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ABSTRACT

Deep neural network clustering is superior to the conventional
clustering methods due to deep feature extraction and nonlinear
dimensionality reduction. Nevertheless, deep neural network leads
to a rough representation regarding the inherent relationship of the
data points. Therefore, it is still difficult for deep neural network to
exploit the effective structure for direct clustering. To address this
issue, we propose a robust embedded deep K-means clustering (RED-
KC) method. The proposed RED-KC approach utilizes the δ -norm
metric to constrain the feature mapping process of the auto-encoder
network, so that data are mapped to a latent feature space, which is
more conducive to the robust clustering. Compared to the existing
auto-encoder networks with the fixed prior, the proposed RED-KC
is adaptive during the process of featuremapping.More importantly,
the proposed RED-KC embeds the clustering process with the auto-
encoder network, such that deep feature extraction and clustering
can be performed simultaneously. Accordingly, a direct and efficient
clustering could be obtained within only one step to avoid the
inconvenience of multiple separate stages, namely, losing pivotal
information and correlation. Consequently, extensive experiments
are provided to validate the effectiveness of the proposed approach.

KEYWORDS

embedded clustering, deep neural networks, robust k-means, auto-
encoder

ACM Reference Format:

Rui Zhang, Hanghang Tong, Yinglong Xia, and Yada Zhu. 2019. Robust
Embedded Deep K-means Clustering. In The 28th ACM International Con-

ference on Information and Knowledge Management (CIKM ’19), Novem-

ber 3–7, 2019, Beijing, China. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3357384.3357985

∗Hanghang Tong is the Corresponding Author. The work was partly done while
Hanghang Tong was at Arizona State University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3357985

1 INTRODUCTION

Clustering [43] serves as the main task regarding grouping a set
of objects such that the objects in the same group are more similar
to each other than to those in the other groups [8, 45, 47]. Most
conventional clustering algorithms perform the learning process
according to the linear models [10, 20, 30, 32, 41, 46, 48, 49], which
frequently fail to handle the data with irregular or nonlinear distri-
butions. During the past decades, spectral-based clustering methods
[28, 36, 38] and density-based clustering methods have achieved the
state-of-the-art results. The spectral-based clustering approaches
perform the clustering in the following two steps. Firstly, it builds
up an affinity matrix, i.e., similarity graph to represent the local
structure of the data. Secondly, it clusters the data via grouping the
eigenvectors of the graph Laplacian. The main idea of the density-
based clustering [14] approach is to find the high-density regions
that are segmented by the low-density regions. The density peak
clustering algorithm (DPCA) is proposed by Alex Rodriguez [35].
The core idea of DPCA indicates that the center of the cluster is
surrounded by certain points of low local density, which are seg-
regated from the residual points of high local density. The DPCA
incorporates the clustering process of non-clustered center points
into a single process. Since the selection of the cluster center and
the clustering of the non-cluster points are usually independent,
the clustering precision is improved via DPCA.

To address the clustering problem concerning the nonlinear
distributed data, the sparse subspace clustering (SSC) [7] algorithm
is developed. The main contribution of SSC indicates that a sparse
representation should tend to select the data points from the same
subspace among the potential data representations. In fact, the SSC
algorithm is developed by solving the sparse optimization within
the framework of spectral clustering, where each cluster is projected
to a low-dimensional subspace. Motivated by the similar idea of SSC,
diverse sparse representation and low-rank approximation based
methods for subspace clustering [19, 31, 32, 42] have attracted a lot
of attentions in recent years. The key components of these methods
are associated with a sparse and low-rank representation of the
data by constructing a similarity graph upon the sparse coefficient
matrix.

The spectral-based and the density-based clustering algorithms
can effectively deal with the data of arbitrary distribution. However,
only the superficial features of the data can be exploited [41]. Hence,
it is tricky to further improve the clustering performance. On the
other hand, deep neural networks can nonlinearly project the raw
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data to a new feature space for deep feature extraction and nonlinear
dimensionality reduction. Therefore, in recent years, diverse deep
subspace clustering algorithms have been developed.

Regardless of the connected or convoluted network structure,
the core idea of deep neural network clustering [1, 6, 15, 17, 40] is to
project the data to a new feature space, via which the clustering can
be accomplished. Due to the nonlinear mapping, deep clustering
has more powerful capabilities of both intrinsic feature extraction
and data representation. More specifically, the auto-encoder clus-
tering algorithms [1, 4, 37] are the deep clustering models, where a
symmetric network structure is utilized to encode and decode the
data simultaneously. Auto-encoder network is composed of two
steps. Firstly, the code space of the data is achieved by reducing the
dimensionality of the data in the latent subspace. Secondly, encoded
data is reconstructed by a new generative decoded space. Based on
the extension of the auto-encoder network, the idea of generative
adversarial network [9, 12, 21, 39, 50] has been further introduced
to enhance the efficiency of the deep clustering algorithms.

However, due to lack of prior knowledge, most of the current
deep clustering algorithms [4, 19, 22, 26] obtain the rough represen-
tation of the data, such that it is often difficult to minemore effective
information. To address the issue regarding the deep clustering al-
gorithms, a robust embedded deep K-means clustering (RED-KC)
approach is proposed in this paper. The proposed RED-KC approach
embeds the robust K-means model with the auto-encoder network
to obtain the data representation, which is more conducive to robust
clustering. The proposed method has the following contributions:

(1) The robust loss, namely, δ -norm metric is utilized so that
the auto-encoder network can map the data to the feature
space which is more conducive to robust clustering.

(2) The indicator matrix is adaptively obtained. When indicator
matrix degenerates to a prior label, we prove that the embed-
ded robust K-means is equivalent to the within-class scatter
under the specific condition.

(3) The weighted cluster centroids can be achieved, such that a
more clear grouping structure can be obtained for the data
clustering.

Notations: All of uppercase italic boldface letters represent ma-
trices, whereas lowercase italic boldface letters represent vectors.
The uppercase curlicue letters represent the functions and the italic
letters represent scalar values.MT denotes the transpose ofM .mi

denotes the i-th row of matrixM andmj denotes the j-th column of
M , wheremi j denotes the entry in the i-th row and the j-th column
ofM . |M | denotes the absolute value of matrixM , whereas ‖M ‖F
denotes the Frobenius norm ofM . 1 = [1, 1, · · · , 1]T ∈ RN×1 and I
is an identity matrix. For any matrixM ∈ RD×N , the �2,1-norm is
defined as

‖M ‖2,1 =

D∑
i=1

√√√√ N∑
j=1

m2
i j =

D∑
i=1

��mi
��
2

where
��mi

��
2 denotes the �2-norm of vectormi .

2 ROBUST LOSS: δ-NORM
As for the metrics, the �2-norm is sensitive to the large data outliers
with robustness to the small loss, while the �1-norm is sensitive
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Figure 1. Illustration of robust loss function with different

δ . (a) δ = 0.1. (b) δ = 1. (c) δ = 10. (d) δ = 100.

to the small loss with the robustness to the large one. Therefore,
we attempt to develop a robust loss, which is robust to outliers
regardless of small or large losses. The proposed robust loss, i.e.,
δ -norm is formulated by

‖M ‖δ=
∑
i

(1 + δ )
��mi

��2
2��mi

��
2 + δ

(1)

where δ needs to be tuned. For the better comprehension, the il-
lustration of the robust loss function with different values of δ is
demonstrated in Figure 1. Furthermore, the robust loss function
has the following properties:

(1) ‖M ‖δ is nonnegative and convex, which is suitable for loss
function.

(2) ‖M ‖δ is twice differentiable and easy for optimization.

(3) When
��mi

��
2 � δ , ‖M ‖δ → 1+δ

δ
‖M ‖2F

(4) When
��mi

��
2 � δ , ‖M ‖δ → (1 + δ ) ‖M ‖2,1

(5) When δ → 0, ‖M ‖δ → ‖M ‖2,1
(6) When δ → ∞, ‖M ‖δ → ‖M ‖2F

In sum, robust loss function interpolates between the �1-norm and
�2-norm via tuning the parameter δ . To solve problem (1), we at
first introduce a general robust loss function as

min
x

f (x) +
∑
i

(1 + δ ) ‖hi (x)‖
2
2

‖hi (x)‖2 + δ
(2)

where hi (x) is the vector output and the second term of problem
(2) is the extension of the proposed loss function in problem (1). In
particular, f (x) is a smooth function. Accordingly, we attempt to
solve problem (2) by an iterative re-weighted method. By taking
the derivative of problem (2) with respect to x and setting it to zero,
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we have

∂ f (x) +
∑
i

(1+δ ) ‖hi (x) ‖
2
2

‖hi (x) ‖2+δ

∂x
= 0 ⇒ 0 = f ′ (x)+

(1 + δ )
∑
i

(‖hi (x)‖2 + δ )
∂ ‖hi (x) ‖

2
2

∂x − ‖hi (x)‖
2
2
∂ ‖hi (x) ‖2

∂x

(‖hi (x)‖2 + δ )
2

⇒0 = f ′ (x)+

(1 + δ )
∑
i

(
2 ‖hi (x)‖2 + 2δ −

2‖hi (x) ‖
2
2

2
√
‖hi (x) ‖

2
2

)
(‖hi (x)‖2 + δ )

2
hi (x)h

′
i (x)

which further leads to

f ′ (x) + 2 (1 + δ )
∑
i

‖hi (x)‖2 + 2δ

2(‖hi (x)‖2 + δ )
2
hi (x)h

′
i (x) = 0 (3)

Moreover, we denote Dii = (1 + δ )
‖hi (x) ‖2+2δ

2( ‖hi (x) ‖2+δ )
2 . Hence, Eq. (3)

can be rewritten as

f ′ (x)+2
∑
i

Diihi (x)h
′
i (x) = 0 (4)

By treating Dii as a transitional weight, then problem (2) is equiv-
alent to the following re-weighted problem

min
x

f (x)+
∑
i

Dii ‖hi (x)‖
2
2 (5)

which shares the same KKT condition as represented in (4). We fur-
ther provide the theoretical analysis between the original problem
(2) and its re-weighted dual in (5) as follows.

Lemma 2.1. For any vectors x , y with the same size, the following

inequality holds:

‖x ‖22
‖x ‖2 + δ

−
‖y‖2 + 2δ

2(‖y‖2 + δ )
2
‖x ‖22

≤
‖y‖22

‖y‖2 + δ
−

‖y‖2 + 2δ

2(‖y‖2 + δ )
2
‖y‖22

Proof.

(‖x ‖2 − ‖y‖2)
2(‖x ‖2‖y‖2 + 2δ ‖x ‖2 + δ ‖y‖2) ≥ 0

⇒ 2 ‖x ‖22 ‖y‖
2
2 + 3δ ‖x ‖22 ‖y‖2 ≤ ‖x ‖2‖y‖2 ‖y‖

2
2 +

‖x ‖2‖y‖2 ‖x ‖
2
2 + 2δ ‖x ‖2 ‖x ‖

2
2 + δ ‖y‖2 ‖y‖

2
2

⇒ 2 ‖x ‖22 (‖y‖2 + δ )
2

≤ (‖y‖2 ‖y‖
2
2 + ‖y‖2 ‖x ‖

2
2 + 2δ ‖x ‖22)(‖x ‖2 + δ )

⇒
‖x ‖22

‖x ‖2 + δ
≤

‖y‖2 ‖y‖
2
2 + ‖y‖2 ‖x ‖

2
2 + 2δ ‖x ‖22

2(‖y‖2 + δ )
2

⇒
‖x ‖22

‖x ‖2 + δ
−

‖y‖2 + 2δ

2(‖y‖2 + δ )
2
‖x ‖22 ≤

‖y‖2 ‖y‖
2
2

2(‖y‖2 + δ )
2

⇒
‖x ‖22

‖x ‖2 + δ
−

‖y‖2 + 2δ

2(‖y‖2 + δ )
2
‖x ‖22

≤
‖y‖22

‖y‖2 + δ
−

‖y‖2 + 2δ

2(‖y‖2 + δ )
2
‖y‖22

which completes the proof. �

Theorem 2.2. The re-weighted problem (5) will monotonically

decrease the objective of problem (2) by updating the transitional

weight Dii in each iteration.

Proof. Suppose that x is updated by x̃ in the algorithm, then
we have

f (x̃) +
∑
i

Dii ‖hi (x̃)‖
2
2 ≤ f (x) +

∑
i

Dii ‖hi (x)‖
2
2

Note that Dii = (1 + δ )
‖hi (x ) ‖2+2δ

2( ‖hi (x ) ‖2+δ )
2 , we have

f (x̃) + (1 + δ )
∑
i

‖hi (x)‖2 + 2δ

2(‖hi (x)‖2 + δ )
2
‖hi (x̃)‖

2
2

≤ f (x) + (1 + δ )
∑
i

‖hi (x)‖2 + 2δ

2(‖hi (x)‖2 + δ )
2
‖hi (x)‖

2
2

Based on Lemma 2.1, then we substitute x = hi (x̃) and y = hi (x)
and obtain

‖hi (x̃)‖
2
2

‖hi (x̃)‖2 + δ
−

‖hi (x)‖2 + 2δ

2(‖hi (x)‖2 + δ )
2
‖hi (x̃)‖

2
2

≤
‖hi (x)‖

2
2

‖hi (x)‖2 + δ
−

‖hi (x)‖2 + 2δ

2(‖hi (x)‖2 + δ )
2
‖hi (x)‖

2
2

⇒
∑
i

(1 + δ )‖hi (x̃)‖
2
2

‖hi (x̃)‖2 + δ
− (1 + δ )

∑
i

‖hi (x)‖2 + 2δ

2(‖hi (x)‖2 + δ )
2
‖hi (x̃)‖

2
2

≤
∑
i

(1 + δ )‖hi (x)‖
2
2

‖hi (x)‖2 + δ
− (1 + δ )

∑
i

‖hi (x)‖2 + 2δ

2(‖hi (x)‖2 + δ )
2
‖hi (x)‖

2
2

By combining the inequalities above, we have

f (x̃) +
∑
i

(1 + δ ) ‖hi (x̃)‖
2
2

‖hi (x̃)‖2 + δ
≤ f (x) +

∑
i

(1 + δ ) ‖hi (x)‖
2
2

‖hi (x)‖2 + δ

which completes the proof. �

Since the re-weighted dual (5) satisfies the same KKT condition of
the original problem (2), the re-weighted problem (5) monotonically
converges to a local optimal solution to the original problem (2)
according to Theorem 2.2.

3 METHODOLOGY

In this section, we elaborate the details of the proposed robust em-
bedded deep K-means clustering approach (RED-KC). The frame-
work of RED-KC is an auto-encoder network with embedding the
robust K-means clustering. With the support of δ -norm distance,
RED-KC extracts deep features of the data by mapping them from
source space to a latent feature space, such that the weighted cluster
centroids can be obtained, namely, a more clear grouping structure
can be obtained for the data clustering.

3.1 Robust Embedded Deep K-means
Clustering

The neural network of RED-KC consists of M + 1 layers with M
nonlinear transformations, whereM is an even number. The first
M
2 hidden layers are the encoders, which learn a set of compact

representations, i.e., dimensionality reduction. The last M2 layers are
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Figure 2. Framework of RED-KC.

the decoders, which reconstruct the input. The framework of RED-
KC is shown in Figure 2. Suppose H (0) = Xin = [x1,x2, . . . ,xN ] ∈

R
D×N as the input matrix of the first layer with N samples, then

each data pointh(0) is the column of thematrixH (0) with dimension
D. As for the encoder, the output of the i-th layer is represented as

h(i) = Fe

(
W (i)h(i−1) + b(i)

)
∈ Rdi (6)

where i = 1, 2, · · · , M2 indexes the layers of the encoder,W (i) ∈

R
di×di−1 denotes the weight matrix, and b(i) ∈ Rdi denotes the

bias of the i-th layer. Rdi indicates that the h(i) belongs to a di
dimension feature space. The Fe (·) is a nonlinear activation func-

tion. In particular, the M
2 -th layer h

(
M
2

)
∈ R

d M
2 is shared by the

encoder and the decoder. For the purpose of dimensionality reduc-
tion, the dimensions of the layers in the encoder are designed as
D ≥ di−1 ≥ di ≥ d M

2
. As for the decoder, the output of the j-th

layer can be represented as

h(j) = Fd

(
W (j)h(j−1) + b(j)

)
∈ Rdj (7)

where j = M
2 + 1,

M
2 + 2, · · · ,M indexes the layers of the decoder

and the nonlinear activation function Fd (·) can be the same as
Fe (·) or a different nonlinear function. For the purpose of the
data reconstruction, the dimensions of the layers in the decoder
are designed as d M

2
≤ di−1 ≤ di ≤ dM = D. Therefore, given a

sample h(0), (i.e., xin ) as the input of the first layer of RED-KC,
h(M ), (i.e., xout ) is the reconstruction of h(0) and the corresponding

h

(
M
2

)
is the deep representation of xin . Suppose the data matrix

H (0) =
[
h(0)1 ,h

(0)
2 , · · · ,h

(0)
N

]
∈ RD×N which denotes a collection of

N given samples, then the output matrix of the decoder H (M ) =[
h(M )
1 ,h(M )

2 , · · · ,h(M )
N

]
∈ RD×N is the corresponding reconstruc-

tion of H (0) and H

(
M
2

)
=

[
h

(
M
2

)
1 ,h

(
M
2

)
2 , · · · ,h

(
M
2

)
N

]
∈ R

d M
2
×N

is

the low-dimensional deep representation of H (0).

The objective of RED-KC is to minimize the data reconstruc-
tion error and embed the robust K-means clustering with the cor-

responding deep representation H

(
M
2

)
simultaneously. With the

terms previously defined, the objective of RED-KC can be formu-
lated as

min
W (m),b (m),F ,G ∈ind {0,1}N×K

1

2

���H (0) −H (M )
���2
F︸������������������︷︷������������������︸

J1

+
λ1
2

����H (
M
2

)
− FGT

����
δ︸���������������������︷︷���������������������︸

J2

+
λ2
2

M∑
m=1

(���W (m)
���2
F
+

���b(m)
���2
2

)
︸����������������������������������︷︷����������������������������������︸

J3

(8)

where λ1 and λ2 are the tradeoff parameters. The terms J1, J2,
and J3 are specifically designed for different purposes. As for Eq.
(8), the first term J1 is to preserve the information of the data via
the minimization of the reconstruction error. In other words, the
input serves as a supervisor of learning a compact representation

H

(
M
2

)
. Due to the fact that objects in the same cluster tend to have

similar features, the termJ2 in (8) is designed to learn the clustering

structure from the deep representationH

(
M
2

)
by minimizing the δ -

norm error regarding robust K-means, where F ∈ R
d M

2
×K

denotes
the matrix of clustering centroids and G ∈ {0, 1}N×K denotes
the binary indicator matrix. In other words, each column of F
represents a cluster centroid, while each row дi ,∀i ofG denotes a
binary label. As for each row ofG, the elements of дi ,∀i contain
only one 100% with the others being 0%. The value K denotes the
number of clusters. Finally, J3 serves as a regularization term to
avoid over-fitting. Our neural network model utilizes the input as
the self-supervisor to learn deep representation and constrain the
nonlinear transformation, such that the intrinsic features can be
extracted from the source data. Additionally, the δ -norm metric is
utilized for the robust K-means clustering. Therefore, the weighted
cluster centroids can be achieved in the next subsection, such that
a more clear grouping structure can be obtained. Therefore, robust
K-means clustering J2 is embedded with the deep auto-encoder
networks such that RED-KC model is proposed in Eq. (8).

3.2 Optimization Procedure

In this subsection, the optimization with respect to (w.r.t.)W and
b of the proposed RED-KC model (8) is derived via the gradient
descent method, while the solutions w.r.t.G and F to the embedded
robust K-means J2 in (8) are achieved via direct optimization. Since

G and F of robust K-means are only involved with the layerH

(
M
2

)
,

we present the gradient descent and the solutions ofG and F sepa-
rately. According to Eq. (5), the objective function of RED-KC in (8)
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can be reformulated into the following re-weighted form as

J =
1

2

N∑
i=1

���
���h(0)i − h(M )

i

���2
2
+ λ1Dii

�����h
(
M
2

)
i − FдTi

�����2
2

���
+
λ2
2

M∑
m=1

(���W (m)
���2
F
+

���b(m)
���2
2

) (9)

where the transitional weight Dii ← (1 + δ )

����h(M2 )i
−F дT

i

����
2

+2δ

2

(����h(M2 )i
−F дT

i

����
2

+δ

)2 .
According to the definitions of the encoder h(i) in (6) and the de-
coder h(j) in (7), the gradients of Eq. (9) w.r.t.W (m) and b(m) can
be obtained via the chain rule as⎧⎪⎪⎨⎪⎪⎩

∂J
∂W (m) =

(
Δ(m) + λ1DiiΛ

(m)
) (

h(m−1)
i

)T
+ λ2W (m)

∂J
∂b (m) = Δ(m) + λ1DiiΛ

(m) + λ2b(m)
(10)

where Δ(m) and Λ(m) are denoted by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ(m) =

⎧⎪⎪⎨⎪⎪⎩
−
(
h(0)i − h(M )

i

) ⊙
G

′
(
z(M )
i

)
m = M(

W (m+1)
)T

Δ(m+1)⊙G
′
(
z(m)
i

)
otherwise

Λ(m) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
W (m+1)

)T
Λ(m+1)⊙G

′
(
z(m)
i

)
m = 1, · · · , M2 − 1(

h

(
M
2

)
i − FдTi

) ⊙
G

′

(
z

(
M
2

)
i

)
m = M

2

0 m = M
2 + 1, · · · ,M

(11)
In Eq. (11), mark

⊙
denotes the element-wise multiplication oper-

ator, z(m)
i =W (m)h(m−1)

i + b(m), and G
′
(·) is the derivative of the

activation function G (·) as

G (·) =

{
Fe (·) m = 1, · · · , M2
Fd (·) m = M

2 + 1, · · · ,M
(12)

Via the gradient descent method, {W (m),b(m)}Mm=1 are further
updated by {

W (m) ←W (m) − μ ∂J
∂W (m)

b(m) ← b(m) − μ ∂J
∂b (m)

(13)

where μ > 0 is the step weight, which can be set as different
small values for certain scenario. As the output label of RED-KC
model, the indicator matrixG is associated with the robust K-means

clustering ofH

(
M
2

)
. In other words, the binary labelG is updated by

solving the second clustering term in (9), namely, robust K-means
problem. To further obtain the cluster centroid matrix F , we rewrite
the robust K-means problem in (9) as the following matrix form

min
F ,G ∈{0,1}N×K

����(H (
M
2

)
− FGT

)
D

1
2

����2
F

(14)

where the weight matrix D is diagonal with its (i, i)-th entry Dii

defined in (9). According to Eq. (14), the cluster centroid matrix F

Figure 3. Toy examples

could be obtained as

∂

����(H (
M
2

)
− FGT

)
D

1
2

����2
F

∂F
= 0

⇒

∂Tr

(
FGTDGFT − 2H

(
M
2

)
DGFT

)
∂F

= 0

⇒ F = H

(
M
2

)
DG(GTDG)−1

(15)

which implies the weighted cluster centroids. In particular,G will
be obtained simultaneously via the optimization of the RED-KC
model. In sum, the proposed RED-KC method can be summarized
in Algorithm 1.

Denote Xi as the dataset of the i-th class and ni as the number
of data points in the i-th class, then the within-class scatter matrix
Sw , the between-class scatter matrix Sb , and the total-class scatter
matrix St [44] are defined as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Sw =

∑K
i=1

∑
x ∈Xi (x − x̄i ) (x − x̄i )

T

Sb =
∑K
i=1 ni (x̄i − x̄) (x̄i − x̄)T

St =
∑N
i=1 (xi − x̄) (xi − x̄)T

(16)

where x̄i =
1
ni

∑
x j ∈Xi x j is the class-specific mean of the i-th class

and x̄ = 1
N

∑N
i=1 xi is the global mean. According to the definitions

in (16), we have the following theorem to illustrate the relationship
between robust K-means and within-class scatter.

Theorem 3.1. If the deep representation of the M
2 layer is the

centralized data, i.e.,H

(
M
2

)
= XinP and the binary labelG is known

as a prior, i.e., the supervised learning, then the embedded robust

K-means in (14) is equivalent to Tr (Sw ) when δ → ∞.
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Proof. According to the definition of the diagonal matrix D in
(14), its arbitrary (i, i)-th entry can be deduced as

lim
δ→∞

Dii = lim
δ→∞

(1 + δ )

�����h
(
M
2

)
i − FдTi

�����
2

+ 2δ

2

(�����h
(
M
2

)
i − FдTi

�����
2

+ δ

)2

= lim
δ→∞

(
1

δ
+ 1

) ����h(M2 )i
−F дT

i

����
2

δ
+ 2

2
����
����h(M2 )i

−F дT
i

����
2

δ
+ 1

����
2

= (0 + 1)
0 + 2

2(0 + 1)2

= 1

which leads to the conclusion that D = I when δ → ∞. Besides,

sinceG is fixed as the prior binary label andH

(
M
2

)
is the the central-

ized data XinP , the embedded robust K-means in (14) degenerates
to

min
F

����(H (
M
2

)
− FGT

)
D

1
2

����2
F

=

����XinP −XinPG
(
GTG

)−1
GT

����2
F

(17)
where P is the centering matrix. We further define the least squares
loss function as

ε = ‖T1 −T2‖
2
F (18)

and define A(t ) = 1
N 11

T and A(w )
i j =

{
1
ni

i = j

0 otherwise
. By substi-

tutingT1 = Xin andT2 = XinA(w ) in (18), we have���Xin −XinA
(w )

���2
F
= Tr

(
Xin

(
I −A(w )

)2
XT
in

)
= Tr (Sw ) (19)

Similarly, by settingT1 =WTX andT2 =WTXA(t ) in (18), we get���Xin −XinA
(t )
���2
F
= Tr

(
Xin

(
I −A(t )

)2
XT
in

)
= Tr (St ) (20)

According to Eqs. (19) and (20), the between-class scatter matrix
could be reformulated into

Tr (Sb ) = Tr (St − Sw )

= Tr
(
Xin

(
A(w ) −A(t )

)
XT
in

)
= Tr

(
Xin

(
A(w ) −A(t ) −A(w )A(t ) +

(
A(t )

)2)
XT
in

)
= Tr

(
Xin

(
A(w ) −A(t )

) (
I −A(t )

)
XT
in

)
= Tr

(
Xin

(
A(w ) −A(t )A(w )

) (
I −A(t )

)
XT
in

)
= Tr

(
Xin

(
I −A(t )

)
A(w )

(
I −A(t )

)
XT
in

)
= Tr

(
XinPG

(
GTG

)−1
GT PXT

in

)
(21)

Algorithm 1: Robust Embedded Deep K-means Clustering
(RED-KC) method

Input: data matrix Xin , (i.e., H (0)), parameter δ , and number
of clusters K .

Output: indicator matrixG.
1 Initialize D = I and random pseudo label matrixG;

2 form = 1 : M do

3 InitializeW (m) and b(m);

4 end

5 while not convergence do

6 for i = 1 : M2 do

7 h(i) ← Fe

(
W (i)h(i−1) + b(i)

)
;

8 end

9 for j =
(
M
2 + 1

)
: M do

10 h(j) ← Fd

(
W (j)h(j−1) + b(j)

)
;

11 end

12 Update F by (15);

13 for i = 1 : N do

14 Update Dii ← (1 + δ )

����h(M2 )i
−F дT

i

����
2

+2δ

2

(����h(M2 )i
−F дT

i

����
2

+δ

)2 ;
15 end

16 Perform robust K-means of H

(
M
2

)
and updateG;

17 form = 1 : M do

18 UpdateW (m) and b(m) by (13);

19 end

20 end

21 returnG

where the centering matrix P = I −A(t ). According to (21), we have

Tr (Sw ) = Tr (St − Sb ) =

����XinP

(
I −G

(
GTG

)−1
GT

)����2
F

(22)

which equals to Eq. (17). Proof is completed here. �

4 EXPERIMENTS

In this section, we compare the proposed RED-KC approach with
the state-of-the-art clustering methods on 4 image datasets in terms
of 2 evaluation metrics. In addition, the effectiveness of RED-KC is
investigated under different coefficients and activation functions.

4.1 Experimental Settings

4.1.1 Datasets. Four datasets are utilized including COIL20-DSIFT,
COIL20-HOG, YaleB-DSIFT, and YaleB-HOG. The COIL20-DSIFT
and COIL20-HOG datasets are derived from the DSIFT and HOG
feature extraction of the raw COIL20 dataset, respectively. Similarly,
the YaleB-DSIFT and YaleB-HOG datasets are generated from the
YaleB dataset. COIL-20 is a database of gray-scale images of 20
objects [27]. The objects were placed on a motorized turntable
against a black background. The turntable was rotated through 360
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Table 1. Performance comparison on COIL20 dataset

Features DSIFT HOG

Methods Accuracy(%) NMI(%) Accuracy(%) NMI(%)

RED-KC 89.2±2.6 93.8±1.9 90.6±1.6 93.4±2.1

PARTY 85.7±2.3 91.1±1.8 85.5±1.9 91.9±1,6
AESSC 87.1±2.1 89.9±1.0 84.1±1.9 89.0±1.1

SAEg 65.3±1.2 77.0±1.1 74.9±1.0 89.2±1.6
SAEs 56.5±1.5 65.0±0.4 71.9±1.4 87.0±1.8
SSC 84.3±2.2 91.0±0.7 81.0±1.5 90.1±1.2

KSSC1 82.4±1.2 90.3±1.1 70.9±0.5 84.0±0.4
KSSC2 76.4±2.6 90.1±0.2 75.1±0.8 86.5±0.4
LS3C 30.9±3.3 49.2±1.8 30.3±2.1 40.5±0.7
LRR 79.0±1.4 89.7±1.2 58.4±3.2 76.9±1.6

KLRR1 70.2±1.8 81.4±0.6 73.7±4.0 81.2±1.3
KLRR2 78.5±1.3 83.8±0.9 74.1±0.9 83.8±0.6
LRSC 71.1±1.7 78.3±0.7 44.0±1.2 57.2±1.4
LSR1 61.5±1.3 71.2±0.8 64.7±1.4 73.0±1.0
LSR2 64.7±2.0 72.7±0.2 61.7±1.5 71.1±0.9
SMR 80.4±1.9 89.4±0.5 74.8±2.6 84.4±1.2

degrees to vary object pose with respect to a fixed camera. The
COIL20 dataset contains 1,440 samples where each image is with the
size of 32× 32. The YaleB dataset [19] consists of 5760 samples from
38 human subjects under 9 poses and 64 illumination conditions,
where each image is with size of 192×168. More detail information
of datasets can be found in Table 3. For the computational efficiency,
we use PCA to reduce the feature dimension to 300.

4.1.2 Evaluation Criteria. Two metrics are adopted to evaluate
the clustering quality: Accuracy and normalized mutual informa-
tion(NMI).

Clustering Accuracy reflects the relationship between clusters
and classes by measuring the degree that each cluster contains
the number of data samples from the related class. The clustering

accuracy is calculated by Accuracy =
∑N
i=1 ξ (map(ri ),li )

N , where ri
represents the pseudo-cluster label of xi , li represents the true class
label, ξ (x ,y) is the delta function, andmap(·) is the optimal map
function. Note ξ (x ,y) = 1, if x = y; ξ (x ,y) = 0, otherwise. The
map functionmap(·) projects each cluster label to the true label. A
larger Accuracy implies a better clustering performance.

The Normalized Mutual Information serves as an index to
determine the consistent quality of cluster, which is defined as

NMI =

∑K
i=1

∑K
j=1 ni j log

ni j

ni n̂j√
(
∑K
i=1 ni log

ni
N
)(
∑K
j=1 n̂j log

n̂j

N
)

, where ni denotes the num-

ber of data in the clusterCi (1 ≤ i ≤ K ), n̂j denotes the number of
data belonging to the class Lj (1 ≤ j ≤ K), and ni j is the number
of data which are in the intersection between clusterCi and class
Lj . Similarly, a larger NMI represents a more consistent clustering
performance.

4.1.3 Toy results. In Figure 3, 6 types of toy data are compared
under 7 different clustering approaches. From Figure 3, we could ob-
serve that our method has much better performance on multi-class
toy dataset instead of binary-class toy dataset. When dealing with

Table 2. Performance comparison on YaleB dataset

Features DSIFT HOG

Methods Accuracy(%) NMI(%) Accuracy(%) NMI(%)

RED-KC 89.7±2.3 92.7±2.6 94.2±1.0 98.4±2.9

PARTY 88.5±2.5 90.8±0.8 92.0±1.1 96.9±1.5
AESSC 74.8±2.6 78.3±0.9 88.8±0.6 94.4±0.5

SAEg 82.3±0.8 87.5±0.9 84.7±0.4 93.4±0.8
SAEs 80.7±1.1 85.9±0.5 81.4±0.6 92.4±0.4
SSC 83.7±1.7 90.0±0.4 85.1±1.1 92.8±1.1

KSSC1 91.4±1.2 89.0±0.4 80.5±1.2 88.6±0.3
KSSC2 77.6±1.0 84.4±0.6 75.3±0.8 80.3±0.4
LS3C 49.9±1.4 59.8±0.5 49.1±0.4 53.5±0.2
LRR 81.6±0.3 89.1±0.4 81.0±0.1 93.0±0.5

KLRR1 69.9±0.6 74.7±0.2 78.9±1.3 86.1±0.5
KLRR2 66.1±1.1 72.3±0.4 60.1±0.6 68.9±0.5
LRSC 68.2±1.3 73.4±0.2 68.6±0.5 73.2±0.5
LSR1 72.8±0.6 77.6±0.7 76.5±1.0 81.0±0.6
LSR2 73.3±1.2 77.4±0.5 76.0±1.2 80.4±0.5
SMR 81.4±1.3 85.2±0.8 87.9±0.9 92.7±0.8

Table 3. Information of the datasets.

Dataset size dimensionality class
COIL20 1440 1024 20
YALEB 5760 32256 38

multi-class toy dataset, our method outperforms other comparative
methods.

4.1.4 Baseline Algorithms. The proposed RED-KC is compared
with the clustering algorithms on four datasets as COIL20-DSIFT,
COIL20-HOG, YaleB-DSIFT, and YaleB-HOG. The comparativemeth-
ods include auto-encoder based subspace clustering algorithms
(AESSC), deep subspace clustering with sparsity Prior (PARTY),
sparse subspace clustering (SSC), low rank based subspace cluster-
ing (LRSC), least square regression (LSR), smooth representation
clustering (SMR), kernel SSC (KSSC), kernel LRR (KLRR), latent
subspace sparse subspace clustering (LS3C), and stacked sparse
auto-encoder (SAE), where AESSC and PARTY are the deep clus-
tering methods.

Particularly, the proposed RED-KC is designed as a five layer
neural network structure, which consists of 300−200−100−200−300
neurons. To ensure a fair comparison, we report the best results
of all the comparative methods with setting K as the class number
of each dataset. As for the tradeoff parameters λ1 and λ2 in the
proposed RED-KC method, we tune them via grid search in the set
of {10−3, 10−2, 10−1, 1, 101, 102, 103}. As for the δ in the robust loss,
we tune it in the grid of {10−2, 10−1, 1, 101, 102}.

4.2 Comparison with the Evaluated Methods

In this subsection, we evaluate the performance of RED-KC by
comparing with the baseline algorithms. In both Table 1 and Table
2, the bolded names denote the state-of-the-art deep clustering
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Figure 4. Accuracy and NMI of RED-KC under different values of λ1.
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Figure 5. Variations of Accuracy and NMI by increasing the

iteration numbers for RED-KC.

methods, while the bolded scores denote the best results. From
Table 1, the proposed RED-KC has the better performance. The
Accuracy of RED-KC is at least 4.46% and 5.06% higher than other
methods on COIL20-DISFT and COIL20-HOG, respectively. From
Tabel 2, RED-KC achieves the best results, where the Accuracy is
1.24% and 1.94% higher than the runner-up method on YaleB-DSIFT
and YaleB-HOG, respectively.

Besides that, the results demonstrate that deep clustering meth-
ods perform much better due to the deep feature extraction. Figure
5 shows the Accuracy and NMI of RED-KC under different itera-
tion numbers. We could observe that the performance is enhanced
rapidly within the first ten iterations, which indicates the efficiency
of our method. After several iterations, both Accuracy and NMI
remain stable.

4.3 Influence of Tradeoff Coefficient

As for the tradeoff coefficient λ1, we investigate the variations of
Accuracy and NMI under different values of λ1 as shown in Figure
4. Since the coefficient λ2 is to prevent over-fitting of RED-KC, i.e.,
insensitive to the clustering accuracy and NMI indexes, λ2 is fixed as
1 in this case. From Figure 4, we notice that the evaluation indexes

fluctuate according to λ1. Moreover, the optimal performance is
achieved near the value λ1 = 0.3 with much larger probability.

4.4 Influence of Activation Functions

In this subsection, we report the performance of RED-KC under four
different activation functions including Tanh, Sigmoid, Nssigmoid,
and Softplus. From Figure 6, we can see that the Tanh function
outperforms the other three activation functions and the Nssigmoid

function achieves the runner-up results, which are very close to
Tanh.

5 RELATEDWORKS

In this section, we briefly introduce the related works regarding
unsupervised deep learning and subspace clustering respectively.

5.1 Auto-encoder Network

With impressive learning capabilities, deep learning techniques
have achieved great success in diverse areas, especially in the field
of supervised learning [29], such as image classification [11, 16],
metric learning [13, 25], super-resolution reconstruction [5, 18],
and image segmentation [2, 3, 24]. Meanwhile, the unsupervised
deep learning is still under the development. Auto-encoder and
generative adversarial network are the state-of-the-art methods for
unsupervised deep learning. In this subsection, wemainly introduce
the auto-encoder network.

In general, auto-encoder [37] serves as a network which consists
of both encoder and decoder, where the structure of auto-encoder
is symmetric. If the auto-encoder contains multiple hidden layers,
then the number of hidden layers of the encoder equals to the
number of hidden layers of the decoder. In other words, the purpose
of the basic auto-encoder is to reconstruct the input data at the
output layer. In particular, the encoding and decoding process can
be described as

Encoding h(i+1) = Fe

(
W (i)h(i) + b(i)

)
Decoding h(j+1) = Fd

(
W (j)h(j) + b(j)

) (23)

where Sigmoid, Tanh, and Relu are the common activation functions
for Fe . As for Fd , it could be the same as the encoding function.
Therefore, the loss function of the basic auto-encoder is to minimize
the error betweenXin andXout . Specifically speaking, the encoder
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Figure 6. The performance of RED-KC under four different activation functions.

converts the input signal into codes via the nonlinear mapping,
while the decoder is to reconstruct the codes to the input signal.

It is easy to observe that both the encoding and decoding process
would not depend on the label information. Therefore, the auto-
encoder serves as an unsupervised learning method [33]. Moreover,
the hidden layers of the automatic coding network can be cate-
gorized into three classes including the compressed structure, the
sparse structure, and the equivalent-dimensional structure. When
the number of input layer neurons is greater than the number of
hidden layer neurons, it is known as the compressed structure. Con-
versely, when the number of input layer neurons is smaller than the
number of hidden layer neurons, it is named the sparse structure.
If the input layer and the hidden layer have the same number of
neurons, it is called the equivalent-dimensional structure.

5.2 Deep Subspace Clustering

Diverse subspace clustering algorithms [7, 23, 32, 34, 41] are the
linear models, which are unable to cope with the nonlinearity of
the data in the practical scenarios. Benefited from the powerful
capability of nonlinear modeling and feature extraction of the deep
neural network, multiple deep clustering approaches have been
developed in recent years. For instance, Song et al. [37] integrated
an auto-encoder network with K-means to learn the latent features.
Since the feature mapping and clustering are independent, the K-
means algorithm is frequently separated from the feature mapping
process. Therefore, the features extracted from the deep network
may not be suitable for clustering. To address this issue, some
deep clustering algorithms [40, 50] incorporated the discriminant
and adversarial ideas. Due to lack of prior knowledge constraints,
the feature mapping of these algorithms is weakened. In addition,
a deep subspace clustering with sparsity prior (PARTY) [33] is
developed by Peng et al. Based on an auto-encoder network, PARTY

learns the deep representation of the input data via reconstruction
error minimization and utilizes a prior information to preserve the
sparse reconstruction. However, PARTY method has the following
drawbacks: 1) The sparsity prior matrix needs to be pre-trained,
which might not be optimal for clustering. 2) The graph matrix is
pre-given as a prior such that data structure is fixed in the network.

Different from the existing works, our method embeds the robust
K-means with an auto-encoder network, where the deep feature
extraction and clustering can be performed simultaneously. The
proposed RED-KC approach utilizes δ -norm distance to constrain
the feature mapping so that the deep features extracted from the
source space are more conducive to robust clustering.

6 CONCLUSION

In this paper, we proposed a robust embedded deep K-means clus-
tering approach, which utilizes robust δ -norm metric to constrain
the feature mapping process of the auto-encoder network, so that
data are mapped to a latent feature space for the robust cluster-
ing. More importantly, the proposed method embeds the clustering
process with the auto-encoder network, such that we can perform
deep feature extraction and clustering simultaneously. Therefore,
the proposed method accomplished the clustering within only one
step to avoid losing pivotal information and correlation. In other
words, a more clear grouping structure can be achieved for the data
clustering with obtaining the weighted cluster centroids. Eventu-
ally, extensive experiments are provided to show that our method
outperforms the state-of-the-art clustering methods.
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