], we
aim to (1) represent the nodes in the Euclidean space so that
they can be naturally viewed as point sets, and (2) align nodes
in different networks (i.e., different point sets) by inferring the
non-rigid transformation among them. Formally, the non-rigid
network alignment problem is defined as below.

Problem 1: NON-RIGID NETWORK ALIGNMENT.
Given: (1) undirected networks G1 = {V1,A1,X

0} and
G2 = {V2,A2,Y

0} with V1,V2 as the node sets where |V1| =
n1, |V2| = n2, A1,A2 as the adjacency matrices and X0,Y0

as the input node attribute matrices of G1,G2 respectively, (2)
a set of labeled node pairs L+ = {(uli , vli)|i = 1, · · · , L}
where node uli in G1 is aligned with node vli in G2 a priori,
(3) an optional prior cross-network node similarity matrix H.

Find: (1) an n1×n2 soft alignment matrix S where S(u, v)
represents to what extent node u in G1 is aligned with node v
in G2, and (2) node representation matrices Z,Y of G1,G2.
Remarks. If there is no prior knowledge of the cross-network
node similarity matrix, we can alternatively construct H
by some heuristics, such as node degree similarity. Though
we consider network alignment problem between two input
networks in the paper, it is straightforward to generalize
our proposed model to handle multiple network alignment.
Specifically, after computing the pair-wise alignment between
each pair of networks, we can postprocess (e.g., by [12]) to
find the alignment among more than two input networks.

B. Preliminary: Graph Convolutional Networks

Graph neural networks have attracted lots of research inter-
ests in the recent years. Among others, graph convolutional
networks have achieved great success in node representation
learning [13], [14]. The main idea of graph convolutional net-
works lies in generalizing the traditional convolution operators
on the Euclidean data (e.g., images) to graphs such that node
information can be aggregated based on the graph structure.
Here, we briefly review a spatial-based graph convolutional
network (namely GraphSage [14]) that will be used as a build-
ing block in our ORIGIN model to learn node representations
for a single network. Given a graph G1, each node u ∈ V1



aggregates hidden representations from its neighborhood Nu

and combines the aggregated representation with its current
representation. Formally, it is formulated as

x̃t
Nu

= AGGREGATEt({x̃t−1
u′ , ∀u′ ∈ Nu}) (1)

x̃t
u = σ

(
[x̃t−1

u ‖x̃N t
u
]Wt

)
(2)

where [·‖·] represents the concatenation of two vectors and
σ(·) is the non-linear activation function. x̃t

u is the represen-
tation of node u and Wt denotes the weight matrix at the
t-th layer. Note that when t = 0, x̃0

u is initialized by the
input attributes of node u, i.e., x̃0

u = X0(u, :). Moreover,
according to [14], the GraphSage model can be instantiated
by Mean, LSTM and Pooling aggregators. In this paper, we
choose the MEAN aggregator due to its high representation
power and simplicity. It is notable that GraphSage is capable of
mini-batch training by uniformly sampling with replacement
a fixed size of the neighboring nodes. For an input network
G1, the unsupervised GraphSage minimizes the following loss
function based on the SkipGram with negative sampling [15].

JG1(X̃) = (3)∑
u∈V1

∑
u′∈Cu

− log
(
σ(x̃T

u x̃u′)
)
−Q · Eu′

n∼Pn(u′) log
(
σ(−x̃T

u x̃u′
n
)
)

where u′ ∈ Cu represents that node u′ co-occurs with u on a
fixed-length random walk, Q defines the number of negative
samples and Pn(u′) is the negative sampling distribution.

III. PROPOSED MODEL

In this section, we present ORIGIN, a deep semi-supervised
model that can simultaneously learn the node representations
and find the non-rigid alignment across the input networks in
a symbiotic way. We start by proposing a graph convolutional
network model for multiple networks (Multi-GCN) to learn
far-reaching node representations of the input networks. Next,
we introduce a multi-view approach to unveiling the non-
rigid alignment among the nodes which are represented by the
point sets in the Euclidean space, followed by the optimiza-
tion algorithm to effectively and efficiently learn both node
representations and node alignment. The overall framework
of ORIGIN is shown in Figure 1.

A. Node Representation Learning for Multiple Networks

A - Aggregation and Combination. Many existing spatial-
based graph convolutional networks (e.g., GraphSage [14])
essentially define two operators: (1) Intra-Aggregation that
aggregates node hidden representations (or node attribute
information at the first layer) from the neighboring nodes
(e.g., Eq. (1)) underlying a single network and (2) Intra-
Combination that combines the current hidden representation
with the resultant aggregated representation of the node as
the updated node representation (e.g., Eq. (2)). However,
this might not be able to provide sufficiently informative
node representations in the multiple networks scenario given
that multiple networks might contain some complementary
information for each other. To remedy this restrictive situation,
in addition to the separate graph convolutional networks for
single networks (named as Intra-GCNs), we propose an Inter-
GCN component that integrates node representations across
different networks. The intuition is to view the node alignment

as the probabilistic cross-network node similarity and bridge
different networks such that nodes in one network can be
considered as the virtual neighbors of the nodes in the other
network if they are likely to be aligned. For example, if node
u in G1 is similar to node v in G2 (i.e., likely to be aligned),
we can view node v as a virtual neighbor of node u. In this
way, the representation of node v can be used to aggregate
the neighboring node representations for node u, and vice
versa. Thus, given two separate Intra-GCNs that aggregate
node information in the same network and output the node
representations x̃u, ỹv ∈ Rd, ∀u ∈ V1, v ∈ V2, we define the
cross-network aggregation as

x̂u = AGGREGATEcross(x̃u) =
∑
v∈V2

S(u, v)ỹv (4)

ŷv = AGGREGATEcross(ỹv) =
∑
u∈V1

S(u, v)x̃u (5)

where S is the alignment matrix and S(u, v) represents to what
extent node u in G1 and node v in G2 are aligned.

It is crucial to properly leverage the alignment matrix S
in Eq. (4) and Eq. (5) from the following two perspectives.
First (aggregation efficiency), the node alignment matrix is
often quite dense, leading to an O(nd) time complexity to
compute the cross-network aggregation for each node (e.g.,
x̂u) which is prohibitive especially for large-scale networks.
Second (aggregation localization), when S is dense, Eq. (4)
and Eq. (5) aggregate the representations of most or even all
of the nodes from one network for the other, i.e., smoothing
globally over the networks. This will further make the aggre-
gated representations of different nodes less distinguishable.
To overcome these issues, since we are given the labeled node
pairs L+ = {(uli , vli)|i = 1, · · · , L} that indicates which
nodes are aligned, we set S(uli , v) = S(u, vli) = 0 for all
u ∈ V1 and v ∈ V2 except that S(uli , vli) = 1. Besides,
for all the other nodes whose alignment are unknown (e.g.,
u /∈ {uli , ∀i = 1, · · · , L}, v /∈ {vli , ∀i = 1, · · · , L}), we
propose to downsample the alignment matrix S as follows.
For each node u /∈ {uli , ∀i = 1, · · · , L}, we only preserve
the K largest values S(u, vqk), k = 1, · · · ,K column-wise
from S(u, :) for Eq. (4) and denote the sampled matrix as
S1. We then normalize it such that

∑K
k=1 S1(u, vqk) = 1.

Similarly, we sample K values S(upk
, v) for each node

v /∈ {vli , ∀i = 1, · · · , L} row-wise from S(:, v) and denote
it as S2 where

∑K
k=1 S2(upk

, v) = 1 after normalization.
This sampling and normalization process is summarized in
Algorithm 1. The cross-network aggregation is re-written as

x̂u = AGGREGATEcross(x̃u) =
K∑

k=1

S1(u, vqk)ỹvqk

ŷv = AGGREGATEcross(ỹv) =
K∑

k=1

S2(upk
, v)x̃upk

(6)

We show an illustrative example in Figure 2 where K = 2
and nodes vq1 , vq2 are sampled for cross-network aggregation
for x̃u through S1(u, vq1) and S1(u, vq2) respectively. For
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Fig. 1: Illustration of the proposed ORIGIN model. (a) The Multi-GCN module that learns node representations of the input
networks by intra-network and cross-network aggregations and combinations. (b) The point set alignment process that first
displaces the node representations of G1 to those of G2, and then infers node alignment which will be fed back to Multi-GCN.

Algorithm 1 SAMPLE(S,K).
Input: (1) the current alignment matrix S, (2) the labeled

node pairs L+ and (3) the sample size K.
Output: sampled alignment matrix S1,S2.

1: Initialize S1 = S2 = S;
2: for i = 1→ L do
3: Set S1(uli , vli) = S2(uli , vli) = 1;
4: Set S1(u, vli) = S2(uli , v) = 0, ∀u 6= uli , v 6= vli ;
5: end for
6: Preserve top-K nonzero elements in S1(u, :), ∀u /∈
{uli , ∀i = 1, · · · , L};

7: Preserve top-K nonzero elements in S2(:, v), ∀v /∈
{vli , ∀i = 1, · · · , L};

8: Normalize S1(u, :), ∀u = 1, · · · , n1;
9: Normalize S2(:, v), ∀v = 1, · · · , n2;

10: Output S1, S2.

cross-network combination, we use

xu = COMBINEcross(x̃u, x̂u) = [x̃u‖x̂u]Wcross + b1

yv = COMBINEcross(ỹv, ŷv) = [ỹv‖ŷv]Wcross + b2

(7)

where xu,yv ∈ Rd are the output node representations by
the proposed Multi-GCN model. The weight matrix Wcross ∈
R2d×d is shared in both equations as it basically measures how
to combine the representations learned by Intra-GCNs and by
Inter-GCN for cross-network combinations.
B - Loss Functions. To learn the far-reaching node represen-
tations that can simultaneously maintain the local structural
information within a single network and the cross-network rep-
resentation consistency, we aim to minimize the loss function

JGCN = JG1(X) + JG2(Y) + λJcross(X,Y) (8)

where JG1(X),JG2(Y) have the same formula as Eq. (3),
but are minimized over X,Y respectively instead of X̃, Ỹ.
Minimizing JG1(X), JG2(Y) encourages the representations
of the nearby nodes to be similar and the representations of
disparate nodes to be dissimilar. Besides, to impose the consis-

Aggregation Example

Here, we use top-2 cross-net aggregation. Benefits:
(1) linear complexity,
(2) only using parts of nodes in 𝐺2 so that the aggregation is not smoothed 
over all nodes in 𝐺2

𝒢1

𝒢2

: Edges

: Intra-network
aggregation

: Cross-network
aggregation

𝑣𝑞2
𝑣𝑞1

𝑺1(𝑢, 𝑣𝑞2)

𝑺1(𝑢, 𝑣𝑞1)

𝑢

Fig. 2: An illustrative example of the aggregations in the
multi-GCN model (K = 2). Red solid lines represent the
aggregations from node neighborhood within a single network
in Intra-GCN while green dashed lines represent the cross-
network aggregations in Inter-GCN.

tency of the node representations between different networks,
we minimize the distance between the node representations
of one network and those computed by the aggregations from
the other network via alignment. Specifically, given the node
representations xu, ∀u ∈ G1 and yv, ∀v ∈ G2, we aim to
minimize the following disagreement loss.

Jcross(X,Y) =
∑
u∈V1

‖xu −
K∑

k=1

S1(u, vqk)yvqk
‖22

+
∑
v∈V2

‖yv −
K∑

k=1

S2(upk
, v)xupk

‖22

(9)

Note that for (uli , vli) ∈ L+, since S1(uli , vli) = 1 is
the only nonzero entry in the row of uli , the first line
in Eq. (9) is equivalent to ‖xuli

− yvli
‖22, enforcing the

representation of node uli in G1 to be close to that of its
aligned node vli in G2. However, one computational issue
that resides in the Eq. (9) is that the node representations
of all the other unlabeled nodes are nested with each other.
For example, the first line needs the node representations
yvqk

, ∀k = 1, · · · ,K which requires to explicitly calculate
all node representations of G2 (i.e., Y) in each iteration
in the worst case. This is impractical especially when one



wants to use stochastic training methods. Thus, we further
simplify the terms in Eq. (9). For brevity, we only take∑K

k=1 S1(u, vqk)yvqk
as an example, and rewrite it as below.

K∑
k=1

S1(u, vqk)yvqk
=

K∑
k=1

S1(u, vqk)
(

[ỹvqk
‖ŷvqk

]Wcross + b2

)
=

K∑
k=1

K∑
k′=1

S1(u, vqk)S2(upk′ , vqk)x̃up
k′

Wc2

+
K∑

k=1

S1(u, vqk)
(
ỹvqk

Wc1 + b2

)
=

K∑
k=1

S1(u, vqk)(ỹvqk
Wc1 + b2) +

∑
k′=1

(S1S
T
2 )(u, upk′ )x̃up

k′
Wc2

=

[
K∑

k=1

S1(u, vqk)ỹvqk
‖
∑
k′=1

(S1S
T
2 )(u, upk′ )x̃up

k′

]
Wcross + b2

where Wc1 and Wc2 are the first and second d rows of Wcross
respectively. Based on the above equations, we can rethink of
the computation for the aggregated representation of xu (i.e.,∑K

k=1 S1(u, vqk)yvqk
) as two steps. First, we concatenate (1)

the result of the cross-network aggregation x̂u and (2) the
result (denoted by x̄u) of the aggregation among the nodes
upk′ from the same network G1 weighted by (S1S

T
2 )(u, upk′ ).

Then, it is equivalent to
K∑

k=1

S1(u, vqk)yvqk
= [x̂u‖x̄u]Wcross + b2 (10)

Nevertheless, as S1S
T
2 is likely to be a dense matrix, the

aggregations for x̄u gather the information globally from most
of the other nodes, leading to a less emblematic x̄u and
a higher computational cost. To address this issue, we only
preserve the nonzero (S1S

T
2 )(u, upk′ ), ∀upk′ ∈ Cu (i.e.,

nodes that co-occur with node u in some random walks). In
this way, the extra node representations that are needed only
include x̃up

k′
which can be efficiently calculated by feeding

node upk′ ∈ Cu to the Intra-GCN1 module. Accordingly, we
can simplify the second term in Eq. (9) similarly.

B. Multi-View Point Set Alignment

After we obtain the node representations learned by the
proposed Multi-GCN model, it seems that we can simply learn
whether node u in G1 is aligned with node v in G2 based on
their node representations xu and yv . However, as the Multi-
GCN model only preserves the structural consistency within
the same networks (i.e., Eq. (3)) and the consistency between
node representations and their aggregated representations from
the other network (i.e., Eq. (9)), node representations xu and
yv are still likely not to be close with each other in the
Euclidean space even if node u and node v are supposed
to be aligned. This limitation could result in a suboptimal
alignment or even totally mislead the alignment. To mitigate
this limitation, we propose to translate the network alignment
problem over the nodes to a non-rigid point set alignment
(PSA) problem where each point is represented by the repre-
sentation of the corresponding node in the Euclidean space.

Specifically, given a set of labeled node alignment L+ =
{(uli , vli)|i = 1, · · · , L}, we want to displace each point xuli

towards its aligned point yvli
by some non-rigid vector-valued

transformation function f ∈ Rd such that the maximum point-
to-point overlappings can be achieved. Mathematically, this
can be formulated as a functional minimization problem.

min
f

L∑
i=1

‖xuli
+

1

2
f(xuli

)− yvli
‖22 (11)

However, Eq. (11) is an ill-posed problem without any con-
straints imposed on f . Instead, we model the above opti-
mization problem by requiring the non-rigid function f to lie
within a specific functional space, namely a reproducing kernel
Hilbert space (RKHS) denoted by H. Then we have

min
f

L∑
i=1

‖xuli
+

1

2
f(xuli

)− yvli
‖22 + α‖f‖2H (12)

where ‖f‖2H is the RKHS norm of f in H and α is the
regularization parameter. In addition, since each point (e.g.,
xuli

) intrinsically has two interpretations (or views): points
in the Euclidean space (i.e., node representations) and the
corresponding nodes of the networks in the non-Euclidean
graph space, we further consider to divide H into two RKHS
H1,H2 by H = H1 ⊕H2 such that

H =
{
f |f(x) = f1(x) + f2(x), f1 ∈ H1, f2 ∈ H2

}
and the RKHS norm ‖f‖2H can be re-written as

‖f‖2H = (13)

min
f=f1+f2

f1∈H1

f2∈H2

α1‖f1‖2H1 + α2‖f2‖2H2 + µ

n1−L∑
j=1

[
f1(xurj

)− f2(xurj
)
]2

where f1(x), f2(x) are two transformation functions in the
RKHS H1,H2 corresponding to the point view and graph
view, respectively. Besides, U = {urj |j = 1, · · · , n1 −
L} represents the unlabeled nodes in G1 whose alignment
with the nodes in G2 are not labeled. Intuitively, the term[
f1(xurj

)− f2(xurj
)
]2

regularizes the transformation func-
tions f1, f2 over the unlabeled node urj to be consistent in two
different views (i.e., moving xurj

coherently in two views).
According to [16], let H1,H2 be with the reproducing kernels
κ1, κ2, then the RKHS H is with the reproducing kernel:

κ(u, u′) = φ(u, u′)− µauΨaT
u′ (14)

Here, φ(u, u′) = α−11 κ1(u, u′) + α−12 κ2(u, u′) and au =
α−11 k1

uU − α
−1
2 k2

uU where ks
uU = [κs(u, urj ), urj ∈ U ] for

s = 1, 2 is a row vector measuring the kernel values between
u and all the other unlabeled nodes in U . Besides, Ψ is a
positive definite matrix computed by Ψ = (I + µΦ)−1 where
Φ denotes the kernel matrix of φ(u, u′) over all the unlabeled
nodes. Furthermore, by the Representer Theorem [17], the
solution to Eq. (13) is a function that

f(xu) = K(u, I)Γ (15)

where I = {uli |i = 1, · · · , L} includes the indices of the
labeled nodes in G1, K represents the kernel matrix corre-



Algorithm 2 Non-rigid Network Alignment (ORIGIN).
Input: (1) undirected networks G1 = {V1,A1,X

0} and G2 =
{V2,A2,Y

0}, (2) a set of labeled cross-network node
pairs L+ that are aligned, (3) the prior node similarity
matrix H, (4) the parameters α, α1, α2, λ,K, ρ, (5) the
total number of iterations itermax.

Output: (1) the alignment matrix S between G1,G2, and (2)
node representations Z,Y of G1,G2.

1: Initialize the alignment matrix S by H;
2: Compute the kernel matrix K2 = I + D

− 1
2

1 A1D
− 1

2
1 ;

3: for iter = 1→ itermax do
4: Compute S1,S2 by SAMPLE(S, K);
5: Generate minibatches B1 = {B11, · · · ,B1B},B2 =

{B21, · · · ,B2B} for G1,G2 by GraphSage models;
6: for b = 1→ B do
7: Generate x̃u, ỹv for u ∈ B1

b , v ∈ B2
b by GraphSage;

8: Compute x̂u, ŷv for u ∈ B1
b , v ∈ B2

b by Eq. (6);
9: Compute xu,yv for u ∈ B1

b , v ∈ B2
b by Eq. (7);

10: Update hidden layer parameters by optimizing JGCN;
11: end for
12: Compute X,Y by hidden layer parameters;
13: Compute K1 by K1(u, u′) = exp(−‖xu − xu′‖22);
14: Compute K by Eq. (14);
15: Compute Γ by Eq. (19);
16: Compute Z = X + 1

2K(:, I)Γ for G1;
17: Update alignment S by S(u, v) = exp(−‖zu − yv‖22);
18: Generate pseudo labels based on S;
19: Anneal K ← K/ρ;
20: end for
21: Output the alignment matrix S;
22: Output node representations Z,Y of G1,G2 respectively.

sponding to the kernel κ and Γ includes the coefficients to be
solved. By substituting Eq. (15) to Eq. (12), we have

min
Γ
JPSA =

L∑
i=1

‖xuli
+

1

2
K(uli , I)Γ−yvli

‖22+αTr(ΓTKIΓ)

(16)
where KI = K(I, I).

To construct the kernel κ based on Eq. (14), we use the
Gaussian RBF kernel κ1(u, u′) = exp(−‖xu − xu′‖22) for
the point view. In terms of the graph view, many existing
kernels have been proposed, such as diffusion kernel [18], p-
step random walk kernel [19]. In this paper, we choose the 1-
step random walk kernel due to its computational simplicity.
In particular, the kernel matrix corresponding to the kernel
κ2 is formulated as K2 = 2I − L̃ = I + D

− 1
2

1 A1D
− 1

2
1

where D1 is the diagonal degree matrix of A1. By optimizing
Eq. (16) , we can solve for Γ and compute the transformed
node representations of G1 by zu = xu + 1

2K(u, I)Γ. Such
transformed node representations will then be compared with
Y to infer the alignment with the nodes in G2. Specifically,
we calculate the cross-network node similarity between node
u in G1 and node v in G2 as the alignment matrix by
S(u, v) = exp(−‖zu−yv‖22), which measures the confidence
of aligning the two nodes.

C. Optimization Algorithm

The overall loss function of the proposed model is

J = JG1(X) + JG2(Y) + λJcross(X,Y)︸ ︷︷ ︸
Multi-GCN

+ JPSA︸︷︷︸
point set alignment

(17)
To minimize the above loss function, it is straightforward
to simultaneously learn all the parameters in an alternat-
ing manner. However, the main drawbacks of this approach
include: (1) if the node representations of G1 and G2 are
not representative enough, the inferred alignment could be
suboptimal or even misleading, and (2) at the initial stages,
as the alignment matrix S is expected to be imprecise, the
learning of node representations is very likely to be misled
(e.g., in Eq. (6)). Even worse, these drawbacks could make
the learning algorithm diverge.

Instead, we propose the optimization algorithm, where each
training cycle is divided into two stages. In the first stage,
we train the proposed Multi-GCN model to learn node repre-
sentations with the current alignment matrix S. In this paper,
we use the GraphSage models with Mean aggregators [14] for
Intra-GCN1 and Intra-GCN2 and hence the Multi-GCN model
can be optimized by mini-batched stochastic gradient descent
(SGD). We note that other GCN models can also be also used
as the Intra-GCNs (e.g., [20]). In the second stage, we learn
the parameter Γ by solving the optimization problem Eq. (16).
Specifically, we compute the gradient of Eq. (16) w.r.t. Γ as

∂JPSA

∂Γ
=

1

2
KT
IKIΓ+KT

I (X(I, :)−Y(I, :))+2αKIΓ (18)

Then we can obtain the solution of Γ by gradient descent.

Γ = Γ− η ∂JPSA

∂Γ
(19)

where η is the learning rate. Note that the time complexity of
Eq. (19) in each iteration is O(|L+|2d) which is sub-quadratic
w.r.t. the number of nodes n. After that, we calculate the
displaced node representations of G1 by Z = X + 1

2K(:, I)Γ,
followed by computing the cross-network node similarity
matrix as the alignment matrix S. Next, the alignment matrix
S will be fed back to Multi-GCN after the pseudo-labeling and
sampling steps. To generate the pseudo-labels indicating which
node in G1 is aligned with which node in G2, we first conduct
a greedy matching process on S to obtain all one-to-one node
alignment [12], and then leverage the alignment consistency
proposed in [7] to select the confident alignment as the pseudo
labels. To be specific, note that the alignment consistency
assumes if two nodes are aligned, their corresponding close
neighbors are likely to be aligned. In this way, we heuristically
select the alignment between node u and node v obtained by
greedy matching as the pseudo alignment label, if nodes (u, v)
are the respective neighbors of nodes (uli , vli) ∈ L+. The
overall optimization algorithm is summarized in Algorithm 2.
Note that as the model is trained, matrix S should indicate
more accurate node alignment. For this reason, we reduce the
sample size K used in Algorithm 1 by ρ (Line 19).



TABLE II: Statistics of the networks.
Category Network # of Nodes # of Edges # of Attributes
Citation Cora 2,708 5,429 1,433
Citation Citeseer 3,327 4,732 3,703
Social Foursquare 5,313 54,233 5
Social Twitter 5,120 130,575 5

IV. EXPERIMENT

In this section, we present experimental results of the pro-
posed model ORIGIN. We evaluate in the following aspects:
• Effectiveness: How accurate is our algorithm to align net-

works and how robust is our algorithm to the parameters?
• Efficiency: How fast is our algorithm?

A. Experimental Setup

Datasets. We evaluate the proposed model on four real-
world networks. The statistics of all datasets are summarized
in Table II.
• Citation networks: We consider two citation networks:

Cora and Citeseer2. Each node represents a document
and each edge indicates a citation link between two
documents. We use the bag-of-words representations of
the documents as the node attributes. For both networks,
we convert the originally directional edges to undirected
to make the networks undirected.

• Social networks: We consider two social networks in-
cluding Foursquare and Twitter [21]. Each node in the
networks represents a user and each edge represents
the friendship between two users. For each node in the
networks, we compute the degree, the number of edges in
the egonet, PageRank score, betweenness and closeness
centralities and use them as node attributes. We then
convert them to undirected networks.

We build the following three scenarios to evaluate the
alignment performance. In each scenario, we randomly select
50%, 30% and 20% cross-network node pairs from the ground-
truth as labeled alignment L+.
• Cora-1 vs. Cora-2. Given the Cora network (denoted by
G1 = {V1,A1,X

0}), we first generate a random permu-
tation matrix P which is used as the ground-truth align-
ment. We treat the permutated matrix A2 = PTA1P and
Y0 = PTX0 as the adjacency matrix and node attributes
of the second network G2. We also randomly remove 5%,
15% edges from two networks and add 10%, 15% noise
on the node attributes of two networks, respectively. We
compute node degree similarity for H.

• Citeseer-1 vs. Citeseer-2. This scenario is built similarly.
• Foursquare vs. Twitter. In this scenario, we aim to

align nodes in Foursquare and Twitter networks. There
are 1,609 common nodes between two networks which
are used as the ground-truth to evaluate the alignment.
Besides, we compute the degree similarity matrix as H.

Baseline Methods. We compare our method ORIGIN with
the following network alignment algorithms, including (1)
SageAlign that learns node representations by two separate

2https://linqs.soe.ucsc.edu/data

GraphSage models [14], followed by the proposed point set
alignment algorithm, (2) FINAL-N [7], [22], (3) FINAL-P
which is a non-attributed variant of FINAL-N, (4) REGAL
[23], (5) IONE [8], and (6) PriorSim which aligns the nodes
directly based on the prior node similarity matrix H. To
make a fair comparisons, we set H(uli , :) = H(:, vli) = 0
except that H(uli , vli) = 1, ∀i = 1, · · · , L for FINAL-N,
FINAL-P and PriorSim to incorporate the label information.
For REGAL, we slightly modify the original released code by
setting the constructed node similarity matrix to be factorized
by HREGAL(uli , vli) = 1, ∀i = 1, · · · , L .
Hyperparameters. For all the effectiveness evaluations, we
set λ = 0.1, K = 20, α = 0.1, α1 = 0.01, α2 = 1, ρ = 1.2.
We use 0.001 as the learning rate. We keep the default values
for all the hyperparameters used in the baseline methods.
Machines. The proposed method ORIGIN is implemented
in Tensorflow [24] with Adam optimizer. We use one Nvidia
Titan X with 12G RAM as GPU. The CPU-based methods are
performed with four 3.6GHz Intel Cores and 32G RAM.

B. Effectiveness Results

We first evaluate the alignment accuracy of the proposed
ORIGIN compared with the baseline methods. To compute the
alignment accuracy, we conduct a greedy matching [12] as the
post-processing step to obtain the one-to-one node mapping
between two networks, followed by calculating the percentage
of all ground-truths that can be correctly aligned as the align-
ment accuracy. The results are summarized in Figure 3. We
have the following observations. First, our proposed method
ORIGIN outperforms all the baseline methods. Specifically,
our method can achieve an up to 5% improvement in terms
of the alignment accuracy compared with FINAL-N, a strong
baseline for attributed network alignment. Recall that FINAL-N
can be viewed as a method based on the linear transformation
to maximize a variant of Koopmans-Beckmann’s QAP. This
demonstrates the benefits of the non-rigid network alignment.
Besides, our method can achieve better alignment results
than other node representation-based methods, namely REGAL
and IONE. Second, our method achieves an at least 15%
accuracy improvement compared with SageAlign, a variant
of ORIGIN. This shows that the node representations of
multiple networks jointly learned with the proposed Multi-
GCN are more powerful for the specific alignment task.
In the meanwhile, SageAlign itself also demonstrates the
effectiveness of the proposed point set alignment algorithm
to align node representations in the Euclidean space. Finally,
as the amount of labeled alignment decreases, our method
consistently outperforms other baseline methods.

To further verify if our method can correctly align unlabeled
nodes, we compare the precision@30 score with the baseline
methods. We define the precision@30 as follows. For any
unlabeled node u in G1, if the correct alignment (say node
v in G2) belongs to the top-30 most similar nodes to node
u, we say there is a hit. We calculate the precision@30 by
precision@30=(# of hits)/(# of unlabeled nodes). As Figure 4
shows, our method achieves higher precision@30 scores than

https://linqs.soe.ucsc.edu/data
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(a) 50% labeled alignment.
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(b) 30% labeled alignment.
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Fig. 3: Alignment accuracy with different amount of labeled alignment. (Best viewed in color.)
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Fig. 4: Precision@30 with different amount of labeled alignment. (Best viewed in color.)

baseline methods in most cases (i.e., our method is slightly
lower than FINAL-N only in a few cases).

We also visualize in Figure 5 the node representations
of networks cora-1 and cora-2 in 2-D space by t-SNE and
demonstrate the benefits of point set alignment. Here, we use
different colors as different node classes, which are known
a priori as additional information, to help indicate the node
correspondence. For example, nodes in purple in network cora-
1 are expected to be aligned with the purple nodes in network
cora-2. By comparing Figure 5 (a) (i.e., X) and Figure 5 (c)
(i.e., Y), we observe that despite minimizing the distances
among node representations across networks by Eq. (9), nodes
that ought to be aligned may still be far away from each other
in the Euclidean space, such as the nodes in purple of two
networks. This incomparability among node representations
could further mislead the node alignment. In contrast, by our
proposed non-rigid point set alignment, node representations
of network cora-1 can be moved towards those of network
cora-2. Consequently, the displaced node representations Z
shown in Figure 5 (b) are closer to the representations Y of
their aligned counterparts in network cora-2.

Moreover, we conduct a parameter study on cora-1 and cora-
2 dataset about how the importance of different views used
for point set alignment (i.e., α1, α2) influences the alignment
accuracy. As Figure 6 shows, the alignment accuracy is stable
over a wide range of α1, α2 (0.01 ≤ α1, α2 ≤ 10). Meanwhile,
we observe that when α2 > α1, the proposed method achieves
higher alignment accuracies than those when α2 ≤ α1. This
indicates the graph view indeed benefits point set alignment
by calibrating the alignment based on a single point view.

C. Efficiency Results

We evaluate the efficiency of our proposed Multi-GCN for
three alignment scenarios in terms of the running time per

mini-batch. We fix each mini-batch with size 200 and compare
our method (Multi-GCN) with its single-network counterpart
(GraphSage). In particular, we measure the time cost of Multi-
GCN minimizing Eq. (8) and the cost of GraphSage on two
networks minimizing the loss Eq. (3). As shown in Figure
7, the time cost of the proposed Multi-GCN is very close
to the GraphSage counterpart. This suggests that the extra
computational cost for Inter-GCN, which brings the alignment
improvement as shown above, is actually quite light.

V. RELATED WORK

Here, we briefly review the related works on network align-
ment, node representation learning and point set alignment.
A. Network Alignment

Many traditional graph matching based methods formulate
the problem into a Koopmans-Beckmann’s quadratic assign-
ment problem (KBQAP) [3]. However, it is very hard to
directly solve KBQAP in an exact way. The early attempts [4],
[25] to approximate the problem propose to use the spectral
relaxation, i.e., relaxing the assignment matrix to an orthog-
onal matrix. Bayati et. al formulate the network alignment
problem by relaxing the assignment matrix in KBQAP to a
doubly stochastic matrix [6]. Recently, Zhang et. al adopt the
attribute consistency to calibrate the structure-based alignment
and formulate the attributed network alignment problem as
a convex quadratic problem [7]. Note that its formulation
can be also derived into a relaxed KBQAP. These methods
can be viewed as using linear transformations to represent
the networks and then aligning those node representations
in the Euclidean space. However, the linear transformation
assumption might oversimplify the complicated alignment
relationship. Other existing network alignment methods in-
clude multilevel network alignment [26], high-order network
alignment [27] and incomplete network alignment [28].



(a) Cora-1 node representations. (b) Displaced cora-1 representations. (c) Cora-2 node representations.
Fig. 5: 2-D t-SNE visualization of node representations of networks cora-1 and cora-2. (Best viewed in color.)
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Fig. 7: Running time per
mini-batch with size of 200.

Thanks to the recent advances in the network representation
learning, several works are proposed to solve the alignment
problem in the Euclidean space instead of directly aligning
the networks in the non-Euclidean space. Among others, [8],
[9] propose network embedding based alignment methods
that simultaneously preserve the node proximity within a
single network and require the aligned nodes to coincide in
the embedding space. These methods typically only leverage
the structural information of the input networks. To encode
node attributes, Heimann et. al propose a matrix factoriza-
tion method over some carefully constructed cross-network
node similarity matrix [23]. However, most of these methods
enforce the node representations of the known aligned node
pairs to be close with each other, yet overlook the fact that
the node representations of other unlabeled node pairs might
still be incomparable due to the imperfect rotations.

B. Node Representation Learning

Following the idea of representation learning, especially
word embedding [15], many network embedding methods
have been proposed over years. To name a few, DeepWalk
conducts the fixed-length random walks to build the contexts
of each node and then applies the SkipGram model to learn the
node embedding [29]. Node2vec [30] proposes a combination
of BFS and DFS to construct node contexts. Similar works
include [31], [32], [33]. Recently, many graph neural network
models have been proposed to learn node representations by
aggregating node information from the neighborhood. In gen-
eral, based on the types of aggregators, graph neural networks
can be categorized into graph convolutional networks [13],
[14], graph attention networks [34], [35], gated graph neural
networks [36] and jumping knowledge networks [20]. Among
others, graph convolutional networks (GCN) mainly have two

categories: spectral-based GCN (e.g., [13]) and spatial-based
GCN (e.g., [14]). For more details of graph neural networks,
one can refer to [37], [38]. Most of them only aggregate node
information within a single network, and thus might miss the
potential benefits of the auxiliary node information.

C. Point Set Alignment

Point set alignment aims to estimate the correspondences
between two point sets in the Euclidean space and has been
widely applied in computer vision and pattern recognition.
Generally speaking, point set alignment can be categorized
into rigid and and non-rigid transformation based methods.
Rigid transformations include the linear transformation and
affine transformations. One of the well-established rigid align-
ment method is the Iterative Closest Point (ICP) [39] which
iteratively uses the nearest neighbors to estimate the rigid
transformation. For non-rigid transformations, Myronenko et.
al propose to view one point set as the centroids of a Gaussian
mixture model and the other as the data [10]. Moreover,
[40] encodes the local contexts within the point sets into the
alignment procedure. Nevertheless, it is still nascent to align
point sets representing networks as the node representations
of networks may not have a good geometric property.

VI. CONCLUSION

The multi-sourced real-world networks from numerous do-
mains have galvanized the research in network alignment.
Most of the existing graph matching based methods explic-
itly or implicitly consider the alignment matrix as a linear
transformation matrix, whereas the node representation based
methods are limited by the incomparability issues among the
node representations. In this paper, we study the non-rigid
network alignment problem and propose a semi-supervised
deep model ORIGIN which jointly learns the far-reaching
node representations and finds node alignment across multiple
networks. We first propose a Multi-GCN model that can aggre-
gate the auxiliary node information across different networks
to aid node representation learning. We translate the network
alignment problem to the point set alignment problem and
propose a non-rigid alignment method based on multi-view
learning. We perform extensive experiments that demonstrate
the effectiveness of the proposed ORIGIN in finding accurate
alignment and efficiency in node representation learning.
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