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Abstract—Multi-sourced networks naturally appear in many
application domains, ranging from bioinformatics, social net-
works, neuroscience to management. Although state-of-the-art
offers rich models and algorithms to find various patterns when
input networks are given, it has largely remained nascent on how
vulnerable the mining results are due to the adversarial attacks.
In this paper, we address the problem of attacking multi-network
mining through the way of deliberately perturbing the networks
to alter the mining results. The key idea of the proposed method
(ADMIRING) is effective influence functions on the Sylvester
equation defined over the input networks, which plays a central
and unifying role in various multi-network mining tasks. The
proposed algorithms bear two main advantages, including (1)
effectiveness, being able to accurately quantify the rate of change
of the mining results in response to attacks; and (2) generality,
being applicable to a variety of multi-network mining tasks
( e.g., graph kernel, network alignment, cross-network node
similarity) with different attacking strategies (e.g., edge/node
removal, attribute alteration).

I. INTRODUCTION

Multi-sourced networks naturally appear in many high-
impact application domains, ranging from bioinformatics, so-
cial networks, neuroscience to management. For example, for
protein function prediction, a classic method is to assign sim-
ilarity to protein pairs by applying graph kernel over multiple
protein networks [1]. For team management, [2] proposes to
replace the unavailable individual in the team by recommend-
ing the best candidate who maximizes the similarity of the
team networks before and after the replacement (i.e., team-
context aware similarity). For financial fraud detection, [3]
resorts to interactive subgraph matching to identify complex
fraud schema, e.g., syntheticIDs, money laundry, etc.

To date, many sophisticated multi-network mining models
and algorithms have been proposed (See Section V for a
review). Although these methods are quite effective in iden-
tifying various patterns when the input networks are given,
less is known on how the mining results would be affected
by the perturbation of the underlying networks, due to either
random noise (i.e., sensitivity analysis) or malicious attacks
(i.e., adversarial learning). For example, although graph kernel
is effective in predicting the function (i.e., labels) of a protein,
it is not clear how sensitive the prediction result is due to the
measurement error for certain molecule-molecule interactions
(i.e., edge error).

In this paper, we address the problem of attacking multi-
network mining to alter its results, which we formulate as
an optimization problem. We propose a family of algorithms
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(ADMIRING) to achieve effective attacks. Figure 1 presents
one illustrative example of adversarial multi-network mining.
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Fig. 1: Attacking graph
kernel: given three net-
works G1, G2 and G3,
G1 is much more similar
to G2. By removing edge
(2, 4), the new network
G′1 becomes more similar
to G3 than it is to G2.

The key idea behind our method
is to quantitatively characterize how
the mining result will change if we
deliberately perturb the networks,
e.g., editing the network topology
by removing edges/nodes or modify-
ing attributes. To be specific, given
the central and unifying role of the
Sylvester equation defined over the
input networks in a variety of multi-
network mining tasks (e.g., graph
kernel, network alignment, etc.) [4],
[5], we measure the influence of
network elements (i.e., edge, node
and attribute) as the rate of change
of the mining results induced by the
Sylvester equation.
We summarize the main contributions of this paper as follows,
• Problem Formulation. We formally define the adversarial

multi-network mining problem and formulate it as an opti-
mization problem. The key idea is to measure the influence
of network elements as the rate of change of the mining
results induced by the underlying Sylvester equation.

• Algorithms and Analysis. We propose a family of al-
gorithms (ADMIRING) to effectively solve the adversarial
multi-network mining problem, which are applicable to a
variety of multi-network mining tasks.

• Empirical Evaluations. We perform extensive experimental
evaluations on real-world datasets to test the efficacy of
our proposed algorithm. Our evaluations demonstrate that
the algorithms can significantly alter the similarity between
networks, the accuracy of network classification.

The rest of the paper is organized as follows. In Section II,
we define the problem of adversarial multi-network mining.
Section III introduces our proposed algorithms. We present
experimental results in Section IV, and review related work in
Section V. We conclude the paper in Section VI.

II. PROBLEM DEFINITIONS

In this section, we formally define adversarial multi-network
mining problem, after we introduce notations and preliminaries
on multi-network mining as well as influence function.
A. Notations

Table I summarizes the main symbols and notations used
in this paper. We use bold uppercase letters for matrices (e.g.,
A), bold lowercase letters for vectors (e.g., q) and lowercase



letters for scalars (e.g., c). For matrix indexing, we use A (i, j)
to represent the entry at the ith row and the jth column of
matrix A, A (i, :) to denote the ith row of A and A (:, j) to
denote the jth column of A.

In this paper, we focus on a pair of node attributed networks,
represented as G1 = {A1,N1} and G2 = {A2,N2}, where
At (t= 1, 2) represents the adjacency matrices of the input
networks. Nj

t = diag(Nt(:, j))(t = 1, 2 and j = 1, . . . , d)
represents the strength of all nodes having the jth attribute in
network Gt. The uppercase bold letter N× is the combined
node attribute matrix of the two networks N× =

∑d
j=1 N

j
1⊗

Nj
2. For simplicity, we assume the input networks are (a)

unweighted, (b) undirected and (c) of the same size. The
generalization of the proposed method to weighted and/or
directed networks of different sizes is straightforward.

Symbols Definitions
G = {A,N} an attributed network

A adjacency matrix
A× Kronecker product of A1 and A2

Nl diagonal matrix of the lth node attribute
N× combined node attribute matrix

A−1, A′ inverse and transpose of matrix A

Si,j single entry matrix Si,j(i, j) = 1 and zeros
elsewhere

I an identity matrix
c, α ∈ (0, 1) a regularization parameter, damping factor

p×,q× initial and stopping probability distribution
n,m number of nodes and edges, respectively
d dimension of node attribute vector
I (g) influence function of network element g
⊗ Kronecker product

a = vec(A) vectorize a matrix A in column order
X = mat(x, n, n) reshape x to an n×n matrix in column order
Y = diag(y) diagonalize a vector y

TABLE I: Symbols and Definition

B. Preliminaries
We briefly review (1) Sylvester equation for multi-network

mining tasks, and (2) influence function for machine learning.
1) - Sylvester equation for multi-network mining. A unifying
cornerstone behind many multi-network mining tasks can be
attributed to the Sylvester equation defined over the input
networks. In detail, given two node-attributed networks G1 and
G2, we have the following generalized Sylvester equation

X =
d∑

l=1

cMlXT′l + B (1)

where c is a regularization parameter, Ml = Nl
2A2,Tl =

Nl
1A1, and B ∈ Rn×n encodes the prior knowledge of the

mining tasks. For instance, in network alignment [5], B is
the preference matrix to encode anchor links; and in random
walk graph kernel [6], B represents the initial probability
distribution of the random walks on the direct product matrix.
In Eq. (1), X ∈ Rn×n is the solution matrix. A numerical
solution of the Sylvester equation usually costs at least O(n3)
in time complexity [7], and some recent works [8], [9] are
able to reduce the time complexity to be linear w.r.t. the input
network size. By the Kronecker product properties, we have
the following equivalent linear equation of Eq. (1),

x = cN×A×x + b (2)

where x = vec(X), b = vec(B) and A× = A1 ⊗A2. The
closed-form solution of x is given by x = (I− cN×A×)

−1
b.

Remarks. For clarity of the description of the proposed algo-
rithms and analysis, we will mainly focus on a pair of node-
attributed networks. Nonetheless, the proposed algorithms
can be naturally generalized to handle other scenarios. For
example, both Eq. (1) and Eq. (2) can be generalized to
handle edge attributes as well [5], [9]. If the node and
edge attribute information is absent, Eq. (1) degenerates to
X = cA2XA′1+B. If there are multiple (more than two) input
networks, we can organize them into a combined network by
matrix direct sum G = {A,N}, where A and N are block
diagonal matrices and each diagonal block represents one input
network. Then Eq. (1) is defined w.r.t. the combined network
G (i.e., G = G1

⊕
G2).

It turns out the solution matrix X and its vectorization x
encodes rich information of the input networks, and therefore
have been used for a variety of mining tasks. For example, the
random walk based graph kernel [6] is essentially a summation
of all the entries of X linearly weighted by the stopping
probability distribution q′× of random walks on the direct
product matrix; the solution matrix X indicates the soft node-
alignment between the input networks and the specific entries
indicates the similarity or proximity between two nodes across
networks (i.e., cross-network node proximity) [5]; the solution
matrix X defined over a query network and a data network
can be further fed into a goodness function [3] for subgraph
matching. Conceptually, we can represent all the above multi-
network mining results induced by the solution matrix X by a
function f . For example, f(X) = q′×vec(X) for random walk
graph kernel [4]; f(X) = X for (soft) network alignment [5].
Table II presents a summary for different choices of f(·) for
multi-network minignt tasks.
2) - Influence function for machine learning. Influence function
is a powerful analytical tool from robust statistics to evaluate
the dependence of the estimator on the value of the data
points [10]. The seminal work by Pang et al. [11] proposes
to leverage influence function to assess the effect of each
training example on the performance of the machine learning
system, as a key step towards explainable machine learning.
Its key idea is to trace the learning model’s predictions back
to the input training examples. In order to identify the training
examples that are most responsible to model’s behavior, they
use influence function in accordance with the model that
reflects how the learning model’s parameters are affected if
a training example is perturbed by an imperceptible amount.

C. Problem Definition
Generally speaking, adversarial learning aims to maximally

alter the learning results by manipulating a small number of
the input data points. In the case of multi-network mining,
it translates to a small number of network elements (e.g.,
edges/nodes/attributes). Given the unifying role of the solution
matrix X of Eq. (1), we formally define the adversarial multi-
network mining problem as follows,
Problem 1. Adversarial Multi-network Mining



Given: (1) two input attributed networks G1 and G2, (2) the
vectorization of the solution matrix X of Eq. (1), (3)
a function f(X) in Table II underlying the correspond-
ing mining task, (4) an integer budget k, and (5) the
specific network element type (i.e., edge vs. node vs.
attribute);

Find: a set of k most influential network elements of the
specified type so that f(X) will change most if we attack
(e.g., remove or alter) those elements.

Multi-network Mining Tasks Function f(·)

Random walk graph kernel [4] f(X) = q′×vec(X)

Soft network alignment [5] f(X) = X or f(X) = vec(X)

Cross-network node similarity [5] f(X) = X(s, t)

Subgraph matching [3] f(X) = argminM g(M,X)

TABLE II: Choices of functions f(·) w.r.t. the solution X of
Sylvester Equation underlying various multi-network mining
tasks. In cross-network node similarity, the similarity between
node s in G2 and node t in G1 is X(s, t).

III. ALGORITHMS AND ANALYSIS

In this section, we first formally formulate Problem 1 from
the optimization perspective. Next, we derive the influence
functions with respect to various network elements (e.g.,
edges, nodes and attributes) for multi-network mining tasks.
Based on that, we propose effective and efficient algorithms
which leverage such influence functions to attack multi-
network mining results, together with some analysis.
A. ADMIRING Formulation

The intuition behind adversarial multi-network mining is
to find a set of key network elements (e.g., edges, nodes,
attributes) whose perturbation (e.g., removal, alteration) would
cause the largest change of the function f (·) underlying a
given mining task. For example, for random walk graph kernel,
the goal of an adversarial attack is to significantly change
the similarity (i.e., graph kernel) between two input networks
by deliberately perturbing a small set of influential network
elements. To be specific, let X be the original solution of
Eq. (1) for the input networks G1, G2 and XP be the new
solution matrix for networks G1P and G2 after we perturb the
network elements in set P . The corresponding mining results
are f(X) and f(XP), respectively. We formally formulate
Problem 1 as the following optimization problem,

argmax
P

∆f = (f (X)− f (XP))
2

s.t. |P| = k (3)

Note that for network alignment, the squared loss in the above
formulation will be replaced by the L2 norm if f(X) =
vec(X) or the Frobenius norm if f(X) = X. In order to
solve the above optimization problem, there are two crucial
questions that need to be answered: (Q1) how to quantitatively
evaluate the influence of a specific network element w.r.t. the
function f(·) over the solution X of the Sylvester equation;
and (Q2) how to leverage the influence function to identify
a set of network elements to attack various multi-network

mining tasks. In the next two subsections, we present our so-
lutions to Q1 and Q2 according to the specific type of network
elements (i.e., edges, nodes and attributes), respectively.
B. Network Element Influence

In order to achieve effective attacks to multi-network mining
tasks, it is desirable that the change to the network structure
would significantly impact the mining results (i.e., f(X) in
Table II). For simplicity and clarity, we only consider three
types of attacks, including edge removal, node removal and
node attribute alteration and we assume the attack always
happens on the first network G1. In order to quantify how
f(X) changes (i.e., ∆f in Eq. (3)) if we perturb a specific
network element, we propose to use the influence function
w.r.t. the corresponding multi-network mining tasks.
Definition 1. Edge Influence in Multi-network Mining. For
a given multi-network mining task f(X), the influence of a
specific edge (e.g., A1 (i, j) in G1) w.r.t. the mining result is
defined as the derivative of f(X) w.r.t. this edge. Formally,
the edge influence is defined as I (A1 (i, j)) = ∂f(X)

∂A1(i,j) .

Definition 2. Node Influence in Multi-network Mining. The
node influence is defined as the summation of influences of the
incident edges, i.e., I (N1 (i)) =

∑
j|A1(i,j)=1 I (A1 (i, j))

Definition 3. Node Attribute Influence in Multi-network Min-
ing. For node-attributed networks, the influence of the lth

attribute of node i (i.e., Nl
1(i, i)) in network G1 is defined

as the derivate of f(X) w.r.t. this specific node attribute, i.e.,
I(Nl

1(i, i)) = ∂f(X)

∂Nl
1(i,i)

.

Next, we present details on how to compute the influence of
network elements (e.g., edges, nodes and attributes) w.r.t. the
mining results in the various tasks (e.g., random walk graph
kernel, network alignment and cross-network node similarity
in Table II). For clarity, we will mainly use random walk graph
kernel as an example to illustrate the mathematical details to
compute different network element influences.
1) Edge influence. We first give Lemma 1 to compute the
edge influence for random walk graph kernel.
Lemma 1. (Edge Influence for Random Walk Graph Kernel.)
Given random walk graph kernel between two input networks:
f(X) = q′× (I− cN×A×)

−1
N×p×, the influence of a

specific edge (e.g., A1(i, j) in G1) w.r.t. random walk graph
kernel can be calculated as follows,
I (A1 (i, j)) = cq×

′QN×[(Si,j + Sj,i)⊗A2]QN×p× (4)

where Q = (I− c N×A×)
−1, Si,j is a single-entry matrix

of the same size as A1, with 1 at the (i, j)th position and 0
elsewhere.
Proof. According to [4], the random walk graph kernel for
node-attributed networks is,

f(X) = q′×vec(X) = q′× (I− cN×A×)
−1

N×p× (5)

where vec(X) = (I− cN×A×)
−1

N×p× = x.
Following Definition 1, we take the partial derivative of

f(X) w.r.t. a specific edge (e.g., A1 (i, j) in network G1),

I(A1(i, j)) =
∂f (X)

∂A1 (i, j)
=
∂f(X)

∂x

∂x

∂A1(i, j)
(6)



According to the first row of Table II, we have that ∂f(X)
∂x =

q′×. For the second partial derivative (i.e., ∂x
∂A1(i,j) ), by taking

the derivative of Eq. (2), we have that

∂x

∂A1(i, j)
= c (I− cN×A×)

−1
N×

∂A×
∂A1(i, j)

x (7)

By the property of the matrix derivative [12, Page 8], we
further have that

∂A×
∂A1(i, j)

=
∂A1

∂A1(i, j)
⊗A2 =

(
Si,j + Sj,i

)
⊗A2 (8)

Recall the closed-form solution x = (I− cN×A×)
−1

N×p×.
Putting everything together, we obtain the solution for calcu-
lating the influence of edge A1 (i, j) w.r.t. random walk graph
kernel as follows,
I (A1 (i, j)) = cq×

′QN×[(Si,j + Sj,i)⊗A2]QN×p×

which completes the proof.
2) Node influence. Based on the edge influence (Eq. (4)), it
is straight-forward to compute the node influence, which is
summarized in the following proposition.
Proposition 1. (Node Influence in Random Walk Graph
Kernel.) Given random walk graph kernel between two input
networks: f(X) = q′× (I− cN×A×)

−1
N×p×, the influence

of a specific node (e.g., N1(i) in G1) w.r.t. random walk graph
kernel can be calculated as,
I (N1 (i)) = cq×

′QN×[
∑

j|A1(i,j)=1

(Si,j+Sj,i)⊗A2]QN×p×

(9)
Proof. It directly follows Lemma 1. Omitted for brevity.
3) Node attribute influence. Finally, we give Lemma 2 to
compute the node attribute influence.
Lemma 2. (Node Attribute Influence for Random Walk Graph
Kernel.) Given random walk graph kernel between two input
networks: f(X) = q′× (I− cN×A×)

−1
N×p×, the influence

of a specific node attribute (e.g., the lth dimension of the
attribute vector of node N1(i) in G1, i.e., Nl

1(i, i)) w.r.t.
random walk graph kernel can be calculated as follows,
I
(
Nl

1(i, i)
)

= q′×Q[Si,i ⊗Nl
2] (I + cA×QN×)p× (10)

where Q = (I− c N×A×)
−1, Si,i is a single-entry matrix

of the same size as A1, with 1 at the (i, i)th position and 0
elsewhere. Nl

2 represents the strength of all the nodes having
the lth attribute from the network G2.
Proof. Omitted for brevity.
C. Proposed Algorithms
1) A generic algorithm for adversarial multi-network
mining. Based on Lemma 1, 2 and proposition 1, we pro-
pose Algorithm 1 to identify the most influential network
elements (i.e., edges, nodes, attributes) for random walk graph
kernel. Note that Algorithm 1 provides a family of attacking
algorithms based on the specific network element. We use
different suffix to differentiate different attacking scenarios,
i.e., ADMIRING-E, ADMIRING-N, ADMIRING-A for attacking
edges, nodes and node attributes respectively.

The key idea of the proposed ADMIRING algorithm is that
we iteratively attack one network element with the highest
influence value (Step-5, 9, 16), remove or alter it from the

Algorithm 1 ADMIRING: Adversarial Multi-network Mining

Input: (1) Two attributed networks G1 and G2, (2) an integer
budget k , (3) a mining task denoted by f(·) in Table II,
(4) network element type (i.e., edge vs node vs node
attribute), (5) q×, p×, and (6) parameter c;

Output: A set of k network elements P to attack, and the
residual network G1P .

1: Initialize P = ∅;
2: while |P|< k do
3: if element type is edge then
4: Calculate influence for all edges using Eq. (4)
5: Add edge (i, j) = argmax

(i,j)

I (A1 (i, j)) to P;

6: Remove edge (i, j) and (j, i) from G1;
7: else if element type is node then
8: Compute influence for all nodes in G1 by Eq. (9);
9: Add node i = argmax

i
I (N (i)) to P;

10: Remove node i from G1;
11: else if element type is node attribute then
12: Set the value of damping factor α ∈ (0, 1);
13: for node i in G1 do
14: Compute influence of each attribute by Eq. (10);
15: end for
16: Add node attribute argmax

Nl
1(i,i)

I
(
Nl

1(i, i)
)

to P;

17: Reduce the selected attribute by a ratio α in G1;
18: else
19: return Error
20: end if
21: end while
22: return P and G1P .

network (Step-6, 10, 17) and recompute the influence functions
for the remaining network elements. In Algorithm 1, the two
column vectors p× and q× are set as uniform unit vectors,
i.e., p× = q× = 1× 1

n2 , and c is chosen as a small positive
number to ensure convergence of the Sylvester Eq. (1) with
fixed-point methods (e.g., c = 1/(max(eigenvalue(N1A1)) ×
max(eigenvalue(N2A2)) + 1)).

IV. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the
proposed algorithms in terms of the following question:
• Effectiveness. How effective are the proposed algorithms

in identifying key network elements to attack multi-network
mining tasks?

A. Experimental Setup

Dataset Class Avg.
#nodes

Avg.
#edges Attribute

MUTAGENICITY 2 30.32 19.79 0
PROTEINS 2 39.06 72.82 1

IMDB-BINARY 2 19.77 96.53 0

TABLE III: Statistics of datasets. The ‘Class’ column is the
number of network labels. ‘0’ in the ‘Attribute’ column means
the corresponding networks do not have node attributes.



1) Datasets. We use three real-world datasets which are
publicly available. Table III summarizes the statistics of the
datasets. Detailed descriptions of these datasets are as follows.
• MUTAGENICITY is a dataset of 4,337 networks of molec-

ular structures and it is divided into two classes mutagen
(2,401 networks) and nonmutagen (1,936 networks) accord-
ing to whether they have a property of mutagenicity [13].

• PROTEINS is a dataset of 1,113 protein structures [1]. Each
protein is represented by a network. The task is to classify
the protein structures into enzymes vs. non-enzymes.

• IMDB-BINARY is a movie collaboration dataset which
collects cast and genre information of two types of movies,
romance and action on IMDB. For each network, nodes
represent actors/actresses and there is an edge between them
if they appear in the same movie, and the task is to predict
the genre of the movie the network represents [14].

2) Evaluation Metrics. We quantify the effectiveness of the
proposed algorithms by measuring the following two aspects,
including (1) the relative change of f(·) (i.e., ∆f

f ), and (2)
the accuracy of a multi-network mining task (e.g., network
classification) before and after performing adversarial attacks.

We perform the evaluations on random walk graph kernel,
(1) on each selected dataset, we randomly selected 100 pairs of
networks of the same class, then for every pair of networks,
we apply ADMIRING or comparison methods to attack one
of them, and re-compute the graph kernel to compare the
relative change; (2) we also trained a SVM classifier with
graph kernel for each of the three datasets; for every network
(i.e., G1) in the testing set, we attacked it with ADMIRING or
comparison methods to reduce its similarity with one random
training network (i.e., G2) . The new classification result is
from applying the trained SVM classifier on the attacked test
networks. We report the average classification accuracy by
repeating the above attacking strategy for 10 times.
3) Comparison Methods. We evaluate the proposed ADMIR-
ING method with different attacking strategies for attacking
edges, nodes and node attributes respectively. We also evaluate
a batch-mode variant of ADMIRING. That is, in Algorithm 1,
instead of selecting one network element at each iteration, we
select the top-k elements with the highest influence scores in
one iteration. We use a suffix ‘v’ to denote such a variant. For
comparison, we use the following methods to select the top-
k influential network elements, including (1) Random, which
randomly select k network elements in the first network to
attack; (2) Bruteforce, which re-computes f after attacking
each element and selects the one with the highest ∆f in each
iteration; (3) Bruteforce-v, which uses Bruteforce in the batch
mode; (4) PageRank, which measures the importance of nodes
in a given network [15] and here we leverage the PageRank
ranking results to select top-k influential network elements. In
G1, we define the PageRank value of an edge A1(i, j) as,

v(A1(i, j)) = (r(i) + r(j))× max
m∈{i,j}

r(m)

where r(i) is the PageRank value of node i in G1. In
ADMIRING-E, we choose the top k edges with the highest
PageRank edge values; in ADMIRING-N, we select the

k nodes in G1 with the largest PageRank values; and in
ADMIRING-A, we first select the node with the the highest
PageRank value and then select the attribute dimension with
the largest value if the corresponding node attribute vector
has multiple dimensions; (5) Q-Matrix, which selects the
top-k network elements based on Q = (I− cN×A×)

−1.
Recall that Q is an n2×n2 matrix and is closely correlated to
the solution of the multi-network mining problems as shown
in Table II. We can use a block-matrix representation (i.e.,
Q = [Wij ]i,j=1,...,n, where Wij is at the (i, j)th position
of Q with size n × n). In edge attack, the aggregation of
the entries in block matrix Wij can be considered as the
contribution of the edge A1(i, j) to the mining result (i.e.,
f(X)). We can compute the influence of edge A1(i, j) by the
aggregation of the entries in Wij and select the top-k edges.
In node attack, we calculate the influence of node i in G1 by
summing up all blocks Wij |A1(i,j)=1 and select the top-k
nodes. In node attribute attack, we compute the influence of
Nl

1(i, i) as
∑n

j=1 W
ij(l, :) and select the top-k attributes.

B. Effectiveness Results
We compare the proposed ADMIRING with comparison

methods in the task of attacking random walk graph ker-
nel with different types of network elements, i.e., edges,
nodes and attributes. The results of ∆f

f are summarized in
Figures 2, 3, and 4, respectively. We can see that the
proposed ADMIRING and its batch-mode variant ADMIRING-
v (two red bars) achieve a very similar performance as their
bruteforce counterparts (two yellow bars). As we will show in
the next subsection, the bruteforce methods are much more
expensive in terms of computation. In the meanwhile, the
proposed methods (two red bars) consistently outperform all
the remaining methods by a large margin in the three attacking
scenarios across all datasets. For example, on IMDB-BINARY
dataset, the proposed method ADMIRING-E is 4.31 times better
than the best competitor method (i.e., ADMIRING-E vs. Q-
Matrix) by attacking edges; on MUTAGENICITY dataset, by
attacking nodes, the proposed ADMIRING-N is 269% better
than Q-Matrix, and for node attribute attack, our proposed
method ADMIRING-A is 2.36 times better than Q-Matrix on
PROTEINS dataset. For the reported results in Figures 2, 3
and 4, the budget k is set to be 10, and the damping factor
α is 0.2 for result in Figure 4.

Second, we evaluate and compare the impact of differ-
ent attacking methods on the network classification results,
summarized in Figure 5. We can see both the ADMIRING
method and the bruteforce method can significantly impact
the classification results. For example, on PROTEINS dataset,
our proposed method can reduce the classification accuracy
by 8.82%, 10.52%, and 6.98% by attacking edges, nodes and
attributes, respectively. On the other hand, the attacking effect
by other methods is quite marginal. For example, the best
competitor method (Q-Matrix), can only achieve a reduction
of 3.35% in classification accuracy by attacking nodes.

V. RELATED WORK

Multi-network Mining aims to collectively leverage the
relationship among multiple networks for a better mining out-
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Fig. 5: Network classification accuracy after attacking by different methods (k = 10, α = 0.2). Best viewed in color.

come or reveal patterns . Graph kernel is a family of methods
that measure the similarity between two input networks based
on walks [4], [6] or limited-sized subgraphs [16]. Network
alignment aims to identify node correspondence across differ-
ent networks. Some recent work suggests that the alignment
can be enhanced by augmenting the topology consistency with
the node and edge attributes [5], [8]. Multiple networks
are manifested as a network of networks, where each node
of the main network itself is another domain network [17],
[18]. The main network can contextualize the mining tasks
in each domain-specific network by providing the consistency
constraints across networks for both ranking [17] and clus-
tering [19]. With the increased complexity of the networked
system, some efforts have been towards explainable network
mining [20]–[22]. Adversarial Learning studies the learning
process in the adversarial setting, where an adversary can
attack the learning model [23]. In white-box evasion attack, the
adversary has the full knowledge of the learning model (i.e.,
parameters and hyperparameters). The adversarial example
is crafted by perturbing the most salient features. More
recently, adversarial attacks on network mining algorithms
start to receive attentions, where perturbations to the network
attributes and structure can be constructed to mislead the graph
convolution models [24], [25].

VI. CONCLUSION

In this paper, we study the problem of adversarial multi-
network mining and formulate it as an optimization problem.
The key idea is to effectively characterize the change of mining
results w.r.t. the perturbations to the network. We propose a
family of algorithms (ADMIRING) that are able to measure
the influence of network elements to the mining results. The
empirical evaluations on real-world datasets demonstrate the
efficacy of the proposed algorithms. Future work includes
generalizing the current method beyond Sylvester equation
based solution in the black-box model setting as well as
designing effective defensive strategies.
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neural networks for graph data,” in KDD. ACM, 2018, pp. 2847–2856.

[25] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Ad-
versarial attack on graph structured data,” in ICML. Stockholmsmssan,
Stockholm Sweden: PMLR, 10–15 Jul 2018, pp. 1115–1124.


