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ABSTRACT
Most existing feature selection methods select the top-ranked fea-
tures according to certain criterion. However, without consider-
ing the redundancy among the features, the selected ones are fre-
quently highly correlated with each other, which is detrimental to
the performance. To tackle this problem, we propose a framework
regarding adaptive redundancy minimization (ARM) for the feature
selection. Unlike other feature selection methods, the proposed
model has the following merits: (1) The redundancy matrix is adap-
tively constructed instead of presetting it as the priori information.
(2) The proposed model could pick out the discriminative and non-
redundant features via minimizing the global redundancy of the
features. (3) ARM can reduce the redundancy of the features from
both supervised and unsupervised perspectives.
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1 INTRODUCTION
Faced with the abundant high-dimensional data, it is advantageous
to extract the most useful and relevant information. In addition,
high-dimensional data inevitably contain the noised dimensions,
so that they are difficult to process directly. Accordingly, feature
selection has become indispensable and been widely exploited in
diverse domains, such as image segmentation in computer vision
[5], and promoting the clustering performance in machine learning
[18]. The purpose of feature selection is to select a subset of raw
features for the subsequent classification or clustering tasks. De-
pending on whether the class label information is utilized or not,
feature selection methods are categorized into three different types,
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namely, supervised feature selection, semi-supervised feature selec-
tion, and unsupervised feature selection. Above all, unsupervised
feature selection is a more challenging task due to a lack of class
label information. On the other hand, feature selection methods
can also be classified into three different types: filter method [11],
wrapper method [16], and embedded method [17]. Filter method
selects the features according to the statistical property of the data,
e.g., max variance of the data. Therefore, it has less computational
complexity. Wrapper method is associated with the specific clas-
sifier and thus has better classification performance. Embedded
method incorporates feature selection into the optimization prob-
lems (such as dimensionality reduction and clustering) with rational
computational cost.

In general, the procedures of all the feature selection methods
are similar to some extent. More specifically, certain criterion is
employed to evaluate the score for each feature, such as fisher
score [8], Laplacian score [11], and the sparse regularization [3].
Therefore, all the feature scores are sorted in the descending or-
der and top-ranked features are selected for the subsequent tasks.
For instance, fisher score (a supervised method) [8] computes a
score for each feature via fisher criterion. Accordingly, it selects
the top-ranked features with larger inter-class instance and smaller
intra-class instance simultaneously. Multi-cluster feature selection
(MCFS) [3] utilizes the joint learning of spectral regression and ℓ1
sparse regularization to calculate the score of each feature such that
the top-ranked features are selected. However, due to lack of the
redundancy minimization among the features, the selected ones
frequently have high correlation with each other.

In the previous study, Peng et al. recognized this problem and
proposed the minimum redundancy maximum relevance (mRMR)
[14] approach to minimize the redundancy among the selected
features. However, mRMR serves as a greedy method to minimize
the redundancy of the features, and thus the features are selected
without minimizing the global redundancy. In the literature [10],
to select the non-redundant features, a maximum information and
minimum redundancy (MIMR) criterion is developed based on the
entropy and mutual information. Since MIMR is optimized via the
evolutionary algorithm, it lack a global perspective of redundancy
minimization and has higher computational cost. To address the is-
sue previously mentioned, we propose an effective feature selection
method via adaptive redundancy minimization (ARM). To measure
the redundancy among the features, the redundancy matrix is adap-
tively constructed and updated instead of presetting it as the priori
information. Compared with other feature selection methods, the
proposed model can minimize the redundancy of the features from
the global perspective. More importantly, all the existing feature se-
lection methods could incorporate the proposed ARM, such that the
redundancy within the associated methods can be largely reduced.
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Figure 1: Intuitive illustration of ARM

2 PROBLEM FORMULATION
As we all know, if feature i and feature j are correlated with each
other, it is much better to keep one and eliminate the other to reduce
the redundancy of the features. Generally speaking, after reducing
the redundancy of the features, the newly obtained features should
be more representative and provide useful information to perform
subsequent tasks. As for the proposed ARM model, its major contri-
bution is to select the representative and non-redundant features.
Most importantly, how can we build up a unified framework, which
could largely reduce the redundancy of the features? To answer this
question, we first construct the redundancy matrix A ∈ Rd×d (d is
the feature number) to measure the redundancy of all the features.
Given the column vectors s ∈ Rd (the original feature score) and
z ∈ Rd (the new feature score obtained by the proposed ARM), the
raw ARM problem can then be formulated as

min
zT 1d=1,z≥0

⟨z, z⟩A

max
zT 1d=1,z≥0

⟨z, s⟩Id ,
(1)

where the first term ⟨z, z⟩A = zTAz of problem (1) denotes the
global redundancy of features and should be minimized. Besides
that, the second term ⟨z, s⟩Id = zT s of problem (1) measures the
consistency between feature score z and s and should be maximized.
To solve the bi-objective ARM problem (1) as

min
zT 1d=1,z≥0

⟨z, z⟩A = min
zT 1d=1,z≥0

д(z)

max
zT 1d=1,z≥0

⟨z, s⟩Id = max
zT 1d=1,z≥0

h(z),
(2)

we could utilize a weighted model as

min
zT 1d=1,z≥0,λ

λд(z) − h(z), (3)

where λ serves as the weight. However, problem (3) leads to the
trivial solution w.r.t. λ as ∂(λд(z)−h(z))

∂λ = 0 ⇒ д(z) = 0 due to the
linearity of the weight. To avoid the above trivial case, we can
modify the model (3) via a simple yet effective technique. Specifi-
cally, problem (2) can be reformulated into the following quadratic
weighted optimization (QWO) model as

min
zT 1d=1,z≥0,λ

λ(λд(z) − h(z)), (4)

where an additional weight λ is multiplied.
To adaptively evaluate the redundancy matrixA, the bi-objective

problem (1) can be further reformulated into the ARM model as

min
λ,z,A

λ
(
λ (⟨z, z⟩A + αTr (A)) − ⟨z, s⟩Id

)
s .t . zT 1d = 1, z ≥ 0,A ≻ 0,Tr

(
A−1) = 1,

(5)
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Figure 2: Projecting top 80 features to the first two princi-
ple components via PCA, where A- denotes that raw score is
refined by ARM.

where the matrixA ∈ Rd×d is optimized to measure the redundancy
of all the features1, λ is a self-adaptive parameter to balance the
first term and second term, and α > 0 is a regularization parameter.
Note that λ serves as a leverage to incorporate the two terms in
(1) into an optimization problem and the regularization Tr (A) is
added to prevent the potential trivial solution of the variable A.

Besides that, the mechanism of the proposed ARM is illustrated
in Figure 1. In Figure 1, four features has been sorted by certain
feature score. The first feature is correlated with the second and
third features, but the second and third features are uncorrelated
with each other, which is measured by the adaptive redundancy
matrix A, namely, the deeper the color is, the more redundancy the
features are correlated with each other. Via the proposed ARM, the
ranking of the first feature will descend, and the ranking of the
second and third features will ascend. In this case, the representative
features, i.e., the second and third features can be selected.

3 OPTIMIZATION
In this section, we attempt to solve problem (5) by an iterative
optimization algorithm.
Update A: When λ and z are fixed, problem (5) becomes

min
A

zTAz + αTr (A)

s .t . A ≻ 0,Tr
(
A−1) = 1.

(6)

According to the Cauchy-Schwartz inequality and constraintTr
(
A−1) =

1, we could infer that

zTAz + αTr (A)

= Tr (A
1
2
(
zzT + αId

) 1
2
(
zzT + α Id

) 1
2
A

1
2 )Tr (A− 1

2A− 1
2 )

≥
(
Tr

(
zzT + α Id

) 1
2 )2
.

(7)

With an arbitrary constant γ , the above equality holds if and only if

γ
(
zzT + α Id

) 1
2
A

1
2 = A− 1

2 ⇒ γ
(
zzT + αId

) 1
2
= A−1. (8)

1In practice, we initialize A by the square of cosine similarity between each feature
pair.
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Table 1: Classification accuracy of top 80 features

Datasets ReliefF A-ReliefF FScore A-FScore IG A-IG

COIL20 0.7791 0.9403 0.8431 0.9333 0.8431 0.9333
USPS 0.8524 0.9008 0.8701 0.8922 0.8701 0.8950
ORL 0.7550 0.8400 0.7650 0.8550 0.7650 0.8550
ISOLET 0.7821 0.8744 0.7833 0.8782 0.7833 0.8782
LEU 0.9444 0.9591 0.9387 0.9590 0.9388 0.9600
AR10P 0.5385 0.8154 0.5539 0.7846 0.5538 0.7538

Table 2: Datasets Summary

Data Name COIL20 USPS ORL ISOLET LEU AR10P

# Samples 1440 9298 400 1560 72 130
# Features 1024 256 1024 617 3571 2400
# Classes 20 10 40 26 2 10

Under constraintTr
(
A−1) = 1, we can obtainγ = 1

T r
(
(zzT +α Id )

1
2
) ,

such that the optimal A is achieved as

A = Tr
( (
zzT + αId

) 1
2 ) (

zzT + α Id

)− 1
2
. (9)

Apparently, the obtained A in Eq. (9) is positive definite and the
constraint A ≻ 0 is naturally satisfied.
Update λ: When z and A are fixed, problem (5) becomes

min
λ

λ2
(
zTAz + αTr (A)

)
− λzT s . (10)

By taking the derivative of problem (10) with respect to λ, and
setting it to zero, we have

λ =
zT s

2
(
zTAz + αTr (A)

) . (11)

Update z: When λ and A are fixed, problem (5) is simplified into

min
z

λ2
(
zTAz

)
− λzT s

s .t . zT 1d = 1, z ≥ 0.
(12)

To effectively solve this problem, we introduce an auxiliary variable
v ∈ Rd , and rewrite problem (12) as

min
zT 1d=1,z≥0,z=v

λ2
(
vTAz

)
− λvT s . (13)

By using Augmented Lagrangian Multiplier (ALM) [1] method
(more details can refer to [4]), problem (13) is reformulated into

min
zT 1d=1,z≥0,v

λ2
(
vTAz

)
− λvT s +

µ

2

z −v +
β

µ

2
2
, (14)

where µ > 0 is the penalty parameter to control the violation
of equality constraint, and β ∈ Rd is the Lagrangian multipliers.
Subproblem (14) now contains two variables v and z and it can also
be solved by iterative optimization strategy. When z is fixed, we
take the derivative of subproblem (14) with respect to v and set it
to zero as

v = z +
λs + β − λ2AT z

µ
. (15)

When v is fixed, subproblem (14) becomes

min
zT 1d=1,z≥0

λ2
(
vTAz

)
+

µ

2

z −v +
β

µ

2
2
. (16)

Algorithm 1 The algorithm to solve problem (5).

Input: Feature score s ∈ Rd , and the selected feature number t .
Initialize: Feature score z ∈ Rd , redundancy matrix A ∈ Rd×d ,
parameters α , µ and the Lagrangian multipliers β ∈ Rd .

while not converge do
1. Update λ by Eq. (11).
2. Using ALM method to solve problem (12), update v by Eq.
(15), update z by solving problem (18), and update parameters
µ and β of ALM, respectively.
3. Update A by Eq. (9).

end while
Output: Optimal z, then sort in descending order, and select
top-ranked t features.

By merging this two terms, we rewrite problem (16) as the fol-
lowing equivalent form

min
zT 1d=1,z≥0

µ

2

z −v +
1
µ

(
β + λ2ATv

)2
2
, (17)

which can be further rewritten as

min
zT 1d=1,z≥0

1
2
∥z −m∥22 , (18)

wherem = v − 1
µ

(
β + λ2ATv

)
. Problem (18) can be solved by [7]

or an efficient algorithm in [12]. According to [4], we update the
parameters µ and β of ALM, respectively.

Based on the analysis above, we summarize the detailed proce-
dure for solving problem (5) in Algorithm 1.

4 EXPERIMENTS
In this section, we conduct the extensive experiments on six bench-
mark datasets including COIL20, USPS, ORL, ISOLET, LEU, and
AR10P, which are briefly summarized in Table 2. As for α , it is
searched in the grid of

{
10−3, 10−2, 10−1, 1, 10, 102, 103

}
and pa-

rameters µ and β in the ALM are updated as in [4]. Particularly, A-
denotes that ARM is applied to refining the raw score.

4.1 Visualization on Principle Components
To visualize the feature redundancy, we select top 80 features from
LEU dataset to perform the principle component analysis (PCA)
[6], and plot the first two principle components for the selected
features in Figure 2. In general, the projected features become much
far away from each other after using ARM model. For example, the
originally projected features by ReliefF [13] are tangled together
in Figure 2. (b), but the newly projected features by A-ReliefF are
much far away from each other in Figure 2. (a). That is to say, the
selected features have less correlation via the proposed ARMmodel.

4.2 The Performance of Feature Selection by
ARM

Classification result comparison: For the supervised feature se-
lection, we use ReliefF [13], Fisher Score (FScore) [8], and Informa-
tion Gain (IG) [15] as original methods. After using ARM model,
we denote the corresponding methods as A-ReliefF, A-FScore, and
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Table 3: Clustering accuracy and NMI of top 80 features

datasets LapScore A-LapScore MCFS A-MCFS UDFS A-UDFS LLCFS

Accuracy

COIL20 0.5631 0.6410 0.6298 0.6451 0.2187 0.6521 0.5875
USPS 0.5944 0.6154 0.6540 0.6470 0.3428 0.6729 0.5096
ORL 0.4500 0.5200 0.4975 0.5225 0.3750 0.5450 0.4775
ISOLET 0.5109 0.5397 0.5256 0.5961 0.3109 0.5097 0.5583
LEU 0.8772 0.8750 0.8611 0.9027 0.7639 0.8194 0.8611
AR10P 0.2923 0.3231 0.2154 0.2308 0.2615 0.2693 0.2308
Average 0.5430 0.5857 0.5640 0.5907 0.3788 0.5780 0.5375

NMI

COIL20 0.5631 0.6410 0.6298 0.6451 0.2187 0.6521 0.5875
COIL20 0.6705 0.7261 0.7349 0.7349 0.2928 0.7432 0.6946
USPS 0.5530 0.5417 0.5845 0.5880 0.2652 0.6213 0.5707
ORL 0.6664 0.7122 0.7102 0.7271 0.5935 0.7127 0.6825
ISOLET 0.6691 0.6788 0.6940 0.7099 0.4599 0.6554 0.6909
LEU 0.4876 0.4222 0.5123 0.5471 0.2227 0.2694 0.5123
AR10P 0.3205 0.3142 0.1768 0.2438 0.2249 0.3123 0.1462
Average 0.5612 0.5659 0.5687 0.5918 0.3432 0.5532 0.5495
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Figure 3: Supervised classification accuracy on COIL20 and
USPS datasets with different number of selected features.

A-IG, respectively. As a convention in [2], we use classification ac-
curacy (the proportion of correctly predicted labels) as evaluation
metric, and SRDA [2] as the basic classifier. Half of the data are
utilized as the training set, and the remaining part are set as the test
set in the experiment. We summarize the classification accuracy
for supervised feature selection in Table 1, where the best results
are in bold face and the second-best results are underlined. From
Table 1, we conclude that the classification accuracy is largely im-
proved by using ARM framework. The best classification accuracy
via A-ReliefF is increased around 27% in AR10P dataset.

In addition, the experiments with different number of selected
features are also performed on two datasets (i.e. COIL20 and USPS),
and the results are shown in Figure 3. It is noted that the classifi-
cation accuracy is consistently increased by using ARM compared
with the original methods. This is due to the fact that the redun-
dancy of the selected features are largely decreased, and the selected
features become more representative and discriminative.
Clustering result comparison: Similar to the supervised feature
selection, we use Laplacian Score (Lap) [11], MCFS [3], and UDFS
[18] as original methods. After using ARMmodel, we denote the cor-
responding methods as A-Lap, A-MCFS, and A-UDFS, respectively.
As in [18] , we use clustering accuracy and NMI [9] as the basic
evaluation metrics, and k-means (repeating 20 times) to perform
the clustering task.

We summarize the clustering accuracy and NMI in Table 3, re-
spectively, where best results are bolded, and the second-best results
are underlined. From Table 3, it is noted that both the clustering
accuracy and NMI on most datasets are significantly improved by
A-LapScore and A-UDFS. As for MCFS, its improvement is not as
obvious as A-LapScore and A-UDFS methods, because MCFS tends
to selecting the features with less correlation.

5 CONCLUSION
To effectively reduce the negative impact of the redundancy among
the selected features, we propose a practical framework ARM for
both supervised and unsupervised feature selection. Unlike other
feature selection methods, we adaptively construct the redundancy
matrix to measure the redundancy of the features instead of pre-
setting it as the priori information. Via the redundancy matrix
and the re-sorted feature score, we can largely reduce the redun-
dancy of the selected features from the global perspective, such that
more representative and non-redundant features can be selected.
Consequently, the experimental results on six benchmark datasets
validate the effectiveness of the proposed ARM framework.
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